WorldWideScience

Sample records for contact hole etching

  1. EUV stochastic noise analysis and LCDU mitigation by etching on dense contact-hole array patterns

    Science.gov (United States)

    Kim, Seo Min; Koo, Sunyoung; Park, Jun-Taek; Lim, Chang-Moon; Kim, Myoungsoo; Ahn, Chang-Nam; Fumar-Pici, Anita; Chen, Alek C.

    2014-04-01

    Experimental local CD uniformity (LCDU) of the dense contact-hole (CH) array pattern is statistically decomposed into stochastic noise, mask component, and metrology factor. Each component are compared quantitatively, and traced after etching to find how much improvement can be achieved by smoothing. Etch CDU gain factor is defined as the differential of etch CD by resist CD, and used to estimate etch CDU on resist CDU. Stochastic noise has influenced on not only LCDU but also local placement error (LPE) of each contact-hole. This LPE is also decomposed into its constituents in the same statistical way. As a result, stochastic noise is found to be the most dominant factor on LCDU and LPE. Etch LCDU is well expected by Etch Gain factor, but LPE seems to be kept same after etching. Fingerprints are derived from the repeating component and the boundary size for excluding proximity effect in analysis is investigated.

  2. Thin-film solar cells with InGaAs/GaAsP multiple quantum wells and a rear surface etched with light trapping micro-hole array

    Science.gov (United States)

    Watanabe, Kentaroh; Inoue, Tomoyuki; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki

    2015-08-01

    A light trapping effect in GaAs p-i-n solar cells with InGaAs/GaAsP multiple quantum wells (MQWs) in the i-layer was demonstrated by applying a light scattering texture to the rear surface of the cell. A thin-film MQW solar cell was successfully fabricated by metal organic vapor phase epitaxy (MOVPE) to grow an inverted n-i-p photovoltaic (PV) structure; this structure was then transferred to a Si support substrate to prevent optical loss due to free carrier absorption. For the light scattering texture, the use of both the wet-etched micro-hole arrayed SiO2 dielectric layer on the rear surface of the cell and the secondarily etched micro hole array on the GaAs layer was attempted. On the SiO2 layer, the micro hole array pattern was obtained by the radio frequency sputtering of the layer followed by wet etching with photolithographic patterning. On the GaAs layer, the micro-hole array pattern was obtained by direct etching through a SiO2 template. Compared with the light scattering effects of the micro-hole-arrayed SiO2 layer, the secondarily etched GaAs rear contact layer showed a significant improvement in external quantum efficiency (EQE) in the wavelength range from 855 to 1000 nm that corresponds to the photon absorption wavelength in MQWs.

  3. Conformal coating by photoresist of sharp corners of anisotropically etched through-holes in silicon

    DEFF Research Database (Denmark)

    Heschel, Matthias; Bouwstra, Siebe

    1997-01-01

    The authors describe a photoresist treatment yielding conformal coating of three-dimensional silicon structures. This even includes the sharp corners of through-holes obtained by anisotropic etching in (100)-silicon. Resist reflow from these corners is avoided by replacing the common baking proce...... procedure with a proper vacuum treatment. The investigated photoresist is Shipley's Eagle 2100 ED, a negative-working electrodeposited photoresist. Electrical frontside to backside interconnections have been made using this photoresist as an etch mask...

  4. Optical critical dimension metrology for directed self-assembly assisted contact hole shrink

    Science.gov (United States)

    Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.

    2016-01-01

    Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.

  5. Temperature compensation of silicon Lamé resonators using etch holes: theory and design methodology.

    Science.gov (United States)

    Luschi, Luca; Iannaccone, Giuseppe; Pieri, Francesco

    2017-02-09

    We present a new approach to the temperature compensation of MEMS Lamé resonators, based on the combined effect of the doping concentration and of the geometry of etch holes on the equivalent temperature coefficients of silicon. To this purpose, we develop and validate an analytical model which describes the effect of etch holes on the temperature stability of Lamé resonators through comparison with experiments available in the literature and FEM simulations. We show that two interesting regions of the design space for Lamé resonators exist, where a cancellation of the first-order temperature coefficient of the resonance frequency is possible: [100]-oriented silicon with n-doping of 2.5∙1019 cm-3, and [110]-oriented silicon with p-doping higher than 1.4∙1020 cm-3.

  6. Interaction between photoresist pretreatment and high-aspect-ratio contact and via hole definition

    Science.gov (United States)

    Brown, Kevin C.; Insalaco, Linda J.; Szeto, Elina C.

    1993-09-01

    The relationship between photoresist treatment prior to etch and subsequent oxide sidewall hole profile is investigated. Etched features were examined immediately after resist pattern definition with post-expose bake, then after oven hard bake or deep UV photostabilization. It was observed that taper of the etched oxide profile depends on pre-treatment temperature. Etch chemistry influences the relative change in taper across a range of pre-treatment temperatures. `Bowing,' as well as reticulated or `burnt' resist is eliminated. Profile variation across the wafer is reduced with deep UV photostabilization. Microscopic etch uniformity (RIE lag) also depends on the interaction between resist pre-treatment and oxide etch chemistry.

  7. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests.

    Science.gov (United States)

    Kusdemir, Mahmut; Gunal, Solen; Ozer, Fusun; Imazato, Satoshi; Izutani, Naomi; Ebisu, Shigeyuki; Blatz, Markus B

    2011-01-01

    This study evaluated the cytotoxicity of self-etching primers/adhesives by direct contact and dentin barrier tests. The three two-step self-etching systems Clearfil SE Bond (CSE), Clearfil Protect Bond (CPB), Prime&Bond NT/NRC (PB) and one-step self-etching systems Reactmer Bond (RB), Clearfil Tri-S Bond (CTS), and Adper Prompt L-Pop (AP) were examined. In direct contact tests, L929 cells were cultured in the presence of diluted solutions (50, 20, 10, and 1%) of primer/conditioner of adhesive systems. For dentin barrier tests, each system was applied onto 0.5 or 1.5 mm thick human dentin assembled in a simple pulp chamber device and incubated for 24 h at 37°C to make the diffusive components contact the L929 cells placed at the bottom of the chamber. The cytotoxic effects were assessed by MTT assay. Cell culture without application of any primers/adhesives served as the control for both tests. One-way ANOVA and Tukey HSD tests were used for statistical analyses. The direct contact tests demonstrated that CSE and CPB were less toxic than the other materials at all dilutions. In the dentin barrier tests, toxic effects of materials were reduced with an increase in thickness of intervening dentin. CSE and CPB showed less cytotoxicity than the other adhesives (padhesives.

  8. Dry Etching of GaAs to Fabricate Via-Hole Grounds in Monolithic Microwave Integrated Circuits

    Directory of Open Access Journals (Sweden)

    D.S. Rawal

    2009-07-01

    Full Text Available This study investigates the dry etching of 60 mm dia, 200 mm deep holes for fabrication of through substrate via holes for grounding monolithic microwave integrated circuits (MMICs, on 3-inch dia semiinsulating GaAs wafer using RIE and ICP processes with CFC and non-CFC gas chemistry, respectively. The effect of various process parameters on GaAs etch rate and resultant etch profile was investigated. Two kinds of masks, photoresist and Ni, were used to etch GaAs and performance was compared by investigating effect on etch rate, etch depth, etch profile, and surface morphology. The etch profile, etch depth, and surface morphology of as-etched samples were characterised by scanning electron microscopy. The desired 200 mm deep strawberry profile was obtained at 40 mTorr for both RIE and ICP processes with an etch rate of ~1.3 mm/min and ~4 mm/min respectively. Ni metal mask was used for RIE process due to poor photoresist selectivity, whereas ICP process utilised photoresist as mask. The vias were then metallised by depositing a thin seed layer of Ti/Au (1000 Å using radio frequency sputtering and Au (~5 mm electroplated to connect the frontside pad and back side ground plane. The typical parasitic inductance offered by these via for RIE and ICP processes was ~76 pH and 83 pH respectively, which is well within the acceptable limits. The developed process was finally integrated to in-house MMIC production line.Defence Science Journal, 2009, 59(4, pp.363-370, DOI:http://dx.doi.org/10.14429/dsj.59.1535

  9. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    Science.gov (United States)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  10. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  11. Dynamic contact angle in rim instability of dewetting holes.

    Science.gov (United States)

    Choi, Sung-Hwan; Newby, Bi-min Zhang

    2006-02-07

    The effects of dynamic contact angle (thetad), between a substrate and the melt of a dewetting polymer thin film, on the evolution of rim instabilities of dewetting holes were reported. Various thetad's were achieved by covering SiOx surfaces with different coverage of octadecyltrichlorosilane. On each surface, the morphology of the dewetting holes was examined in detail as the hole grew to a certain size. Rim instabilities, in terms of undulations in both r and z directions, became more pronounced as thetad increased, under which condition, narrower and higher rims were also observed. Experimentally, atomic force microscopic scans of the rim were used to obtain the rim profile, which was predicted using thetad. The predicted rim profile was used, in combination with the analysis of Rayleigh instability of a cylindrical fluid, to interpret the rim instability. The model captures the basic trend of the rim instability dependency on thetad. The study demonstrates the importance of the substrate properties on the rim instability and the destabilization of polymer thin films during hole growth.

  12. Benefit of precise control of surface reaction by new patterning technique for small-contact etching with TiN hard mask

    Science.gov (United States)

    Tabata, Masahiro; Tsuji, Akihiro; Katsunuma, Takayuki; Honda, Masanobu

    2017-06-01

    We introduce state-of-the art small-contact etching by a new patterning technique using atomic layer etching (ALE) for sub-5 nm technology generation. In small-contact etching, SiO2 is etched by using a TiN hard mask with the progress of the miniaturization process. However, when applying the conventional method to small-contact etching with a TiN mask, etch stop is caused by excess deposition on the SiO2 film. From the results of surface analysis by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), it is considered that the deposition is formed by the reaction of fluorocarbon (FC) plasma and TiN. To solve this problem, we have developed a quasi-ALE technique to improve the ALE process to make it more suitable for SiO2 etching. By adopting this technique to small-contact etching with a TiN hard mask, etch stop was significantly reduced. Quasi-ALE precisely controls the surface reaction by controlling the radical flux and ion flux independently. Therefore, the reaction of FC plasma and TiN leading to etch stop can be minimized. Quasi-ALE can resolve the etch-stop issue due to the TiN mask used in the conventional method.

  13. The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching.

    Science.gov (United States)

    Shiao, Ming-Hua; Chang, Chun-Ming; Huang, Su-Wei; Lee, Chao-Te; Wu, Tzung-Chen; Hsueh, Wen-Jeng; Ma, Kung-Jeng; Chiang, Donyau

    2012-02-01

    The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio.

  14. Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by E-beam Lithography.

    Science.gov (United States)

    Rananavare, Shankar B; Morakinyo, Moshood K

    2017-02-12

    Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.

  15. Deep-Hole Inner Diameter Measuring System Based on Non-contact Capacitance Sensor

    Institute of Scientific and Technical Information of China (English)

    于永新; 张恒; 王宗超; 常以哲

    2010-01-01

    A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...

  16. Measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1986-01-01

    A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.

  17. Planarization and fabrication of bridges across deep grooves or holes in silicon using a dry film photoresist followed by an etch back

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for not only resist spinning and layer patterning but also for realization of bridges and cantilevers across deep grooves or holes. The technique contains a standard dry film

  18. The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Benjamin [Argonne National Lab. (ANL), Argonne, IL (United States); Greco, Aaron [Univ. of Delaware, Newark, DE (United States)

    2015-10-17

    White etching cracks (WECs) have been identified as the dominant mechanism of premature failure for bearings within wind turbine gearboxes. Though WECs have been observed in the field for over a decade, the exact mechanisms which lead to this failure are still debated, and benchtop replication has proven difficult. In previously published work, WECs have been replicated only through the use of component level test rigs, where complete bearings are tested. In these tests, the factors that are thought to drive the formation of WECs, such as slide-to-roll ratio (SRR) and lubricant film thickness, cannot not be easily altered or controlled. In this paper, WECs have been replicated on a three rings on roller, benchtop test rig, which allowed for a direct investigation into the influence that SRR magnitude, sliding direction, and the lubricant film thickness have on surface failures and WEC generation. It was determined that WEC were formed in samples that experienced -30% SRR at various lubrication conditions, however, at lower levels of negative SRR and positive SRR up to 30% no white-etching cracks were observed.

  19. Performance improvement inpolymer-based thin film transistor using modified bottom-contact structures with etched SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo [R and D Center, Samsung Corning Precision Materials Co., Ltd, Asan (Korea, Republic of); You, Young Jun; Shim, Jae Won [Dept. of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of)

    2017-02-15

    Polymer-based thin film transistors (TFTs) with a modified bottom-contact structure and etched SiO{sub 2} layer were developed and investigated. An increase in the field-effect mobility in the developed TFTs compared to TFTs with a normal bottom-contact structure was ascertained. A bottom-contact structure and the photolithographic processing method were used to ensure that the developed TFTs were suitable for commercial applications. Increased mobility of the modified bottom-contact structure was attributed to direct contact of the Au electrode with the active polymer layer.

  20. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures.

    Science.gov (United States)

    Rueß, F J; Oberbeck, L; Goh, K E J; Butcher, M J; Gauja, E; Hamilton, A R; Simmons, M Y

    2005-10-01

    We demonstrate the use of etched registration markers for the alignment of four-terminal ex situ macroscopic contacts created by conventional optical lithography to buried nanoscale Si:P devices, patterned by hydrogen-based scanning tunnelling microscope (STM) lithography. Using SiO(2) as a mask we are able to protect the silicon surface from contamination during marker fabrication and can achieve atomically flat surfaces with atomic-resolution imaging. The registration markers are shown to withstand substrate heating to approximately 1200 degrees C and epitaxial overgrowth of approximately 25 nm Si. Using a scanning electron microscope to position the STM tip with respect to the markers, we can achieve alignment accuracies of approximately 100 nm, which allows us to contact buried Si:P structures. We have applied this technique to fabricate P-doped wires of different widths and measured their I-V characteristics at 4 K, finding ohmic behaviour down to a width of approximately 27 nm.

  1. Improved Ohmic-contact to AlGaN/GaN using Ohmic region recesses by self-terminating thermal oxidation assisted wet etching technique

    Science.gov (United States)

    Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.

    2017-06-01

    Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.

  2. Placement error in directed self-assembly of block copolymers for contact hole application

    Science.gov (United States)

    Bouanani, Shayma; Tiron, Raluca; Bos, Sandra; Gharbi, Ahmed; Barros, Patricia Pimenta; Hazart, Jérôme; Robert, Frédéric; Lapeyre, Céline; Ostrovsky, Alain; Monget, Cédric

    2016-04-01

    Directed self-assembly (DSA) of block copolymers has shown interesting results for contact hole application, as a vertical interconnection access for CMOS sub-10 nm technology. The control of critical dimension uniformity (CDU), defectivity, and placement error (PE) is challenging and depends on multiple processes and material parameters. This paper reports the work done using the 300-mm pilot line available in materials to integrate the DSA process on contact and via level patterning. In the first part, a reliable methodology for PE measurement is defined. By tuning intrinsic edge detection parameters on standard reference images, the working window is determined. The methodology is then implemented to analyze the experimental data. The impact of the planarization process on PE and the importance of PE as a complement of CDU and hole open yield for process window determination are discussed.

  3. Synchrotron radiation stimulated etching of SiO sub 2 thin films with a Co contact mask for the area-selective deposition of self-assembled monolayer

    CERN Document Server

    Wang, C

    2003-01-01

    The area-selective deposition of a self-assembled monolayer (SAM) was demonstrated on a pattern structure fabricated by synchrotron radiation (SR) stimulated etching of a SiO sub 2 thin film on the Si substrate. The etching was conducted by irradiating the SiO sub 2 thin film with SR through a Co contact mask and using a mixture of SF sub 6 + O sub 2 as the reaction gas. The SR etching stopped completely at the SiO sub 2 /Si interface. After the SR etching, the Si surface and the SiO sub 2 surface beneath the Co mask were evaluated by an atomic force microscope (AFM). A dodecene SAM was deposited on the Si surface, and trichlorosilane-derived SAMs (octadecyltrichlorosilane, and octenyltrichlorosilane) were deposited on the SiO sub 2 surface beneath the Co mask. The structure of the deposited SAMs showed a densely packed and well-ordered molecular architecture, which was characterized by infrared spectroscopy, ellipsometry, and water contact angle (WCA) measurements. (author)

  4. 金属表面腐蚀孔的矩形模拟算法%Rectangle Simulation Algorithm for Etched Hole on Metal Surface

    Institute of Scientific and Technical Information of China (English)

    杨振威; 滕奇志; 何小海

    2011-01-01

    In order to compute the parameters of etched hole on metal surface accurately, as a example of etched holes on high voltage anode aluminum foil by DC, a rectangle simulation algorithm was designed based on the shape feature of the etched area. With the use of computer image processing techniques, the concave points were extracted on each hole's contour and used to construct rectangles on the sample images to simulate these overlapping hole. Acceptable results of experiments had been obtained, further studies and analyses were based on the simulation results.%为准确计算金属材料表面腐蚀孔的参数,以高压阳极铝箔在直流电侵蚀下形式的表面腐蚀孔为例,提出了一种根据腐蚀孔形状特征设计的矩形模拟算法。利用计算机图像处理技术,提取腐蚀并孔轮廓上的特征凹点,将这些点根据算法进行矩形模拟,从而达到在试样腐蚀孔图像上用矩形块来模拟腐蚀孔的目的。通过试验证明该算法有较好的效果,可为下一步的分析研究工作提供依据。

  5. Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact

    NARCIS (Netherlands)

    van Woudenbergh, T; Blom, PWM; Huiberts, JN

    2003-01-01

    The electro-optical characteristics of a polymer light-emitting diode with a strongly reduced hole injection have been investigated. A silver contact on poly-dialkoxy-p-phenylene vinylene decreases the hole injection by five orders of magnitude, resulting in both a highly reduced light output and cu

  6. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  7. Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Benjamin F.; Janssen, René A. J.; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rocha, Paulo R. F.; Gomes, Henrique L. [Instituto de Telecomunicações, Av. Rovisco, Pais, 1, 1049 – 001, Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M. [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany and King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-09-22

    Thin LiF interlayers are typically used in organic light-emitting diodes to enhance the electron injection. Here, we show that the effective work function of a contact with a LiF interlayer can be either raised or lowered depending on the history of the applied bias. Formation of quasi-Ohmic contacts for both electrons and holes is demonstrated by electroluminescence from symmetric LiF/polymer/LiF diodes in both bias polarities. The origin of the dynamic switching is charging of electrically induced Frenkel defects. The current density–electroluminescence–voltage characteristics can qualitatively be explained. The interpretation is corroborated by unipolar memristive switching and by bias dependent reflection measurements.

  8. Contact Stress Analysis around Elliptical Bolt-loaded Hole in Orthotropic Plates

    Directory of Open Access Journals (Sweden)

    O. Aluko

    2012-12-01

    Full Text Available The practicality of changing the bolt shape from circular to elliptical under friction effects in order to reduce the contact stress distributions was analytically investigated. The analysis utilized the complex stress functions obtained from the assumed displacement expressions that satisfy the boundary conditions around the hole to determine the contact stresses. In the method of solution coulomb friction was used to determine the prescribed displacements at the boundary. The material properties of graphite/epoxy and carbon fiber reinforced plastics laminates were used in this investigation and the results compared with available literature. It was revealed that the stress distributions followed the same pattern in both geometries but with lower magnitude in elliptical shape and the reduction in stress distributions caused by changing the bolt shape from circular to elliptic depend on friction coefficient.

  9. Evaluation of IDEALSmile for 90-nm FLASH memory contact holes imaging with ArF scanner

    Science.gov (United States)

    Cantu, Pietro; Capetti, Gianfranco; Loi, Sara; Lupo, Marco; Pepe, Annalisa; Saitoh, Kenji; Yamazoe, Kenji; Hasegawa, Yasuo; Iwasa, Junji; Toublan, Olivier R.

    2004-05-01

    According to sizes dictated by ITRS road map, contact holes are one of the most challenging features to be printed in the semiconductor manufacturing process. The development of 90[nm] technology FLASH memories requires a robust solution for printing contact holes down to 100[nm] on 200[nm] pitch. The delay of NGL development as well as open issues related to 157[nm] scanner introduction pushes the industry to find a solution for printing such tight features using existing ArF scanner. IDEALSmile technology from Canon was proven to be a good candidate for achieving such high resolution with sufficiently large through pitch process window using a binary mask, relatively simple to be manufactured, with a modified illumination and single exposure, with no impact on throughput and without any increase of cost of ownership. This paper analyses main issues related to the introduction of this new resolution enhancement technology on a real FLASH memory device, highlighting advantages as well as known problems still under investigation.

  10. Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors.

    Science.gov (United States)

    Wang, Zongrui; Dong, Huanli; Zou, Ye; Zhao, Qiang; Tan, Jiahui; Liu, Jie; Lu, Xiuqiang; Xiao, Jinchong; Zhang, Qichun; Hu, Wenping

    2016-03-01

    Poor charge injection and transport at the electrode/semiconductor contacts has been so far a severe performance hurdle for bottom-contact bottom-gate (BCBG) organic field-effect transistors (OFETs). Here, we have developed a simple, economic, and effective method to improve the carrier injection efficiency and obtained high-performance devices with low cost and widely used source/drain (S/D) electrodes (Ag/Cu). Through the simple electrode etching process, the work function of the electrodes is more aligned with the semiconductors, which reduces the energy barrier and facilitates the charge injection. Besides, the formation of the thinned electrode edge with desirable micro/nanostructures not only leads to the enlarged contact side area beneficial for the carrier injection but also is in favor of the molecular self-organization for continuous crystal growth at the contact/active channel interface, which is better for the charge injection and transport. These effects give rise to the great reduction of contact resistance and the amazing improvement of the low-cost bottom-contact configuration OFETs performance.

  11. Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test...circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis . By...UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

  12. High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact.

    Science.gov (United States)

    Savva, Achilleas; Burgués-Ceballos, Ignasi; Papazoglou, Giannis; Choulis, Stelios A

    2015-11-11

    A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as the top electrode is presented. The inverted OPVs without a hole-transporting layer (HTL) exhibit a significant gain in hole-carrier selectivity and power-conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO-ZnO-poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)-Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtaining fully operational solar cell devices without HTL. Moreover, accelerated stability tests under damp heat conditions (RH = 85% and T = 65 °C) performed to nonencapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high-performance polymer-fullerene bulk heterojunction material systems demonstrating 6.5% power-conversion efficiencies.

  13. Very Low Ohmic Contact Resistance through an AlGaN Etch-Stop in Nitrogen-Polar GaN-Based High Electron Mobility Transistors

    Science.gov (United States)

    Nidhi; Brown, David F.; Keller, Stacia; Mishra, Umesh K.

    2010-02-01

    Ultra-low ohmic contact resistance of 0.1 Ω mm has been obtained as a step towards a deep-recess structure using N-polar GaN-based high electron mobility transistors (HEMTs). An AlGaN etchstop layer was investigated to obtain smooth and reliable gate recess. However due to reverse polarization, AlGaN results in a polarization-induced Schottky barrier which prevents ohmic contact to the channel through the etchstop. In this work, we have proposed a novel methodology to contact the two-dimensional electron gas (2DEG) by etching through the GaN cap and the AlGaN etchstop to eliminate the barrier and angular-evaporation of metals to achieve side-alloying resulting in very low ohmic contact resistance of 0.1 Ω mm achieved to N-polar GaN 2DEG. This result is state-of-the-art for alloyed contacts achieved to GaN-based 2DEG.

  14. Investigation of hole-blocking contacts for high-conversion-gain amorphous selenium detectors for X-ray imaging

    NARCIS (Netherlands)

    Abbaszadeh, S.; Allec, N.; Ghanbarzadeh, S.; Shafique, U.; Karim, K.S.

    2012-01-01

    In this paper, we investigated different organic and inorganic hole-blocking contacts for amorphous selenium (a-Se)-based photodetectors: CeO2, TiO2, perylene tetracarboxylic bisbenzimidazole (PTCBI), and polyimide (PI). CeO2 has previously been used as a blocking layer for high-gain a-Se devices. T

  15. Intrinsic Electron and Hole Transport in Channel Passivated WSe2 Field-Effect Transistors with Graphene Contacts

    Science.gov (United States)

    Chuang, Hsun Jen; Ghimire, Nirmal Jeevi; Yan, Jiaqiang; Mandru, David; Zhou, Zhixian

    2015-03-01

    We report electrical transport measurement of high-quality WSe2 field-effect transistors. As a nearly intrinsic semiconductor with a relatively large bandgap, WSe2 tends to form substantial Schottky barriers with common contact metals for both electron and hole channels, which obstructs the charge injection especially at low temperatures. In this work, we use highly n- and p-doped graphene as an electrode material to form low resistance electrical contacts to the electron and hole channels, respectively. To minimize surface and interface scattering, hexagonal boron nitride was used to passivate both the top and bottom surfaces of the WSe2 channel. Four-terminal transport measurement was carried out for a wide temperature range to understand the intrinsic transport properties of atomically thin WSe2. Field-effect mobility and effective mobility for both electron and hole channels as well as their temperature dependence will be discussed. This work was supported by NSF (DMR-1308436).

  16. Advanced plasma etching processes for dielectric materials in VLSI technology

    Science.gov (United States)

    Wang, Juan Juan

    Manufacturable plasma etching processes for dielectric materials have played an important role in the Integrated Circuits (IC) industry in recent decades. Dielectric materials such as SiO2 and SiN are widely used to electrically isolate the active device regions (like the gate, source and drain from the first level of metallic interconnects) and to isolate different metallic interconnect levels from each other. However, development of new state-of-the-art etching processes is urgently needed for higher aspect ratio (oxide depth/hole diameter---6:1) in Very Large Scale Integrated (VLSI) circuits technology. The smaller features can provide greater packing density of devices on a single chip and greater number of chips on a single wafer. This dissertation focuses on understanding and optimizing of several key aspects of etching processes for dielectric materials. The challenges are how to get higher selectivity of oxide/Si for contact and oxide/TiN for vias; tight Critical Dimension (CD) control; wide process margin (enough over-etch); uniformity and repeatability. By exploring all of the parameters for the plasma etch process, the key variables are found and studied extensively. The parameters investigated here are Power, Pressure, Gas ratio, and Temperature. In particular, the novel gases such as C4F8, C5F8, and C4F6 were studied in order to meet the requirements of the design rules. We also studied CF4 that is used frequently for dielectric material etching in the industry. Advanced etch equipment was used for the above applications: the medium-density plasma tools (like Magnet-Enhanced Reactive Ion Etching (MERIE) tool) and the high-density plasma tools. By applying the Design of Experiments (DOE) method, we found the key factors needed to predict the trend of the etch process (such as how to increase the etch rates, selectivity, etc.; and how to control the stability of the etch process). We used JMP software to analyze the DOE data. The characterization of the

  17. Third-order particle-hole ring diagrams with contact-interactions and one-pion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2017-05-15

    The third-order particle-hole ring diagrams are evaluated for a NN-contact interaction of the Skyrme type. The pertinent four-loop coefficients in the energy per particle anti E(k{sub f}) ∝ k{sub f}{sup 5+2n} are reduced to double integrals over cubic expressions in Euclidean polarization functions. Dimensional regularization of divergent integrals is performed by subtracting power divergences and the validity of this method is checked against the known analytical results at second order. The complete O(p{sup 2}) NN-contact interaction is obtained by adding two tensor terms and their third-order ring contributions are also calculated in detail. The third-order ring energy arising from long-range 1π-exchange is computed and it is found that direct and exchange contributions are all attractive. The very large size of the three-ring energy due to point-like 1π-exchange, anti E(k{sub f0}) ≅ -92 MeV at saturation density, is however in no way representative for that of realistic chiral NN-potentials. Moreover, the third-order (particle-particle and hole-hole) ladder diagrams are evaluated with the full O(p{sup 2}) contact interaction, and the simplest three-ring contributions to the isospin-asymmetry energy A(k{sub f}) ∝ k{sub f}{sup 5} are studied. (orig.)

  18. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact.

    Science.gov (United States)

    Yin, Xuewen; Yao, Zhibo; Luo, Qiang; Dai, Xuezeng; Zhou, Yu; Zhang, Ye; Zhou, Yangying; Luo, Songping; Li, Jianbao; Wang, Ning; Lin, Hong

    2017-01-25

    NiOx is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiOx film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiOx hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a Jsc of 20.51 mA·cm(-2), a Voc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.

  19. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    Production of large-area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need...... for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  20. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.-H., E-mail: martin.evans@soton.ac.uk [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom); Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K. [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom)

    2013-05-15

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M{sub 3}C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M{sub 3}C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism.

  1. Plasma Etching Improves Solar Cells

    Science.gov (United States)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  2. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  3. Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field Effect Transistors and Hole Contacts

    Science.gov (United States)

    K. C., Santosh; Longo, Roberto C.; Addou, Rafik; Wallace, Robert M.; Cho, Kyeongjae

    2016-01-01

    In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS2/MoO3) using density functional theory (DFT). Our results demonstrate that, due to the large work function of MoO3 and the relative band alignment with MoS2, together with small energy gap, the MoS2/MoO3 interface is a good candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface is not stoichiometric because of the presence of oxygen vacancies in MoO3, the heterostructure is more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by an oxygen vacancy in the MoO3 aligns with the valance band of MoS2, showing an insignificant impact on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating appropriate contacts at the MoS2 and MoOx (x < 3) interface, which consistently explains the available experimental observations. PMID:27666523

  4. The impact of MEEF through pitch for 120-nm contact holes

    Science.gov (United States)

    Litt, Lloyd C.; Wu, Wei; Conley, Will; Lucas, Kevin D.; Roman, Bernard J.; Montgomery, Patrick; Kasprowicz, Bryan S.; Progler, Christopher J.; Socha, Robert J.; Verhappen, Arjan; Wampler, Kurt E.; Schaefer, Erika; Cook, Pat; Kuijten, Jan-Pieter; Pijnenburg, Wil

    2004-05-01

    Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET"s). The race to smaller and smaller geometries has forced device manufacturers to k1"s approaching 0.40. In this paper the authors will focus on the impact of mask exposure error factor (MEEF) through pitch for 120nm contacts with and without assist features. Experimental results show that although the addition of scatter bars improves depth of focus it has a negative effect on MEEF.

  5. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  6. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  7. Preliminary Study of Polymer Removal in 0.25, 0.3, and 0.5 μm Ruthenium Storage Nodes and 0.11 μm, 10.9:1 High-Aspect-Ratio Trenches by Laser-Induced Etching

    Science.gov (United States)

    Kim, Yong-Gi; Cha, Byung Heon

    2005-07-01

    The demands for new etching technology are increasing because of new materials, such as, ruthenium (Ru), platinum (Pt), and iridium (Ir), that are now being used, and the strict critical dimension (C/D) controls required in today’s ultra large scale integrated (ULSI) circuit technology and dynamic random-access memory (DRAM) fabrication lines. Laser etching technology successfully etched organometallic polymers generated after reactive ion etching and ash processing in 0.25, 0.3, and 0.5 μm Ru storage nodes. In this study, the effects of the incident beam profile on the laser-induced etching of the polymers are investigated. Unevenness of the peak energy in the Gaussian beam profile creates unequal etching and heating effects on the polymer removal depending on the irradiating position of the line beam profile on the sample surface. This article discusses for the first time the preliminary results of laser-induced etching with a KrF laser to remove photoresist (PR) and polymer in 0.11 μm deep contact holes with a high-aspect-ratio 10.9:1 trench hole. How deep can the laser etching technology penetrate and strip the PR at a high aspect ratio (A/R) of 10.9:1 and a 0.11 μm hole size? The penetration depth for the PR removal was approximately 1 μm, which is about a 9.1:1 A/R in a 0.11 μm hole with a 1.2-μm-deep trench. Several promising points are discussed on the basis of laser etching in such a high A/R and small 0.11 μm contact hole. Laser-induced etching technology enabled a very uniform penetration depth without any fluctuations, and it also did not show any attack on the edge of the barrier material TiN.

  8. Regenerative Electroless Etching of Silicon.

    Science.gov (United States)

    Kolasinski, Kurt W; Gimbar, Nathan J; Yu, Haibo; Aindow, Mark; Mäkilä, Ermei; Salonen, Jarno

    2017-01-09

    Regenerative electroless etching (ReEtching), described herein for the first time, is a method of producing nanostructured semiconductors in which an oxidant (Ox1 ) is used as a catalytic agent to facilitate the reaction between a semiconductor and a second oxidant (Ox2 ) that would be unreactive in the primary reaction. Ox2 is used to regenerate Ox1 , which is capable of initiating etching by injecting holes into the semiconductor valence band. Therefore, the extent of reaction is controlled by the amount of Ox2 added, and the rate of reaction is controlled by the injection rate of Ox2 . This general strategy is demonstrated specifically for the production of highly luminescent, nanocrystalline porous Si from the reaction of V2 O5 in HF(aq) as Ox1 and H2 O2 (aq) as Ox2 with Si powder and wafers.

  9. Advanced hole patterning technology using soft spacer materials (Conference Presentation)

    Science.gov (United States)

    Park, Jong Keun; Hustad, Phillip D.; Aqad, Emad; Valeri, David; Wagner, Mike D.; Li, Mingqi

    2017-03-01

    A continuing goal in integrated circuit industry is to increase density of features within patterned masks. One pathway being used by the device manufacturers for patterning beyond the 80nm pitch limitation of 193 immersion lithography is the self-aligned spacer double patterning (SADP). Two orthogonal line space patterns with subsequent SADP can be used for contact holes multiplication. However, a combination of two immersion exposures, two spacer deposition processes, and two etch processes to reach the desired dimensions makes this process expensive and complicated. One alternative technique for contact hole multiplication is the use of an array of pillar patterns. Pillars, imaged with 193 immersion photolithography, can be uniformly deposited with spacer materials until a hole is formed in the center of 4 pillars. Selective removal of the pillar core gives a reversal of phases, a contact hole where there was once a pillar. However, the highly conformal nature of conventional spacer materials causes a problem with this application. The new holes, formed between 4 pillars, by this method have a tendency to be imperfect and not circular. To improve the contact hole circularity, this paper presents the use of both conventional spacer material and soft spacer materials. Application of soft spacer materials can be achieved by an existing coating track without additional cost burden to the device manufacturers.

  10. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells.

    Science.gov (United States)

    Rao, Haixia; Sun, Weihai; Ye, Senyun; Yan, Weibo; Li, Yunlong; Peng, Haitao; Liu, Zhiwei; Bian, Zuqiang; Huang, Chunhui

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells (PSCs) have drawn worldwide intense research in recent years. Herein, we have first applied another p-type inorganic hole-selective contact material, CuS nanoparticles (CuS NPs), in an inverted planar heterojunction (PHJ) perovskite solar cell. The CuS NP-modification of indium tin oxide (ITO) has successfully tuned the surface work function from 4.9 to 5.1 eV but not affect the surface roughness and transmittance, which can effectively reduce the interfacial carrier injection barrier and facilitate high hole extraction efficiency between the perovskite and ITO layers. After optimization, the maximum power conversion efficiency (PCE) has been over 16% with low J-V hysteresis and excellent stability. Therefore, the low-cost solution-processed and stable CuS NPs would be an alternative interfacial modification material for industrial production in perovskite solar cells.

  11. Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode.

    Science.gov (United States)

    Corani, Alice; Li, Ming-Hsien; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang; El Nahhas, Amal; Zheng, Kaibo; Yartsev, Arkady; Sundström, Villy; Ponseca, Carlito S

    2016-04-01

    There is a mounting effort to use nickel oxide (NiO) as p-type selective electrode for organometal halide perovskite-based solar cells. Recently, an overall power conversion efficiency using this hole acceptor has reached 18%. However, ultrafast spectroscopic investigations on the mechanism of charge injection as well as recombination dynamics have yet to be studied and understood. Using time-resolved terahertz spectroscopy, we show that hole transfer is complete on the subpicosecond time scale, driven by the favorable band alignment between the valence bands of perovskite and NiO nanoparticles (NiO(np)). Recombination time between holes injected into NiO(np) and mobile electrons in the perovskite material is shown to be hundreds of picoseconds to a few nanoseconds. Because of the low conductivity of NiO(np), holes are pinned at the interface, and it is electrons that determine the recombination rate. This recombination competes with charge collection and therefore must be minimized. Doping NiO to promote higher mobility of holes is desirable in order to prevent back recombination.

  12. The wettability between etching solutions and the surface of multicrystalline silicon wafer during metal-assisted chemical etching process

    Science.gov (United States)

    Niu, Y. C.; Liu, Z.; Liu, X. J.; Gao, Y.; Lin, W. L.; Liu, H. T.; Jiang, Y. S.; Ren, X. K.

    2017-01-01

    In order to investigate the wettability of multicrystalline silicon (mc-Si) with the etching solutions during metal-assisted chemical etching process, different surface structures were fabricated on the p-type multi-wire slurry sawn mc-Si wafers, such as as-cut wafers, polished wafers, and wafers etched in different solutions. The contact angles of different etching solutions on the surfaces of the wafers were measured. It was noted that all contact angles of etching solutions were smaller than the corresponding ones of deionized water, but the contact angles of different etching solutions were quite different. Among the contact angles of the etching solutions of AgNO3-HF, H2O2-HF, TMAH and HNO3-HF, the contact angle of TMAH solution was much larger than the others and that of HNO3-HF solution was much smaller. It is suggested that the larger contact angle may lead to an unevenly etching of silicon wafer due to the long retention of big bubbles on the wafers in the etching reaction, which should be paid attention to and overcome.

  13. A SEM and non-contact surface white light profilometry in vivo study of the effect of a crème containing CPP-ACP and fluoride on young etched enamel.

    Science.gov (United States)

    Baroni, Chiara; Marchionni, Silvia; Bazzocchi, Maria Giulia; Cadenaro, Milena; Nucci, Cesare; Manton, David J

    2014-01-01

    The aim of this in vivo study was to evaluate the short and a longer term effect on enamel of the application of a crème containing 10% CPP-ACP and 900 ppm fluoride, in orthodontically planned, high caries-risk patients. Epoxy resin replicas of upper lateral incisors were obtained from polyvinyl siloxane (PVS) impressions, before and after etching. The right incisors were left untreated in order to control saliva remineralizing potential. The upper left surfaces were coated with a pea-size amount of the crème. Replicas were obtained at 3 weeks and 6 months and analyzed by SEM and non-contact surface white light profilometry. In the treated sample the profilometric roughness parameters at 3 weeks were statistically significantly lower than the control group values (p SEM images of the enamel surface showed fewer irregularities. After 6 months, differences between test and control groups were not present on SEM images and profilometric values. CPP-ACP and fluoride crème had positive in vivo effects on enamel surfaces. Significant differences in surface roughness existed after a 3-week period of crème use.

  14. High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Philip; Tiepelt, Jan O.; Christians, Jeffrey A.; Levine, Igal; Edri, Eran; Sanehira, Erin M.; Hodes, Gary; Cahen, David; Kahn, Antoine

    2016-11-23

    We investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO3). We find that direct contact between MoO3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI3) layer at the interface still negatively impacts device performance.

  15. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiCx(p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiCx(p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiCx(p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm(-2) on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a Voc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p(+)/p-wafer full-side-passivated rear-side scheme shown here.

  16. Investigation of H2/CH4 mixed gas plasma post-etching process for ZnO:B front contacts grown by LP-MOCVD method in silicon-based thin-film solar cells

    Science.gov (United States)

    Wang, Li; Zhang, Xiaodan; Zhao, Ying; Yamada, Takuto; Naito, Yusuke

    2014-10-01

    A new plasma post-etching method, H2/CH4 mixed gas plasma, is introduced to modify ZnO:B films grown by LP-MOCVD technique, successfully relaxing the double trade-offs, i.e., transparency/conductivity trade-off and surface texture/Voc and FF trade-off. To deeply evaluate the post-etching process, optical emission spectroscopy technique is applied to diagnose the plasma condition. Upon different etching power, three distinct possible etching mechanisms are identified by analyzing the evolution of Hα*, Hβ*, CH* emission species in the plasma space. It is demonstrated that Hβ* and CH* species are responsible for the physical etching process and chemical etching process, respectively, from which a new “soft” surface morphology is formed with a combination of micro- and nano-sized texture. Additionally, Hα* species can bond with ZnO and also passivate the grains boundaries, thereby making both the carrier concentration and hall mobility increase. This process is defined as chemical bonding process. Finally, pin-type a-Si:H single-junction solar cells with an optimized device structure is grown on the etched ZnO:B substrate. The corresponding electrical parameters, such as Jsc, Voc and FF, are simultaneously improved compared with the solar cell deposited on as-grown ZnO:B substrate with the same fabrication process. As a consequence, a noteworthy 8.85% conversion-efficiency is achieved with an absorber layer thickness only 160 nm.

  17. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  18. Dry etching for microelectronics

    CERN Document Server

    Powell, RA

    1984-01-01

    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  19. Etching in microsystem technology

    CERN Document Server

    Kohler, Michael

    2008-01-01

    Microcomponents and microdevices are increasingly finding application in everyday life. The specific functions of all modern microdevices depend strongly on the selection and combination of the materials used in their construction, i.e., the chemical and physical solid-state properties of these materials, and their treatment. The precise patterning of various materials, which is normally performed by lithographic etching processes, is a prerequisite for the fabrication of microdevices.The microtechnical etching of functional patterns is a multidisciplinary area, the basis for the etching p

  20. Anisotropy of synthetic diamond in catalytic etching using iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junsha [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan); Wan, Long, E-mail: wanlong1799@163.com [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Chen, Jing [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Yan, Jiwang [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-08-15

    Highlights: • Synthetic diamond crystallites were etched using iron without requiring hydrogen. • The effect of temperature on the etching behaviour was demonstrated. • The anisotropy of etching on different crystal planes was investigated. • The extent of etching on diamond surface was examined quantitatively. • A schematic model for diamond etching by iron is being proposed. - Abstract: This paper demonstrated a novel technique for catalytic etching of synthetic diamond crystallites using iron (Fe) powder without flowing gas. The effect of temperature on the etching behaviour on different crystal planes of diamond was investigated. The surface morphology and surface roughness of the processed diamond were examined by scanning electron microscope (SEM) and laser-probe surface profiling. In addition, the material composition of the Fe-treated diamond was characterized using micro-Raman spectroscopy and the distribution of chemical elements and structural changes on Fe-loaded diamond surfaces were analyzed by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Results showed that at the same temperature the {1 0 0} plane was etched faster than the {1 1 1} plane, and that the etching rate of both {1 0 0} and {1 1 1} plane increased with temperature. The etch pits on {1 0 0} plane were reversed pyramid with flat {1 1 1} walls, while the etch holes on {1 1 1} plane were characterized with flat bottom. It was also demonstrated that graphitization of diamond and subsequent carbon diffusion in molten iron were two main factors resulting in the removal of carbon from the diamond surface.

  1. Silicon nanowire photodetectors made by metal-assisted chemical etching

    Science.gov (United States)

    Xu, Ying; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.

  2. Sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, Vincent L.; Berenschot, J.W.; Elwenspoek, Miko; Fluitman, Jan H.J

    1995-01-01

    A new technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes or grooves. The sacrificial wafer bonding technique contains a w

  3. Sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1995-01-01

    A technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for not only resist spinning and layer patterning but also for realization of bridges and cantilevers across deep grooves or holes. The technique contains a standard dry film

  4. Sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, Vincent L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    A new technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for as well resist spinning and layer patterning as realization of bridges or cantilevers across deep holes or grooves. The sacrificial wafer bonding technique contains a

  5. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon

    OpenAIRE

    Lingyu Kong; Binayak Dasgupta; Yi Ren; Parsian K. Mohseni; Minghui Hong; Xiuling Li; Wai Kin Chim; Sing Yang Chiam

    2016-01-01

    In this work, we investigate the transport processes governing the metal-assisted chemical etching (MacEtch) of silicon (Si). We show that in the oxidation of Si during the MacEtch process, the transport of the hole charges can be accomplished by the diffusion of metal ions. The oxidation of Si is subsequently governed by a redox reaction between the ions and Si. This represents a fundamentally different proposition in MacEtch whereby such transport is understood to occur through hole carrier...

  6. Considerations for fine hole patterning for the 7nm node

    Science.gov (United States)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  7. Direct experimental evidence of metal-mediated etching of suspended graphene.

    Science.gov (United States)

    Ramasse, Quentin M; Zan, Recep; Bangert, Ursel; Boukhvalov, Danil W; Son, Young-Woo; Novoselov, Konstantin S

    2012-05-22

    Atomic resolution high angle annular dark field imaging of suspended, single-layer graphene, onto which the metals Cr, Ti, Pd, Ni, Al, and Au atoms had been deposited, was carried out in an aberration-corrected scanning transmission electron microscope. In combination with electron energy loss spectroscopy, employed to identify individual impurity atoms, it was shown that nanoscale holes were etched into graphene, initiated at sites where single atoms of all the metal species except for gold come into close contact with the graphene. The e-beam scanning process is instrumental in promoting metal atoms from clusters formed during the original metal deposition process onto the clean graphene surface, where they initiate the hole-forming process. Our observations are discussed in the light of calculations in the literature, predicting a much lowered vacancy formation in graphene when metal ad-atoms are present. The requirement and importance of oxygen atoms in this process, although not predicted by such previous calculations, is also discussed, following our observations of hole formation in pristine graphene in the presence of Si-impurity atoms, supported by new calculations which predict a dramatic decrease of the vacancy formation energy, when SiO(x) molecules are present.

  8. Review of micromachining of ceramics by etching

    Institute of Scientific and Technical Information of China (English)

    H.T.TING; K.A.ABOU-EL-HOSSEIN; H.B.CHUA

    2009-01-01

    In the last two decades, there has been an enormous surge in interest in ceramic materials and, as a result, there have been significant advances in their development and applications. Their inherent properties, such as capability of operating at temperatures far above metals, high level of hardness and toughness, low coefficient of thermal expansion and high thermal conductivity rendered ceramics to be one of the leading engineering materials. Many research works have been conducted in the past few years on machining of advanced ceramics using different processing methods in order to obtain a better surface roughness, higher material removal rate and improved tool life. Micromachining using chemical etching is one of those methods that do not involve the problem of tool life and direct tool-work piece contact. However, only a few research works have been done on micromachining of ceramics using chemical etching. Hence, study of chemical machining of advanced ceramics is still needed as the process has found wide application in the industry because of its relative low operating costs. In this work, we summarize the recent progresses in machining of different types of advanced ceramics, material processing methods such as wet etching and dry etching, and finally the prospects for control of material removal rate and surface quality in the process of ceramic micromachining.

  9. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  10. Anisotropic etching of bilayer graphene controlled by gate voltage%双层石墨烯在栅压调控下的各向异性刻蚀∗

    Institute of Scientific and Technical Information of China (English)

    王国乐; 谢立; 陈鹏; 杨蓉; 时东霞; 张广宇

    2016-01-01

    electronic beam evaporation for electrical contacts. Gate voltates were applied to the bilayer graphene samples to make them either positively or negitively charged. These charged samples were then subjected to the hydrogen anisotropic etching at 400 ◦C under the plasma power of 60 W and gas pressure of 0.3 Torr. The etching rates were characterized by the sizes of the etched hexagonal holes. We found that the etching rate for bilayer graphene on SiO2 substrate depends strongly on the gate voltages applied. With gate voltages sweeping from the negative to the positive, etching rate shows obvious decrease. 45 times of etching rate decrease was seen when sweeping the gate voltages from −30 V (positively charged) to 30 V (negatively charged). This gate-dependent anisotropic etching suggests that hydrogen ions rather than radicals plays a key role during the anisotropic etching process since the negatively charged graphene could neutralize the hydrogen ions quickly thus make them unreactive. The present work provides a strategy for fabrication of graphene nanostructures by anisotropic etching with a controllable manner.

  11. Crystallographic orientation dependent etching of graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Nemes-Incze, Peter; Biro, Laszlo Peter [Research Institute for Technical Physics and Materials Science, PO. Box 49, 1525 Budapest (Hungary); Magda, Gabor [Budapest University of Technology and Economics (BME), PO Box 91, 1521 Budapest (Hungary); Kamaras, Katalin [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, 1525, Budapest (Hungary)

    2010-04-15

    Graphene has gripped the scientific community ever since its discovery in 2004, with very promising electronic properties and hopes to integrate graphene into nanoelectronic devices. For graphene to make its way into electronic devices, two major obstacles have to be overcome: reproducible preparation of large area graphene samples and patterning techniques to obtain functional components. In this paper we present a graphene etching technique, which is crystallographic orientation selective and allows for the patterning of graphene layers using a chemical reduction process. The process involves the reduction of the SiO{sub 2} support by the carbon in the graphene itself. This reaction only occurs at the sample edges and does not result in the degradation of the graphene crystal lattice itself. However, we have observed evidence of strong hole doping in our etched samples. This etching technique opens up new possibilities in graphene patterning and modification. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Cryogenic Etching of Silicon: An Alternative Method For Fabrication of Vertical Microcantilever Master Molds

    Science.gov (United States)

    Addae-Mensah, Kweku A.; Retterer, Scott; Opalenik, Susan R.; Thomas, Darrell; Lavrik, Nickolay V.; Wikswo, John P.

    2013-01-01

    This paper examines the use of deep reactive ion etching (DRIE) of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of a SiOxFy polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the O2 flow rate and the capacitively coupled plasma (CCP) power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using e-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 µm, and 2 µm. PMID:24223478

  13. Chemical etching to dissolve dislocation cores in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, N.J. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Murphy, J.D., E-mail: john.murphy@materials.ox.ac.uk [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Sykes, J.M.; Wilshaw, P.R. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom)

    2012-08-01

    Multicrystalline silicon wafers are used for approximately half of all solar cells produced at present. These wafers typically have dislocation densities of up to {approx}10{sup 6} cm{sup -2}. Dislocations and associated impurities act as strong recombination centres for electron-hole pairs and are one of the major limiting factors in multicrystalline silicon substrate performance. In this work we have explored the possibility of using chemical methods to etch out the cores of dislocations from mc-Si wafers. We aim to maximise the aspect ratio of the depth of the etched structure to its diameter. We first investigate the Secco etch (1K{sub 2}Cr{sub 2}O{sub 7} (0.15 M): 2HF (49%)) as a function of time and temperature. This etch removes material from dislocation cores much faster than grain boundaries or the bulk, and produces tubular holes at dislocations. Aspect ratios of up to {approx}7:1 are achieved for {approx}15 {mu}m deep tubes. The aspect ratio decreases with tube depth and for {approx}40 {mu}m deep tubes is just {approx}2:1, which is not suitable for use in bulk multicrystalline silicon photovoltaics. We have also investigated a range of etches based on weaker oxidising agents. An etch comprising 1I{sub 2} (0.01 M): 2HF (49%) attacked dislocation cores, but its etching behaviour was extremely slow (<0.1 {mu}m/h) and the pits produced had a low aspect ratio (<2:1).

  14. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Science.gov (United States)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal catalyst crystallographic structure.

  15. Spatial variation of the etch rate for deep etching of silicon by reactive ion etching

    DEFF Research Database (Denmark)

    Andersen, Bo Asp Møller; Hansen, Ole; Kristensen, Martin

    1997-01-01

    The macroscopic uniformity of deep etching into silicon by reactive ion etching (RIE) with a SF6-O-2 plasma was studied. The spatial variation of the etch rate across a 4 inch wafer in a single wafer system is a function of the process parameters and the configuration of the etch chamber. It was ......The macroscopic uniformity of deep etching into silicon by reactive ion etching (RIE) with a SF6-O-2 plasma was studied. The spatial variation of the etch rate across a 4 inch wafer in a single wafer system is a function of the process parameters and the configuration of the etch chamber....... It was found that, for a constant load of silicon exposed to the plasma, the etch rate variation can be controlled through the applied rf power, the chamber pressure, and the gas mixture. It was also found that the etch rate uniformity varies with the load of silicon exposed to the plasma. The result...... is a balance between the flux of neutral radicals and the flux of energetic ions to the surface. This balance is due to the RIE etch mechanism, which involves synergism between the two fluxes. (C) 1997 American Vacuum Society....

  16. Change in surface morphology of polytetrafluoroethylene by reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomohiro, E-mail: tmhr_tkhs.d01@ruri.waseda.j [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Hirano, Yuki; Takasawa, Yuya; Gowa, Tomoko; Fukutake, Naoyuki [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Oshima, Akihiro [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Tagawa, Seiichi [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-02-15

    Polytetrafluoroethylene (PTFE) was exposed to Ar, CF{sub 4}, N{sub 2} and O{sub 2} plasmas using a reactive ion etching facility. After the exposure, the change in the surface morphology of PTFE was examined and characterization studies were performed for the etching rate, surface roughness, radical yields, chemical structures, water repellency and so on. The etching rates of Ar, CF{sub 4}, N{sub 2} and O{sub 2} plasmas were 0.58, 7.2, 4.4 and 17 {mu}m/h, respectively. It was observed that needle-like nano-fiber structures on the surface were irregularly fabricated by the CF{sub 4} plasma. In addition, when the water repellency of exposed samples was evaluated by contact angle, they showed super-hydrophobic properties: contact angle over 150{sup o}.

  17. What Are Holes in the Heart?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Holes in the Heart? Holes in the heart are ... Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA NO FEAR ACT OIG CONTACT US National Institutes of Health ...

  18. How Are Holes in the Heart Treated?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. How Are Holes in the Heart Treated? Many holes in the ... Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA NO FEAR ACT OIG CONTACT US National Institutes of Health ...

  19. Improvement of metal-semiconductor contact on silicon microstructured surface by electroless nickel technique

    Science.gov (United States)

    Long, Fei; Guo, Anran; Huang, Lieyun; Yu, Feng; Li, Wei

    2016-11-01

    Si micro-structures served as anti-reflection layer are widely employed in Si-based solar cells and detectors to enhance light harvesting. However, performance of these devices is suffered from the poor contact between the metal electrode and micro-structured surface. Conventional vacuum deposited metal electrode makes only superficial contact with the top of micro-structured surface and unable to fill the holes in the micro-structures. In this paper, instead, electroless nickel technique is applied to form low resistance ohmic contact. The surface micro-structures were fabricated by electrochemistry etching while the metal electrodes were deposited by sputtering and electroless pasting. Results show that only electroless nickel layer could fully fill the holes and achieve better ohmic contact than the sputtering ones before rapid annealing. Furthermore, a higher temperature rapid annealing process could improve the contact of all samples prepared by different ways. The specific contact resistance achieved by high alkalinity (pH=12) electroless nickel is 1.34×10-1Ω·cm2.

  20. Studies of CR-39 etch rates

    CERN Document Server

    Rana, M A

    2002-01-01

    A series of chemical etching experiments have been carried out on CR-39 detectors irradiated with fission fragments of sup 2 sup 5 sup 2 Cf to study the bulk and track etching characteristics. Experimental data has been analyzed to find out important track etch parameters. Both bulk and track etch rates are found to follow the Arrhenius equation which gives the variation of etch rate with temperature for a specific set of etching conditions. Activation energies for bulk and track etching have been determined by fitting Arrhenius equation to the experimental data. Other track etch parameters, e.g. critical angle of etching and track registration efficiency have also been determined using experimental data. Track etch parameters depend on properties of incident ion and etching conditions. Results describing the dependence of track etch parameters on etching conditions have been presented. These results are useful in the interpretation of track data.

  1. Freeze fracture and freeze etching.

    Science.gov (United States)

    Chandler, Douglas E; Sharp, William P

    2014-01-01

    Freeze fracture depends on the property of frozen tissues or cells, when cracked open, to split along the hydrophobic interior of membranes, thus revealing broad panoramas of membrane interior. These large panoramas reveal the three-dimensional contours of membranes making the methods well suited to studying changes in membrane architecture. Freshly split membrane faces are visualized by platinum or tungsten shadowing and carbon backing to form a replica that is then cleaned of tissue and imaged by TEM. Etching, i.e., removal of ice from the frozen fractured specimen by sublimation prior to shadowing, can also reveal the true surfaces of the membrane as well as the extracellular matrix and cytoskeletal networks that contact the membranes. Since the resolution of detail in the metal replicas formed is 1-2 nm, these methods can also be used to visualize macromolecules or macromolecular assemblies either in situ or displayed on a mica surface. These methods are available for either specimens that have been chemically fixed or specimens that have been rapidly frozen without chemical intervention.

  2. Etching high aspect ratio structures in silicon using sulfur hexafluoride/oxygen plasma

    Science.gov (United States)

    Belen, Rodolfo Jun

    Plasma etching of high aspect ratio structures in Si is an important step in manufacturing capacitors for memory devices and integrated components of microelectromechanical systems. In these applications, the goal is to etch deep features anisotropically with high etch rates and selectivities to the mask while maintaining good uniformity and reproducibility. This study investigates the etching of deep sub-half-micron diameter holes in Si using SF6/O 2 plasma. Etching experiments and plasma diagnostics are combined with modeling to gain a fundamental understanding of the etching and passivation kinetics and mechanism necessary in developing and scaling-up processes. Etching experiments are conducted in an inductively coupled plasma reactor with a planar coil. The substrate electrode is biased with a separate rf power supply to achieve independent control of the ion flux and energy. The effects of pressure, rf-bias and SF6-to-O2 ratio in the feed gas on the etch rate, selectivity and feature profile shape are studied using Si wafers patterned with 0.35 mum-diameter holes in a SiO2 mask. Visualization of profiles using scanning electron microscopy is complemented by plasma diagnostics such as mass spectrometry and actinometry. Simultaneous with experiments, reactor-scale and feature-scale models are developed to quantify the etching and passivation kinetics and identify the important kinetic parameters that affect feature profile evolution. Information from plasma diagnostics and previously published data are used to reduce the degrees of freedom in the model. Experiments are designed to directly measure kinetic parameters such as the chemical etch rate constant and the incidence angle dependence of the etching yield. Experimentally inaccessible parameters such as the sticking coefficients, etching yield and ion scattering parameters are determined through feature profile simulation. The key internal plasma parameters that affect profile evolution are the F-to-O and F

  3. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  4. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  5. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  6. High-performance fabrication process for 2xnm hole-NIL template production

    Science.gov (United States)

    Yagawa, Keisuke; Suenaga, Machiko; Motokawa, Takeharu; Tanabe, Mana; Ando, Akihiko; Yamanaka, Eiji; Morishita, Keiko; Kanamitsu, Shingo; Saito, Masato; Itoh, Masamitsu

    2016-10-01

    UV nano imprint lithography (UV-NIL) has high-throughput and cost-effective for complex nano-scale patterns and is considered as a candidate for next generation lithography tool. In addition, NIL is the unmagnified lithography and contact transfer technique using template. Therefore, the lithography performance depends greatly on the quality of the template pattern. According to ITRS 2013, the minimum half pitch size of Line and Space (LS) pattern will reach 1x nm level within next five years. On the other hand, in hole pattern, half pith of 2x nm level will be required in five years. Pattern shrink rate of hole pattern size is slower than LS pattern, but shot counts increase explosively compared to LS pattern due to its data volume. Therefore, high throughput and high resolution EB lithography process is required. In previous study, we reported the result of hole patterning on master template which has high resolution resist material and etching process. This study indicated the potential for fabricating 2xnm hole master template [1]. After above study, we aim at fabricating the good quality of 2xnm master template which is assured about defect, CD uniformity(CDU), and Image placement(IP). To product high quality master template, we develop not only high resolution patterning process but also high accuracy quality assurance technology. We report the development progress about hole master template production.

  7. High resolution hole patterning with EB lithography for NIL template production

    Science.gov (United States)

    Tanabe, Mana; Yagawa, Keisuke; Motokawa, Takeharu; Hagihara, Kazuki; Suenaga, Machiko; Saito, Masato; Kanamitsu, Shingo; Itoh, Masamitsu

    2016-05-01

    Nano imprint lithography (NIL) is one to one lithography and contact transfer technique using template. Therefore, the lithography performance depends greatly on the quality of the template pattern. In this study, we investigated the resolution and the defect level for hole patterning using chemical amplified resists (CAR) and VSB type EB writer, EBM9000. To form smaller pattern with high quality, high resolution resist process and high sensitivity etching process are needed. After these elements were optimized, we succeeded to form 24 nm dense hole pattern on template. In general, it is difficult to suppress the defect density in a large area because of fogging effect and process loading and so forth. However, from the view point of defect quality, 26 nm hole pattern is achieved to form with practical level in a large area. Therefore, we indicate the capability of forming 26 nm hole master template which will be required in 2019 from ITRS2013. These results show that this process is possible to obtain less than 30 nm hole pattern without enormous writing time. As future work, we will imprint master to replica template and check the printability.

  8. Fabrication of interdigitated back-contact silicon heterojunction solar cells on a 53-µm-thick crystalline silicon substrate by using the optimized inkjet printing method for etching mask formation

    Science.gov (United States)

    Takagishi, Hideyuki; Noge, Hiroshi; Saito, Kimihiko; Kondo, Michio

    2017-04-01

    Inkjet-printing-based fabrication process of the interdigitated back-contact silicon heterojunction solar cells has the potential to reduce the manufacturing costs because of its low machine and material costs and its applicability to thinner fragile silicon substrates than 100 µm. In this study, ink and printing parameters were investigated to obtain the desirable fine patterns and the resultant accuracy of the linewidths was less than ±0.05 mm on a flat surface. The completed cells using inkjet-printing showed almost the same performance of that fabricated by photolithography. In addition, flexible and free-standing cell on a 53-µm-thick Si substrate has been successfully fabricated.

  9. Study of wet etching thin films of indium tin oxide in oxalic acid by monitoring the resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mammana, Suelene S., E-mail: ssmammana@abinfo.com.br [Brazilian Association for Informatics - ABINFO, Rua Deusdete Martins Gomes 163, CEP 13084-723, Campinas, SP (Brazil); Greatti, Alessandra; Luiz, Francis H.; Costa, Francisca I. da; Mammana, Alaide P. [Brazilian Association for Informatics - ABINFO, Rua Deusdete Martins Gomes 163, CEP 13084-723, Campinas, SP (Brazil); Calligaris, Guilherme A.; Cardoso, Lisandro P. [Institute of Physics Gleb Wataghin, State University of Campinas-UNICAMP, CEP 13083-859, Campinas, SP (Brazil); Mammana, Carlos I.Z.; Engelsen, Daniel den [Brazilian Association for Informatics - ABINFO, Rua Deusdete Martins Gomes 163, CEP 13084-723, Campinas, SP (Brazil)

    2014-09-30

    We describe a study on wet etching of thin films of indium tin oxide (ITO) using a simple method by monitoring the resistance of the thin film in aqueous solutions of oxalic acid and hydrochloric acid. Generally three different regimes can be distinguished during etching ITO in acids: (1) initial etching, which is slow, (2) a fast etching phase and (3) slow etching stage at the end. These regimes are explained in terms of a porosity–roughness model. This porosity model has been confirmed largely by X-ray reflection measurements at grazing incidence, roughness measurements and scanning electron microscopy (SEM). A reliable method for monitoring the resistance during etching has been developed. This method is based on a 2-strips measuring jig with a very low series contact resistance. The activation energy of the etch rate of ITO films was found to be 80 ± 5 kJ/mol for oxalic acid and 56 ± 5 kJ/mol for HCl. SEM analyses in the final stage of the etching process indicate an enrichment of Sn in the residual film material. These observations are explained in terms of preferential etching of In{sub 2}O{sub 3}. X-ray analyses showed that the density of the ITO film decreased by etching. By adding ferric chloride to the oxalic acid solution we could accelerate the etch rate substantially. - Highlights: • Etching of indium tin oxide thin films by monitoring the resistance. • Oxalic acid has 2–3 times lower etch rate than concentrated HCl. • The etch rate in oxalic acid can be accelerated substantially by adding FeCl{sub 3}. • The proposed etching model for indium tin oxide was confirmed by X-ray analysis and scanning electron microscopy. • Energy Dispersive X-ray Spectroscopy analyses showed preferential etching of In{sub 2}O{sub 3}, enriching the film with SnO{sub 2}.

  10. Postoperative sensitivity of self etch versus total etch adhesive.

    Science.gov (United States)

    Yousaf, Ajmal; Aman, Nadia; Manzoor, Manzoor Ahmed; Shah, Jawad Ali; Dilrasheed

    2014-06-01

    To compare postoperative sensitivity following composite restoration placed in supra gingival class-V cavities using self etch adhesive and total etch adhesive. A randomized clinical trial. Operative Dentistry Department of Armed Forces Institute of Dentistry, Rawalpindi, from July to December 2009. A total of 70 patients having class-V supra gingival carious lesions were divided into two groups. Classes-V cavities not exceeding 3 mm were prepared. One treatment group was treated with self etch adhesive (adhe SE one Ivoclar) and the control group was treated with total-etch adhesive (Eco-Etch Ivoclar) after acid etching with 37% phosphoric acid. Light cured composite (Te-Econom Ivoclar) restoration was placed for both groups and evaluated for postoperative sensitivity immediately after restoration, after 24 hours and after one week. Data was recorded on visual analogue scale. Comparison of sensitivity between the two treatment groups on application cold stimulus after 24 hours of restoration showed significant difference; however, no statistically significant difference was observed at baseline, immediately after restoration and at 1 week follow-up with cold stimulus or compressed air application. Less postoperative sensitivity was observed at postoperative 24 hours assessment in restoration placed using SE adhesives compared to TE adhesives. Thus, the use of SE adhesives may be helpful in reducing postoperative sensitivity during 24 hours after restoration placement.

  11. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576 (Singapore); Soh, Chew Beng [Singapore Institute of Technology, 10 Dover Drive, Singapore 138683 (Singapore); Liu, Hongfei [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore)

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  12. Self-etch primers and conventional acid-etch technique for orthodontic bonding: a systematic review and meta-analysis.

    Science.gov (United States)

    Fleming, Padhraig S; Johal, Ama; Pandis, Nikolaos

    2012-07-01

    The use of self-etch primers has increased steadily because of their time savings and greater simplicity; however, overall benefits and potential disadvantages and harms have not been assessed systematically. In this study, we reviewed randomized controlled trials to assess the risk of attachment failure, bonding time, and demineralization adjacent to attachments between 1-stage (self-etch) and 2-stage (acid etch) bonding in orthodontic patients over a minimum follow-up period of 12 months. Data sources were electronic databases including MEDLINE, EMBASE, the Cochrane Oral Health Group's Trials Register, and CENTRAL, without language restrictions. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, and Pro-Quest Dissertation Abstracts and Thesis database. Authors were contacted when necessary, and reference lists of the included studies were screened. Search terms included randomized controlled trial, controlled clinical trial, random allocation, double-blind method, single-blind method, orthodontics, self-etch, SEP, primer, and bonding agent. Randomized clinical trials directly comparing self-etch and acid-etch primers with respect to the predefined outcomes and including patients with full-arch, fixed, and bonded orthodontic appliances (not banded) with follow-up periods of at least 12 months were included. Using predefined forms, 2 authors undertook independent data extraction with conflict resolution by the third author. Randomized clinical trial quality assessment based on the Cochrane Risk of Bias tool was also used. Eleven studies met the inclusion criteria; 6 were excluded because of a high risk of bias. In total, 1721 brackets bonded with acid-etch and 1723 with self-etch primer techniques were included in the quantitative synthesis. Relatively low statistical and clinical heterogeneity was observed among the 5 randomized clinical trials (n = 3444 brackets) comparing acid-etch with self-etch primers. A random effects

  13. Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal hetero-structures

    Science.gov (United States)

    Chen, Kuan-Chao; Chu, Tung-Wei; Wu, Chong-Rong; Lee, Si-Chen; Lin, Shih-Yen

    2017-09-01

    The atomic layer etchings of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are demonstrated in this paper. By using the oxygen plasma etching and the following re-sulfurization procedures, a mono-layer MoS2 sample with an enhanced photoluminescence intensity is obtained from the sample originally with bi-layer MoS2, which suggests that atomic layer etching of MoS2 can be achieved and the following re-sulfurization procedure can recover the partially oxidized MoS2 remained on the substrate back to a complete MoS2 film. By repeating oxygen plasma etchings and a final re-sulfurization procedure, multi-layer WS2 can be selectively etched off from the WS2/MoS2 hetero-structure. A top-gate WS2/MoS2 hetero-structure transistor is fabricated with source/drain electrodes contacted directly to the MoS2 channel by using the repeated atomic layer etching technique. The results have revealed that the equivalent selective etching effect for 2D crystal hetero-structures can be achieved by repeating the atomic layer etching procedure, which is an important step for the device fabrication of 2D crystal hetero-structures.

  14. Silicon Deep Etching Techniques for MEMS Devices

    Institute of Scientific and Technical Information of China (English)

    WU Ying; OU Yi-hong; JIANG Yong-qing; LI Bin

    2003-01-01

    Silicon deep etching technique is the key fabrication step in the development of MEMS. The mask selectivity and the lateral etching control are the two primary factors that decide the result of deep etching process. These two factors are studied in this paper. The experimental results show that the higher selectivity can be gotten when F- gas is used as etching gas and Al is introduced as mask layer. The lateral etching problems can be solved by adjusting the etching condition, such as increasing the RF power, changing the gas composition and flow volume of etching machine.

  15. Refractive Index Sensor Using a Two-Hole Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, D; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Margulis, W [Department Fiber Photonics, ACREO, Electrum 236, 16440 Stockholm (Sweden); Dominguez-Cruz, R; May-Arrioja, D A, E-mail: darrioja@uat.edu.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We propose to use a twin-hole fiber to measure refractive index of liquids. The key idea is to have a single mode fiber (SMF) having two large air-holes running along the fiber length, the holes do not interact with the core. However, using wet chemical etching we can have access to the hole around the fiber, and further etching increases the holes diameter. The diameter is increased until the fiber exhibits a specific birefringence. Since the holes are open, by immersing the fiber in different liquids (n=1.33 to n=1.42) the value of the birefringence is modified and the refractive index of the liquid can be estimated from the change on the beat length. This process provides a very simple and highly sensitive mechanism for sensing refractive index in liquids, and can also be used for other applications.

  16. E-beam inspection of EUV mask defects: To etch or not to etch?

    Science.gov (United States)

    Bonam, Ravi; Tien, Hung-Yu; Park, Chanro; Halle, Scott; Wang, Fei; Corliss, Daniel; Fang, Wei; Jau, Jack

    2014-04-01

    EUV Lithography is aimed to be inserted into mainstream production for sub-20nm pattern fabrication. Unlike conventional optical lithography, frequent defectivity monitors (adders, repeaters etc.) are required in EUV lithography. Due to sub-20nm pattern and defect dimensions e-beam inspection of critical pattern areas is essential for yield monitor. In previous work we showed sub-10nm defect detection sensitivity1 on patterned resist wafers. In this work we report 8-10× improvement in scan rates of etched patterns compared to resist patterns without loss in defect detection sensitivity. We observed good etch transfer of sub-10nm resist features. A combination of smart scan strategies with improved etched pattern scan rates can further improve throughput of e-beam inspection. An EUV programmed defect mask with Line/Space, Contact patterns was used to evaluate printability of defects and defect detection (Die-Die and Die-Database) capability of the e-beam inspection tool. Defect inspection tool parameters such as averaging, threshold value were varied to assess its detection capability and were compared to previously obtained results on resist patterns.

  17. Design and fabrication of wraparound contact silicon solar cells

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1972-01-01

    Both dielectric insulation and etched junction contact techniques were evaluated for use in wraparound contact cell fabrication. Since a suitable process for depositing the dielectrics was not achieved, the latter approach was taken. The relationship between loss of back contact and power degradation due to increased series resistance was established and used to design a simple contact configuration for 10 ohm-cm etched wraparound junction contact N/P cells. A slightly deeper junction significantly improved cell curve shape and the associated loss of current was regained by using thinner contact grid fingers. One thousand cells with efficiencies greater than 10.5% were fabricated to demonstrate the process.

  18. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon

    Science.gov (United States)

    Kong, Lingyu; Dasgupta, Binayak; Ren, Yi; Mohseni, Parsian K.; Hong, Minghui; Li, Xiuling; Chim, Wai Kin; Chiam, Sing Yang

    2016-11-01

    In this work, we investigate the transport processes governing the metal-assisted chemical etching (MacEtch) of silicon (Si). We show that in the oxidation of Si during the MacEtch process, the transport of the hole charges can be accomplished by the diffusion of metal ions. The oxidation of Si is subsequently governed by a redox reaction between the ions and Si. This represents a fundamentally different proposition in MacEtch whereby such transport is understood to occur through hole carrier conduction followed by hole injection into (or electron extraction from) Si. Consistent with the ion transport model introduced, we showed the possibility in the dynamic redistribution of the metal atoms that resulted in the formation of pores/cracks for catalyst thin films that are ≲30 nm thick. As such, the transport of the reagents and by-products are accomplished via these pores/cracks for the thin catalyst films. For thicker films, we show a saturation in the etch rate demonstrating a transport process that is dominated by diffusion via metal/Si boundaries. The new understanding in transport processes described in this work reconcile competing models in reagents/by-products transport, and also solution ions and thin film etching, which can form the foundation of future studies in the MacEtch process.

  19. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  20. The effect of inductively-coupled-plasma reactive ion etching power on the etching rate and the surface roughness of a sapphire substrate.

    Science.gov (United States)

    Chang, Chun-Ming; Shiao, Ming-Hua; Yang, Chin-Tien; Cheng, Chung-Ta; Hsueh, Wen-Jeng

    2014-10-01

    In this study, patterned sapphire substrates are fabricated using nanosphere lithography (NSL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Polystyrene nanospheres of approximately 600 nm diameter are self-assembled on c-plane sapphire substrates by spin-coating. The diameter of the polystyrene nanospheres is modified to adjust the etching mask pitch cycle using oxygen plasma in the ICP-RIE system. A nickel thin film mask of 100 nm thickness is deposited by electron-beam evaporation on a substrate covered with treated nanospheres. The sapphire substrate is then etched in an inductively coupled plasma system using BCl3/Ar gas, to fabricate a structure with a periodic sub-micron hole array with different sidewall intervals. The DC bias voltage, the sapphire etching rate, the surface roughness, are studied as a function of the ICP and the RF power. Different sub-micron hole arrays with spacing cycles of 89 nm, 139 nm and 167 nm are successfully fabricated on the sapphire substrate, using suitable etching parameters.

  1. Laser etching of austenitic stainless steels for micro-structural evaluation

    Science.gov (United States)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  2. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach

    Science.gov (United States)

    Ruan, Min; Li, Wen; Wang, Baoshan; Luo, Qiang; Ma, Fumin; Yu, Zhanlong

    2012-07-01

    Many methods have been proposed to develop the fabrication techniques for superhydrophobic surfaces. However, such techniques are still at their infant stage and suffer many shortcomings. In this paper, the superhydrophobic surfaces on an Al substrate were prepared by a simple etching method. Effects of etching time, modifiers, and modification concentration and time were investigated, and optimal conditions for the best superhydrophobicity were studied. It was demonstrated that for etching the aluminum plate in Beck's dislocation, if the etching time was 15 s, modifier was Lauric acid-ethanol solution, and modification concentration and time was 5% and 1.5 h, respectively, the surface exhibited a water contact angle as high as 167.5° and a contact angle hysteresis as low as 2.3°.

  3. Low temperature sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Berenschot, J.W.; Elwenspoek, M.; Fluitman, J.H.J.

    1994-01-01

    A new technique, at temperatures of 150°C or 450°C, that provides planarization after a very deep etching step in silicon is presented. Resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes becomes possible. The sacrificial wafer bonding technique co

  4. Low temperature sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1994-01-01

    A new technique, at temperatures of 150°C or 450°C, that provides planarization after a very deep etching step in silicon is presented. Resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes becomes possible. The sacrificial wafer bonding technique

  5. Effect of wet etching process on the morphology and transmittance of fluorine doped tin oxide (FTO)

    Science.gov (United States)

    Triana, S. L.; Kusumandari; Suryana, R.

    2016-11-01

    Wet etching process was performed on the surface of FTO. The FTO coated glasses subtrates with size of 2×2 cm covered by screen were patterned using zinc powder and concentrated hydrochloric acid (1 M). The substrates were then cleaned in ultrasonic baths of special detergent(helmanex) diluted in deionized water and isopropanol in sequence. The screens with various of hole size denotes by T32, T49 and T55 were used in order to create a pattern of surface textured. The atomic force microscopy (AFM) image revealed that wet etching process changes the morphology of FTO. It indicates that texturization occured. Moreover, from the UV-Vis Spectrophotometer measurement, the transmittance of FTO increase after wet etching process. The time of etching and pattern of screen were affect to the morphology and the transmittance of FTO.

  6. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    Science.gov (United States)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.

  7. Quantificational Etching of AAO Template

    Institute of Scientific and Technical Information of China (English)

    Guojun SONG; Dong CHEN; Zhi PENG; Xilin SHE; Jianjiang LI; Ping HAN

    2007-01-01

    Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4:1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.

  8. Contact/Via placement management for N7 logic and beyond

    Science.gov (United States)

    Oyama, Kenichi; Hara, Arisa; Koike, Kyohei; Yamato, Masatoshi; Yamauchi, Shohei; Natori, Sakurako; Yaegashi, Hidetami

    2016-03-01

    The continuously scaling of complex device geometries is driving by the self-aligned multiple patterning techniques. Depending on such simplified LS scaling, FinFET design rule has been accelerated to unidirectional design layout. [1] In particular Fin, Gate and Metal layers are based on grating with cutting/blocking scheme, these process have become high volume manufacturing techniques in N14 and beyond.[2,3] On the other hand, immersions based pitch scaling of contact hole, via and cutmask processes are required multiple lithography and etching passes.[4] Overlay management is not only the overlay accuracy of layer to layer, to determine the placement error and patterning fidelity in single layer. In this work, focusing on the placement in hole pattern, total placement error budget will be discussed from the viewpoints of metrology, inspection, Mask, OPC and wafer processing. In addition, hole shrink and hole healing techniques have more significant factors in terms of design-process technology co-optimization for N7 and beyond.[5

  9. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hak-Jong; Shin, Ju-Hyeon; Choo, Soyoung; Ryu, Sang-Woo; Kim, Yang-Doo; Lee, Heon, E-mail: heonlee@korea.ac.kr

    2015-06-30

    Hierarchical Al surfaces were fabricated using three different kinds of alkaline-based chemical etching processes. The surface morphology changes to a needle-like microstructure or to nanoscale flakes on a microscale porous structure depending on the chemical solution used. These surfaces were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and contact angle measurements. After the hydrophobic treatment, the etched Al surface shows non-wetting properties, exhibiting a static contact angle over 150° and a dynamic contact angle less than 5° for deionized water. Oleophobic properties for diiodomethane and N,N-dimethylformamide are exhibited by all etched Al surfaces. - Highlights: • This research fabricated and analyzed the etched Al surface via a simple wet etching process. • The morphology of Al surface is changed according to the presence of Zn ions. • The wettability of Al surface is controlled by roughness and surface treatment. • Superhydrophobicity and superoleophobicity are achieved on the wet etched Al mesh.

  10. Contact dermatitis

    Science.gov (United States)

    Dermatitis - contact; Allergic dermatitis; Dermatitis - allergic; Irritant contact dermatitis; Skin rash - contact dermatitis ... There are 2 types of contact dermatitis. Irritant dermatitis: This ... with acids, alkaline materials such as soaps and detergents , ...

  11. Polymer masks for structured surface and plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène, E-mail: marylene.vayer@univ-orleans.fr [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Sinturel, Christophe [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Tillocher, Thomas; Lefaucheux, Philippe; Dussart, Rémi [Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France)

    2015-03-30

    Graphical abstract: - Highlights: • Sub-micrometric silicon structures were prepared by cryogenic plasma etching. • Polymer templates based on phase-separated films of PS/PLA were used. • Silica structured masks were prepared by filling the polymer templates. • Etching of underlying silicon through silica templates gave original structures. - Abstract: Silica and silicon structures have been prepared at the sub-micrometer length-scale, using laterally phase-separated thin films of poly(styrene) (PS) and poly(lactic acid) (PLA) homopolymer blends. The selective removal of one polymer and the filling of the released space by silica precursor solution led, after calcination, to silica structures on silicon such as arrays of bowl-shape features or pillars, layers with through or non-through cylindrical holes, which has not been observed for some of them. The control of the morphology of the initial polymer film was a key point to achieve such type of structures. Particularly relevant was the use of solvent vapor annealing (vs thermal annealing) of the initial spin-coated films that favored and stabilized laterally phase-separated morphologies. Characteristic dimension of the domains were shown to be coupled with the thickness of the film, thinner films giving smaller domain sizes. Despite a relatively high incompatibility of the two polymers, a macro-phase separation was prevented in all the studied conditions. Sub-micrometric domains were formed, and for the thinner films, nanometric domains as small as 74 nm in size can be obtained. The silica structures formed by the infiltration of the polymer templates were used as hard masks for the cryogenic etching of underlying silicon. New structured surfaces, arrays of silicon pillars which can be plain or hollow at the upper part or arrays of cylindrical holes were formed. A selectivity as high as 21 was obtained using this type of mask for 1.5 μm deep holes having a typical diameter of 200 nm.

  12. Study of etching processes in the GEM detectors

    CERN Document Server

    Zavazieva, Darina

    2016-01-01

    Gaseous Electron Multiplier (GEM) detectors are known to operate stably at high gains and high particle fluxes. Though, at very high gains and fluxes it was observed that the insulating polyimide layer between the GEM electrodes gets etched, changing the original shape of the hole, and therefore varying the gain and the energy resolution of the detector. The idea of the project to observe degradation effect of the GEM foils during the Triple GEM detector operation in extreme conditions under X-ray radiation.

  13. Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment

    Science.gov (United States)

    Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro

    We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.

  14. Dual contact pogo pin assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Stephen McGarry

    2016-06-21

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  15. Methods for dry etching semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Todd; Gross, Andrew John; Clews, Peggy J.; Olsson, Roy H.

    2016-11-01

    The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl.sub.3, a common additive.

  16. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    Science.gov (United States)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  17. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  18. Water adsorption on etched hydrophobic surfaces of L-, D- and DL-valine crystals

    Science.gov (United States)

    Segura, J. J.; Verdaguer, A.; Fraxedas, J.

    2014-03-01

    The adsorption of water on etched (001) surfaces of L-, D- and DL-valine crystals has been characterized by atomic force microscopy (AFM) using different operational modes (contact, non-contact and electrostatic) above and below the dew point, the temperature at which water vapor from humid air condenses into liquid water at constant atmospheric pressure. The analysis of the images suggests the formation of aggregates of solvated valine molecules that easily diffuse on the hydrophobic terraces only constrained by step barriers of the well-defined chiral parallelepipedic patterns induced by the etching process.

  19. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics.

    Science.gov (United States)

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A; Divakar, Darshan Devang; Matinlinna, Jukka P; Vallittu, Pekka K

    2016-05-27

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces' microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey's test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability.

  20. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Science.gov (United States)

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  1. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Ravikumar Ramakrishnaiah

    2016-05-01

    Full Text Available The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™; the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching and four experimental groups (20, 40, 80 and 160 s of etching. The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability.

  2. Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by Chemical Etching

    Directory of Open Access Journals (Sweden)

    Ruohui Wang

    2014-09-01

    Full Text Available An intrinsic Fabry-Perot interferometeric sensor based on a microfiber has been demonstrated. The micro-size suspended core is created by chemical etching a photonics crystal fiber, of which the cladding has a micrometer-spaced, hexagonal array of air holes. The sensing head is fabricated by chemical etching a short section of photonics crystal fiber spliced with a single mode fiber. The temperature sensing characteristic of the interferometer has also been demonstrated and a sensitivity 14.3 pm/°C is obtained.

  3. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    Science.gov (United States)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  4. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We present an efficient method to design apodized grating couplers with Gaussian output profiles for efficient coupling between standard single mode fibers and silicon chips. An apodized grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform is designed......, and fabricated in a single step of lithography and etching. An ultralow coupling loss of x2212;1.74x2009;x2009;dB (67% coupling efficiency) with a 3xA0;dB bandwidth of 60xA0;nm is experimentally measured....

  5. Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays

    Science.gov (United States)

    Scheeler, Sebastian P.; Ullrich, Simon; Kudera, Stefan; Pacholski, Claudia

    2012-08-01

    A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.

  6. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  7. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-08-10

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.

  8. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching

    Directory of Open Access Journals (Sweden)

    Zhan Zhan

    2017-02-01

    Full Text Available In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement.

  9. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching.

    Science.gov (United States)

    Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng

    2017-02-10

    In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement.

  10. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants

    DEFF Research Database (Denmark)

    Mortensen, Mikkel Saksø; Jakobsen, Stig Storgaard; Saksø, Henrik

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation...... compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri......-implant tissue density) and mechanical push-out testing after four weeks observation time.Neither acid etching nor plasma sterilization of the grit blasted implants enhanced osseointegration or mechanical fixation in this press-fit canine implant model in a statistically significant manner....

  11. A study of white etching crack formation by compression-torsion experiments

    Directory of Open Access Journals (Sweden)

    S. Averbeck

    2016-10-01

    Full Text Available In this study, an attempt was made to recreate the bearing damage phenomenon “White Etching Cracks” with a simplified testing setup. Rolling contact fatigue conditions were simulated with in-phase and out-ofphase cyclic compression-torsion experiments on 100Cr6 steel specimens. The results are compared in terms of microstructural change. Focused Ion Beam and metallographic analysis reveal that a fine-grained, white etching zone formed in the vicinity of the fatigue cracks of specimens tested with the in-phase load pattern. In contrast, no such structures were found after testing the out-of-phase load pattern. The properties of the white etching zone are characterised in more detail and compared with White Etching Cracks

  12. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Nicholas A. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Smith, Barbara S. [School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States)

    2012-07-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO{sub 2} peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: Black-Right-Pointing-Pointer Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates showed fewer adhered platelets. Black-Right-Pointing-Pointer Platelet activation was reduced by the improved oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates exhibited increased whole blood clotting times. Black-Right-Pointing-Pointer Although clotting reductions were

  13. Selective emitter using a screen printed etch barrier in crystalline silicon solar cell.

    Science.gov (United States)

    Song, Kyuwan; Kim, Bonggi; Lee, Hoongjoo; Lee, Youn-Jung; Park, Cheolmin; Balaji, Nagarajan; Ju, Minkyu; Choi, Jaewoo; Yi, Junsin

    2012-07-23

    The low level doping of a selective emitter by etch back is an easy and low cost process to obtain a better blue response from a solar cell. This work suggests that the contact resistance of the selective emitter can be controlled by wet etching with the commercial acid barrier paste that is commonly applied in screen printing. Wet etching conditions such as acid barrier curing time, etchant concentration, and etching time have been optimized for the process, which is controllable as well as fast. The acid barrier formed by screen printing was etched with HF and HNO3 (1:200) solution for 15 s, resulting in high sheet contact resistance of 90 Ω/sq. Doping concentrations of the electrode contact portion were 2 × 1021 cm-3 in the low sheet resistance (Rs) region and 7 × 1019 cm-3 in the high Rs region. Solar cells of 12.5 × 12.5 cm2 in dimensions with a wet etch back selective emitter Jsc of 37 mAcm-2, open circuit voltage (Voc) of 638.3 mV and efficiency of 18.13% were fabricated. The result showed an improvement of about 13 mV on Voc compared to those of the reference solar cell fabricated with the reactive-ion etching back selective emitter and with Jsc of 36.90 mAcm-2, Voc of 625.7 mV, and efficiency of 17.60%.

  14. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    Science.gov (United States)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  15. SF6 plasma etching of silicon nanocrystals.

    Science.gov (United States)

    Liptak, R W; Devetter, B; Thomas, J H; Kortshagen, U; Campbell, S A

    2009-01-21

    An SF(6)-based plasma has been employed to perform in-flight etching of silicon nanocrystals (Si-NCs) after they were synthesized in an SiH(4)-based plasma. The photoluminescence of the Si-NCs blue-shifts after etching, indicating an etching-induced size reduction of the Si-NCs. It is shown that both the SF(6) plasma power and the flow rate can be utilized to control the etch rate (and thus the size reduction) of the Si-NCs. The SF(6) etched Si-NCs show only low concentrations of residual impurities other than fluorine. Quantum yields as high as 50% have been observed from these SF(6) etched Si-NCs despite oxidation.

  16. Etching of glass microchips with supercritical water.

    Science.gov (United States)

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  17. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  18. Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Laursen, Anders B.; Jacobsen, Karsten Wedel;

    2012-01-01

    position is dependent on the type of surface termination. Such variations in hole state energies can lead to differences in photocatalytic activity among rutile and anatase surface facets. We find that the calculated hole state energies correlate with photo-deposition and photo-etching rates. We...

  19. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  20. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  1. Etching.

    Science.gov (United States)

    1980-09-01

    4U c Z . CC 0.0 V 0-01w.0 OCMCC.Ca 0 II 4- 00 La-1 e - .- 0 04’ . £0 tO4 -u 41 ’ Dato C 5-4-00LLi1 c-1 C- - E-1 4-C0 V) -OU1 I~ rC ŔE 0 *z 0 LW 04 c...Z&.. 4.-c o x *C L )P0 A0 0 a54. U * 0 3 i;- L )I.. l C C -44.0 0 2 o; c 0. ama a- .u OE Voz 0 UL 0f ja - .a r DC L _j4 5c .,R r- C *.-* 0 - )W- . 0

  2. Black Germanium fabricated by reactive ion etching

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to structure in optoelectronics and IR optics.

  3. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  4. Dry etching technologies for reflective multilayer

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  5. Direct Observation of Charge Separation on Anatase TiO2 Crystals with Selectively Etched {001} Facets.

    Science.gov (United States)

    Liu, Xiaogang; Dong, Guojun; Li, Shaopeng; Lu, Gongxuan; Bi, Yingpu

    2016-03-09

    Synchronous illumination X-ray photoelectron spectroscopy (SIXPS) was employed for the first time to directly identify the photogenerated charge separation and transfer on anatase TiO2 single-crystals with selectively etched {001} facets. More specifically, for the TiO2 crystals with intact {001} and {101} facets, most of photogenerated charge carriers rapidly recombined, and no evident electron-hole separation was detected. With selectively etching on {001} facets, high efficient charge separation via hole transfer to titanium and electron to oxygen was clearly observed. However, when the {001} facets were completely etched into a hollow structure, the recombination for photogenerated electron-hole pairs would dominate again. These demonstrations clearly reveal that the appropriate corrosion on {001} facets could facilitate more efficient electron-hole separation and transfer. As expected, the optimized TiO2 microcrystals with etched {001} facets could achieve a hydrogen generation rate of 74.3 μmol/h/g, which is nearly 7 times higher than the intact-TiO2 crystals.

  6. Influence of Acid Etching on Wettability of Ion-exchanged Aluminosilicate Float Glass

    Directory of Open Access Journals (Sweden)

    LI Xiaoyu

    2016-12-01

    Full Text Available The influence of acid etching time on wettability of ion-exchanged aluminosilicate float glass was investigated. The contact angle, roughness and surface composition were measured. The results show that the contact angle increases to a maximum value in the first 7 min and then decreases with the corrosion time. The main reason that cause the change of the contact angle is the change of surface roughness and the content of fluorine atom. The contact angle on the tin side is always larger than that on the air side which is caused by the tin ions on the tin side.

  7. Photoelectrochemical etching of ZnSe and nonuniform charge flow in Schottky barriers

    Science.gov (United States)

    Tenne, R.; Flaisher, H.; Triboulet, R.

    1984-05-01

    Photoelectrochemical etching of ZnSe, similar to that which was employed for cadmium chalcogenides, is found to decrease electron-hole recombinations upon photoexcitation considerably and to change the morphology of the semiconductor surface. Thus the photocurrent of a single-crystal ZnSe electrode in various electrolytes increases considerably (up to 100%) after such treatment. A unique morphology consisting of a dense pattern (109 cm-2) of etch pits is revealed after photoetching. This pattern is believed to reflect the dopant distribution close to the surface. Onset potential measurements show an anodic shift in the flat-band potential after photoetching which may arise from reduced pinning of the Fermi level associated with elimination of surface states. These measurements also indicate that the average dopant density close to the semiconductor surface is reduced after photoetching in accordance with our model of nonuniform hole flow in the space-charge region.

  8. Double hexagonal graphene ring synthesized using a growth-etching method

    Science.gov (United States)

    Liu, Jinyang; Xu, Yangyang; Cai, Hongbing; Zuo, Chuandong; Huang, Zhigao; Lin, Limei; Guo, Xiaomin; Chen, Zhendong; Lai, Fachun

    2016-07-01

    Precisely controlling the layer number, stacking order, edge configuration, shape and structure of graphene is extremely challenging but highly desirable in scientific research. In this report, a new concept named the growth-etching method has been explored to synthesize a graphene ring using the chemical vapor deposition process. The graphene ring is a hexagonal structure, which contains a hexagonal exterior edge and a hexagonal hole in the centre region. The most important concept introduced here is that the oxide nanoparticle derived from annealing is found to play a dual role. Firstly, it acts as a nucleation site to grow the hexagonal graphene domain and then it works as a defect for etching to form a hole. The evolution process of the graphene ring with the etching time was carefully studied. In addition, a double hexagonal graphene ring was successfully synthesized for the first time by repeating the growth-etching process, which not only confirms the validity and repeatability of the method developed here but may also be further extended to grow unique graphene nanostructures with three, four, or even tens of graphene rings. Finally, a schematic model was drawn to illustrate how the double hexagonal graphene ring is generated and propagated. The results shown here may provide valuable guidance for the design and growth of unique nanostructures of graphene and other two-dimensional materials.

  9. Sidewall roughness measurement inside photonic crystal holes by atomic force microscopy

    Science.gov (United States)

    Strasser, P.; Robin, F.; Carlström, C. F.; Wüest, R.; Kappeler, R.; Jäckel, H.

    2007-10-01

    We present a measurement technique to quantify sidewall roughness inside planar photonic crystal (PhC) holes. Atomic force microscopy is used to scan hole cross-section profiles. By fitting a circle onto each scan line and subtracting this circle from the measurement data, a quantitative value for the deviation from the ideal cylindrical hole shape is extracted. We investigate the sidewall roughness of InP-based PhC holes depending on the nitrogen content of the semiconductor etching plasma. The existence of a trade-off between hole undercut and surface roughness by optimizing the flux of nitrogen during the plasma etching of the PhC holes is confirmed. We further quantify with this technique the influence of the direct-writing of octagons instead of circles by electron-beam lithography on the measured roughness.

  10. Local droplet etching – Nanoholes, quantum dots, and air-gap heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Heyn, Ch.; Sonnenberg, D.; Graf, A.; Kerbst, J.; Stemmann, A.; Hansen, W. [Institute of Applied Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany)

    2014-05-15

    Local droplet etching (LDE) allows the self-organized generation of nanoholes in semiconductor surfaces and is fully compatible with molecular beam epitaxy (MBE). The influence of the process parameters as well as of droplet and substrate materials on the LDE nanohole morphology is discussed. Furthermore, recent applications of LDE, the fabrication of quantum dots by hole filling and the creation of air-gap heterostructures are addressed.

  11. Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach

    Science.gov (United States)

    Talesh Bahrami, H. R.; Ahmadi, B.; Saffari, H.

    2017-05-01

    A facile chemical etching process is developed to fabricate superhydrophobic copper surfaces. In the first step, cleaned copper surfaces immersed in ferric chloride (FeCl3) solutions with specific concentrations for different times. Etched surfaces exhibit the maximum contact angle of 140°. They have large sliding angle and water droplets stuck to the surface even if they were turned upside down which is well-known as rose petal effect. After stearic acid modification of etched surfaces, their contact angle slightly increased to above 150° and sliding angle decreased to smaller than 10° in some cases, which is same as lotus plant leaves property against water. Inspecting SEM images of etched surfaces reveals that many micro-nano structures forming blossom like buildings with curved petals of nanoscale thicknesses are formed. The micro-nano structures sizes and shapes affecting surface hydrophobicity are regulated by controlling reaction times and etchant solution concentrations. X-ray diffraction (XRD) analysis is done on a sample before and after of the etching process where patterns indicate that the same compositions present on the sample.

  12. Thin film process forms effective electrical contacts on semiconductor crystals

    Science.gov (United States)

    Formigoni, N. P.; Roberts, J. S.

    1967-01-01

    Process makes microscopic, low-resistance electrical contacts on hexagonal n-type silicon carbide crystals used for microelectronic devices. A vacuum deposition of aluminum is etched to expose the bare silicon carbide where the electrical contacts are made. Sputtering alternating layers of tantalum and gold forms the alloy film.

  13. Triple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode.

    Science.gov (United States)

    Ebrahim, Rabi; Yeleuov, Mukhtar; Issova, Ainur; Tokmoldin, Serekbol; Ignatiev, Alex

    2014-01-01

    Fabrication of microporous structures for the anode of a thin film solid oxide fuel cell (SOFC(s)) using controlled etching process has led us to increased power density and increased cell robustness. Micropores were etched in the nickel anode by both wet and electrochemical etching processes. The samples etched electrochemically showed incomplete etching of the nickel leaving linked nickel islands inside the pores. Samples which were wet- etched showed clean pores with no nickel island residues. Moreover, the sample with linked nickel islands in the anode pores showed higher output power density as compared to the sample with clean pores. This enhancement is related to the enlargement of the surface of contact between the fuel-anode-electrolyte (the triple-phase boundary).

  14. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    OpenAIRE

    SABATINI, Camila

    2013-01-01

    Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS) of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II) and a one-step self-etch adhesive (BeautiBond) were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned t...

  15. Anisotropic textured silicon obtained by stain-etching at low etching rates

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-DIaz, B [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Marrero, N [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Hernandez-RodrIguez, C [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Ben-Hander, F A [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain); MartInez-Duart, J M [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-02-21

    The structure, luminescence and etching kinetics for porous silicon stain-etched at different temperatures are studied. The results reveal that for temperatures below 10 deg. C and for short etching times, a novel anisotropic structure based on surface roughness preferentially oriented in the (100) direction is observed. At temperatures higher than 10 deg. C or large etching times, typical macropores and mesopores with non-preferential pore wall orientation are detected. The luminescence spectra of the samples with preferential surface roughness orientation are red-shifted with respect to the samples with typical isotropic orientation. The results are interpreted in terms of average etching rates and pore growth.

  16. Note: electrochemical etching of sharp iridium tips.

    Science.gov (United States)

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  17. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  18. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Science.gov (United States)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  19. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  20. Applications of total-etch adhesive bonding.

    Science.gov (United States)

    Strassler, Howard E

    2003-06-01

    The concept of total-etch adhesion for enamel and dentin is well accepted. Although new techniques with self-etching adhesives have been introduced, there needs to be more reported clinical trials before making a complete switch to these systems. Currently, the only adhesive systems with long-term data to support confidence and success with their clinical use are total-etch systems. Applications for using a total-etch adhesive bonding technique include sealants, orthodontic brackets, anterior composite resins, posterior composite resins, bonded dental silver amalgam, resin cementation with posts, all-metal, porcelain-metal, composite resin, and ceramic restorations, splinting, core foundations, and conservative treatment of the worn dentition. This article will review the concepts for clinical success with total-etch adhesion for a wide range of clinical applications.

  1. Graphene nanoribbons: Relevance of etching process

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, Zurich 8093 (Switzerland)

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused by more or larger localized states at the edges of the ashed device compared to the RIE defined device.

  2. An In Vitro Evaluation of Leakage of Two Etch and Rinse and Two Self-Etch Adhesives after Thermocycling

    Directory of Open Access Journals (Sweden)

    Sabine Geerts

    2012-01-01

    interfaces. In our experiment Etch and Rinse adhesives remain better than Self-Etch adhesives at enamel interface. In addition, there was no statistical difference between 1-step (ADSE-1 and 2-step (ADSE Self-Etch adhesives.

  3. Coronal Holes

    CERN Document Server

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  4. Nanoparticle-based etching of silicon surfaces

    Science.gov (United States)

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  5. Dumb holes: analogues for black holes.

    Science.gov (United States)

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  6. Electroless epitaxial etching for semiconductor applications

    Science.gov (United States)

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  7. Catalyst-referred etching of silicon

    Directory of Open Access Journals (Sweden)

    Hideyuki Hara et al

    2007-01-01

    Full Text Available A Si wafer and polysilicon deposited on a Si wafer were planarized using catalyst-referred etching (CARE. Two apparatuses were produced for local etching and for planarization. The local etching apparatus was used to planarize polysilicon and the planarization apparatus was used to planarize Si wafers. Platinum and hydrofluoric acid were used as the catalytic plate and the source of reactive species, respectively. The processed surfaces were observed by optical interferometry, atomic force microscopy (AFM and scanning electron microscopy (SEM. The results indicate that the CARE-processed surface is flat and undamaged.

  8. Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications

    Science.gov (United States)

    Liang, Jinxing; Kohsaka, Fusao; Matsuo, Takahiro; Ueda, Toshitsugu

    Z cut α-quartz wafers were etched in saturated ammonium bifluoride solution at 87 degrees C. The side wall profiles were observed using the scanning electron microscopy (SEM) and plotted dependent on the polar direction. This research focused on investigating high aspect ratio trench and through-hole, which were dependent on the polar direction to the crystal axis. Aspect ratio in dependence on polar direction was also plotted and microchannels with aspect ratio > 3 could be achieved at the polar angle between 30° to 60°. The possibility of application for microcapillary was discussed, and the trench at 45° was considered best. Double-sided etching technique was used for manufacturing through-hole structures. Through-hole at 0° was demonstrated effective for fabrication of capacitive MEMS tilt sensor. Through-holes at 15° and 105° were proposed for fabrication of 90°-arranged two axis capactive tilt sensor, taking advantage of the twofold symmetry property around X axis and threefold symmetry property around Z axis.

  9. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  10. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Camila SABATINI

    2013-01-01

    Full Text Available Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II and a one-step self-etch adhesive (BeautiBond were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12 as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100 were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37°C, 100% humidity with a testing machine (Ultra-tester at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey's test with a significance level of p<0.05. A field emission scanning electron microscope was used for the failure mode analysis. Results Both adhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (p<0.05. Preliminary phosphoric acid etching yielded significantly higher enamel SBS for FL-Bond II (p<0.05 only, but not for BeautiBond. FL-Bond II applied to un-etched dentin demonstrated the highest mean bond strength (37.7±3.2 MPa and BeautiBond applied to etched dentin showed the lowest mean bond strength (18.3±6.7 MPa among all tested groups (p<0.05. Conclusion The use of a preliminary acid-etching step with 37.5% phosphoric acid had a significant adverse effect on the dentin bond strength of the self-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin.

  11. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  12. Dislocation Etching Solutions for Mercury Cadmium Selenide

    Science.gov (United States)

    2014-09-01

    manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer...dislocation—thus enabling EPD measurement of Hg1-xCdxSe. 15. SUBJECT TERMS Mercury cadmium selenide, etch pits, dislocations, preferential etching...by the US Army Research Laboratory and was accomplished under Cooperative Agreement # W911NF-12-2-0019. vi

  13. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  14. Gas plasma etching of PEO/PBT segmented block copolymer films.

    Science.gov (United States)

    Olde Riekerink, M B; Claase, M B; Engbers, G H M; Grijpma, D W; Feijen, J

    2003-06-15

    A series of poly(ethylene oxide)/poly(butylene terephthalate) (PEO/PBT) segmented block copolymer films was treated with a radio-frequency carbon dioxide (CO(2)) or with argon (Ar) plasma. The effects of (preferential) etching on surface structure, topography, chemistry, and wettability were studied by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. In all cases, a granular-type nanostructure was formed after prolonged CO(2) plasma etching. Ar plasma etching generally did not lead to significant changes in surface structure. Regarding surface chemistry, CO(2) plasma treatment caused surface oxidation and oxidative degradation of the films while Ar plasma etching resulted mainly in the preferential removal of PEO blocks. The wettability of all films significantly increased after plasma treatment because of the creation of polar functional groups at the surface. Preliminary goat bone-marrow cell compatibility experiments have shown that all plasma-treated PEO/PBT films induced a greatly enhanced cell adhesion and/or growth compared to untreated biomaterials. This improvement was attributed to changes in surface chemistry during plasma etching rather than to changes in surface structure. These results show that plasma-treated PEO/PBT copolymers have a high potential as scaffolds for bone tissue regeneration. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 417-428, 2003

  15. Effects of chemical etching and functionalization times on the properties of Cu/polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kisoo; Hwang, Soomin; Lee, Changmin; Kim, Won; Lee, Seungmuk; Park, Geunchul; Jung, Seungboo; Joo, Jinho [Sungkyunkwan University, Suwon (Korea, Republic of); Lim, Junhyung [Stanford University, Stanford, CA (United States)

    2010-12-15

    We fabricated flexible Cu/Polyimide (PI) films by electroless- and electro-Cu plating on surface modified PI via chemical etching and functionalization, and investigated the effects of the modification time on the contact angle, surface energy and morphology, Pd catalyst amount on PI, and resultant peel strength between Cu/PI layers. Chemical etching and successive functionalization were performed on PI surfaces for 0 - 10 min, followed by electroless- and electro-Cu plating. Chemical etching effectively modified the PI surface from a hydrophobic to a hydrophilic state. In addition, chemical functionalization significantly increased the amount of Pd absorption on PI, which consequently enhanced the peel strength between Cu/PI. The peel strength of the resulting Cu/PI film processed by both chemical etching and functionalization for 5 min increased to 5.08 N/cm, which was 4.2 and 2.8 times higher than films processed with functionalization and etching alone, respectively. The highest strength that was achieved was a result of the combined effects of the increased work of adhesion and the increased Pd amount for both treatments; however, the amount of Pd was likely to be the more critical factor for the high level of adhesion between Cu/PI, rather than the work of adhesion.

  16. Advanced dry etching studies for micro- and nano-systems

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted

    Dry etching is a collective term used for controlled material removal by means of plasma generated ions. Dry etching includes several techniques, with reactive ion etching as one of the most used of its many derivatives. In this work inductively coupled plasma reactive ion etching has been applied...... beam etching in a boron trichloride plasma. The etch rates of sapphire in such a plasma can be up to a hundred times faster than rates in ion beam etching. The anisotropy of the etch can be controlled by changing the plasma conditions and fabrication of sloped sidewalls can be achieved. Reactive ion...... etching of polymers can be used for several purposes, such as polymer removal, surface properties alternation, or polymer structuring. For material removal any polymer can be etched in an oxygen plasma, including all the polymers used in this project, which include, SU-8, TOPAS®, PLLA, PCL, and PMMA...

  17. White spot lesions: Does etching really matter?

    Science.gov (United States)

    Abufarwa, Moufida; Voorhees, Robert D; Varanasi, Venu G; Campbell, Phillip M; Buschang, Peter H

    2017-08-01

    The clinical significance of acid etching prior to orthodontic bonding is controversial. In the present study, we evaluated the effect of 15 seconds of acid etching on enamel demineralization. Twenty-seven human molars were sectioned and assigned to two groups. Under standardized conditions, the enamel surfaces were imaged using FluoreCam to obtain baseline data. Group 1 was etched using 37% phosphoric acid for 15 seconds, rinsed with water, and then imaged again; group 2 was only rinsed with water. Water rinse was collected for calcium chemical analysis using inductively-coupled plasma auger electron spectrometry. Both groups were subjected to 9 days of pH cycling, after which final FluoreCam images were obtained. Group 1 showed a significant increase in lesion area (P=.012), decrease in light intensity (P=.009), and decrease in impact (P=.007) after acid etching. The amount of calcium that leached out over the 15 seconds was 14 ppm ±2.4 (0.35 mmol/L±0.06). Following pH cycling, there was no statistically-significant between-group difference in overall enamel demineralization. Initial demineralization caused by 15 seconds of acid etching does not increase enamel susceptibility to further demineralization. This suggests that acid etching does not increase the risk of developing white spot lesions during orthodontics. © 2017 John Wiley & Sons Australia, Ltd.

  18. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  19. Contact Whiskers for Millimeter Wave Diodes

    Science.gov (United States)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  20. A new generation of self-etching adhesives: comparison with traditional acid etch technique.

    Science.gov (United States)

    Holzmeier, Marcus; Schaubmayr, Martin; Dasch, Walter; Hirschfelder, Ursula

    2008-03-01

    The aim of this study was to determine the shear bond strength (SBS), etching pattern and depth, and debonding performance of several market-leading, self-etching (SE) adhesives primarily used in restorative dentistry (iBond, Clearfil S(3) Bond, Clearfil Protect Bond, AdheSE, XenoIII), two experimental self-etching adhesives (exp. Bond 1, exp. Bond 2) and one experimental self-etching cement (SE Zement) used with and without prior phosphoric acid-etching, and to compare them to an orthodontic self-etching product (Transbond Plus SE Primer) and to traditional acid-etch technique (Transbond XT Primer, phosphoric acid) All adhesives were applied on pumiced and embedded bovine incisors following the manufacturers' instructions. Then one bracket each (coated with Transbond XT composite) was bonded (n = 20). Transbond XT was polymerized for 20 s from the incisal and gingival sides using a halogen device positioned at a constant 5 mm from and a 45 degrees angle to the specimen. The specimens were stored in distilled water for 24 h at 37 degrees C before measuring SBS. The ARI (adhesive remnant index) for all specimens was determined from the sheared-off brackets of each. After conditioning, the surface texture was morphologically evaluated from scanning electron microscope (SEM) images, while the etching depth was determined using a confocal laser-scanning microscope (CLSM). All groups were tested for normal distribution and analyzed by applying ANOVA, Kruskal-Wallis or the t test. In addition, a Bonferroni correction was used. The median values of the SBS tests were: SE Zement 3.0 MPa, SE Zement preceded by phosphoric acid etching 11.2 MPa, experimental bond 1: 7.4 MPa, experimental bond 2: 5.6 MPa, iBond 8.1 MPa, Clearfil S(3) Bond 14.1 MPa, Clearfil Protect Bond 16.6 MPa, Clearfil SE Bond 15.9 MPa, AdheSE 16.0 MPa, XenoIII 16.1 MPa, Transbond SE Primer 20.7 MPa, acid-etching+Transbond XT Primer 21.0 MPa. With the exception of iBond, we observed no significant

  1. Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs.

    Science.gov (United States)

    Marin, Charles; Granato, Rodrigo; Suzuki, Marcelo; Janal, Malvin N; Gil, Jose N; Nemcovsky, Carlos; Bonfante, Estevam A; Coelho, Paulo G

    2010-07-01

    This study characterized the interplay between topography/chemistry and early bone response of etched and no-etched resorbable blasted media (RBM) processed surfaces. Screw-root form Ti-6Al-4V implants treated with alumina blasting/acid-etching (AB/AE), RBM alone (RBM), and RBM + acid-etching (RBMa) were evaluated. The surface was characterized by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Implants placed in the tibia of dogs remained 3 and 5 weeks in vivo. Following euthanasia, half of the specimens were torqued to interface failure and the remaining subjected to bone-to-implant contact (BIC) and bone area fraction occupied (BAFO) between threads evaluation. The AB/AE surface was rougher than the RBM and RBMa. Higher levels of calcium and phosphorous were observed for the RBM surface compared to the RBMa. No significant differences were observed in torque, BIC, and BAFO between surfaces. Woven bone formation at 3 weeks and its initial replacement by lamellar bone at 5 weeks were observed around all implants' surfaces.

  2. Polymerization monitoring in plasma etching systems

    Science.gov (United States)

    Kim, Jinsoo

    1999-11-01

    In plasma etching processes, the polymers used to enhance etch anisotropy and selectivity also deposit on various parts of the reaction chamber. This polymerization on reactor surface not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. This thesis explores the development of a direct in-situ polymerization monitoring sensor to minimize the drifts in plasma etching processes. In addition, polymerization dependencies on basic processing parameters and polymerization effects on etching characteristics have been explored for the first time using a direct in-situ sensor. The polymer buildup process is a strong function of parameters such as power, base pressure, and flow rate, and is also dependent on the reactor materials used, temperature, and the hydrogen/oxygen concentrations present. Experiments performed in an Applied Materials 8300 plasma etcher show a significant increase in polymerization with increased pressure and flow rates and a decrease as a function of power. These experiments provide insight into how the chamber state changes under the different processing recipes used for etching specific material layers and also suggest how the chamber seasoning process can best be carried out. The reactor surface, which serves as both a source and a sink for reactive gas species, not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. The etch rate and selectivity variations for specific silicon dioxide and silicon nitride etching recipes have been explored as a function of the polymer thickness on the reactor walls. The etch rates of nitride and polysilicon decrease dramatically with polymer thickness up to a thickness of 60nm, while the oxide etch rate remains virtually constant due to the polymerization

  3. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  4. Wettability investigating on the wet etching textured multicrystalline silicon wafer

    Science.gov (United States)

    Liu, Xiangju; Niu, Yuchao; Zhai, Tongguang; Ma, Yuying; Zhen, Yongtai; Ma, Xiaoyu; Gao, Ying

    2016-02-01

    In order to investigate the wettability properties of multicrystalline silicon (mc-Si), the different surface structures were fabricated on the as-cut p-type multi-wire slurry sawn mc-Si wafers, such as as-cut, polished and etched in various acid solutions. The contact angles and the XRD spectra of these samples were measured. It was noted that both the surface structures and the use of surfactant, such as Tween 80, made a stronger effect on wettability of the Si wafer. Due to the lipophilic groups of Tween 80 combined with the Si atoms while the hydrophilic groups of it were outward, a lipophilic surface of Si changed into a hydrophilic one and the rougher the surface, the stronger the hydrophily. Thus, it is feasible to add an appropriate surfactant into the etching solution during black-Si wafer fabrication for solar cells. In addition, different crystal plains of Si had different dangling bond density, so that their surface energies were different. A surface with higher surface energy could attract more water atoms and its wettability was better. However, the effect of crystal plain on the surface wettability was much weaker than surface morphology.

  5. Effect of pre-etching on sealing ability of two current self-etching adhesives

    Directory of Open Access Journals (Sweden)

    K Khosravi

    2005-05-01

    Full Text Available Background: We evaluated the effect of phosphoric acid etching on microleakage of two current self-etching adhesives on enamel margins in comparison to a conventional total- etch system. Methods: Sixty buccal class V cavities were made at the cemento-enamel junction with beveled enamel margins of extracted human premolar teeth and randomly divided into five groups (12 specimens in each group. Group 1 was applying with Clearfil SE bond, Group 2 with 35% phosphoric acid etching of enamel margins plus Clearfil SE bond, Group3 with I bond, Group 4 with 35% phosphoric acid etching of enamel margins plus I bond and Group5 with Scotchbond multi-purpose. All groups restored with a composite resins. After 24 hours storage with 100% humidity, the samples were thermocycled, immersed in a dye solution and sectioned buccoligually and enamel margins microleakage were evaluated on a scale of 0 to 2. Results: The differences between Groups 1 & 3 and Groups 3 & 4 were significant (P<0.05 but no significant differences between Groups1 & 2 or 1 & 5 were observed. Conclusion: The findings suggest that all-in-one adhesive systems need pre-etching enamel margins with phosphoric acid for effectively seal. Key words: Self-Etching Adhesives, Microleakage, Enamel, Total-Etch system

  6. An etching mask and a method to produce an etching mask

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an etching mask comprising silicon containing block copolymers produced by self-assembly techniques onto silicon or graphene substrate. Through the use of the etching mask, nanostructures having long linear features having sub-10 nm width can be produced....

  7. Effect of pre-etching enamel on fatigue of self-etch adhesive bonds

    NARCIS (Netherlands)

    Erickson, R.L.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective. A previous study found that the shear bond strength (SBS) to bovine enamel for the self-etching adhesive Adper Prompt-L-Pop (PLP) was 75% of that found with the etch-and-rinse material SingleBond, while the comparative value for the shear fatigue limit (SFL) was only 58% at 10(5) load

  8. Dry etched SiO2 Mask for HgCdTe Etching Process

    Science.gov (United States)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  9. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  10. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  11. Facet selective etching of Au microcrystallites

    Institute of Scientific and Technical Information of China (English)

    Gangaiah Mettela and Giridhar U. Kulkarni

    2015-01-01

    High-symmetry crystals exhibit isotropic properties. Inducing anisotropy, e.g., by facet selective etching, is considered implausible in face-centered cubic (FCC) metals, particularly gold, which, in addition to being an FCC, is noble. We report for the first time the facet selective etching of Au microcrystals obtained in the form of cuboctahedra and pentagonal rods from the thermolysis of a gold- organic precursor. The selective etching of {111} and {100} facets was achieved using a capping method in which tetraoctylammonium cations selectively cap the {111} facets while Br- ions protect the {100} facets. The exposed facets are oxidized by O2/C1-, yielding a variety of interesting geometries. The facet selective etching of the Au microcrystallites is governed only by the nature of the facets; the geometry of the microcystallite does not appear to play a significant role. The etched surfaces appear rough, but a closer examination reveals well-defined corrugations that are indexable to high hkl values. Such surfaces exhibit enhanced Raman activity.

  12. Fabrication of porous boron-doped diamond electrodes by catalytic etching under hydrogen–argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chao [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping, E-mail: licp226@126.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Dai, Wei [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yongheng [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous BDD was prepared by hydrogen–argon plasma etching with Ni nanoparticles as a catalyst. • With the increase of etching time, the pore size increases and the pore density decreases. • The etching of BDD is independent of the crystal orientation. • The porous BDD electrode exhibited much higher special capacitance than that of pristine BDD. - Abstract: Porous boron-doped diamond (BDD) was prepared by hydrogen–argon plasma etching using electrodeposited Ni nanoparticles as a catalyst. The etching process and formation mechanism of porous BDD were investigated by changing the etching time from 30 s to 300 s. Pores were produced due to the C atoms around Ni nanoparticles are easy to react with hydrogen plasma and form methane. With the increase of etching time, the pore size increased, the pore density decreased, and the pore depth first increased and then maintained unchanged. The sp{sup 2}-bonded graphitic carbons existing on the surface of BDD increase with increasing etching time due to the increase of surface area. No preferential etching was observed due to the high energy of argon plasma. The electrochemical behaviors of the pristine and porous BDD electrodes were characterized by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results showed that the porous BDD electrode exhibited high specific capacitance, which is attributed to its high electrical conductivity and large specific surface area. The highest specific capacitance of porous BDD electrode is 9.55 mF cm{sup −2}, which is 22 times higher than that of pristine BDD electrode. The specific capacitance retention of the porous BDD electrode reduced to 98.2% of the initial capacitance after 500 cycles and then increased to 120.0% after 10,000 cycles. For the first 500 cycles, the reduction of capacitance can be attributed to the dissolution of Ni nanoparticles that attached on the

  13. Fabrication of honeycomb texture on poly-Si by laser interference and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bogeum; Lee, Myeongkyu, E-mail: myeong@yonsei.ac.kr

    2013-11-01

    In this paper, we present a laser-interference method to fabricate honeycomb textures on poly-Si wafer for reflection reduction. When exposed to three interfering pulsed laser beams at 532 nm, the Si surface was periodically melted in accordance with the interference pattern. As a result, concave holes were generated on the surface because the melted material overflowed and condensed at the periphery. Subsequent acid etching revealed uniform and clean honeycomb textures. The texture depth could be controlled by varying the irradiation condition and a minimum reflectance of 10% was obtained. Transmission electron microscopy analysis showed that no irradiation-induced damage remained after etching. This approach can be a cost-effective alternative to lithographic processes for fabricating high-efficiency poly-Si solar cells.

  14. Analytical model of plasma-chemical etching in planar reactor

    Science.gov (United States)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  15. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    Science.gov (United States)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  16. Single beam determination of porosity and etch rate in situ during etching of porous silicon

    Science.gov (United States)

    Foss, S. E.; Kan, P. Y. Y.; Finstad, T. G.

    2005-06-01

    A laser reflection method has been developed and tested for analyzing the etching of porous silicon (PS) films. It allows in situ measurement and analysis of the time dependency of the etch rate, the thickness, the average porosity, the porosity profile, and the interface roughness. The interaction of an infrared laser beam with a layered system consisting of a PS layer and a substrate during etching results in interferences in the reflected beam which is analyzed by the short-time Fourier transform. This method is used for analysis of samples prepared with etching solutions containing different concentrations of HF and glycerol and at different current densities and temperatures. Variations in the etch rate and porosity during etching are observed, which are important effects to account for when optical elements in PS are made. The method enables feedback control of the etching so that PS films with a well-controlled porosity are obtainable. By using different beam diameters it is possible to probe interface roughness at different length scales. Obtained porosity, thickness, and roughness values are in agreement with values measured with standard methods.

  17. Confined Etching within 2D and 3D Colloidal Crystals for Tunable Nanostructured Templates: Local Environment Matters.

    Science.gov (United States)

    Wendisch, Fedja J; Oberreiter, Richard; Salihovic, Miralem; Elsaesser, Michael S; Bourret, Gilles R

    2017-02-01

    We report the isotropic etching of 2D and 3D polystyrene (PS) nanosphere hcp arrays using a benchtop O2 radio frequency plasma cleaner. Unexpectedly, this slow isotropic etching allows tuning of both particle diameter and shape. Due to a suppressed etching rate at the point of contact between the PS particles originating from their arrangement in 2D and 3D crystals, the spherical PS templates are converted into polyhedral structures with well-defined hexagonal cross sections in directions parallel and normal to the crystal c-axis. Additionally, we found that particles located at the edge (surface) of the hcp 2D (3D) crystals showed increased etch rates compared to those of the particles within the crystals. This indicates that 2D and 3D order affect how nanostructures chemically interact with their surroundings. This work also shows that the morphology of nanostructures periodically arranged in 2D and 3D supercrystals can be modified via gas-phase etching and programmed by the superlattice symmetry. To show the potential applications of this approach, we demonstrate the lithographic transfer of the PS template hexagonal cross section into Si substrates to generate Si nanowires with well-defined hexagonal cross sections using a combination of nanosphere lithography and metal-assisted chemical etching.

  18. Etching patterns on the micro‐ and nanoscale

    DEFF Research Database (Denmark)

    Michael-Lindhard, Jonas; Herstrøm, Berit; Stöhr, Frederik;

    2014-01-01

    in a liquid reacts with material from the substrate is the ability to fine‐tune the etch process. In wet processing the removal of material generally occurs indiscriminately of direction in the substrate ‐ hence in all directions. This puts a strong limitation on what may be achieved in terms of designs...... and polymer injection molding. High precision patterns of, for instance microfluidic devices, are etched intosilicon which is then electroplated with nickel that will serve as a stamp in the polymer injection molding tool where thousands of devices may be replicated. In addition to silicon and its derived...

  19. CD bias control on hole pattern

    Science.gov (United States)

    Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami

    2016-03-01

    Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][5] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. Especially roughness and X-Y CD bias are paid attention because it cause cut error and pattern defect. In this case, we applied some smoothing process to care hole roughness[4]. Each smoothing process showed different effect on X-Y CD bias. In this paper, we will report the pattern controllability comparison of trench and block + inverse. It include X-Y CD bias, roughness and process usability. Furthermore we will discuss optimum method focused on X-Y CD bias when we use additional process such as smoothing and shrink etching .

  20. Deburring small intersecting holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  1. Electrical field-induced faceting of etched features using plasma etching of fused silica

    Science.gov (United States)

    Huff, M.; Pedersen, M.

    2017-07-01

    This paper reports a previously unreported anomaly that occurs when attempting to perform deep, highly anisotropic etches into fused silica using an Inductively-Coupled Plasma (ICP) etch process. Specifically, it was observed that the top portion of the etched features exhibited a substantially different angle compared to the vertical sidewalls that would be expected in a typical highly anisotropic etch process. This anomaly has been termed as "faceting." A possible explanation of the mechanism that causes this effect and a method to eradicate it has been developed. Additionally, the method to eliminate the faceting is demonstrated. It is theorized that this faceting is a result of the interaction of the electro-potential electrical fields that surround the patterned nickel layers used as a hard mask and the electrical fields directing the high-energy ions from the plasma to the substrate surface. Based on this theory, an equation for calculating the minimum hard mask thickness required for a desired etch depth into fused silica to avoid faceting was derived. As validation, test samples were fabricated employing hard masks of thicknesses calculated based on the derived equation, and it was found that no faceting was observed on these samples, thereby demonstrating that the solution performed as predicted. Deep highly anisotropic etching of fused silica, as well as other forms of silicon dioxide, including crystalline quartz, using plasma etching, has an important application in the fabrication of several MEMS, NEMS, microelectronic, and photonic devices. Therefore, a method to eliminate faceting is an important development for the accurate control of the dimensions of deep and anisotropic etched features of these devices using ICP etch technology.

  2. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  3. Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications.

    Science.gov (United States)

    Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong

    2017-06-20

    This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF6 with additive O2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl3 + N2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl2 + O2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl2 and 3.6 sccm O2. These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.

  4. Patterned Au/poly(dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning.

    Science.gov (United States)

    Bai, Hai-Jing; Shao, Min-Ling; Gou, Hong-Lei; Xu, Jing-Juan; Chen, Hong-Yuan

    2009-09-01

    In this paper, we present a novel approach for preparing patterned Au/poly(dimethylsiloxane) (PDMS) substrate. Chemical gold plating instead of conventional metal evaporation or sputtering was introduced to achieve a homogeneous gold layer on native PDMS for the first time, which possesses low-cost and simple operation. An electrochemical oxidation reaction accompanied by the coordination of gold and chloride anion was then exploited to etch gold across the region covered by electrolyte. On the basis of such an electrochemical etching, heterogeneous Au/PDMS substrate which has a gold "island" pattern or PDMS dots pattern was fabricated. Hydrogen bubbles which were generated in the etching process due to water electrolysis were used to produce a safe region under the Pt auxiliary electrode. The safe region would protect gold film from etching and lead to the formation of the gold "island" pattern. In virtue of a PDMS stencil with holes array, gold could be etched from the exposed region and take on the PDMS dots pattern which was selected to for protein and cell patterning. This patterned Au/PDMS substrate is very convenient to construct cytophobic and cytophilic regions. Self-assembled surface modification of (1-mercaptoundec-11-yl)hexa(ethylene glycol) on gold and adsorption of fibronectin on PDMS are suitable for effective protein and cell patterning. This patterned Au/PDMS substrate would be a potentially versatile platform for fabricating biosensing arrays.

  5. Life inside black holes

    CERN Document Server

    Dokuchaev, V I

    2012-01-01

    We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.

  6. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, K.; Kodama, H. [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 229-0206 (Japan); Suzuki, K. [TOPLAS ENGINEERING Co., Ltd., Chofu, Tokyo 182-0006 (Japan); Sawabe, A. [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 229-0206 (Japan)

    2016-02-01

    The classification of etch pits formed by hydrogen plasma etching on heteroepitaxial diamond has been done by cross-sectional transmission electron microscope (TEM). We demonstrated that the origin of etch pit was mainly [001] threading dislocation. From invisibility criterion of dislocation contrast in TEM observation, this dislocation was identified as edge and 45° mixed dislocation. The correlation between dislocation types and etch pit shape was discussed. - Highlights: • The etch pits formed by plasma etching on heteroepitaxial diamond have been clarified by TEM. • The origin of etch pit was mainly [001] threading dislocation. • These dislocations were identified as edge and 45° mixed type. • The correlation between dislocation types and etch pit shape.

  7. Irregular shaping of polystyrene nanosphere array by plasma etching

    National Research Council Canada - National Science Library

    Luo, Hao; Liu, Tingting; Ma, Jun; Wang, Wei; Li, Heng; Wang, Pengwei; Bai, Jintao; Jing, Guangyin

    2013-01-01

    .... Here, by plasma etching, the controllable tailoring of the nanosphere is realized and its morphology dependence on the initial shape, microscopic roughness, and the etching conditions is investigated quantitatively...

  8. Effect of enamel etching time on roughness and bond strength

    National Research Council Canada - National Science Library

    Barkmeier, Wayne W; Erickson, Robert L; Kimmes, Nicole S; Latta, Mark A; Wilwerding, Terry M

    2009-01-01

    The current study examined the effect of different enamel conditioning times on surface roughness and bond strength using an etch-and-rinse system and four self-etch adhesives. Surface roughness (Ra...

  9. TrackEtching - A Java based code for etched track profile calculations in SSNTDs

    Science.gov (United States)

    Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.

    2017-09-01

    A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.

  10. Surface loss rate of H and N radicals in H2/N2 plasma etching process

    Science.gov (United States)

    Moon, Chang Sung; Takeda, Keigo; Hayashi, Toshio; Takashima, Seigo; Sekine, Makoto; Setsuhara, Yuichi; Shiratani, Masaharu; Hori, Masaru

    2008-10-01

    As ULSI devices are down to nano-scale size, there have been many efforts to develop low dielectric constant (low-k) materials and establish the plasma etching technology. Especially, the interaction between the plasma and the surface has an enormous influence on characterizing the etching process. However, the reactions in contact with solid surface such as substrate and wall are very complicated and moreover, at present, there are many interactions unknown and they are not fully understood yet. In this study, surface loss probabilities of H, N radicals on stainless steel and organic low-k film surfaces are investigated by vacuum ultraviolet absorption spectroscopy (VUVAS) technique. The changes of H, N radical densities are quantitatively measured in H2/N2 plasma afterglow and the loss rates on each surface are evaluated. It is expected that the development of plasma etching process can be advanced by understanding the reaction of radicals with the surface during organic low-k etching process.

  11. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.

    Science.gov (United States)

    Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji

    2017-08-18

    Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.

  12. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants.

    Science.gov (United States)

    Saksø, Mikkel; Jakobsen, Stig S; Saksø, Henrik; Baas, Jørgen; Jakobsen, Thomas; Søballe, Kjeld

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation was evaluated by implant osseointegration and biomechanical fixation.The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant tissue density) and mechanical push-out testing after four weeks observation time.Neither acid etching nor plasma sterilization of the grit blasted implants enhanced osseointegration or mechanical fixation in this press-fit canine implant model in a statistically significant manner.

  13. Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets

    Science.gov (United States)

    Zope, Amit; Zope-Khalekar, Yogita; Chitko, Shrikant S.; Kerudi, Veerendra V.; Patil, Harshal Ashok; Jaltare, Pratik; Dolas, Siddhesh G

    2016-01-01

    Introduction The self-etching primer system consists of etchant and primer dispersed in a single unit. The etching and priming are merged as a single step leading to fewer stages in bonding procedure and reduction in the number of steps that also reduces the chance of introduction of error, resulting in saving time for the clinician. It also results in smaller extent of enamel decalcification. Aim To compare the Shear Bond Strength (SBS) of orthodontic bracket bonded with Self-Etch Primers (SEP) and conventional acid etching system and to study the surface appearance of teeth after debonding; etching with conventional acid etch and self-etch priming, using stereomicroscope. Materials and Methods Five Groups (n=20) were created randomly from a total of 100 extracted premolars. In a control Group A, etching of enamel was done with 37% phosphoric acid and bonding of stainless steel brackets with Transbond XT (3M Unitek, Monrovia, California). Enamel conditioning in left over four Groups was done with self-etching primers and adhesives as follows: Group B-Transbond Plus (3M Unitek), Group C Xeno V+ (Dentsply), Group D-G-Bond (GC), Group E-One-Coat (Coltene). The Adhesive Remnant Index (ARI) score was also evaluated. Additionally, the surface roughness using profilometer were observed. Results Mean SBS of Group A was 18.26±7.5MPa, Group B was 10.93±4.02MPa, Group C was 6.88±2.91MPa while of Group D was 7.78±4.13MPa and Group E was 10.39±5.22MPa respectively. In conventional group ARI scores shows that over half of the adhesive was remaining on the surface of tooth (score 1 to 3). In self-etching primer groups ARI scores show that there was no or minor amount of adhesive remaining on the surface of tooth (score 4 and 5). SEP produces a lesser surface roughness on the enamel than conventional etching. However, statistical analysis shows significant correlation (p<0.001) of bond strength with surface roughness of enamel. Conclusion All groups might show clinically

  14. Admittance spectroscopy of CdTe/CdS solar cells subjected to varied nitric-phosphoric etching conditions.

    OpenAIRE

    2007-01-01

    In this work we investigate the electric and structural properties of CdTe/CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the cha...

  15. Dopant Selective Reactive Ion Etching of Silicon Carbide

    Science.gov (United States)

    Okojie, Robert (Inventor)

    2016-01-01

    A method for selectively etching a substrate is provided. In one embodiment, an epilayer is grown on top of the substrate. A resistive element may be defined and etched into the epilayer. On the other side of the substrate, the substrate is selectively etched up to the resistive element, leaving a suspended resistive element.

  16. Study of copper-free back contacts to thin film cadmium telluride solar cells

    Science.gov (United States)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  17. Effects of etching time on the bottom surface morphology of ultrathin porous alumina membranes for use as masks

    Science.gov (United States)

    Yang, Sun A.; Choi, Yong Chan; Bu, Sang Don

    2012-11-01

    We investigated the effect of etching time on the bottom surface morphologies of ultrathin porous alumina membranes (UT-PAMs) anodized in oxalic and phosphoric acid. The morphology of the bottom surface clearly changed and a unique surface undulation was observed during the etching process. Such an undulation regarding the bottom surface is attributed to the different etching rates between the dome-shaped barrier layer and the hexagonal cell walls. The results suggest that the bottom morphology of UT-PAMs formed after the barrier layer is opened significantly affects the contact area of the bottom side with the substrate. During the initial stage of the opening process for the barrier layer, the porous section will contact the substrate rather than the walls. However, as the etching time increases, the height of the porous section becomes considerably lower than that of the walls, which means that the walls will contact the substrate with a gap between the pores and the substrate. Based on our experimental results, we propose a possible schematic diagram describing the effects of UT-PAMs with differently-shaped bottom surfaces on the shapes of fabricated nanodots when the UT-PAMs are used as masks.

  18. White-Etching Matter in Bearing Steel. Part II: Distinguishing Cause and Effect in Bearing Steel Failure

    Science.gov (United States)

    Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

    2014-10-01

    The premature failure of large bearings of the type used in wind turbines, possibly through a mechanism called "white-structure flaking", has triggered many studies of microstructural damage associated with "white-etching areas" created during rolling contact fatigue, although whether they are symptoms or causes of failure is less clear. Therefore, some special experiments have been conducted to prove that white-etching areas are the consequence, and not the cause, of damage. By artificially introducing a fine dispersion of microcracks in the steel through heat treatment and then subjecting the sample to rolling contact fatigue, manifestations of hard white-etching matter have been created to a much greater extent than samples similarly tested without initial cracks. A wide variety of characterization tools has been used to corroborate that the white areas thus created have the same properties as reported observations on real bearings. Evidence suggests that the formation mechanism of the white-etching regions involves the rubbing and beating of the free surfaces of cracks, debonded inclusions, and voids under repeated rolling contact. It follows that the focus in avoiding early failure should be in enhancing the toughness of the bearing steel in order to avoid the initial microscopic feature event.

  19. Comparative Analysis of in vitro Performance of Total-Etch and Self-Etch Adhesives

    Directory of Open Access Journals (Sweden)

    Timur V. Melkumyan

    2016-12-01

    Full Text Available The aim of the study was in vitro assessment of shear bond strength and micro-leakage after application of total-etch and self-etch adhesive systems. Materials and Methods: Four adhesive systems were chosen for assessment of adhesion performance: Contax (DMG, GmbH, Bond Force (Tokuyama Dental Corp. Japan Mfr, Te-Econom Bond (Ivoclar Vivadent, Liechtenstein and Swisstec SL Bond (Coltene, Switzerland. The assessment of bond strength was performed on 20 tooth samples, which were prepared in accordance with the UltraTest technique for shear bond strength (SBS estimation. The test was conducted at a crosshead speed of 1.0 mm/min and results were fixed in kilograms. The assessment of SBS was performed on enamel and dentin separately. Microleakage assessment of self-etch and total-etch adhesive systems was performed on 20 extracted non-carious upper human premolars with immersion in 1% methylene blue solution after thermocycling. Results: Good SBS results and microleakage values on the dentin substrate were obtained after application of the Contax self-etch bonding agent. But the values of bond strength to enamel and the extent of dye penetration within the composite-enamel interface were still better with the total-etch approach.

  20. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    Science.gov (United States)

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives.

  1. Dentin diffusion of HEMA released from etch-and-rinse and self-etch bonding systems.

    Science.gov (United States)

    Rathke, Andreas; Alt, Andreas; Gambin, Nadin; Haller, Bernd

    2007-12-01

    The aim of this in vitro study was to determine the diffusion of 2-hydroxyethyl methacrylate (HEMA) released from different bonding systems (BS) through dentin. Occlusal cavities with a remaining dentin thickness (RDT) of 0.5 mm (n=90) and 0.25 mm (n=80), respectively, were prepared in dentin discs of non-carious human molars. Artificial pulp chambers were attached to the pulpal side of each dentin disc. Bonding systems were applied with (Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus) or without (AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus Self Etch, Xeno III) prior phosphoric acid etching. HEMA was detected by gas chromatography/mass spectrometry (n=10 per BS and RDT). The highest mean HEMA concentration was found in the 0.25 mm RDT group treated with OptiBond FL (13.3 microg) and the lowest mean HEMA concentration was detected in the 0.5 mm RDT group treated with AdheSE (0.5 microg). At 0.25 mm RDT the quantities of HEMA recovered in the artificial pulp chambers were significantly higher than at 0.5 mm RDT, except for Clearfil SE Bond. Etching with phosphoric acid increased the detected HEMA quantities compared with self-etch BS. In deep cavity preparations, etching with phosphoric acid should be avoided in favor of the use of self-etch BS.

  2. Electron-positron outflow from black holes

    CERN Document Server

    Van Putten, M H P M

    2000-01-01

    Gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of the central engine in GRBs is a missing link in the theory of fireballs to their stellar mass progenitors. Here it is shown that rotating black holes produce electron-positron outflow when brought into contact with a strong magnetic field. The outflow is produced by a coupling of the spin of the black hole to the orbit of the particles. For a nearly extreme Kerr black hole, particle outflow from an initial state of electrostatic equilibrium has a normalized isotropic emission of $\\sim external magnetic field strength, B_c=4.4 x 10^{13}G, and M is the mass of the black hole. This initial outflow has a half-opening angle given.

  3. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    A.I. Abdalla; A.J. Feilzer

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid Bond’

  4. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid

  5. Graphene reknits its holes.

    Science.gov (United States)

    Zan, Recep; Ramasse, Quentin M; Bangert, Ursel; Novoselov, Konstantin S

    2012-08-08

    Nanoholes, etched under an electron beam at room temperature in single-layer graphene sheets as a result of their interaction with metal impurities, are shown to heal spontaneously by filling up with either nonhexagon, graphene-like, or perfect hexagon 2D structures. Scanning transmission electron microscopy was employed to capture the healing process and study atom-by-atom the regrown structure. A combination of these nanoscale etching and reknitting processes could lead to new graphene tailoring approaches.

  6. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  7. Top contact organic field effect transistors fabricated using a photolithographic process

    Institute of Scientific and Technical Information of China (English)

    Wang Hong; Ji zhuo-Yu; Shang Li-Wei; Liu Xing-Hua; Peng Ying-Quan; Liu Ming

    2011-01-01

    This paper proposes an effective method of fabricating top contact organic field effect transistors by using a photolithographic process.The semiconductor layer is protected by a passivation layer.Through photolithographic and etching processes,parts of the passivation layer are etched off to form source/drain electrode patterns.Combined with conventional evaporation and lift-off techniques,organic field effect transistors with a top contact are fabricated successfully,whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process.

  8. The research on conformal acid etching process of glass ceramic

    Science.gov (United States)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  9. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  10. Wetting dynamics of a collapsing fluid hole

    Science.gov (United States)

    Bostwick, Joshua; Dijksman, Joshua; Shearer, Michael

    2016-11-01

    An axisymmetric fluid cavity at the bottom of a rotating bucket bound by vertical sidewalls is studied, as it is filled in by the wetting fluid. Lubrication theory is applied to reduce the governing equations to a single evolution equation for the film thickness. In the quasi-static regime the contact-line motion is governed by a constitutive law relating the effective contact angle to the contact-line speed. The dependence of the collapse time on the initial hole size is calculated. For small holes, surface tension dominates the dynamics, leading to a universal power law that compares favorably to experiments in the literature. Further verification of the model is obtained through comparison of volume dependence with experimental results.

  11. Wetting dynamics of a collapsing fluid hole

    Science.gov (United States)

    Bostwick, J. B.; Dijksman, J. A.; Shearer, M.

    2017-01-01

    The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.

  12. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2011-08-01

    Full Text Available We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.

  13. Absolute Intensities of the Vacuum Ultraviolet Spectra in a Metal-Etch Plasma Processing Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, B.P.; Blain, M.G.; Hamilton, T.W.; Jarecki, R.L.; Woodworth, J.R.

    1998-12-09

    In this paper we report absolute intensities of vacuum ultraviolet and near ultraviolet emission lines (4.8 eV to 18 eV ) for aluminum etching discharges in an inductively coupled plasma reactor. We report line intensities as a function of wafer type, pressure, gas mixture and rf excitation level. IrI a standard aluminum etching mixture containing C12 and BC13 almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the WV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we see total photon fluxes to the wailer at energies above 8.8 eV on the order of 4 x 1014 photons/cm2sec with anon- reactive wafer and 0.7 x 10 `4 photons/cm2sec with a reactive wtier. The maj ority of the radiation observed was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in Si02, but may penetrate up to a micron into the Si02 before being absorbed. Relevance of these measurements to vacuum-W photon-induced darnage of Si02 during etching is discussed.

  14. Fabricating a variety of micro-optics structures using anisotropic etching of silicon

    Science.gov (United States)

    Li, Bin; Wei, Ming-yue; Wang, Meng; Zhang, Xin-yu; Xie, Chang-sheng; Zhang, Tian-xu

    2010-10-01

    A variety of micro-optics structures can be fabricated using a dual-step anisotropic etching of KOH: H2O over (100) silicon. A key step of this method is the design of mask layout. In accordance with the expected profile, this paper implemented a set of algorithms through computer programming to design the mask, and after setting a set of parameters, the final etching profile can be simulated. According to the data of the mask layout generated by the program, a lithography mask is fabricated, and then through the single-step lithography and dual-step wet etching, the expected profile is acquired. The mask can be fast and efficiently designed using this method, and through follow-up procedures, many kinds of aspherical and irregular micro-structures can be obtained. In this study, a series of 512x512 arrays of concave lenses are designed using the algorithm, and then the follow-up procedures are carried out using the most appropriate corrosion issues calculated by the program, and finally get a good result. At the end of this study, the lens' surface profile, roughness, and optical performance, etc, are tested. Test results show that the micro lens are very neat, and the hole size and depth of each unit have basically the same size. The surface profile and roughness already achieve optical mirror requirements, and the structures have good optical performances.

  15. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching.

    Science.gov (United States)

    Gonçalves, Manuel R; Makaryan, Taron; Enderle, Fabian; Wiedemann, Stefan; Plettl, Alfred; Marti, Othmar; Ziemann, Paul

    2011-01-01

    We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE) of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.

  16. Chemical etching of deformation sub-structures in quartz

    Science.gov (United States)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  17. Surface engineering of SiC via sublimation etching

    Science.gov (United States)

    Jokubavicius, Valdas; Yazdi, Gholam R.; Ivanov, Ivan G.; Niu, Yuran; Zakharov, Alexei; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa

    2016-12-01

    We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10-5 mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  18. Development of an electrochemical micromachining instrument for the confined etching techniques.

    Science.gov (United States)

    Zhou, Hang; Lai, Lei-Jie; Zhao, Xiang-Hui; Zhu, Li-Min

    2014-04-01

    This study proposes an electrochemical micromachining instrument for two confined etching techniques, namely, confined etchant layer technique (CELT) and electrochemical wet stamping (E-WETS). The proposed instrument consists of a granite bridge base, a Z-axis coarse/fine dual stage, and a force sensor. The Z-axis coarse/fine dual stage controls the vertical movement of the substrate with nanometer accuracy. The force sensor measures the contact force between the mold and the substrate. A contact detection method based on a digital lock-in amplifier is developed to make the mold-substrate contact within a five-nanometer range in CELT, and a force feedback controller is implemented to keep the contact force in E-WETS at a constant value with a noise of less than 0.2 mN. With the use of the confined etching techniques, a microlens array and a curvilinear ridge microstructure are successfully fabricated with high accuracy, thus demonstrating the promising performance of the proposed micromachining instrument.

  19. Development of an electrochemical micromachining instrument for the confined etching techniques

    Science.gov (United States)

    Zhou, Hang; Lai, Lei-Jie; Zhao, Xiang-Hui; Zhu, Li-Min

    2014-04-01

    This study proposes an electrochemical micromachining instrument for two confined etching techniques, namely, confined etchant layer technique (CELT) and electrochemical wet stamping (E-WETS). The proposed instrument consists of a granite bridge base, a Z-axis coarse/fine dual stage, and a force sensor. The Z-axis coarse/fine dual stage controls the vertical movement of the substrate with nanometer accuracy. The force sensor measures the contact force between the mold and the substrate. A contact detection method based on a digital lock-in amplifier is developed to make the mold-substrate contact within a five-nanometer range in CELT, and a force feedback controller is implemented to keep the contact force in E-WETS at a constant value with a noise of less than 0.2 mN. With the use of the confined etching techniques, a microlens array and a curvilinear ridge microstructure are successfully fabricated with high accuracy, thus demonstrating the promising performance of the proposed micromachining instrument.

  20. Higher spin black holes

    National Research Council Canada - National Science Library

    Gutperle, Michael; Kraus, Per

    2011-01-01

    .... We find solutions that generalize the BTZ black hole and carry spin-3 charge. The black hole entropy formula yields a result for the asymptotic growth of the partition function at finite spin-3 chemical potential...

  1. Black hole hair removal

    Science.gov (United States)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-07-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  2. Black Hole Hair Removal

    CERN Document Server

    Banerjee, Nabamita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair, -- degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  3. Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver

    Science.gov (United States)

    Chen, Chia-Yun; Wong, Ching-Ping

    2014-12-01

    Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag+-ion containing oxidants on Si etching, we have re-examined the state-of-the-art metal-assisted chemical etching (MaCE) using HF/AgNO3 etchants. In contrast with previous reports, we found that the interplay of hole injections from Ag+ and NO3- ions to the valence band of Si collectively contributes to the unidirectional dissolution of Si. Finally, we explored the engineering of the Ag nano-seeds to regularize the orientation of the etched nanowires formed on non-Si (100) wafers, which further provides a reliable pathway for constructing the desired morphologies of one-dimensional Si nanostructures regardless of wafer orientation.Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag

  4. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  5. Black Hole Thermodynamics

    Science.gov (United States)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  6. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    Science.gov (United States)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  7. Block copolymer templated etching on silicon.

    Science.gov (United States)

    Qiao, Yinghong; Wang, Dong; Buriak, Jillian M

    2007-02-01

    The use of self-assembled polymer structures to direct the formation of mesoscopic (1-100 nm) features on silicon could provide a fabrication-compatible means to produce nanoscale patterns, supplementing conventional lithographic techniques. Here we demonstrate nanoscale etching of silicon, applying standard aqueous-based fluoride etchants, to produce three-dimensional nanoscale features with controllable shapes, sizes, average spacing, and chemical functionalization. The block copolymers serve to direct the silicon surface chemistry by controlling the spatial location of the reaction as well as concentration of reagents. The interiors of the resulting etched nanoscale features may be selectively functionalized with organic monolayers, metal nanoparticles, and other materials, leading to a range of ordered arrays on silicon.

  8. Wafer scale oblique angle plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  9. Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da; Bonneau, F.; Baker, R.; Clement, J.-M.; Perez, M.; Thuaudet, S.; Malandrino, G.; Vivo, A.; Lantelme, B.; Barrett, R.; Susini, J. [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France)

    2016-07-27

    A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shape can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.

  10. Fabrication and Photovoltaic Characteristics of Coaxial Silicon Nanowire Solar Cells Prepared by Wet Chemical Etching

    Directory of Open Access Journals (Sweden)

    Chien-Wei Liu

    2012-01-01

    Full Text Available Nanostructured solar cells with coaxial p-n junction structures have strong potential to enhance the performances of the silicon-based solar cells. This study demonstrates a radial junction silicon nanowire (RJSNW solar cell that was fabricated simply and at low cost using wet chemical etching. Experimental results reveal that the reflectance of the silicon nanowires (SNWs declines as their length increases. The excellent light trapping was mainly associated with high aspect ratio of the SNW arrays. A conversion efficiency of ∼7.1% and an external quantum efficiency of ∼64.6% at 700 nm were demonstrated. Control of etching time and diffusion conditions holds great promise for the development of future RJSNW solar cells. Improving the electrode/RJSNW contact will promote the collection of carries in coaxial core-shell SNW array solar cells.

  11. Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography

    Science.gov (United States)

    Chen, Junyi; Subramani, Thiyagu; Jevasuwan, Wipakorn; Fukata, Naoki

    2017-04-01

    Silicon nanowires were fabricated by metal catalyzed electroless etching (MCEE) and nano imprint lithography (NIL), then a shell p-type layer was grown by thermal chemical vapor deposition (CVD) techniques. To reduce back surface recombination and also to activate the dopant, we used two techniques, back surface field (BSF) treatment and rapid thermal annealing (RTA), to improve device performance. In this study, we investigated BSF and RTA treatments in silicon nanowire solar cells, and improved the device performance and efficiency from 4.1 to 7.4% (MCEE device) and from 1.1 to 6.6% (NIL device) after introducing BSF and RTA treatments. Moreover, to achieve better metal contact without sacrificing the reflectance after the shell formation, the selective-area etching method was investigated. Finally, after combining all processes, silicon nanowire solar cells fabricated via the MCEE process exhibited 8.7% efficiency.

  12. Characterization and Wettability of ZnO Film Prepared by Chemical Etching Method

    Institute of Scientific and Technical Information of China (English)

    GUO Hua-xi; JIA Hui-ying; ZENG Jian-bo; CONG Qian; REN Lu-quan

    2013-01-01

    ZnO thin films were prepared by a chemical etching method and their wettability was investigated.The structure and surface composition structure were characterized by means of scanning electron microscopy,X-ray photoelectronic spectrometry(XPS),X-ray diffraction(XRD) and Raman spectrometry.These analyses reveal that the etched films were large-scale micro-nanohierarchical structures composed of a Zn core and a ZnO coating.Superhydrophobic surfaces with water contact angles of over 150° were obtained by n-octadecanethiol(ODT) modification.The XPS and Raman results indicate that ODT molecules were bound to the ZnO surface with the S head group by forming Zn—S bond.

  13. Monopole black hole skyrmions

    OpenAIRE

    Moss, I. G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  14. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, I. G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  15. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs. Spin-dependen

  16. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  17. Characterization of aluminum surfaces: Sorption and etching

    Science.gov (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A

  18. The controlled fabrication of nanopores by focused electron-beam-induced etching

    Science.gov (United States)

    Yemini, M.; Hadad, B.; Liebes, Y.; Goldner, A.; Ashkenasy, N.

    2009-06-01

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 × 10-6 Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  19. The controlled fabrication of nanopores by focused electron-beam-induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Yemini, M; Ashkenasy, N [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel); Hadad, B; Goldner, A [The Weiss Family Laboratory for Nano-Scale Systems, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel); Liebes, Y [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel)], E-mail: nurita@bgu.ac.il

    2009-06-17

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 x 10{sup -6} Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  20. Low Resistance Ohmic Contact for ZnSb Thin Film

    Science.gov (United States)

    Yin, Meimei; Zhong, Aihua; Luo, Jingting; Li, Fu; Zheng, Zhuanghao; Fan, Ping

    2016-12-01

    To further improve the performance and power density of thermoelectric devices, the size of the device needs to be scaled down from macroscale to microscale. Different from the macroscale device, the specific contact resistivity ρ c of the metal contact to the microscale device becomes a key point to the device's efficiency. In this study, a P type ZnSb thin film was deposited on glass substrate using a radio frequency magnetron sputtering system, followed by annealing at 325°C in an Ar atmosphere. X-ray diffraction, scanning electron microscopy, and the Hall measurement system were utilized for characterization of the ZnSb. The ohmic contact properties of metallic Co and Mo on the annealed ZnSb thin films were investigated, indicating that metallic Co has a lower specific contact resistivity ρ c to ZnSb. The effect of a diluted HCl-etch prior to Co electrode deposition was also studied. The results show that a HCl-etch is effective for the reduction of the ρ c. The dependence of ρ c on the annealing temperature was also studied. Through HCl-etch and annealing at 200°C, specific contact resistivity ρ c as low as 10-7 Ω cm2 is successfully obtained on the Co electrode, providing a good method to fabricate a highly efficient ZnSb-based micro device.

  1. Track etching technique in membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P. E-mail: apel@lnr.jinr.ru

    2001-06-01

    Track membrane (TM) technology is an example of industrial application of track etching technique. Track-etch membranes offer distinct advantages over conventional membranes due to their precisely determined structure. Their pore size, shape and density can be varied in a controllable manner so that a membrane with the required transport and retention characteristics can be produced. The use of heavy ion accelerators made it possible to vary LET of track-forming particles, angle distribution of pore channels and pore lengths. So far the track formation and etching process has been studied in much detail for several polymeric materials. Today we understand determining factors and have numerous empirical data enabling us to manufacture any particular product based on polyethylene terephthalate (PET) or polycarbonate (PC) films. Pore shape can be made cylindrical, conical, funnel-like, or cigar-like at will. A number of modification methods has been developed for creating TMs with special properties and functions. Applications of 'conventional' track membranes can be categorized into three groups: process filtration, cell culture, and laboratory filtration. The use in biology stands out among other areas. Nuclear track pores find diverse applications as model systems and as templates for the synthesis of micro- and nanostructures.

  2. ZERODUR: bending strength data for etched surfaces

    Science.gov (United States)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  3. Transport through track etched polymeric blend membrane

    Indian Academy of Sciences (India)

    Kamlendra Awasthi; Vaibhav Kulshreshtha; B Tripathi; N K Acharya; M Singh; Y K Vijay

    2006-06-01

    Polymer blends of polycarbonate (PC) and polysulphone (PSF) having thickness, 27 m, are prepared by solution cast method. The transport properties of pores in a blend membrane are examined. The pores were produced in this membrane by a track etching technique. For this purpose, a thin polymer membrane was penetrated by a single heavy ion of Ni7+ of 100 MeV, followed by preferential chemical etching of the ion track. Ion permeation measurements show that pores in polymeric membrane are charged or neutralized, which depends upon the variation in concentration of the solvent. The – curve at concentration, N/10, shows that the pores are negatively charged, whereas at concentration, N/20, the linear nature of – curve indicates that the pores approach towards neutralized state and on further concentration, N/40, the pores become fully neutralized, consequently the rectifier behaviour of pores has been omitted. The gas permeability of hydrogen and carbon dioxide of this membrane was measured with increasing etching time. The permeability was measured from both the sides. Permeability at the front was larger than the permeability at the back which shows asymmetric behaviour of membranes.

  4. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  5. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  6. Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities.

    Science.gov (United States)

    Matsushima, Toshinori; Hwang, Sunbin; Sandanayaka, Atula S D; Qin, Chuanjiang; Terakawa, Shinobu; Fujihara, Takashi; Yahiro, Masayuki; Adachi, Chihaya

    2016-12-01

    A very high hole mobility of 15 cm(2) V(-1) s(-1) along with negligible hysteresis are demonstrated in transistors with an organic-inorganic perovskite semiconductor. This high mobility results from the well-developed perovskite crystallites, improved conversion to perovskite, reduced hole trap density, and improved hole injection by employing a top-contact/top-gate structure with surface treatment and MoOx hole-injection layers.

  7. Hole spin dephasing time associated to hyperfine interaction in quantum dots

    OpenAIRE

    Testelin, C.; Bernardot, F.; Eble, B.; Chamarro, M.

    2009-01-01

    The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants...

  8. Sound Hole Sound

    CERN Document Server

    Politzer, David

    2015-01-01

    The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alternate way to understand the most important of those effects. The measurements also confirm and illuminate aspects of Helmholtz's "bottle" resonator model as applied to musical instrument sound boxes and sound holes.

  9. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  10. [Restoration of composite on etched stainless steel crowns. (1)].

    Science.gov (United States)

    Goto, G; Zang, Y; Hosoya, Y

    1990-01-01

    Object of investigation The retention of composite resin to etched stainless steel crowns was tested as a possible method for restoring primary anterior teeth. Method employed 1) SEM observation Stainless steel crowns (Sankin Manufacture Co.) were etched with an aqua resia to create surface roughness and undercut to retain the composite resin to the crowns. Etching times were 1, 2, 3, 5, 8, 10 and 20 minutes, then washed in a 70% alcohol solution using an ultrasonic washer and dried. A total of 96 etched samples and non etched control samples were observed through the scanning electron microscope (Hitachi 520). 2) Shear bond strength test Stainless steel crowns were etched in an aqua resia from 1 to 20 minutes, then washed and dried. Composite resin (Photo Clearfil A, Kuraray Co.) with the bonding agent was placed on the crowns and the shear bond strength was tested in 56 samples using an Autograph (DCS-500, Shimazu). Results 1) SEM observation showed that the etching surface of stainless steel crowns created surface roughness and undercut. The most desirable surface was obtained in the 3 to 5 minute etching time specimens. 2) The highest bond strength was obtained in a 3 minute etching specimen. It was 42.12 MPa, although 29.26 MPa in mean value. Conclusion Etching with an aqua resia increased the adherence of composite resin to the surface of stainless steel crowns.

  11. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  12. Effect of Ag/Au bilayer assisted etching on the strongly enhanced photoluminescence and visible light photocatalysis by Si nanowire arrays.

    Science.gov (United States)

    Ghosh, Ramesh; Imakita, Kenji; Fujii, Minoru; Giri, P K

    2016-03-21

    We report on the strongly enhanced photoluminescence (PL) and visible light photocatalysis by arrays of vertically aligned single crystalline Si nanowires (NWs) grown by Ag/Au bilayer assisted etching. High resolution FESEM and TEM imaging reveals that the Si NWs are decorated with ultra-small size arbitrary shaped Si nanocrystals (NCs) due to the lateral etching of the NWs. A strong broad band and tunable visible to near-infrared (NIR) photoluminescence (PL) in the range 1.3-2.4 eV are observed for these Si NWs/NCs at room temperature, depending on the etching conditions. Our studies reveal that the visible-NIR PL intensity is about two orders of magnitude higher and it exhibits faster decay dynamics in the bilayer assisted etching case as compared to the Ag or Au single layer etching case. The enhanced PL in the bimetal case is attributed to the longer length and higher density of the Si NWs/NCs, surface plasmon resonance enhanced absorption by residual bimetal NPs and the enhanced radiative recombination rate. Studies on the time evolution of PL spectral features with laser exposure under ambient conditions and laser power dependence reveal that both the quantum confinement of carriers in Si NCs and the nonbridging oxygen hole defects in the SiOx layer contribute to the tunable PL. Interestingly, Si NWs grown by Ag/Au bilayer assisted etching exhibit enhanced photocatalytic degradation of methylene blue in comparison to Si NWs grown by single layer Ag or Au assisted etching. The Schottky barrier present between bimetallic NPs and nanoporous Si NWs with Si-H bonds facilitates the photocatalytic activity by efficient separation of photogenerated e-h pairs. Our results demonstrate the superiority of the Si NW array grown by bilayer assisted etching for their cutting edge applications in optoelectronics and environmental cleaning.

  13. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  14. Histologic Evaluation of Human Pulp Response to Total Etch and Self Etch Adhesive Systems

    OpenAIRE

    Malekipour, Mohammad Reza; Razavi, Sayed Mohammad; Khazaei, Saber; Kazemi, Shantia; Behnamanesh, Maryam; Shirani, Farzaneh

    2013-01-01

    Background To investigate pulp response to the application of two types adhesive systems (total-etch and self-etch) in human premolar teeth. Materials and Methods Cavities limited to enamel walls in all margins with 2.5 mm depth were prepared on buccal surfaces of thirty three human premolars. The cavities were treated with the following adhesive. Single Bond (SB) and Prompt L-Pop (PLP). The teeth were extracted after 30 days and prepared due to histological technique. Results Pulp responses ...

  15. Extreme ultraviolet lithography mask etch study and overview

    Science.gov (United States)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    An overview of extreme ultraviolet lithography (EUVL) mask etch is presented and a EUVL mask etch study was carried out. Today, EUVL implementation has three critical challenges that hinder its adoption: extreme ultraviolet (EUV) source power, resist resolution-line width roughness-sensitivity, and a qualified EUVL mask. The EUVL mask defect challenges result from defects generated during blank preparation, absorber and multilayer deposition processes, as well as patterning, etching and wet clean processes. Stringent control on several performance criteria including critical dimension (CD) uniformity, etch bias, micro-loading, profile control, defect control, and high etch selectivity requirement to capping layer is required during the resist pattern duplication on the underlying absorber layer. EUVL mask absorbers comprise of mainly tantalum-based materials rather than chrome- or MoSi-based materials used in standard optical masks. Compared to the conventional chrome-based absorbers and phase shift materials, tantalum-based absorbers need high ion energy to obtain moderate etch rates. However, high ion energy may lower resist selectivity, and could introduce defects. Current EUVL mask consists of an anti-reflective layer on top of the bulk absorber. Recent studies indicate that a native oxide layer would suffice as an anti-reflective coating layer during the electron beam inspection. The absorber thickness and the material properties are optimized based on optical density targets for the mask as well as electromagnetic field effects and optics requirements of the patterning tools. EUVL mask etch processes are modified according to the structure of the absorber, its material, and thickness. However, etch product volatility is the fundamental requirement. Overlapping lithographic exposure near chip border may require etching through the multilayer, resulting in challenges in profile control and etch selectivity. Optical proximity correction is applied to further

  16. Lipstick Induced Contact Leucoderma

    OpenAIRE

    Gupta Lalit Kumar; Jain Suresh Kumar; Khare Ashok Kumar

    2001-01-01

    Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  17. Lipstick Induced Contact Leucoderma

    Directory of Open Access Journals (Sweden)

    Gupta Lalit Kumar

    2001-01-01

    Full Text Available Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  18. Er:YAG laser radiation etching of enamel

    Science.gov (United States)

    Dostalova, Tatjana; Jelinkova, Helena; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-12-01

    This study compares the effects of acid treatment and Er:YAG laser radiation on the enamel. The permanent human molars were used. Oval cavities in the buccal surface were prepared and the edges of cavities were irradiated by Er:YAG radiation. The energy of laser was 105 mJ and repetition rate 1 Hz. The radiation was focused by CaF2 lens and the sample was placed in the focus. Ten samples were etched by 35 percent phosphoric acid during 60 s. Than cavities were filled with composite resin following manufacturers directions. By laser etching the structure enamel in section was rougher. The optimal connection between the enamel and composite resin was achieved in 75 percent by acid etching and in 79.2 percent by Er:YAG laser etching. Er:YAG laser etching could be alternative method for etching of enamel.

  19. Assessment of antibacterial activity of self-etching dental adhesive systems: An in vitro study

    Directory of Open Access Journals (Sweden)

    Hegde Mithra

    2008-01-01

    Full Text Available Aim: To evaluate and compare the antibacterial activity of polymerized, two-step, self-etching and one-step, self-etching adhesive systems by using the direct contact test after one, seven, and fourteen days. Materials and Methods: The direct contact test was used to evaluate the antibacterial activity of Clearfil Protect Bond, Adper SE Plus, Clearfil SE Bond, and Adper Easy One on Streptococcus mutans after aging the samples in phosphate-buffered saline for one, seven, and fourteen days. Statistical analysis included the one-way Anova and Tukey′s multiple comparison tests. Results: Among the tested materials, Clearfil Protect Bond exhibited an antibacterial effect for seven days when in contact with S. mutans . None of the adhesive systems exhibited any antibacterial effect after 14 days. Conclusion: The incorporation of antibacterial agents into dentine-bonding agents may become an essential factor in inhibiting residual bacteria in the cavity following a cavity disinfection procedure, and it could be recommended in situations where total disinfection of cavity is not accomplished due to lack of accessibility.

  20. Track-etched membrane: dynamics of pore formation

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1994-02-01

    The dynamics of pore formation during etching of heavy ion (Ar 9+ - 4.5 MeV/amu) irradiated bisphenol-A polycarbonate (PC) and polyethylene terephthalate (PET) films is determined by a conductivity cell. This work presents the theoretical basis of this method and describes the experimental procedure. The obtained results allow the determination of the track ( Vt) and bulk ( Vg) etch rates, and an estimate of the damage zone diameter in PC before etching.

  1. Bulk molybdenum field emitters by inductively coupled plasma etching.

    Science.gov (United States)

    Zhu, Ningli; Cole, Matthew T; Milne, William I; Chen, Jing

    2016-12-07

    In this work we report on the fabrication of inductively coupled plasma (ICP) etched, diode-type, bulk molybdenum field emitter arrays. Emitter etching conditions as a function of etch mask geometry and process conditions were systematically investigated. For optimized uniformity, aspect ratios of >10 were achieved, with 25.5 nm-radius tips realised for masks consisting of aperture arrays some 4.45 μm in diameter and whose field electron emission performance has been herein assessed.

  2. Modification of etching patterns in bovine dental enamel.

    Science.gov (United States)

    Lees, S; Trombly, P L; Skobe, Z; Gariepy, E E; Trull, A F

    1979-08-01

    It is presumed that the etching pattern is controlled by the residual organic content of dental enamel. Pretreatment with 1.ON NaOH sould remove the organic material and modify the etching pattern. SEM studies and other tests for physical and chemical properties show that the predicted modification of the etching pattern, when the tooth surface is pretreated with NaOH solution, occurs apparently without other changes or properties.

  3. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  4. Characterization of treated porcelain surfaces via dynamic contact angle analysis.

    Science.gov (United States)

    Phoenix, R D; Shen, C

    1995-01-01

    Successful porcelain repair requires conditioning of porcelain surfaces. Conditioning is intended to facilitate wetting by repair materials and improve interfacial bonding. The objective of this investigation was to determine the effects of selected surface treatments upon the wettability of a representative feldspathic porcelain. Dynamic contact angle analysis and scanning electron microscopy were used to characterize the effects of such treatments. Standardized porcelain specimens were subjected to the following five treatment regimens: (1) control (no treatment); (2) airborne particle abrasion using 50 microns aluminum oxide; (3) etching with ammonium bifluoride gel; (4) etching with acidulated phosphate fluoride gel; and (5) etching with hydrofluoric acid gel. Following treatment, specimens were cleansed and dried. Advancing contact angles were quantified using dynamic contact angle analysis. Mean values and 95% confidence intervals were (in degrees): control, 63.8 +/- 2.7; ammonium bifluoride, 39.4 +/- 2.0; airborne particle abrading, 29.1 +/- 2.9; acidulated phosphate fluoride, 24.9 +/- 1.7; and hydrofluoric acid, 16.5 +/- 1.2. Significant differences were found between all treatment groups (P = .05). Subsequent scanning electron microscopy examination of treated surfaces indicated lesser contact angles were associated with surfaces displaying deeper and wider grooves. Apparently, the resultant increase in surface area produces increased wettability. It is inferred that an increase in surface area may correspond to enhanced resin-porcelain bonding.

  5. Lateral electrochemical etching of III-nitride materials for microfabrication

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jung

    2017-02-28

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  6. State of the art etch-and-rinse adhesives

    OpenAIRE

    Pashley, David H.; Tay, Franklin R.; Breschi, Lorenzo; Tjäderhane, Leo; Carvalho, Ricardo M.; Carrilho, Marcela; Tezvergil-Mutluay, Arzu

    2010-01-01

    Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. This review explores the therapeutic opportunities of each separate step. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Some etchants include anti...

  7. Effects of etching time on enamel bond strengths.

    Science.gov (United States)

    Triolo, P T; Swift, E J; Mudgil, A; Levine, A

    1993-12-01

    This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.

  8. Pre-etching vs. grinding in promotion of adhesion to intact enamel using self-etch adhesives.

    Science.gov (United States)

    Nazari, Amir; Shimada, Yasushi; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study was aimed to determine the effectiveness of grinding and pre-etching in promotion of adhesion to human intact enamel using the self-etch adhesive (SEA) Adper Easy Bond (3M ESPE). Etch-and-rinse adhesive Adper Single Bond (3M ESPE) served as control. Composite cylinders (AP-X Kuraray) were built and after 24 h micro-shear bond strengths (MSBS) were measured. Bonding interfaces were evaluated under scanning electron microscope (SEM). For evaluation of average roughness (Ra) and morphological analysis, treated enamel surfaces were observed under SEM and confocal laser scanning microscope (CLSM) with 3D surface profiling. Highest bond strengths were obtained by pre-etching and grinding showed a less significant role. Phosphoric acid (PA) etching compare to grinding created significantly rougher surface (Ra: 0.72 and 0.43 µm respectively). Therefore, this study recommends pre-etching the intact enamel prior to application of the adhesive instead of grinding.

  9. Braneworld Black Holes

    CERN Document Server

    Whisker, Richard

    2008-01-01

    In this thesis we investigate black holes in the Randall-Sundrum braneworld scenario. We begin with an overview of extra-dimensional physics, from the original proposal of Kaluza and Klein up to the modern braneworld picture of extra dimensions. A detailed description of braneworld gravity is given, with particular emphasis on its compatibility with experimental tests of gravity. We then move on to a discussion of static, spherically symmetric braneworld black hole solutions. Assuming an equation of state for the ``Weyl term'', which encodes the effects of the extra dimension, we are able to classify the general behaviour of these solutions. We then use the strong field limit approach to investigate the gravitational lensing properties of some candidate braneworld black hole solutions. It is found that braneworld black holes could have significantly different observational signatures to the Schwarzschild black hole of standard general relativity. Rotating braneworld black hole solutions are also discussed, an...

  10. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  11. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  12. Etched glass self-assembles into micron-size hollow platonic solids

    KAUST Repository

    Boukhalfa, Sofiane

    2012-10-03

    The interaction between the spreading of a hydrofluoric acid-based drop on a glass surface and its etching rate gives rise to hollow crystals of various shapes, including cubes, triangles, and icosahedra. These geometries are dependent on their position with respect to the contact line, where a rim forms by agglutination, similar to the formation of a coffee stain. Atomic force microscopy indentation and transmission electron microscopy observations revealed that these crystals are hollow ammonium-fluosilicate-based cryptohalite shells. © 2012 American Chemical Society.

  13. Histologic and biomechanical evaluation of alumina-blasted/acid-etched and resorbable blasting media surfaces.

    Science.gov (United States)

    Bonfante, Estevam A; Marin, Charles; Granato, Rodrigo; Suzuki, Marcelo; Hjerppe, Jenni; Witek, Lukasz; Coelho, Paulo G

    2012-10-01

    This study evaluated the early biomechanical fixation and bone-to-implant contact (BIC) of an alumina-blasted/acid-etched (AB/AE) compared with an experimental resorbable blasting media (RBM) surface in a canine model. Higher texturization was observed for the RBM than for the AB/AE surface, and the presence of calcium and phosphorus was only observed for the RBM surface. Time in vivo and implant surface did not influence torque. For both surfaces, BIC significantly increased from 2 to 4 weeks.

  14. Observations of the effect of varying Hoop stress on fatigue failure and the formation of white etching areas in hydrogen infused 100Cr6 steel rings

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; West, Ole; Klit, Peder;

    2015-01-01

    White etching cracks (WECs) in wind turbine gearbox bearings have been studied previously. Rolling contact fatigue (RCF) tests are conducted on 100Cr6 bearing steel rings, in this study, to generate WECs like those found in wind turbine bearings. This research studies the effect of two different...

  15. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NARCIS (Netherlands)

    Roozeboom, F.; Kniknie, B.J.; Lankhorst, A.M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.W.G.; Dingemans, G.; Keuning, W.; Kessels, W.M.M.

    2012-01-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In

  16. Charged Lifshitz Black Holes

    OpenAIRE

    Dehghani, M. H.; Pourhasan, R.; Mann, R. B.

    2011-01-01

    We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical pot...

  17. Perturbations around black holes

    CERN Document Server

    Wang, B

    2005-01-01

    Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

  18. Physics of black holes

    OpenAIRE

    Thorne, Kip S.

    1982-01-01

    The activity at the galactic center might be fuelled by energy release near a large black hole. In this talk I describe some relativistic effects which may be relevant to this process. I use Newtonian language so far as possible and illustrate the effects with simple  analogies. Specifically, I describe the gravitational field near a black hole, Lens‐Thirring and geodetic precession, electro‐magnetic energy extraction of the spin energy of a black hole and the structure of accretion tori arou...

  19. Plasma etch challenges with new EUV lithography material introduction for patterning for MOL and BEOL

    Science.gov (United States)

    Lee, Changwoo; Nagabhirava, Bhaskar; Goss, Michael; Wang, Peng; Friddle, Phil; Schmitz, Stafan; Wu, Jian; Yang, Richard; Mignot, Yann; Rassoul, Nouradine; Hamieh, Bassem; Beique, Genevieve; Labonte, Andre; Labelle, Catherine; Arnold, John; Mucci, John

    2015-03-01

    As feature critical dimension (CD) shrinks towards and beyond the 7nm node, patterning techniques for optical lithography with double and triple exposure will be replaced by EUV patterning. EUV enables process and overlay improvement, as well as a potential cost reduction due to fewer wafer passes and masks required for patterning. However, the EUV lithography technique introduces newer types of resists that are thinner and softer compared to conventional 193nm resists currently being used. The main challenge is to find the key etch process parameters to improve the EUV resist selectivity, reduce LER and LWR, minimize line end shrink, improve tip-to-tip degradation, and avoid line wiggling while still enabling previous schemes such as trench-first-metal-hard-mask (TFMHM), self-aligned via (SAV) and self-aligned contact (SAC). In this paper, we will discuss some of the approaches that we have investigated to define the best etch process adjustments to enable EUV patterning. RF pulsing is one of the key parameters utilized to overcome most of the previously described challenges, and has also been coupled with stack optimization. This study will focus on RF pulsing (high vs. low frequency results) and bias control (RF frequency dependence). In particular, pulsing effects on resist morphology, selectivity and profile management will be reported, as well as the role of aspect ratio and etch chemistry on organic mask wiggling and collapse. This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities.

  20. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    Science.gov (United States)

    El-Sayed, D.; El-Saftawy, A. A.; Abd El Aal, S. A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N. A.; Seddik, U.

    2017-04-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way.

  1. Asymptotic black holes

    Science.gov (United States)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  2. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  3. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  4. Etching with atomic precision by using low electron temperature plasma

    Science.gov (United States)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Monroy, G. A.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2017-07-01

    There has been a steady increase in sub-nm precision requirement for many critical plasma etching processes in the semiconductor industry. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in conventional radio-frequency (RF) plasma processing systems, even during layer-by-layer or ‘atomic layer’ etch. To meet these increasingly stringent requirements, it is necessary to have an accurate control over ion energy and ion/radical composition during plasma processing. In this work, a new plasma etch system designed to facilitate atomic precision plasma processing is presented. An electron sheet beam parallel to the substrate surface is used to produce a plasma in this system. This plasma has a significantly lower electron temperature T e ~ 0.3 eV and ion energy E i  plasmas. Electron beam plasmas also have a higher ion-to-radical ratio compared to RF plasmas, so this plasma etch system employs an independent radical source for accurate control over relative ion and radical concentrations. A low frequency RF bias capability that allows control of ion energy in the 2-50 eV range is another important component of this plasma etch system. The results of etching of a variety of materials and structures in this low-electron temperature plasma system are presented in this study: (1) layer-by-layer etching of p-Si at E i ~ 25-50 eV using electrical and gas cycling is demonstrated; (2) continuous etching of epi-grown µ-Si in Cl2-based plasmas is performed, showing that surface damage can be minimized by keeping E i  etching at low E i.

  5. Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating

    Science.gov (United States)

    Chen, Chun-Hung; Lee, Yung-Chun

    2007-07-01

    This paper reports a novel contact printing method which can transfer patterned metallic films directly from a mold to a substrate, based on applied contact pressure and infrared pulse laser heating. Experiments have been carried out using a 1064 nm pulsed Nd:YAG laser to demonstrate the feasibility of the proposed method. Chromium (Cr) films of 70 nm thickness with both array-dot patterns and linear grating patterns of typically 500 nm feature sizes are successfully transferred. The transferred Cr patterns can serve as an etching mask for the subsequent etching on the substrate. The potential for applying this method to nano-patterning and nano-fabrication is addressed.

  6. Time-varying wetting behavior on copper wafer treated by wet-etching

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Sheng-Hung; Wu, Chuan-Chang [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China); Wu, Hsing-Chen [Advanced Technology Materials Inc, Hsinchu 310, Taiwan, ROC (China); Cheng, Shao-Liang [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China)

    2015-06-30

    Graphical abstract: - Highlights: • A thin oxide layer always remains on surfaces of Cu wafers after aqueous etching. • A pure Cu wafer is obtained by the HAc treatment and the water CA is about 45°. • The oxide layer and CA grow with time after the Cu wafer is exposed to air. • Surface roughness and hydrophobicity of pure Cu wafers grow rapidly in vacuum. - Abstract: The wet cleaning process in semiconductor fabrication often involves the immersion of the copper wafer into etching solutions and thereby its surface properties are significantly altered. The wetting behavior of a copper film deposited on silicon wafer is investigated after a short dip in various etching solutions. The etchants include glacial acetic acid and dilute solutions of nitric acid, hydrofluoric acid, and tetramethylammonium hydroxide. It was found that in most cases a thin oxide layer still remains on the surface of as-received Cu wafers when they are subject to etching treatments. However, a pure Cu wafer can be obtained by the glacial acetic acid treatment and its water contact angle (CA) is about 45°. As the pure Cu wafer is placed in the ambient condition, the oxide thickness grows rapidly to the range of 10–20 Å within 3 h and the CA on the hydrophilic surface also rises. In the vacuum, it is surprising to find that the CA and surface roughness of the pure Cu wafer can grow significantly. These interesting results may be attributed to the rearrangement of surface Cu atoms to reduce the surface free energy.

  7. Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.T.; Ho, S.S.; Yan, B.H. [National Central Univ. (Taiwan). Dept. of Mechanical Engineering

    2001-07-01

    The borosilicate glass serves as the substrates of the micro sensors owing to their excellent anodic bonding properties. To build up the electrical through channel and connect the internal system with the environment, micro holes should be drilled on the substrates. This investigation describes a novel process that combines micro electrical discharge machining (micro EDM) and electrochemical discharge machining (ECDM) to drill micro holes on the borosilicate glass plate. Experimental investigation of the novel process includes fabrication of micro tools via micro EDM and machining characteristics of the borosilicate glass by ECDM. This study also analyzes the basic material removal mechanism in the ECDM process. Four stages are identified in the ECDM process via rapid photography. Etching reaction is important in the machining mechanism of ECDM through SEM and EDX analysis. Unlike conventional EDM, the key reason for improving material removal rate and surface roughness is the etching reaction in the ECDM process. Also discussed herein are the effects of machining parameters, such as applied voltage, electrolytes, concentration of electrolytes, and temperature of electrolytes in ECDM. Furthermore, machining time, hole expansion and the surface roughness of inner holes are measured to assess hole quality. This novel process can improve material removal rate and surface roughness to 1.5 mm/min and 0.08 {mu}m, Ra. Experimental results demonstrate that this process is excellent for fabricating micro holes on the borosilicate glass for MEMS. (orig.)

  8. PTFE surface etching in the post-discharge of a RF scanning plasma torch: evidence of ejected fluorinated species

    CERN Document Server

    Dufour, Thierry; Viville, Pascal; Duluard, Corinne Y; Desbief, Simon; Lazzaroni, Roberto; Reniers, François

    2016-01-01

    The texturization of poly(tetrafluoroethylene) (PTFE) surfaces is achieved at atmospheric pressure by using the post-discharge of a radio-frequency plasma torch supplied in helium and oxygen gases. The surface properties are characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. We show that the plasma treatment increases the surface hydrophobicity (with water contact angles increasing from 115 to 155{\\deg}) only by modifying the PTFE surface morphology and not the stoichiometry. Measurements of sample mass losses correlated to the ejection of CF$_2$ fragments from the PTFE surface evidenced an etching mechanism at atmospheric pressure.

  9. Electronegativity-dependent tin etching from thin films

    NARCIS (Netherlands)

    Pachecka, M.; Sturm, J.M.; Kruijs, van de R.W.E.; Lee, C.J.; Bijkerk, F.

    2016-01-01

    The influence of a thin film substrate material on the etching of a thin layer of deposited tin (Sn) by hydrogen radicals was studied. The amount of remaining Sn was quantified for materials that cover a range of electronegativities. We show that, for metals, etching depends on the relative electron

  10. Orthodox etching of HVPE-grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  11. Microstructure, composition, and etching topography of dental ceramics.

    Science.gov (United States)

    Della Bona, Alvaro; Anusavice, Kenneth J

    2002-01-01

    Topographic analysis of etched ceramics provides qualitative surface structure information that affects micromechanical retention mechanisms. This study tested the hypothesis that the etching mechanism changes according to the type of etchant and the ceramic microstructure and composition. Quantitative and qualitative analyses of 15 dental ceramics were performed using scanning electron microscopy, back-scattered imaging, X-ray diffraction, optical profilometry, and wavelength dispersive spectroscopy based on Phi-Rho-Z correction. All ceramic specimens were polished to 1 micron with diamond compound, and the following etchants and etching times were used: ammonium bifluoride (ABF) for 1 minute, 9.6% hydrofluoric acid (HF) for 2 minutes, and 4% acidulated phosphate fluoride (APF) for 2 minutes. HF produced an irregular etching pattern in which pores were the characteristic topographic feature. ABF-etched ceramic surfaces showed mostly grooves, and APF etchant caused a buildup of surface precipitate. Core ceramics showed less topographic change after etching because of their high alumina content and low chemical reactivity. The observations suggest that the etching mechanism is different for the three etchants, with HF producing the most prominent etching pattern on all dental ceramics examined.

  12. Reactive ion etching of quartz and Pyrex for microelectronic applications

    Science.gov (United States)

    Zeze, D. A.; Forrest, R. D.; Carey, J. D.; Cox, D. C.; Robertson, I. D.; Weiss, B. L.; Silva, S. R. P.

    2002-10-01

    The reactive ion etching of quartz and Pyrex substrates was carried out using CF4/Ar and CF4/O2 gas mixtures in a combined radio frequency (rf)/microwave (μw) plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture (CF4/Ar or CF4/O2), the relative concentration of CF4 in the gas mixture, the rf power (and the associated self-induced bias) and microwave power. An etch rate of 95 nm/min for quartz was achieved. For samples covered with a thin metal layer, ex situ high resolution scanning electron microscopy and atomic force microscopy imaging indicated that, during etching, surface roughness is produced on the surface beneath the thin metallic mask. Near vertical sidewalls with a taper angle greater than 80° and smooth etched surfaces at the nanometric scale were fabricated by carefully controlling the etching parameters and the masking technique. A simulation of the electrostatic field distribution was carried out to understand the etching process using these masks for the fabrication of high definition features.

  13. Versatile apparatus for etching scanning tunneling microscope tips

    Science.gov (United States)

    Fiering, J. O.; Ellis, F. M.

    1990-12-01

    We have developed an apparatus for easy and consistent etching of small tips suitable for use with a scanning tunneling microscope. Its unique features are free access to the etching region and a continuous supply of electrolyte for the production of many tips in succession.

  14. Fabrication of high-aspect-ratio double-slot photonic crystal waveguide in InP heterostructure by inductively coupled plasma etching using ultra-low pressure

    Directory of Open Access Journals (Sweden)

    Kaiyu Cui

    2013-02-01

    Full Text Available Double-slot photonic crystal waveguide (PCW in InP heterostructure is fabricated by inductively coupled plasma (ICP etching. Due to using an ultra-low pressure of 0.05 Pa, etch depths up to 3.5 μm for holes with diameter of 200 nm and 1.8 μm for slots of ∼40 nm are achieved, which indicate a record-high aspect-ratio, i.e. 45, for such narrow slots in InP heterostructure. Moreover, etching quality is evaluated based on both the transmission performance and the linewidth of micro-photoluminescence (μ-PL. In our measurement, a structure-dependent transmission-dip about 17 dB is obtained from a 17-μm-long W3 PCW, and a PL widening as small as 19 nm compared to the corresponding wafer is observed. These promising experimental results evidence the high etching quality realized in this work and confirm the feasibility of etching small-feature-size patterns by ICP technology for InP based devices in future mono-/hetero-integrated photonic circuits.

  15. Contacting nanowires and nanotubes with atomic precision for electronic transport

    KAUST Repository

    Qin, Shengyong

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.

  16. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  17. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  18. Perturbing supersymmetric black hole

    CERN Document Server

    Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki

    1996-01-01

    An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.

  19. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  20. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  1. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  2. Disregarding the 'Hole Argument'

    CERN Document Server

    Roberts, Bryan W

    2014-01-01

    Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton (1987), is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.

  3. The impact of etched trenches geometry and dielectric material on the electrical behaviour of silicon-on-insulator self-switching diodes

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, G; Charlebois, S A [Departement de genie electrique et genie informatique, et Institut interdisciplinaire d' innovation technologique (3IT), Universite de Sherbrooke, 2500, Boulevard de l' Universite, J1K 2R1, Sherbrooke, QC (Canada); Morris, D [Departement de physique et Institut interdisciplinaire d' innovation technologique (3IT), Universite de Sherbrooke, 2500, Boulevard de l' Universite, J1K 2R1, Sherbrooke, QC (Canada); Raskin, J-P, E-mail: ghania.farhi@usherbrooke.ca [Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Universite catholique de Louvain, Place du Levant, 3, B-1348 Louvain-la-Neuve (Belgium)

    2011-10-28

    Hole electrical transport in a p-doped nanochannel defined between two L-shape etched trenches made on a silicon-on-insulator substrate is investigated using a TCAD-Medici simulator. We study the impact of the etched trenches' geometry and dielectric filling materials on the current-voltage characteristics of the device. Carrier accumulation on frontiers defined by the trenches causes a modulation of the hole density inside the conduction channel as the bias voltage varies and this gives rise to a diode-like characteristic. For a 1.2 {mu}m-long channel, plots of the electric field distribution show that a nonlinear transport regime is reached at a moderate reverse and forward bias of {+-} 2 V. Plots of the carrier velocity along the conduction channel show that holes remain hot for a few hundreds of nm outside the nanometre-wide channel, at a bias of {+-} 10 V. Filling the etched trenches with a high-{kappa} dielectric material gives rise to a lower threshold voltage, V{sub th}. A similar decrease of V{sub th} is also achieved by reducing the longitudinal and/or the transverse trench width. Our simulation results provide useful design guidelines for future integrated self-switching-diode-based circuits.

  4. Electron holes appear to trigger cancer-implicated mutations

    Science.gov (United States)

    Miller, John; Villagran, Martha

    Malignant tumors are caused by mutations, which also affect their subsequent growth and evolution. We use a novel approach, computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)], to compute spectra of enhanced hole probability based on actual sequence data. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of reveal a correlation between hole spectrum peaks and spikes in human mutation frequencies. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with cancer-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential cancer `driver' mutations. Such integration of DNA hole and variance spectra could also prove invaluable for pinpointing critical regions, and sites of driver mutations, in the vast non-protein-coding genome. Supported by the State of Texas through the Texas Ctr. for Superconductivity.

  5. Cu{sub 2}S as ohmic back contact for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Türck, Johannes; Siol, Sebastian; Mayer, Thomas; Klein, Andreas; Jaegermann, Wolfram, E-mail: jaegermann@surface.tu-darmstadt.de

    2015-05-01

    We prepared a back contact for CdTe solar cells with Cu{sub 2}S as primary contact. Cu{sub 2}S was evaporated on CdCl{sub 2} treated CdTe solar cells in superstrate configuration. The CdTe and CdS layers were deposited by Closed Space Sublimation. Direct interface studies with X-ray photoelectron spectroscopy have revealed a strongly reactive interface between CdTe and Cu{sub 2}S. A valence band offset of 0.4-0.6 eV has been determined. The performance of solar cells with Cu{sub 2}S back contacts was studied in comparison to cells with an Au contact that deposited onto a CdCl{sub 2}-treated CdTe surface that was chemically etched using a nitric-phosphoric etch. The solar cells were analyzed by current-voltage curves and external quantum efficiency measurements. After several post deposition annealing steps, 13% efficiency was reached with the Cu{sub 2}S back contact, which was significantly higher than the ones obtained for the NP-etched back contacts. - Highlights: • A new back contact for CdTe solar out of Cu{sub 2}S has been tested. • With a direct interface experiment the valence band offset was determined. • Post deposition heat treatment has been carried out for the solar cells. • 13% efficiency has been reached with the Cu{sub 2}S back contact.

  6. Lifshitz Topological Black Holes

    CERN Document Server

    Mann, R B

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  7. Cosmological Black Holes

    CERN Document Server

    Stornaiolo, C

    2002-01-01

    In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.

  8. Primordial Black Hole Baryogenesis

    CERN Document Server

    Baumann, D; Turok, N G; Baumann, Daniel; Steinhardt, Paul J.; Turok, Neil

    2007-01-01

    We reconsider the possibility that the observed baryon asymmetry was generated by the evaporation of primordial black holes that dominated the early universe. We present a simple derivation showing that the baryon asymmetry is insensitive to the initial black hole density and the cosmological model but is sensitive to the temperature-dependence of the CP and baryon-violating (or lepton-violating) interactions. We also consider the possibility that black holes stop evaporating and form Planck-mass remnants that act as dark matter. We show that primordial black holes cannot simultaneously account for both the observed baryon asymmetry and the (remnant) dark matter density unless the magnitude of CP violation is much greater than expected from most particle physics models. Finally, we apply these results to ekpyrotic/cyclic models, in which primordial black holes may form when branes collide. We find that obtaining the observed baryon asymmetry is compatible with the other known constraints on parameters.

  9. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  10. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  11. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  12. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  13. Light-hole exciton in a nanowire quantum dot

    Science.gov (United States)

    Jeannin, Mathieu; Artioli, Alberto; Rueda-Fonseca, Pamela; Bellet-Amalric, Edith; Kheng, Kuntheak; André, Régis; Tatarenko, Serge; Cibert, Joël; Ferrand, David; Nogues, Gilles

    2017-01-01

    Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state-based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient geometry for electrical contacting. Having a complete determination and full control of their emission properties is one of the key goals of nanoscience researchers. Here we use strain as a tool to create in a single magnetic nanowire quantum dot a light-hole exciton, an optically active quasiparticle formed from a single electron bound to a single light hole. In this frame, we provide a general description of the mixing within the hole quadruplet induced by strain or confinement. A multi-instrumental combination of cathodoluminescence, polarization-resolved Fourier imaging, and magneto-optical spectroscopy, allows us to fully characterize the hole ground state, including its valence band mixing with heavy-hole states.

  14. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  15. Effects of Etch-and-Rinse and Self-etch Adhesives on Dentin MMP-2 and MMP-9

    Science.gov (United States)

    Mazzoni, A.; Scaffa, P.; Carrilho, M.; Tjäderhane, L.; Di Lenarda, R.; Polimeni, A.; Tezvergil-Mutluay, A.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2013-01-01

    Auto-degradation of collagen matrices occurs within hybrid layers created by contemporary dentin bonding systems, by the slow action of host-derived matrix metalloproteinases (MMPs). This study tested the null hypothesis that there are no differences in the activities of MMP-2 and -9 after treatment with different etch-and-rinse or self-etch adhesives. Tested adhesives were: Adper Scotchbond 1XT (3M ESPE), PQ1 (Ultradent), Peak LC (Ultradent), Optibond Solo Plus (Kerr), Prime&Bond NT (Dentsply) (all 2-step etch-and-rinse adhesives), and Adper Easy Bond (3M ESPE), Tri-S (Kuraray), and Xeno-V (Dentsply) (1-step self-etch adhesives). MMP-2 and -9 activities were quantified in adhesive-treated dentin powder by means of an activity assay and gelatin zymography. MMP-2 and MMP-9 activities were found after treatment with all of the simplified etch-and-rinse and self-etch adhesives; however, the activation was adhesive-dependent. It is concluded that all two-step etch-and-rinse and the one-step self-etch adhesives tested can activate endogenous MMP-2 and MMP-9 in human dentin. These results support the role of endogenous MMPs in the degradation of hybrid layers created by these adhesives. PMID:23128110

  16. Clinical effectiveness of self-etching adhesives with or without selective enamel etching in noncarious cervical lesions: A systematic review

    Directory of Open Access Journals (Sweden)

    Wei Qin

    2014-12-01

    Conclusion: Previous enamel etching resulted in fewer marginal defects and marginal discoloration, compared with using the SE approach alone. For restoration retention, the differences between the two groups were not significant. Additional longer follow ups and large-scale investigations are expected to assess possible advantages of selective enamel etching in NCCL restorations.

  17. Thermal neutron dosimetry using electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.J.; Sanders, M.E.; Morgan, K.Z.

    1979-07-10

    This study demonstrates the feasibility of using high LET particle radiators to determine the thermal neutron dose by reaction particle registration in low background polycarbonate foils using electrochemical etching. When used in conjunction with the already proven fast neutron recoil particle track registration technique, a viable fast and thermal neutron dosimeter is realized with the advantages of being: non-fading, insensitive to low LET radiation reactions, inexpensive in both processing and materials, useable over a wide dose range, a permanant record and good reproducibility, highly sensitive, and tissue equivalent and a dose equivalent response over a wide range. Most importantly, it finally provides a simple and reliable dosimeter for both the fast and thermal neutron components.

  18. Aspects of native oxides etching on n-GaSb(1 0 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Cotirlan, C., E-mail: cotirlan@infim.ro; Ghita, R.V.; Negrila, C.C.; Logofatu, C.; Frumosu, F.; Lungu, G.A.

    2016-02-15

    Graphical abstract: - Highlights: • A technology for GaSb surface cleaning is proposed. • The technology combines ion sputtering, chemical etching, annealing for oxide removal. • The ARXPS studies on GaSb surfaces are presented in a detailed manner. • The surface stoichiometry is restored after recommended technology for contacting. - Abstract: Gallium antimonide (GaSb) is the basis of the most photovoltaic and thermophotovoltaic (TPV) systems and its innovative technological aspects based on modern ultra-high vacuum techniques are in trend for device achievement. The real surface of GaSb is modified by technological processes that can conduce to problems related to the reproducible control of its surface properties. The GaSb surface is reactive in atmosphere due to oxygen presence and exhibits a native oxide layer. The evolution of native oxides during the ion sputtering, chemical etching and thermal annealing processes for preparing the surface is presented in detailed way. Ratios of surface constituents are obtained by Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS). Moreover, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Low-Energy Electron Diffraction (LEED) are used for characterization. The surface stoichiometry is changed using a specific etchant (e.g. citric acid) at different etching time and is analyzed by ARXPS, SEM, EDS and AFM methods. The experimental results provide useful information regarding surface native oxides characteristics on n-GaSb(1 0 0) to be taken into account for development of low resistance contacts for TPV devices based on GaSb alloy.

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  1. Fabrication of ZnO submicrorod films with water repellency by surface etching and hydrophobic modification

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xianming, E-mail: xmhou@tsu.edu.cn [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang Lixia [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China); Zhou Feng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Liqing [Department of Chemistry and Environmental Science, Taishan University, Taian 271021 (China)

    2011-09-01

    Superhydrophobic ZnO submicrorod films have been fabricated on zinc sheets through an H{sub 2}O{sub 2}-assisted surface etching process and subsequent surface modification with a monolayer of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDS). The crystal structure, chemical compositions, morphologies, and wettability of the resultant ZnO films were analyzed by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurements. It is found that the surface of the as-prepared ZnO films on zinc substrate was hydrophobic with a water contact angle of 95 {+-} 2 deg., whereas after modification with FDS, the film exhibited superhydrophobicity and the water CA increased to 154 {+-} 2 deg. It is shown that both the higher surface roughness and the lower surface free energy play an important role in creating the superhydrophobic films.

  2. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    Science.gov (United States)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  3. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    Science.gov (United States)

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  4. Homogeneous luminescent stain etched porous silicon elaborated by a new multi-step stain etching method

    Energy Technology Data Exchange (ETDEWEB)

    Hajji, M., E-mail: mhajji2001@yahoo.fr [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia); Institut Supérieur d’Electronique et de Communication de Sfax, route Menzel Chaker Km 0.5, BP 868, Sfax 3018 (Tunisia); Khalifa, M.; Slama, S. Ben; Ezzaouia, H. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia)

    2013-11-01

    This paper presents a new method to produce porous silicon which derived from the conventional stain etching (SE) method. But instead of one etching step that leads to formation of porous layer, the substrate is subjected to an initial etching step with a duration Δt{sub 0} followed by a number of supplementary short steps that differs from a layer to another. The duration of the initial step is just the necessary time to have a homogenous porous layer on the whole surface of the substrate. It was found that this duration is largely dependent of the doping type and level of the silicon substrate. The duration of supplementary steps was kept as short as possible to prevent the formation of bubbles on the silicon surface during silicon dissolution which leads generally to inhomogeneous porous layers. It is found from surface investigation by atomic force microscopy (AFM) that multistep stain etching (MS-SE) method allows to produce homogeneous porous silicon nanostructures compared to the conventional SE method. The chemical composition of the obtained porous layers has been evaluated using Fourier transform infrared spectroscopy (FTIR). Photoluminescence (PL) measurement shows that porous layers produced by SE and MS-SE methods have comparable spectra indicating that those layers are composed of nanocrystallites with comparable sizes. But the intensity of photoluminescence of layer elaborated by MS-SE method is higher than that elaborated by the SE method. Total reflectance characteristics show that the presented method allows the production of porous silicon layers with controllable thicknesses and optical properties. Results for porous silicon layers elaborated on heavily doped n-type silicon show that the reflectance can be reduced to values less than 3% in the major part of the spectrum.

  5. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    Science.gov (United States)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  6. Three-dimensional structuring of sapphire by sequential He sup + ion-beam implantation and wet chemical etching

    CERN Document Server

    Crunteanu, A; Hoffmann, P; Pollnau, M; Buchal, C; Petraru, A; Eason, R W; Shepherd, D P

    2003-01-01

    We present a method for the selective two- and three-dimensional patterning of sapphire using light ion-beam implantation to generate severe lattice damage to depths exceeding 1 mu m and subsequent selective wet chemical etching of the damaged regions by hot H sub 3 PO sub 4. C-cut sapphire crystals were implanted through contact masks using ion fluences of 1 x 10 sup 1 sup 6 to 5 x 10 sup 1 sup 7 He sup + /cm sup 2 and energies up to 400 keV. The etching process is characterized by a high selectivity and a rate of approximately 19 nm/min. Whereas an implantation that produces a continuously damaged pathway results in complete etching from the surface, sole in-depth implantation using only high-energy ions leads to under-etching of the crystalline surface layer. By a combination of these processes we have fabricated three-dimensional structures such as channels and bridges in sapphire. (orig.)

  7. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    Science.gov (United States)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  8. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  9. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  10. Crystal growth vs. conventional acid etching: A comparative evaluation of etch patterns, penetration depths, and bond strengths

    Directory of Open Access Journals (Sweden)

    Devanna Raghu

    2008-01-01

    Full Text Available The present study was undertaken to investigate the effect on enamel surface, penetration depth, and bond strength produced by 37% phosphoric acid and 20% sulfated polyacrylic acid as etching agents for direct bonding. Eighty teeth were used to study the efficacy of the etching agents on the enamel surface, penetration depth, and tensile bond strength. It was determined from the present study that a 30 sec application of 20% sulfated polyacrylic acid produced comparable etching topography with that of 37% phosphoric acid applied for 30 sec. The 37% phosphoric acid dissolves enamel to a greater extent than does the 20% sulfated polyacrylic acid. Instron Universal testing machine was used to evaluate the bond strengths of the two etching agents. Twenty percent sulfated polyacrylic acid provided adequate tensile bond strength. It was ascertained that crystal growth can be an alternative to conventional phosphoric acid etching as it dissolves lesser enamel and provides adequate tensile bond strength.

  11. Long-term Adhesion Study of Self-etching Systems to Plasma-treated Dentin.

    Science.gov (United States)

    Hirata, Ronaldo; Teixeira, Hellen; Ayres, Ana Paula Almeida; Machado, Lucas S; Coelho, Paulo G; Thompson, Van P; Giannini, Marcelo

    2015-06-01

    To determine the influence of atmospheric pressure plasma (APP) treatment on the microtensile dentin bond strength of two self-etching adhesive systems after one year of water storage as well as observe the contact angle changes of dentin treated with plasma and the micromorphology of resin/dentin interfaces using SEM. For contact angle measurements, 6 human molars were sectioned to remove the occlusal enamel surface, embedded in PMMA resin, and ground to expose a flat dentin surface. Teeth were divided into two groups: 1) argon APP treatment for 30 s, and 2) blown air (control). For the microtensile test, 28 human third molars were used and prepared similarly to contact angle measurements. Teeth were randomly divided into 4 groups (n = 7) according to two self-etching adhesives and APP treatment (with/without). After making the composite resin buildup, teeth were sectioned perpendicular to the bonded interface to obtain beam specimens. The specimens were tested after 24 h and one year of water storage until failure. Bond strength data were analyzed by three-way ANOVA and Tukey's post-hoc test (α = 0.05%). Three beam specimens per group that were not used in the bond strength test were prepared for interfacial SEM analysis. APP application decreased the contact angle, but increased the bond strength only for one adhesive tested. SEM evaluation found signs of degradation within interfacial structures following 1-year aging in water. APP increased the dentin surface energy, but the effects of APP and 1-year water storage on dentin bond strength were product dependent. APP increased the dentin surface energy. It also increased the bond strength for Scotchbond Universal, but storage for one year negated the positive effect of APP treatment.

  12. Role of Arsenic During Aluminum Droplet Etching of Nanoholes in AlGaAs

    Science.gov (United States)

    Heyn, Christian; Zocher, Michel; Schnüll, Sandra; Hansen, Wolfgang

    2016-09-01

    Self-assembled nanoholes are drilled into (001) AlGaAs surfaces during molecular beam epitaxy (MBE) using local droplet etching (LDE) with Al droplets. It is known that this process requires a small amount of background arsenic for droplet material removal. The present work demonstrates that the As background can be supplied by both a small As flux to the surface as well as by the topmost As layer in an As-terminated surface reconstruction acting as a reservoir. We study the temperature-dependent evaporation of the As topmost layer with in situ electron diffraction and determine an activation energy of 2.49 eV. After thermal removal of the As topmost layer droplet etching is studied under well-defined As supply. We observe with decreasing As flux four regimes: planar growth, uniform nanoholes, non-uniform holes, and droplet conservation. The influence of the As supply is discussed quantitatively on the basis of a kinetic rate model.

  13. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  14. Primordial Black Holes

    CERN Document Server

    MacGibbon, Jane H; Linnemann, J T; Marinelli, S S; Stump, D; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.

  15. Black Hole Entropy

    OpenAIRE

    P. Mitra

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy $S^{BH}$ (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy $S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho})$ (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (...

  16. Black hole entropy

    CERN Document Server

    Frolov, V

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy S^{BH} (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho}) (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (i.e. its independence of the number and properties of the fields which might contribute to S^{SM}) is given.

  17. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  18. Scalarized hairy black holes

    Directory of Open Access Journals (Sweden)

    Burkhard Kleihaus

    2015-05-01

    Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  19. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  20. Black Hole Thermodynamics

    CERN Document Server

    Carlip, S

    2014-01-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  1. Patterned Platinum Etching Studies in an Argon High Density Plasma

    Science.gov (United States)

    Delprat, Sébastien; Chaker, Mohamed; Margot, Joëlle; Pépin, Henri; Tan, Liang; Smy, Tom

    1998-10-01

    A high-density surface-wave Ar plasma operated in the low pressure regime is used to study pure physical etching characteristics of platinum thin films. The platinum samples are RF biased so as to obtain a maximum DC self-bias voltage of 150 V. The sputter-etching characteristics are investigated as a function of the magnetic field intensity, the self-bias voltage and the gas pressure. At 1 mtorr, the etch rate is found to be a unique linear function of both the self-bias voltage and the ion density, independently of the magnetic field intensity value. However, even though the ion density increases, the etch rate is found to decrease with increasing pressure. In the low pressure regime, etch rates as high as 2000 A/min are obtained with a good selectivity over resist. Without any optimization of the etching process, we were able to etch 0.5 micron Pt trenches, 0.6 micron thick yielding fence-free profiles and sidewall angles (75º) that already meets the present industrial requirements of NVRAM technology.

  2. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h‑1) is in reasonable agreement with that detected in the experiments (24 µm · h‑1).

  3. Particle precipitation in connection with KOH etching of silicon

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Christensen, Carsten; Pedersen, Casper

    2004-01-01

    This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show that the precipi...... of the change in free energy of adsorption, the Pourbaix diagram, the electrochemical double- layer thickness and silicon dopant type, and concentration. (C) 2004 The Electrochemical Society.......This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show...... that the precipitation is independent of KOH etching time, but that the amount of deposited material varies with dopant type and dopant concentration. The experiments also suggest that the precipitation occurs when the silicon wafers are removed from the KOH etching solution and not during the etching procedure. When...

  4. Dry etching technologies for the advanced binary film

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  5. Optimize of shrink process with X-Y CD bias on hole pattern

    Science.gov (United States)

    Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami

    2017-03-01

    Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][4] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. We tried to cure hole pattern roughness to use additional process such as Line smoothing[5] . Each smoothing process showed different effect. As the result, CDx shrink amount is smaller than CDy without one additional process. In this paper, we will report the pattern controllability comparison of EUV and 193-immersion. And we will discuss optimum method about CD bias on hole pattern.

  6. Sealing effectiveness of etch-and-rinse vs self-etching adhesives after water aging: influence of acid etching and NaOCl dentin pretreatment.

    Science.gov (United States)

    Monticelli, Francesca; Toledano, Manuel; Silva, Ana Simoes; Osorio, Estrella; Osorio, Raquel

    2008-06-01

    To determine the marginal leakage of Class V restorations bonded with etch-and-rinse and self-etching adhesives applied after different dentin pretreatments over a maximum storage time of 24 months. Standardized mixed Class V cavities (5 mm x 3 mm and 2 mm deep) were cut on the buccal and lingual surfaces of 180 human molars. Two self-etching adhesive systems, Adper Prompt L-Pop (3M ESPE) and Clearfil SE Bond (Kuraray), and one etch-and-rinse bonding agent (One Step, Bisco) were applied as follows: 1. according to manufacturers' instructions; 2. after 37% H3PO4 etching for 15 s; 3. after 37% H3PO4 etching for 15 s and 5% NaOCl aq application for 2 min. Teeth were stored for 24 h, 6, 12, and 24 months in saline solution at 37 degrees C before being stained in 0.5% solution of basic fuchsine. Dye penetration was scored on a 0 to 3 ordinal scale and analyzed with the Kruskal-Wallis H test (p < 0.05), Mann-Whitney U-test (p < 0.01), and Wilcoxon paired test (p < 0.05). Significant differences exist after using the tested adhesives at dentin and enamel margins. Adhesive type and substrate pretreatment had a significant effect on the long-term sealing of Class V restorations, and aging increased leakage overtime. The extent of leakage at the enamel margins was lower than that at dentin margins. One Step recorded the best results after 24 months. Optimal adhesion of restorative materials to enamel and dentin is hampered by a reduction in marginal seal over time. Alternative dentinal treatments (etching or collagen removal) might increase bonding efficacy, depending on the adhesive system used.

  7. Magnetically induced decrease in droplet contact angle on nanostructured surfaces.

    Science.gov (United States)

    Zhou, Qian; Ristenpart, William D; Stroeve, Pieter

    2011-10-04

    We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.

  8. Anisotropic etching of tungsten-nitride with ICP system

    CERN Document Server

    Lee, H G; Moon, H S; Kim, S H; Ahn, J; Sohn, S

    1998-01-01

    Inductively Coupled Plasma ion streaming etching of WN sub x film is investigated for preparing x-ray mask absorber patterns. SF sub 6 gas plasma provides for effective etching of WN sub x , and the addition of Ar and N sub 2 results in higher dissociation of SF sub 6 and sidewall passivation effect, respectively. Microloading effect observed for high aspect ratio patterns is minimized by multi-step etching and O sub 2 plasma treatment process. As a result, 0.18 mu m WN sub x line and space patterns with vertical sidewall profile are successfully fabricated.

  9. Parametric study on the solderability of etched PWB copper

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Stevenson, J.O.; Hernandez, C.L.

    1996-10-01

    The rapid advancement of interconnect technology has resulted in a more engineered approach to designing and fabricating printed wiring board (PWB) surface features. Recent research at Sandia National Laboratories has demonstrated the importance of surface roughness on solder flow. This paper describes how chemical etching was used to enhance the solderability of surfaces that were normally difficult to wet. The effects of circuit geometry, etch concentration, and etching time on solder flow are discussed. Surface roughness and solder flow data are presented. The results clearly demonstrate the importance of surface roughness on the solderability of fine PWB surface mount features.

  10. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  11. Black hole quantum spectrum

    National Research Council Canada - National Science Library

    Corda, Christian

    2013-01-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re...

  12. Holographic black hole chemistry

    National Research Council Canada - National Science Library

    Karch, Andreas; Robinson, Brandon

    2015-01-01

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation...

  13. Braneworld black holes

    CERN Document Server

    Gregory, Ruth

    2008-01-01

    In these lectures, I give an introduction to and overview of braneworlds and black holes in the context of warped compactifications. I first describe the general paradigm of braneworlds, and introduce the Randall-Sundrum model. I discuss braneworld gravity, both using perturbation theory, and also non perturbative results. I then discuss black holes on the brane, the obstructions to finding exact solutions, and ways of tackling these difficulties. I describe some known solutions, and conclude with some open questions and controversies.

  14. Holes in Heisenberg antiferromagnets

    Science.gov (United States)

    Chen, Yang

    1990-05-01

    In this Brief Report we show that a recent model proposed by Shankar [Phys. Rev. Lett. 63, 203 (1989)], describing the motion of holes in quantum antiferromagnets is equivalent to the Schwinger model [Phys. Rev. 128, 2425 (1962)] in 1+1 dimensions. Some exact results are deduced. In addition to the superconducting long-range order found by Shankar, it is shown that there is a 2pF hole density wave existing with the superconducting pairing instability.

  15. Life Inside Black Holes

    Science.gov (United States)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  16. Modelling quantum black hole

    CERN Document Server

    Govindarajan, T R

    2016-01-01

    Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.

  17. Hydrodynamics and black holes

    CERN Document Server

    Oz, Yaron

    2015-01-01

    This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.

  18. Black hole geometrothermodynamics

    Science.gov (United States)

    Quevedo, Hernando

    2017-03-01

    We review the main aspects of geometrothermodynamics which is a geometric formalism to describe thermodynamic systems, taking into account the invariance of classical thermodynamics with respect to Legendre transformations. We focus on the particular case of black holes, and present a Riemannian metric which describes the corresponding space of equilibrium states. We show that this metric can be used to describe the stability properties and phase transition structure of black holes in different gravity theories.

  19. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  20. Black Hole Induced Ejections

    OpenAIRE

    Pelletier, G.

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy a...

  1. Bearing Stresses in Bolted Composite Joints with Different Contact Interactions.

    Directory of Open Access Journals (Sweden)

    Hilton Ahmad

    2016-04-01

    Full Text Available In a bolted joint, it has been shown to be better to model the real contact between bolt and hole than to fix the boundary of the hole edge, a practice used by most previous researchers. Master-slave interaction was implemented in ABAQUS to simulate full contact conditions. Stress distributions were plotted along net-tension plane and hole boundary. Due to geometric non-linearity, the clearance and friction coefficients used substantially effected the maximum stress on hole boundary as shown using the benchmarking work of Eriksson. A physically-based constitutive model used is based on state-of-the art fracture mechanics was used for bolted joint strength prediction. Idealized models from Hollmann were remodelled both by fixing the hole boundary (following the original author and by implementing full contact condition using CZM and XFEM. The physically-based constitutive law used independently measured of unnotched strength and fracture energy parameter for crack opening, which is calibrated from available literatures (known as apparent fracture energy. Good correlation with experimental results was found when using the real contact condition.

  2. Can previous acid etching increase the bond strength of a self-etching primer adhesive to enamel?

    Directory of Open Access Journals (Sweden)

    Ana Paula Morales Cobra Carvalho

    2009-06-01

    Full Text Available Because a greater research effort has been directed to analyzing the adhesive effectiveness of self etch primers to dentin, the aim of this study was to evaluate, by microtensile testing, the bond strength to enamel of a composite resin combined with a conventional adhesive system or with a self-etching primer adhesive, used according to its original prescription or used with previous acid etching. Thirty bovine teeth were divided into 3 groups with 10 teeth each (n= 10. In one of the groups, a self-etching primer (Clearfil SE Bond - Kuraray was applied in accordance with the manufacturer's instructions and, in the other, it was applied after previous acid etching. In the third group, a conventional adhesive system (Scotchbond Multipurpose Plus - 3M-ESPE was applied in accordance with the manufacturer's instructions. The results obtained by analysis of variance revealed significant differences between the adhesive systems (F = 22.31. The self-etching primer (Clearfil SE Bond presented lower enamel bond strength values than the conventional adhesive system (Scotchbond Multipurpose Plus (m = 39.70 ± 7.07 MPa both when used according to the original prescription (m = 27.81 ± 2.64 MPa and with previous acid etching (m = 25.08 ± 4.92 MPa.

  3. Investigation of electrochemical etch differences in AlGaAs heterostructures using Cl{sub 2} ion beam assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Anglin, Kevin, E-mail: kevin.r.anglin@gmail.com; Goodhue, William D. [Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 and Department of Physics and Applied Physics, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854 (United States); Swint, Reuel B.; Porter, Jeanne [Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 (United States)

    2015-03-15

    A deeply etched, anisotropic 45° and 90° mirror technology is developed for Al{sub x}Ga{sub 1−x}As heterostructures using a Cl{sub 2} ion beam assisted etching system. When etching vertically, using a conductive low-erosion Ni mask, electrochemical etch differences between layers with various Al mole fractions caused nonuniform sidewall profiles not seen in semi-insulating GaAs test samples. These variations, based on alloy composition, were found to be negligible when etching at a 45°. A Si{sub 3}N{sub 4}-Ni etch mask is designed in order to electrically isolate charge buildup caused by the incoming Ar{sup +} ion beam to the Ni layer, preventing conduction to the underlying epitaxial layers. This modification produced smoothly etched facets, up to 8 μm in depth, enabling fabrication of substrate–surface-emitting slab-coupled optical waveguide lasers and other optoelectronic devices.

  4. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.].

  5. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  6. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  7. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    Science.gov (United States)

    2014-03-27

    junction transistor CD critical dimension CVD chemical vapor deposition d.u. dimensionless unit DC direct current DI deionized water DRIE deep reactive...QuickLot process, the PR was exposed for 1.9 seconds on the MA6 mask aligner (10mW/cm2, λ = 365-405 nm), developed with 1:5 ratio of 351 and deionized water ...Platinum Si Silicon SiH4 Silane SiO2 Silicon dioxide Ta Tantalum Ti Titanium TiW Titanium tungsten alloy (10:90) W Tungsten ZnO Zinc oxide 76

  8. Black hole entropy and entropy of entanglement

    CERN Document Server

    Kabat, D

    1995-01-01

    We compute the one-loop correction to the entropy of a very massive black hole, by evaluating the partition function in the presence of a conical singularity for quantum fields of spin zero, one-half, and one. We compare the results to the entropy of entanglement, defined by the density matrix which describes the ground state of the field as seen from one side of a boundary in Minkowski space. Fields of spin zero and one-half contribute an entropy to the black hole which is identical to their entropy of entanglement. For spin one a contact interaction with the horizon appears in the black hole entropy but is absent from the entropy of entanglement. Expressed as a particle path integral the contact term is an integral over paths which begin and end on the horizon; it is the field theory limit of the interaction proposed by Susskind and Uglum which couples a closed string to an open string stranded on the horizon.

  9. Laser Micro-Hole Drilling of Soda-Lime Glass with Femtosecond Pulses

    Institute of Scientific and Technical Information of China (English)

    AN Ran; LI Yan; DOU Yan-Ping; FANG Ying; YANG Hong; GONG Qi-Huang

    2004-01-01

    @@ Using tightly focused femtosecond laser pulses, we have drilled micro-holes from the front and rear surface of soda-lime glass in ambient air. The machined holes have small aspect ratio or irregular inner walls. When the drilling is conducted from the rear surface in contact with distilled water, a good quality micro-hole with a high aspect ratio can be obtained. The corresponding formation mechanisms are investigated.

  10. The role of etching in bonding to enamel: a comparison of self-etching and etch-and-rinse adhesive systems.

    Science.gov (United States)

    Erickson, Robert L; Barkmeier, Wayne W; Latta, Mark A

    2009-11-01

    Etch and resin infiltration morphologies were compared for three self-etch adhesive (SEA) systems and eleven model etch-and-rinse (ERA) systems using various phosphoric acid (PA) concentrations with Adper Single Bond Plus (SB) adhesive. Matches for the morphologies were made between each SEA system and one of the PA/SB systems and bond strength measurements were made for all the systems. The hypothesis was that similar morphology would result in similar bond strength assuming micro-mechanical bonding is the mechanism of adhesion. Three specimens were prepared on polished (4000 grit) human enamel for each adhesive system to examine etch and resin infiltration morphology by SEM. For the latter, the adhesive systems were bonded using recommended methods and the enamel was dissolved in acid to reveal the resin. The etch patterns for the SEA systems were determined by rinsing off the material with water and acetone. Polished (4000 grit) human enamel was used with each adhesive system to determine 24-h resin composite to enamel shear bond strengths (SBS). A minimum of 10 specimens were used for each group. Data were analyzed by a one factor ANOVA and Fisher's PLSD post hoc test. The SBS to polished enamel for two of the three SEA systems were statistically significantly greater (penamel.

  11. Electron-enhanced hole injection in blue polyfluorene-based polymer light-emitting diodes

    NARCIS (Netherlands)

    Woudenbergh, T. van; Wildeman, J.; Blom, P.W.M.; Bastiaansen, J.J.A.M.; Langeveld-Voss, B.M.W.

    2004-01-01

    It has recently been reported that, after electrical conditioning, an ohmic hole contact is formed in poly(9,9-dioctylfluorene) (PFO)-based polymer light-emitting diodes (PLED), despite the large hole-injection barrier obtained with a poly(styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene

  12. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  13. Laser drilling of via micro-holes in single-crystal semiconductor substrates using a 1070 nm fibre laser with millisecond pulse widths

    OpenAIRE

    Maclean, Jessica O.; Hodson, Jonathan R.; Voisey, K.T.

    2015-01-01

    Micro-machining of semiconductors is relevant to fabrication challenges within the semiconductor industry. For via holes for solar cells, laser drilling potentially avoids deep plasma etching which requires sophisticated equipment and corrosive, high purity gases. Other applications include backside loading of cold atoms into atom chips and ion traps for quantum physics research, for which holes through the semiconductor substrate are needed. Laser drilling, exploiting the melt ejection mater...

  14. Erbium doped stain etched porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Diaz-Herrera, B. [Departamento de Energia Fotovoltaica, Instituto Tecnologico de Energias Renovables (ITER), Poligono Industrial de Granadilla, 38611 S/C Tenerife (Spain); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain)], E-mail: rglemus@ull.es; Mendez-Ramos, J.; Rodriguez, V.D. [Departamento de Fisica Fundamental, Experimental Electronica y Sistemas, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Hernandez-Rodriguez, C. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Martinez-Duart, J.M. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-01-15

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO{sub 3} solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er{sup 3+} ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy.

  15. Marginal permeability of self-etch and total-etch adhesive systems.

    Science.gov (United States)

    Owens, Barry M; Johnson, William W; Harris, Edward F

    2006-01-01

    This study evaluated microleakage in vitro of self-etch and multi-step, total-etch adhesive systems. Ninety-six extracted non-carious human molars were randomly assigned to eight groups (n=12) and restored with different adhesive systems: Optibond Solo Plus, iBond, Adper Prompt L-Pop, Xeno III, Simplicity, Nano-Bond, Adper Scotchbond Multi-Purpose and Touch & Bond. Each group was treated following the manufacturer's instructions. Class V cavities were prepared on the facial or lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (dentin). The teeth were restored with Z-100 resin composite. After polishing with Sof-Lex disks, the teeth were thermocycled for 1000 cycles and coated with nail varnish to within 1.0 mm of the restoration. The teeth were stained in 1% methylene blue dye for 24 hours and sectioned from the facial to lingual surface. Dye penetration (microleakage) was examined with a 20x binocular microscope. Enamel and dentin margin leakage was scored on a 0 to 3 ordinal scale. Data were analyzed using Kruskal-Wallis Analysis of Variance and Mann-Whitney U tests. Comparison of the adhesive groups at the enamel margin revealed: 1) Adper Scotchbond Multi-Purpose exhibited significantly less leakage than the other adhesive groups (except iBond); 2) among the self-etch adhesive groups, iBond exhibited significantly less leakage than Nano-Bond and 3) the other adhesive groups clustered intermediately. In contrast, there were no significant differences among the adhesive groups when the dentin margin was evaluated. A Wilcoxin signed rank test showed significantly less leakage at the enamel margins compared to the dentin margins of the eight adhesive systems tested. All data were submitted to statistical analysis at p<0.05 level of significance.

  16. Effect of postoperative bleaching on microleakage of etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2011-01-01

    Full Text Available Background: Bleaching the discoloured teeth may affect the tooth/composite interface. The aim of this in vitro experimental study was to evaluate the effect of vital tooth bleaching on microleakage of existent class V composite resin restorations bonded with three dental bonding agents. Methods : Class V cavities were prepared on buccal surfaces of 72 intact, extracted human anterior teeth with gingival margins in dentin and occlusal margins in enamel, and randomly divided into 3 groups. Cavities in the three groups were treated with Scotch bond Multi-Purpose, a total etch system and Prompt L-Pop and iBond, two self-etch adhesives. All teeth were restored with Z250 resin composite material and thermo-cycled. Each group was equally divided into the control and the bleached subgroups (n = 12. The bleached subgroups were bleached with 15% carbamide peroxide gel for 8 hours a day for 15 days. Microleakage scores were evaluated on the incisal and cervical walls. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Bonferroni post-hoc tests (α = 0.05. Results: Bleaching with carbamide peroxide gel significantly increased the microleakage of composite restorations in Prompt L-Pop group at dentinal walls (P = 0.001. Bleaching had no effect on microleakage of restorations in the Scotch bond Multi-Purpose and iBond groups. Conclusion: Vital tooth bleaching with carbamide peroxide gel has an adverse effect on marginal seal of dentinal walls of existent composite resin restorations bonded with prompt L-Pop self-etch adhesive.

  17. Polishing of quartz by rapid etching in ammonium bifluoride.

    Science.gov (United States)

    Vallin, Orjan; Danielsson, Rolf; Lindberg, Ulf; Thornell, Greger

    2007-07-01

    The etch rate and surface roughness of polished and lapped AT-cut quartz subjected to hot (90, 110, and 130 degrees C), concentrated (50, 65, 80 wt %) ammonium bi-fluoride have been investigated. Having used principal component analysis to verify experimental solidity and analyze data, we claim with confidence that this parameter space does not, as elsewhere stated, allow for a polishing effect or even a preserving setting. Etch rates were found to correlate well, and possibly logarithmically, with temperature except for the hottest etching applied to lapped material. Roughness as a function of temperature and concentration behaved well for the lapped material, but lacked systematic variation in the case of the polished material. At the lowest temperature, concentration had no effect on etch rate or roughness. Future efforts are targeted at temperatures and concentrations closer to the solubility limit.

  18. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  19. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  20. What's new in dentine bonding? Self-etch adhesives.

    Science.gov (United States)

    Burke, F J Trevor

    2004-12-01

    Bonding to dentine is an integral part of contemporary restorative dentistry, but early systems were not user-friendly. The introduction of new systems which have a reduced number of steps--the self-etch adhesives--could therefore be an advantage to clinicians, provided that they are as effective as previous adhesives. These new self-etch materials appear to form hybrid layers as did the previous generation of materials. However, there is a need for further clinical research on these new materials. Advantages of self-etch systems include, no need to etch and rinse, reduced post-operative sensitivity and low technique sensitivity. Disadvantages include, the inhibition of set of self- or dual-cure resin materials and the need to roughen untreated enamel surfaces prior to bonding.

  1. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  2. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) an

  3. A survey on the reactive ion etching of silicon in microtechnology

    NARCIS (Netherlands)

    Jansen, Henricus V.; Gardeniers, Johannes G.E.; de Boer, Meint J.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    This article is a brief review of dry etching as applied to pattern transfer, primarily in silicon technology. It focuses on concepts and topics for etching materials of interest in micromechanics. The basis of plasma-assisted etching, the main dry etching technique, is explained and plasma system

  4. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray)

  5. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  6. Etching zircon age standards for fission-track analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garver, J.I. E-mail: garverj@union.edu

    2003-02-01

    Nineteen laboratories that routinely measure fission-track ages in zircon were surveyed as to their principal methodology used for track revelation using chemical attack and counting procedures. The survey results show the following: (a) researchers in most labs count fission tracks with a optical microscope using at a total magnification between 1250x and 1600x ({approx}80%) with about an equal number using either a dry or oil objective (b) the majority of laboratories etch zircon with a KOH:NaOH eutectic heated in an oven between temperatures of 210 deg. C and 230 deg. C; (c) ag standards in zircon analysis do not have uniformly accepted etch times. Etching times for the widely used 28 Ma Fish Canyon Tuff (FCT) (4-60 h) and the lesser-used 16 Ma Buluk Tuff (13-55 h) vary significantly from lab to lab. Between {approx}220 deg. C and 230 deg. C, the principal range fo etching times for the FCT is between 20 and 30 h, and the mode for the Buluk Tuff is between 30 and 55 h. Three or fewer labs report etching times for the Tardee Rhyolite (22-40 h), the Bishop Tuff (10-46 h), and the Mt. Dromedary Banite (5-24 h). Variation in etching times may result in a bias in U-content which affects counting statistics. If etching is successful, strict criteria must be followed to ensure that the analyst only counts well-etched grains and that all tracks are successfully identified.

  7. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    Science.gov (United States)

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  8. Dry etching of single crystal PMN-PT piezoelectric material.

    OpenAIRE

    Agnus, Joël; Alexandru Ivan, Ioan; Queste, Samuel

    2011-01-01

    International audience; During the last decade, the applications of PMN-PT spread significantly. Unlike PZT, the appropriate microtechnologies for PMN-PT Piezo-MEMS aren't fully documented in the literature. This paper deals with the PMN-PT etching by inductively coupled plasma (ICP) technique, also known as DRIE. The paper quantitatively presents the etching parameters of PMN-PT by the Ar/C4F8 gas combination and reports some related useful experience.

  9. Efficient Si photovoltaic devices with integrated micro/nano holes

    Science.gov (United States)

    Cansizoglu, Hilal; Gao, Yang; Kaya, Ahmet; Ghandiparsi, Soroush; Polat, Kazim G.; Wang, Yichuan; Zhang, Runzhou; Reggad, Hind; Mayet, Ahmed; Ponizovskaya Devine, Ekaterina; Islam, M. Saif

    2016-09-01

    Efficient light harvesting in a thin layer of crystalline Si can be realized by implementing nanoscale pillars and holes to the device structure. The major drawback of the pillars and holes based photovoltaic devices is high surface to volume ratio, contributing to an increase in surface recombination rate of the photo-generated carriers. The common techniques used in pillars/holes fabrication such as dry etching make the surface even worse by bombarding it with high energy ions. Therefore, such damaged surfaces of high aspect ratio structures need to be effectively passivated. In this study, we demonstrate a hole based thin crystalline Si photovoltaic device with enhanced open circuit voltage and short circuit current after a successful surface passivation process through a wet oxidation. In addition, the effect of passivation layer fabricated by rapid thermal oxide growth on photo response is investigated. A successful fabrication of thin crystalline Si solar cells can lead to the applications of ultra-thin, highly efficient, flexible and wearable energy sources.

  10. Comparison of the Schaake and Benson Etches to Delineate Dislocations in HgCdTe Layers

    Science.gov (United States)

    Farrell, S.; Rao, Mulpuri V.; Brill, G.; Chen, Y.; Wijewarnasuriya, P.; Dhar, N.; Benson, J. D.; Harris, K.

    2013-11-01

    The morphology and classification of etch pits in molecular beam epitaxy-grown (211) HgCdTe/CdTe/Si layers were investigated using the Schaake and Benson etch pit density (EPD) etches. The two EPD etches were compared and shown to have a 1:1 correlation in the etch pits that were produced. Close examination of the shape of the etch pits via scanning electron microscopy shows that several distinguishable classifications of etch pits are revealed using both etches. Samples subjected to thermal cycle annealing (TCA) treatment show a nonuniform reduction in etch pit populations according to the classification defined in this study. In particular, a class of etch pits called "fish shaped" are completely absent after TCA and can account for up to one-third of the total reduction in EPD.

  11. Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas

    Science.gov (United States)

    Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya

    2009-02-01

    The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.

  12. Low damage dry etch for III-nitride light emitters

    Science.gov (United States)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  13. Bond strength with various etching times on young permanent teeth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.; Lu, T.C. (School of Dentistry, National Defense Medical Center, Taipei, Taiwan (China))

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results of tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.

  14. Etching of germanium-tin using ammonia peroxide mixture

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  15. Anterior cruciate ligament reconstruction without drill holes.

    Science.gov (United States)

    Brief, L P

    1991-01-01

    Anterior cruciate ligament (ACL) reconstruction in adolescents with open physes remains a difficult problem for the orthopedic surgeon, especially in view of growing teenage participation in contact sports. Traditionally, treatment of ACL tears in adolescents has been conservative; the patient is advised to delay surgery up to several years for fear of damaging physes by drilling holes across them. Unfortunately, this waiting period may inflict irreparable knee damage. This paper suggests an ACL reconstruction technique that utilizes no drill holes, thus causing no harm to physes or other essential knee structures. A graft consisting of semitendinosus and gracilis (SG) tendons is passed under the anterior horn of the medial meniscus through the knee joint, then brought out through the posterior capsule and secured to the lateral femoral metaphysis. The graft is augmented with an iliotibial band tenodesis. Designed primarily but not exclusively for teenagers with open physes, the procedure has produced encouraging results thus far in a small series.

  16. Silicon ohmic lateral-contact MEMS switch for RF applications

    Science.gov (United States)

    Rogozhin, A.; Miakonkikh, A.; Tatarintsev, A.; Lebedev, K.; Kalnov, V.; Rudenko, K.; Lukichev, V.

    2016-12-01

    Application variety and huge potential market of RF MEMS switches guarantee relentless research interest to the field. There are lots of different types of MEMS switches. Direct contact MEMS switches are simplifier for integration than capacitive MEMS switches. Lateral technology considerably simplifies the formation process. The objective of this research is to estimate characteristics of the simple direct-contact lateral MEMS switch and to understand the improvement directions. The MEMS switches were fabricated on the SOI wafers by e-beam lithography, dry etching and wet HF-etching. E-beam lithography and dry etching were used to form the cantilever and electrodes on the buried oxide layer. The structure with two control electrodes was used. IV characteristics were measured by Keithley 4200-SCS. The distance between cantilever and control electrodes was 100 nm. From the obtained IV characteristics it is clear that the devices switches at about 60 V. High control voltage could be explained by the large distance between cantilever and control electrode, and high rigidity of the cantilever. Following simulation in COMSOL Multiphysics showed that the control voltage could be decreased to 20-30 V by adding of spring element to the cantilever and device geometry modification.

  17. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  18. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  19. Black Holes and Beyond

    CERN Document Server

    Mathur, Samir D

    2012-01-01

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome `remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a `fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates ...

  20. Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis

    OpenAIRE

    Prado,Mariana C.; Jariwala, Deep; Marks, Tobin J.; Hersam, Mark C.

    2013-01-01

    Single-layer graphene structures and devices are commonly defined using reactive ion etching and plasma etching with O2 or Ar as the gaseous etchants. Although optical microscopy and Raman spectroscopy are widely used to determine the appropriate duration of dry etching, additional characterization with atomic force microscopy (AFM) reveals that residual graphene and/or etching byproducts persist beyond the point where the aforementioned methods suggest complete graphene etching. Recognizing ...

  1. Adhesive capability of total-etch, self-etch, and self-adhesive systems for fiber post cementation

    Science.gov (United States)

    Theodor, Y.; Koesmaningati, H.; Gita, F.

    2017-08-01

    The aim of this study was to analyze whether self-etch and self-adhesive systems are comparable to the total-etch system for fiber post cementation. This experimental laboratory study, which was approved by an ethics committee, was performed using 27 mandibular premolar teeth randomly divided into three groups. Fiber post cementation was done using three different adhesive systems. Specimens were prepared with a thickness of 5 mm, which was measured from the cervical to medial areas of the root, and stored for 24 h in saline solution at room temperature. A push-out test was performed using a universal testing machine (Shimidzu AG-5000E) with a crosshead speed of 0.5 mm/min. The results of one way ANOVA bivariate testing showed that the total-etch and self-etch systems have comparable adhesion capability (padhesive system has the lowest adhesion capability (p>0.05). With easier application, the self-etch system has a comparable adhesion capability to the total-etch system.

  2. Black hole entropy quantization

    CERN Document Server

    Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2006-01-01

    Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.

  3. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  4. The closest black holes

    CERN Document Server

    Fender, Rob; Heywood, Ian

    2013-01-01

    Starting from the assumption that there is a large population (> 10^8) of isolated, stellar-mass black holes (IBH) distributed throughout our galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter \\lambda. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for b...

  5. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  6. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  7. Janus black holes

    Science.gov (United States)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  8. Black Hole Induced Ejections

    CERN Document Server

    Pelletier, G

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy astrophysics. The combination of General Relativity and Magneto-HydroDynamics (MHD) makes theory difficult; however great pionneers opened beautiful tracks in the seventies and left important problems to be solved for the next decades. These lectures will present the status of these issues. They have a tutorial aspect together with critical review aspect and contain also some new issues. Most of these lectures has been presented at the "School on Black Hole in the Universe" at Cargese, in May 2003.

  9. Black hole accretion discs

    CERN Document Server

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.

  10. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  11. Corporate Consumer Contact API

    Data.gov (United States)

    General Services Administration — The data in the Corporate Consumer Contact API is based on the content you can find in the Corporate Consumer Contact listing in the Consumer Action Handbook (PDF)....

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lenses without a prescription in the United States. All contact lenses are medical devices that require a ... no such thing as a "one size fits all" contact lens. Lenses that are not properly fitted ...

  13. Dermatitis, contact (image)

    Science.gov (United States)

    This picture shows a skin inflammation (dermatitis) caused by contact with a material that causes an allergic reaction in this person. Contact dermatitis is a relatively common condition, and can be caused ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lenses Without a Prescription Sep. 26, 2013 It started as an impulsive buy from a souvenir ... Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored contact lenses without ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  19. Contact Us about Asbestos

    Science.gov (United States)

    How to contact EPA for more information on asbestos, including state and regional contacts, EPA’s Asbestos Abatement/Management Ombudsman and the Toxic Substances Control Act (TSCA) Assistance Information Service (TSCA Hotline).

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... popping touch. But colored contact lenses are popular year-round, not just at Halloween. But few know ... contact lenses for Halloween or any time of year, follow these guidelines: Get an eye exam from ...

  1. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  2. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  3. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  4. Correlated Multiphoton Holes

    CERN Document Server

    Afek, Itai; Silberberg, Yaron

    2010-01-01

    We generate bipartite states of light which exhibit an absence of multiphoton coincidence events between two modes amid a constant background flux. These `correlated photon holes' are produced by mixing a coherent state and relatively weak spontaneous parametric down-conversion using a balanced beamsplitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the relative phase and amplitude of the inputs. We measure states of up to five photons and verify their nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical correlations without requiring intense quantum resources.

  5. Are Black Holes Springy?

    OpenAIRE

    Good, Michael R. R.; Ong, Yen Chin

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conj...

  6. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  7. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  8. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  9. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  10. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  11. Magnonic Black Holes

    Science.gov (United States)

    Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.

    2017-02-01

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  12. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  13. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  14. Contact lens in keratoconus

    OpenAIRE

    Varsha M Rathi; Preeji S Mandathara; Srikanth Dumpati

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  15. Holes influence the mutation spectrum of human mitochondrial DNA

    Science.gov (United States)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  16. Coral contact dermatitis

    OpenAIRE

    Jefferson, Julie; Thompson, Curtis; Hinshaw, Molly; Rich, Phoebe

    2015-01-01

    Corals can elicit both toxic and allergic reactions upon contact with the skin. Clinical presentations vary depending on whether the reaction is acute, delayed, or chronic. Literature concerning cutaneous reactions to corals and other Cnidarians is scarce. Herein we report a case of delayed contact hypersensitivity reaction to coral and review the clinical and histopathological features of coral contact dermatitis.

  17. Coral contact dermatitis.

    Science.gov (United States)

    Jefferson, Julie; Thompson, Curtis; Hinshaw, Molly; Rich, Phoebe

    2015-04-16

    Corals can elicit both toxic and allergic reactions upon contact with the skin. Clinical presentations vary depending on whether the reaction is acute, delayed, or chronic. Literature concerning cutaneous reactions to corals and other Cnidarians is scarce. Herein we report a case of delayed contact hypersensitivity reaction to coral and review the clinical and histopathological features of coral contact dermatitis.

  18. Contact urticaria : Present scenario

    Directory of Open Access Journals (Sweden)

    Bhatia Ruchi

    2009-01-01

    Full Text Available Immunological contact urticaria is a hypersensitivity reaction that appears on the skin following contact with an eliciting substance. Recent advances in our understanding of the molecular mechanism and pathogenesis of this reaction have altered its classification, diagnosis, and treatment. We discuss classification, epidemiology, diagnosis, testing, and treatment options that are available to patients with contact urticaria.

  19. Types of Contact Lenses

    Science.gov (United States)

    ... back to top ] Rigid Gas Permeable (RGP) Contact Lenses Rigid gas permeable contact lenses (RGPs) are more durable ... Ortho-K) Orthokeratology, or Ortho-K, is a lens fitting procedure that uses specially designed rigid gas permeable (RGP) contact lenses to change the ...

  20. Mixed lubricated line contacts

    OpenAIRE

    Faraon, Irinel Cosmin

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is essential that an engineer is able to predict friction.

  1. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  2. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  3. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    Directory of Open Access Journals (Sweden)

    Juliana Delatorre Bronzato

    2016-01-01

    Full Text Available Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control; G2, 0.9% sodium chlorite (NaCl; G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05. Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05. A significant decrease in the bond strength in the G2 was observed (P < 0.05. G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently.

  4. Fabrication of Solid State Nanopore in Thin Silicon Membrane Using Low Cost Multistep Chemical Etching

    Directory of Open Access Journals (Sweden)

    Muhammad Shuja Khan

    2015-11-01

    Full Text Available Nanopore-based analysis is currently an area of great interest in many disciplines with the potential for exceptionally versatile applications in medicine. This work presents a novel step towards fabrication of a single solid-state nanopore (SSSN in a thin silicon membrane. Silicon nanopores are realized using multistep processes on both sides of n-type silicon-on-insulator (SOI <100> wafer with resistivity 1–4 Ω·cm. An electrochemical HF etch with low current density (0.47 mA/cm2 is employed to produce SSSN. Blue LED is considered to emit light in a narrow band region which facilitates the etching procedure in a unilateral direction. This helps in production of straight nanopores in n-type Si. Additionally, a variety of pore diameters are demonstrated using different HF concentrations. Atomic force microscopy is used to demonstrate the surface morphology of the fabricated pores in non-contact mode. Pore edges exhibit a pronounced rounded shape and can offer high stability to fluidic artificial lipid bilayer to study membrane proteins. Electrochemically-fabricated SSSN has excellent smoothness and potential applications in diagnostics and pharmaceutical research on transmembrane proteins and label free detection.

  5. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    Science.gov (United States)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  6. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    Science.gov (United States)

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-05-06

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  7. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  8. Electron hole tracking PIC simulation

    Science.gov (United States)

    Zhou, Chuteng; Hutchinson, Ian

    2016-10-01

    An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

  9. Anisotropic fluorocarbon plasma etching of silicon/silicon germanide heterostructures and plasma etching-induced sidewall damage

    Science.gov (United States)

    Ding, Ruhang

    Plasma etching is a critical tool in the fabrication of Si/SiGe heterostructure quantum devices, but with challenges addressed herein, including (1) control of etch profiles and (2) damage to etched feature sidewalls that affects device performance. (1) Fluorocarbon-based plasma etching often results in device profiles with undercuts due to preferential etching of SiGe over silicon. A C4F8/N2/Ar etch plasma gas mixture introduced here has been successfully used to achieve straight sidewalls through heterostructure layers by formation of a fluorocarbon inhibitor film on feature sidewalls to prevent undercutting. (2) Chemical and structural changes in the semiconductor at feature sidewalls associated with plasma-surface interactions are considered damage, as they affect band structure and electrical conduction in the active region of the device, known as the 2-dimensional electron gas (2DEG). In experiments designed to better understand the mechanisms of plasma-induced sidewall damage, damage to straight wires was characterized both by the width of a non-conductive "sidewall depletion" region at the device sidewall, and by the noise level factor, gamma H/N, determined from spectra of low frequency noise. Observed increases in sidewall depletion width with increasing etch depth are tentatively attributed to the increase in total number of defects with increased plasma exposure time. Excess negative charge incorporated into the fluorocarbon inhibitor film could be another contributing factor. Other factors considered, including defects at the bottom of etched features as well as leakage current bypassing the wire, are ruled out as their contribution is expected to diminish as the distance between the 2DEG and feature bottom increases. The noise level factor, gammaH /N, shows a maximum with increasing etch depth, possibly the result of two competing effects: increasing ion dose and decreasing leakage current. The noise level shows a minimum at an ion bombardment energy

  10. Polarized light from excitonic recombination in selectively etched GaN/AlN quantum dot ensembles on Si(111)

    Science.gov (United States)

    Moshe, O.; Rich, D. H.; Damilano, B.; Massies, J.

    2011-12-01

    Multiple layers of GaN/AlN quantum dot (QD) ensembles were grown by the Stranski-Krastanov method on Si(111) using molecular beam epitaxy. During the subsequent cooling from growth temperature, the thermal expansion coefficient mismatch between the Si substrate and GaN/AlN film containing the vertically stacked QDs leads to an additional biaxial tensile stress of 20-30 kbar in the III-nitride film. We have selectively modified the thermal stress in the QD layers by etching a cross-hatched pattern into the as-grown sample using inductively coupled Cl2/Ar plasma reactive ion etching. The results show that a suitable choice of stripe width from ˜2 to 10 µm and orientation along [11-20] and [1-100] can create regions of in-plane uniaxial stress that enable a selective and local control of the polarized luminescence from ensembles of QDs which were probed with cathodoluminescence. Experimental results indicate that the polarization anisotropy vanishes at high temperatures (˜300 K) with an increasing e-h pair excitation for the QDs, while the anisotropy decreases more slowly with excitation at low temperatures (˜46 K). A theoretical modelling of the effect of carrier filling on the polarization anisotropy and the excitonic transition energy was performed, as based on three-dimensional self-consistent solutions of the Schrödinger and Poisson equations using the 6{\\times} 6\\ \\bit{k}{\\bdot}\\bit{p} and effective-mass methods for calculations of the e-h wavefunctions and electron and hole quasi-Fermi levels for varying levels of state filling. We attribute carrier filling and a thermal excitation of holes into higher energy QD hole states during e-h pair excitation to account for the observed gradual decrease in the polarization anisotropy with an increasing e-h pair excitation density at T = 300 K.

  11. Contact lens in keratoconus

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  12. Rotating regular black holes

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...

  13. Rotating black hole hair

    CERN Document Server

    Gregory, Ruth; Wills, Danielle

    2013-01-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...

  14. Moulting Black Holes

    Science.gov (United States)

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2012-03-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.

  15. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann sp

  16. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  17. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  18. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  19. "Holes": Folklore Redux.

    Science.gov (United States)

    Mascia, Elizabeth G.

    2001-01-01

    Demonstrates that a careful reading of the book for young adults, "Holes" by Louis Sachar, reveals how this contemporary story is grounded in folklore, and that it is this debt to folk literature that allows readers to accept an improbable plot. Shows how the story weaves together elements from traditional folk literature and stretches them across…

  20. Laser bottom hole assembly

    Science.gov (United States)

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  1. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  2. Atomistic simulations of surface coverage effects in anisotropic wet chemical etching of crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gosalvez, M.A.; Foster, A.S.; Nieminen, R.M

    2002-12-30

    Atomistic simulations of anisotropic wet chemical etching of crystalline silicon have been performed in order to determine the dependence of the etch rates of different crystallographic orientations on surface coverage and clustering of OH radicals. We show that the etch rate is a non-monotonic function of OH coverage and that there always exists a coverage value at which the etch rate reaches a maximum. The dependence of the anisotropy of the etching process on coverage, including the dependence of the fastest-etched plane orientation, is implicitly contained in the model and predictions of convex corner under-etching structures are made. We show that the whole etching process is controlled by only a few surface configurations involving a particular type of next-nearest neighbours. The relative value of the removal probabilities of these confitions determines the balance in the occurrence of step propagation and etch pitting for all surface orientations.

  3. Processing technique of target capsule's micro inflation hole with a scanning probe

    Institute of Scientific and Technical Information of China (English)

    SUN; Tao; YAN; Yongda; GAO; Dangzhong; TANG; Yongjian; FU

    2004-01-01

    To resolve inflation of inertial confinement fusion (ICF) target and encapsulation of micro inflation hole with adhesive, a scanning probe microscope (SPM) diamond microprobe was used as the cutting tool with SPM in contact mode. Some parameters influencing the quality of micro inflation hole, such as the scanning direction of the diamond tip, the scanning rate and the contact force are discussed. Accurate taper hole was achieved whose dimension and precision could meet the requirements of inflation and encapsulation technique of micro hole. The experimental results show that using SPM diamond microprobe as the cutting tool and with special processing technique, the precision machining of target capsule's taper inflation hole can be realized. A novel operative technology for filling high Z gas to target is provided.

  4. Performance of a universal adhesive on etched and non-etched surfaces: Do the results match the expectations?

    Energy Technology Data Exchange (ETDEWEB)

    Grégoire, Geneviève, E-mail: genevieve.gregoire@univ-tlse3.fr [Department of Biomaterials, Faculty of Odontology, University Toulouse III, 31062 Toulouse (France); Sharrock, Patrick, E-mail: patrick.sharrock@gmail.com [CNRS UMR 5302, University Toulouse III, Mines-Albi, 81013 Albi (France); Prigent, Yann, E-mail: prigent@chimie.ups-tlse.fr [Institut de Chimie de Toulouse (ICT) – FR 2599, Faculté des Sciences et de l' Ingénierie, University Toulouse III, 31062 Toulouse (France)

    2016-09-01

    A universal adhesive was applied to human dentin in both the etched and rinsed state and the normal non etched state, to compare the resulting properties and detect any significant differences. The study focused on observations of the hybrid layer by scanning electron microscopy and on fluid permeation measurements as a function of time. Spectroscopic characterizations included infrared and differential calorimetric curves of the samples. The results obtained show non-statistically significant fluid permeability between the two sample types. Both the etched and rinsed samples and the non-etched ones showed similar homogeneous hybrid layers that reduced the fluid flow, and corresponded to well spread polymer coatings. The infrared results illustrated the spectra obtained on going from the outside adhesive layer to the inside portion of the dentin-polymer interface and did not reveal any intermediate zone resembling demineralized collagen that would be water saturated and not infiltrated with adhesive. The Differential Scanning Calorimetry (DSC) curves corresponded to the curves obtained with ethanol wet bonding in that free water (melting at 0 °C) was removed by the universal adhesive, and that no collagen melting was observed for the non-etched samples. The Diffusion-Ordered Spectroscopy Nuclear Magnetic Resonance (DOSY NMR) spectrum of the virgin adhesive showed the presence of water and ethanol solvents and indicated that several monomer or prepolymer molecules were present with multiple acrylic functional groups with diffusion coefficients related to molecular weights. Overall, the results show that universal adhesive can be used in the milder self-etch mode and that more aggressive etch and rinse procedure can be reserved for the occasions with sclerotic dentin or enamel regions more difficult to treat.

  5. Parallel preparation of plan-view transmission electron microscopy specimens by vapor-phase etching with integrated etch stops

    Energy Technology Data Exchange (ETDEWEB)

    English, Timothy S., E-mail: englisht@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Provine, J [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Marshall, Ann F.; Koh, Ai Leen [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Kenny, Thomas W. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2016-07-15

    Specimen preparation remains a practical challenge in transmission electron microscopy and frequently limits the quality of structural and chemical characterization data obtained. Prevailing methods for thinning of specimens to electron transparency are serial in nature, time consuming, and prone to producing artifacts and specimen failure. This work presents an alternative method for the preparation of plan-view specimens using isotropic vapor-phase etching with integrated etch stops. An ultrathin amorphous etch-stop layer simultaneously serves as an electron transparent support membrane whose thickness is defined by a controlled growth process such as atomic layer deposition with sub-nanometer precision. This approach eliminates the need for mechanical polishing or ion milling to achieve electron transparency, and reduces the occurrence of preparation induced artifacts. Furthermore, multiple specimens from a plurality of samples can be thinned in parallel due to high selectivity of the vapor-phase etching process. These features enable dramatic reductions in preparation time and cost without sacrificing specimen quality and provide advantages over wet etching techniques. Finally, we demonstrate a platform for high-throughput transmission electron microscopy of plan-view specimens by combining the parallel preparation capabilities of vapor-phase etching with wafer-scale micro- and nanofabrication. - Highlights: • Parallel thinning of plan-view specimens enables high-throughput microscopy studies. • The support membrane thickness is controlled with sub-nanometer precision. • No physical etching (polishing, dimpling, or ion milling) is required. • Large area and uniformly thin specimens are suitable for Cs-corrected HRTEM. • Wafer-scale integration enables custom specimens for in situ experiments.

  6. Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique.

    Science.gov (United States)

    Heuser, J E; Cooke, R

    1983-09-05

    A new method of preparing biological samples for electron microscopy has been used to re-examine the structure of actin filaments, actin filaments decorated by myosin subfragment-1 (S1), and insect flight muscles. Samples were quick-frozen by contact with a block of copper cooled to approximately 4 K; then were freeze-fractured, deep-etched, rotary-replicated with platinum, and viewed in a transmission electron microscope. By this approach, actin filaments display prominent transverse bands whose repeat (approximately 5.5 nm) and pitch (approximately 15 to 20 degrees) fit with the expected left-handed "genetic" helix. Freeze-etched actin filaments do not, however, display the usual two-start helix as prominently as is seen after negative staining, and they also appear substantially thicker than after negative staining (9 to 10 nm versus 8 nm). The latter two-start helix appears very clearly after S1 decoration. Nevertheless, freeze-etched acto-S1 does not display the "arrowheads" that are seen after negative staining. Instead it displays the outer envelope of the helically deployed S1, and as would be expected from current models derived from optical reconstruction of negatively stained samples, this surface view looks only slightly polarized. Finally, the quick-freeze, deep-etch approach provides particularly distinct images of the crossbridges in insect flight muscles. These are plentiful and regularly arranged in rigor muscles, but rare in muscles relaxed with ATP before freezing. In rigor muscles fixed with aldehydes, these crossbridges assume a broad distribution of inclination, ranging from 45 degrees to 90 degrees with a mean of approximately 80 degrees, which is less tilt than has been seen before in thin-sectioned muscles. However, when aldehyde fixation is followed by exposure to tannic acid with or without uranyl acetate block-staining, crossbridges assume a more acute angle with respect to the fiber axis, centering around 45 degrees. This is associated

  7. A novel restricted-flow etching method for glass

    Institute of Scientific and Technical Information of China (English)

    Hai-bo XIE; Yi ZHENG; Yu-run FAN; Xin FU; Hua-yong YANG

    2009-01-01

    This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed, in addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.

  8. Innovative, Inexpensive Etching Technique Developed for Polymer Electro- Optical Structures

    Science.gov (United States)

    Nguyen, Hung D.

    1999-01-01

    Electro-optic, polymer-based integrated optic devices for high-speed communication and computing applications offer potentially significant advantages over conventional inorganic electro-optic crystals. One key area of integrated optical technology--primary processing and fabrication--may particularly benefit from the use of polymer materials. However, as efforts concentrate on the miniaturization of electro-integrated circuit pattern geometries, the ability to etch fine features and smoothly sloped sidewalls is essential to make polymers useful for electro-integrated circuit applications. There are many existing processes available to etch polymer materials, but they all yield nearly vertical sidewalls. Vertical sidewalls are too difficult to reliably cover with a metal layer, and incomplete metalization degrades microwave performance, particularly at high frequency. However, obtaining a very sloped sidewall greatly improves the deposition of metal on the sidewall, leading to low-loss characteristics, which are essential to integrating these devices in highspeed electro-optic modulators. The NASA Lewis Research Center has developed in-house an inexpensive etching technique that uses a photolithography method followed by a simple, wet chemical etching process to etch through polymer layers. In addition to being simpler and inexpensive, this process can be used to fabricate smoothly sloped sidewalls by using a commercial none rodible mask: Spin-On-Glass. A commercial transparent material, Spin-On-Glass, uses processes and equipment similar to that for photoresist techniques.

  9. Environmental photostability of SF6-etched silicon nanocrystals

    Science.gov (United States)

    Liptak, R. W.; Yang, J.; Kramer, N. J.; Kortshagen, U.; Campbell, S. A.

    2012-10-01

    We report on the long-term environmental stability of the photoluminescent (PL) properties of silicon nanocrystals (SiNCs). We prepared sulfur hexafluoride (SF6) etched SiNCs in a two-stage plasma reactor and investigated their PL stability against UV irradiation in air. Unlike SiNCs with hydrogen-passivated surfaces, the SF6-etched SiNCs exhibit no photobleaching upon extended UV irradiation despite surface oxidation. Furthermore, the PL quantum yield also remains stable upon heating the SF6-etched SiNCs up to 160 °C. The observed thermal and UV stability of SF6-etched SiNCs combined with their PL quantum yields of up to ˜50% make them attractive candidates for UV downshifting to enhance the efficiency of solar cells. Electron paramagnetic spin resonance indicates that the SF6-etched SiNCs have a lowered density of defect states, both as-formed and after room temperature oxidation in air.

  10. Dental zirconia can be etched by hydrofluoric acid.

    Science.gov (United States)

    Sriamporn, Tool; Thamrongananskul, Niyom; Busabok, Chumphol; Poolthong, Sushit; Uo, Motohiro; Tagami, Junji

    2014-01-01

    The surface morphology and crystal structure change of dental zirconia after hydrofluoric acid (HF) etching were evaluated. Four groups of sintered zirconia specimens were 1) control group, 2) immersion in 9.5%HF at 25°C for 1, 2, 3, or 24 h, 3) immersion in 9.5%HF at 80°C for 1, 3, 5, or 30 min and 4) immersion in 48%HF at 25°C for 30 or 60 min. The specimens were evaluated under SEM and XRD. The SEM analysis revealed changes in surface topography for all the HF-etched zirconia specimens. The irregularities surface increased with increasingly longer immersion times and higher etching solution temperatures. The XRD analysis of the HFetched zirconia specimens revealed the presence of a crystalline monoclinic phase along with a tetragonal form. It was concluded HF can etch dental zirconia ceramic, creating micro-morphological changes. Tetragonal-to-monoclinic phase transformation was induced on the etched zirconia surface.

  11. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  12. Fabrication of polymer nanowires via maskless O2 plasma etching.

    Science.gov (United States)

    Du, Ke; Wathuthanthri, Ishan; Liu, Yuyang; Kang, Yong Tae; Choi, Chang-Hwan

    2014-04-25

    In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

  13. Effect of benzotriazole on the anisotropic electrolytic etching of copper

    Energy Technology Data Exchange (ETDEWEB)

    Papapanayiotou, D.; Deligianni, H.; Alkire, R.C. [Univ. of Illinois, Urbana, IL (United States)

    1998-09-01

    Electrolytic etching of copper foil at the base of cavities formed by patterned photoresist was investigated in 0.5 M sulfuric acid solutions which either contained 40 mM benzotriazole (BTA) or were free of BTA. It was found that undercutting (metal dissolution beneath the photoresist) was minimized by the action of surface films in both solutions. It was also found that the nature of the surface films and the mechanism by which they enhanced etch anisotropy differed. In additive-free solutions, anisotropic etching was observed under conditions of applied potential and flow for which mass transfer was suppressed in the interior corner regions of cavities. Such operating conditions in additive-free solutions displayed characteristic current transients. In BTA-containing solutions, the etch profiles were highly dependent on applied potential. In contrast to the additive-free solutions, the flow conditions in BTA-containing solutions had little effect on the current transients or on the degree of undercutting within the region of applied potential in which anisotropic etching was achievable.

  14. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    CERN Document Server

    Nomerotski, A; Collins, P; Dumps, R; Greening, E; John, M; Mapelli, A; Leflat, A; Li, Y; Romagnoli, G; Verlaat, B

    2013-01-01

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  15. Research on the Adsorption of Methylene Blue with Rice Husk Ash Aided by Ion Beam Etching Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main ...

  16. Towards Noncommutative Quantum Black Holes

    CERN Document Server

    Lopez-Dominguez, J C; Ramírez, C; Sabido, M

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Trough the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular we calculate the Hawking's temperature and entropy for the Noncommutative Schwarzschild black hole.

  17. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  18. Modeling Thermal Contact Resistance

    Science.gov (United States)

    Kittel, Peter; Sperans, Joel (Technical Monitor)

    1994-01-01

    One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.

  19. High performance a-IGZO thin-film transistors with mf-PVD SiO2 as an etch-stop-layer

    NARCIS (Netherlands)

    Nag, M.; Steudel, S.; Bhoolokam, A.; Chasin, A.; Rockele, M.; Myny, K.; Maas, J.; Fritz, T.; Trube, J.; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this work, we report on high-performance bottom-gate top-contact (BGTC) amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with SiO2 as an etch-stop-layer (ESL) deposited by medium frequency physical vapor deposition (mf-PVD). The TFTs show field-effect mobility (μFE) of 16.0

  20. Automated fabrication technique of gold tips for use in point-contact spectroscopy

    CERN Document Server

    Narasiwodeyar, S; Liu, M; Park, W K; Greene, L H

    2014-01-01

    For a successful point-contact spectroscopy (PCS) measurement, metallic tips of proper shape and smoothness are essential to ensure the ballistic nature of a point-contact junction. Until recently, the fabrication of Au tips suitable for use in point-contact spectroscopy has remained more of an art involving a trial and error method rather than an automated scientific process. To address these issues, we have developed a technique with which one can prepare high quality Au tips reproducibly and systematically. It involves an electronic control of the driving voltages used for an electrochemical etching of a gold wire in an HCl-glycerol mixture or an HCl solution. We find that a stopping current, below which the circuit is set to shut off, is a single very important parameter to produce an Au tip of desired shape. We present detailed descriptions for a two-step etching process for Au tips and also test results from PCS measurements using them.