WorldWideScience

Sample records for contact condenser research

  1. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  2. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  3. Method and apparatus for high-efficiency direct contact condensation

    Science.gov (United States)

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  4. Transient direct-contact condensation on liquid droplets

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature

  5. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  6. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  7. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  8. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  9. Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)

    2016-11-15

    The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.

  10. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    Science.gov (United States)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  11. Experimental study on the unstable direct contact condensation regimes

    International Nuclear Information System (INIS)

    Damasio, C.; Del Tin, G.; Fiegna, G.; Malandrone, M.

    1985-01-01

    Vapour-liquid interface fluctuation frequencies have been measured by means of electrical resistive probes. Frequency data from these probes have been compared with measured frequencies from a Kistler piezoelectric pressure transducer in the pool near the steam-water interaction region. An attempt has been made to correlate measured frequencies to the observed condensation regimes. Experimental data concerning ''steam chugging'' and condensation oscillation regimes have been correlated in terms of dimensionless parameters

  12. Research in Hospitality Management: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr Sjoerd A Gehrels Editor-in-Chief Stenden Hotel Management School, Academy of International Hospitality Research, Leeuwarden, The Netherlands Email: sjoerd.gehrels@stenden.com ...

  13. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  14. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  15. Bubbler condenser related research work. Present situation

    International Nuclear Information System (INIS)

    2001-02-01

    Intensive discussions within the OECD Support Group on 'VVER-440 Bubbler Condenser Containment Research Work' between 1991 and 1994 demonstrated the need for supplementary research work to achieve an adequate level of basic knowledge. In 1994, the European Commission (EC) asked for a specific 'VVER-440/213 Bubble Condenser Qualification Feasibility Study', which was finished early in 1996, confirming the need for additional research in this field. The Feasibility study formed the basis for the Bubble Condenser Experimental Qualification Project (BCEQ) with two separate experimental activities to be executed within the frame of the PHARE/TACIS 2.13/95 project of the European Commission. A first activity served to study the thermal-hydraulic phenomena and the associated structure dynamic interactions. This part of the project was performed at EREC, in Elektrogorsk, Russia. The design of the test facility was based on the prototypical bubbler condenser configuration for the Hungarian Paks nuclear power plant. A second activity addressed the structural integrity of certain components of the bubbler condenser steel structures under DBA-typical conditions. This part of the project was performed at VUEZ, in Levice, Slovak Republic. The design of the components of this facility was based on the structural properties of the Dukovany and/or Bohunice nuclear power plants. A third component of the BCEQ project was specified later asking for analytical studies, which should be supported by a number of small-scale separate effects tests to be performed at SVUSS, in Bechovice, Czech Republic. The main experimental and analytical results of the BCEQ test campaigns have been presented and discussed within the frame of the 4. meeting of the Technical Advisory Committee to the BCEQ (Bubble Condenser Experimental Qualification) Project in Brussels in December 1999 and on occasion of the 11. OECD Support Group Meeting in Berlin in April 2000. The discussions had evidenced several

  16. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  17. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  18. An analysis direct-contact condensation in horizontal cocurrent stratified flow of steam and cold water

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)

  19. Edge contact angle and modified Kelvin equation for condensation in open pores.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.

  20. Edge contact angle and modified Kelvin equation for condensation in open pores

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O.; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H =∞ ) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure pc c(L ;H ) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θe that is always larger than the equilibrium contact angle θ , only equal to it in the limit of macroscopic H . For walls that are completely wet (θ =0 ) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θe≈√{π L /2 H } for large H . Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature Tw we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above Tw the modified Kelvin equation only becomes accurate for much larger systems.

  1. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  2. Eastern Africa Social Science Research Review: Contact

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Contact. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Contact. Log in or Register to get access to full text downloads.

  3. Effect of pool turbulence on direct contact condensation at a steam/water interface

    International Nuclear Information System (INIS)

    Jackson, J.D.; Zhao, C.L.; Doerffer, S.; Byrne, J.E.; Falaki, H.

    2000-01-01

    Measurements of direct contact condensation beat transfer have been made for the case where the process takes place at the horizontal interface between saturated steam and a pool of water in a vertical cylindrical test section. A submerged vertical jet of subcooled water was injected upwards on the axis to promote the condensation and water was withdrawn at the same rate from the bottom of the pool. In conjunction with the above study, measurements of the turbulent velocity fluctuations just below a free surface produced by the injection of a vertical submerged jet have been measured using hot film anemometry on an isothermal air-water test facility of similar geometry for similar flow conditions at ambient temperature. A correlation is proposed in terms of a Stanton number based on turbulent velocity fluctuation near the interface on the liquid-side. Our results are in good agreement with those of others for similar configurations when compared in terms of condensation Stanton number. (author)

  4. Humidification Dehumidification Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Shouman, L.; Karameldin, A.; Fadel, D.

    2015-01-01

    Humidification-dehumidification (HDH) is a low grade energy desalination technology. The waste heat from power plant (such NPP) can be used as heat source to preheat water (in evaporator) and air (in condenser) . Hot humid air and cooled spray water in counter current flow with direct contact is theoretically analyzing in the present work. Direct contact spray condenser is studied to provide the effect of various parameters on its performance. A computer programme describing the theoretical model is designed to solve a one-dimensional differential equations by using Rung–Kutta method. The programme predicts the droplet radius, velocity and temperature, besides, the humidity and temperature of air. The results show that, the length of column has great effect on the performance of spray condenser. At column height of 0.762, 2, 5, 10, and 20 m the humidity of the output air decreases by 50%, 72%, 89%, 97%, and 99% respectively. The condensate increases about 35% when the length increase from 5 to 10 m at ΔT = 25°C while increase only 18% at ΔT = 30°C. Also, it is found that, at ΔT = 25°C the condensate decrease from H = 10 to 5 m about 31% and increases from 10 to 20 m about 32%. While these results for ΔT = 25°C are 32% from H = 10 to 5 m and 36% from 10 to 20 m.The increase of both water and air mass fluxes increases the condensate mass flow rate. (author)

  5. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  6. Journal of Business Research: Contact

    African Journals Online (AJOL)

    Principal Contact. Goski Alabi Mrs Institute of Professional Studies (IPS) P. 0 Box 149 Institute Of Professional Studies (IPS) Legon, Accra Ghana Phone: +233 24 64 52798. Fax: +233 21 513539. Email: goskia@yahoo.com. Support Contact. Anthony Afeadie. Phone: +233 21 500171. Email: ipsjournal@yahoo.com.

  7. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact.

    Science.gov (United States)

    Sirghi, Lucel

    2012-02-07

    Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.

  8. Computational simulations of direct contact condensation as the driving force for water hammer

    International Nuclear Information System (INIS)

    Ceuca, Sabin-Cristian

    2015-01-01

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  9. Computational simulations of direct contact condensation as the driving force for water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin-Cristian

    2015-04-27

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  10. Improvement of direct contact condensation model of relap5/mod3.1 for passive high-pressure injection system

    International Nuclear Information System (INIS)

    Sang, Il Lee; Hee, Cheon No

    1998-01-01

    A simple set of the transition criterion of the condensation regimes and the heat transfer coefficients on the direct contact condensation in the core makeup tank was developed, and implemented in RELAP5/MOD3.1. The condensation regimes were divided into two ones: supply limit and condensation limit. In modeling the transition criterion between two regimes, a large-eddy model developed by Theofanous was used. The modified code better predicted the experiments on the core makeup tank using small scale test facility than the original code did

  11. Humidification-Dehumidification (HDH) Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Karameldin, A.; Shouman, L.; Fadel, D.

    2016-01-01

    Humidification-De humidification (HDH) is a low grade energy desalination technology. Hot humid air and cooling spray water in counter current flow with direct contact is theoretically analyzed in the present work. Direct contact spray condenser is studied to obtain the effect of various parameters on its performance. A computer program describing the theoretical model is designed to solve one-dimensional differential equations by using Rung-Kutta method. The results show that the column length has a great effect on the performance of the spray condenser. At a column height of 2, 5,10, and 20 m the humidity of the outlet air decreases by 72, 89, 97, and 99% respectively. The humid air temperature has a great influence on the productivity; me an while the temperature difference between the humid air and sprayed water has less effect. A case study of a contiguous co-generation electricity and water in Nuclear Power Plants (NPP) shows that the optimal productivity by HDH is feasible and can reach more than 15 m"3 /day.m"2, enabling a total productivity that varied from 120,000 to 300,000 m"3 /day. The design curves describing the process are obtained together in addition to a formula for the optimal productivity in terms of humid air and sprayed water fluxes at different humid air temperatures is derived

  12. Can hydrodynamic contact line paradox be solved by evaporation-condensation?

    Science.gov (United States)

    Janeček, V; Doumenc, F; Guerrier, B; Nikolayev, V S

    2015-12-15

    We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration of partial wetting (liquid wedge on a solid substrate) via evaporation-condensation, when an inert gas is present in the atmosphere above the liquid. The no-slip condition is imposed at the solid-liquid interface and the system is assumed to be isothermal. The mass exchange dynamics is controlled by vapor diffusion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curvature and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate moves at a steady velocity with respect to the liquid wedge. A multi-scale analysis is performed. The liquid dynamics description in the phase-change-controlled microregion and visco-capillary intermediate region is based on the lubrication equations. The vapor diffusion is considered in the gas phase. It is shown that from the mathematical point of view, the phase exchange relieves the contact line singularity. The liquid mass is conserved: evaporation existing on a part of the meniscus and condensation occurring over another part compensate exactly each other. However, numerical estimations carried out for three common fluids (ethanol, water and glycerol) at the ambient conditions show that the characteristic length scales are tiny. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Contact Us | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Mobile Nav Footer Links. Careers · Contact Us · Subscribe · Unsubscribe · Copyright · Open Access Policy · Privacy Policy · Research Ethics · Transparency · Website/Usage. Search. Home · About IDRC ...

  14. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  15. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  16. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  17. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  18. Assessment of MARS for Direct Contact Condensation in the Core Make-up Tank

    International Nuclear Information System (INIS)

    Park, Keun Tae; Park, Ik Kyu; Lee, Seung Wook

    2013-01-01

    In order to improve safety features under loss of coolant accident (LOCA) conditions, in many advanced light water reactors, gravity driven passive safety injection systems (PSISs) replace active pump driven emergency core cooling systems. Among various PSISs, the core make-up tank (CMT) with the pressure balancing line (PBL) and the coolant injection line (IL) represents an effective means of providing core cooling. Because the fluid is always sensing the reactor coolant system (RCS) through the PBL connecting the inlet of the CMT to the pressurizer in the case of CP1300 or to the cold legs in the case of AP600/1000, the CMT can provide cold water at any RCS pressure by gravity force. However, after the initiation of LOCAs, if the injection (or isolation) valve is opened, and the steam from the RCS is jetting into the highly subcooled liquid in the CMT and the enhanced interfacial area results in rapid condensation, which in turn, causes a rapid pressure drop in the CMT. As a result, the CMT pressure becomes less than the RCS pressure, and the injection of the CMT can be delayed until the CMT pressure builds up due to greatly reduced condensation in the CMT by the thermal stratification. In order to identify the parameters having significant effects on the gravity-driven injection and the major condensation modes, Lee and No (1998) conducted the separated effect tests of CMT with a small-scale facility. MARS has been developed as a multi-dimensional thermal-hydraulic (TH) system analysis code for the realistic simulation of two-phase TH transients for pressurized water reactor plants. As the backbones for the MARS code, the RELAP5/MOD3.2 and the COB-RA-TF codes were adopted. Recently, Chun et al. (2013) evaluated performance of the SMART passive safety system for SBLOCA using MARS code. However, it is not clarified that MARS can simulate properly the direct contact condensation in the CMT. Thus, in this study, we assess the analysis capability of the MARS code for

  19. State-of-the-art and needs for jet instability and direct contact condensation model improvements

    International Nuclear Information System (INIS)

    Bousbia-Salah, A.; Moretti, F.; D'auria, F.; Bousbia-Salah, A.)

    2007-01-01

    There is a common understanding among thermal-hydraulic experts that the system analysis codes have currently reached an acceptable degree of maturity. Reliable application, however, is still limited to the validated domain. There is a growing need for qualified codes in assessing the safety of the existing reactors and for developing advanced reactor systems. Under conditions involving multi-phase flow simulations, the use of classical methods, mainly based upon the one dimensional approach, is not appropriate at all. The use of new computational models, such as the direct numerical simulation, large-eddy simulation or other advanced computational fluid dynamics methods, seems to be more suitable for more complex events. For this purpose, the European Commission financed NURESIM Integrated Project (as a part of the FP6 programme), was adopted to provide the initial step towards a Common European Standard Software Platform for modelling, recording and recovering computer data for nuclear reactor simulations. Some of the studies carried out at the University of Pisa within the framework of the NURESIM project are presented in this paper. They mainly concern the investigation of two critical phenomena connected with jet instabilities and direct contact condensation that occur during emergency core cooling. Through these examples, the state-of-the-art and the need for model improvements and validation against new experimental data for the sake of getting a better understanding and more accurate predictions are discussed. (author)

  20. 19th International School on Condensed Matter Physics (ISCMP): Advances in Nanostructured Condensed Matter: Research and Innovations

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)

  1. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  2. Direct-contact condensation regime map for core makeup tank of passive reactors

    International Nuclear Information System (INIS)

    Lee, Sang Il; No, Hee Cheon

    1998-01-01

    The condensation regime map in the core makeup tank of passive reactors is experimentally investigated. The condensation regimes identified through the experiments are divided into three distinct ones: sonic jet, subsonic jet, and steam cavity. The steam cavity regime is a unique regime of downward injection with the present geometry not previously observed in other experiments. The condensation regime map is constructed using Froude number and Jacob number. It turns out that the buoyancy force has a large influence on the regime transition because the regime map using the Froude number better fits data with different geometries than other dimensionless parameters. Simple correlations for the regime boundaries are proposed using the Froude number and the Jacob number

  3. Edge Contact Angle and Modified Kelvin Equation for Condensation in Open Pores.

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr; Parry, A.O.; Pospíšil, M.

    2017-01-01

    Roč. 96, č. 2 (2017), č. článku 020801. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA17-25100S Grant - others:EPSRC(GB) EP/L020564/1 Institutional support: RVO:67985858 Keywords : capillary condensation * Kelvin equation * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.366, year: 2016

  4. African Journal of Management Research: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. Anthony Q. Q. Aboagye Editor University of Ghana Business School. University of Ghana Business School P.O. Box LG 78. Legon Accra Ghana. Phone: +233-24-425-2596. Email: qaboagye@ug.edu.gh. Support Contact. Sylvia Ahudzo (Editorial Assistant) Phone: +233-24-318-7075

  5. Nigerian Journal of Technological Research: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. OOA Fasanya Editor-in-Chief Federal University of Technology, Minna, Niger State, Nigeria Journal Office, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria Phone: +234 81313 45053. Email: njtrfutminna@gmail.com ...

  6. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.

    1999-09-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.

  7. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia

    1999-01-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report

  8. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  9. Research Review of the Institute of African Studies: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. M.E. Kropp Dakubu Editor-in-Chief University of Ghana. Research Review. Institute of African Studies. P.O.Box LG73 Legon, Ghana. Phone: 211-24-4764006. Fax: 233-21-500512. Email: medakubu@ug.edu.gh. Support Contact. Dr Stephen Acheampong Phone: 211-24-4979233

  10. Nature Contact and Human Health: A Research Agenda.

    Science.gov (United States)

    Frumkin, Howard; Bratman, Gregory N; Breslow, Sara Jo; Cochran, Bobby; Kahn, Peter H; Lawler, Joshua J; Levin, Phillip S; Tandon, Pooja S; Varanasi, Usha; Wolf, Kathleen L; Wood, Spencer A

    2017-07-31

    At a time of increasing disconnectedness from nature, scientific interest in the potential health benefits of nature contact has grown. Research in recent decades has yielded substantial evidence, but large gaps remain in our understanding. We propose a research agenda on nature contact and health, identifying principal domains of research and key questions that, if answered, would provide the basis for evidence-based public health interventions. We identify research questions in seven domains: a ) mechanistic biomedical studies; b ) exposure science; c ) epidemiology of health benefits; d ) diversity and equity considerations; e ) technological nature; f ) economic and policy studies; and g ) implementation science. Nature contact may offer a range of human health benefits. Although much evidence is already available, much remains unknown. A robust research effort, guided by a focus on key unanswered questions, has the potential to yield high-impact, consequential public health insights. https://doi.org/10.1289/EHP1663.

  11. PSI condensed matter research and material sciences progress report 1990

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Lorenzen, R.

    1991-01-01

    A brief overview is given of the research performed in 1990 at PSI's research department F3 in the fields of muon spectroscopy, neutron scattering, accelerator mass spectroscopy, applied and technical physics, geochemistry, trace elements, aerosol chemistry, heavy elements, defect physics, PIREX and spallation neutron source project. figs., tabs., refs

  12. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  13. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  14. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  15. Experimental and analytical study of intermittency in direct contact condensation of steam in a cross-flow of water

    NARCIS (Netherlands)

    Clerx, N.; Geld, van der C.W.M.

    2009-01-01

    The topology of a condensing steam jet, at low steam mass fluxes, injected in a cross-flow of water has been investigatedexperimentally for various conditions (system pressure around 3 bar). The intermittent character of the steam pocket growthand collapse clearly appeared from the high speed

  16. Temperature fields induced by direct contact condensation of steam in a cross-flow in a channel

    NARCIS (Netherlands)

    Clerx, N.; van Deurzen, L.G.M.; Pecenko, A.; Liew, R.; van der Geld, C.W.M.; Kuerten, Johannes G.M.

    2011-01-01

    The temperature fields in the center plane of a channel with a square cross-section have been measured. Steam injected at relatively low mass fluxes through a small hole in one of the walls of the channel condensed intermittently in a small area close to the inlet. The upstream temperature of the

  17. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  18. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  19. Researches of a thermodynamic behaviour of bubbling vacuum system bubble condenser NPP 'Mochovce'

    International Nuclear Information System (INIS)

    Rjeznikov, Iu.V.; Lifshitz, E.V.; Kouznetsov, M.V.; Antropov, V. N.; Doulepov, U. N.; Suchanek, M.

    1997-01-01

    During joint development and designing of the bubbling vacuum system (BVS) equipment for localization of under-loss of coolant accident (LOCA) consequences on NPPs with WWER 440/213, a large volume of experimental and calculational activities have been performed by VTI and SverdNIIchimmash for the substantiation of functionality of this system, and in particular, for bubbler-condenser (BC) design, as a part of BVS. However, not looking on broad introduction of BVS on 16-th NPP units with WWER 440/213, its functionality was subjected to a doubt from experts of different countries. Sequentially, that promoted issue of the IAEA, document and OECD document. Therefore, before commissioning of the NPP 'Mochovce' unit 1 it was decided to execute additional experimental and computational researches for Safety Analysis Report preparation. Within the framework of these BVS thermodynamic behavior researches, in particular the following problems were chosen: (1) The check of a capability of valves DN 250 blocking in an opened position, as a result of return pressure differential on BC, during vent clearing process of the hydro-lock, that can sequentially result in an a drop of efficiency of stem condensation in BC pool; (2) To provide by direct measurements the absence of pressure oscillations dangerous for strength of a BC design in different modes of steam condensation in BC and to execute computational researches of instability of steam condensation processes (for such mode as 'chugging'); (3) Study influences of pool swell and water carry over through check valves DN 500 in the air traps on a BVS functionality; (4) To determine by a computational way the maximum pressure in NPP premises during LOCA, with taking into consideration additional failures of the BC equipment: absence of a water on two and more BC plates and DN 250 valves have blocked in an opened position (conservative conditions). (authors)

  20. Participation in HIV research: the importance of clinic contact factors.

    Science.gov (United States)

    Worthington, Catherine A; Gill, M John

    2008-08-01

    Recruiting minority populations living with HIV to many types of clinic-based HIV research is a concern. This study examined an expanded range of predictors of HIV research participation (clinic contact, clinical, and personal characteristics) to investigate observed ethnocultural differences in HIV research participation. Research participation was defined as participation in any of diagnostic, pathogenesis, drug trial or survey research. Logistic regression modeling was used to predict research participation of 657 eligible patients (93% of the patient population) who began care between January 1997 and the end of September 2003 at a regional outpatient HIV care program in Calgary, Canada. Approximately one third (32%) were non-white, including 18% Aboriginal, 9% black, 4% Asian, and 1% Hispanic individuals. Twenty-nine percent (187/657) of the patients participated in at least one study of any kind. Multivariate analysis indicated that the strongest predictors of any research participation (including diagnostic, pathogenesis, drug trial, or survey studies) are clinical (including nadir CD4 count [odds ratio {OR} = 0.132, p percentage of appointments kept [OR = 1.022, p service use shown by these groups that may influence research participation. To attract under researched populations, attention should shift from the "who" of research participation to the "how" of clinical interactions.

  1. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  2. First epidemiological study of contact dermatitis in Spain - 1977. Spanish Contact Dermatitis Research Group.

    Science.gov (United States)

    Camarasa, J M

    1979-01-01

    The present work is the first epidemiological study carried out by the Spanish Contact Dermatitis Research Group during 1977. During this year 2806 patients were studied with patch test among 30873 dermatological patients. The 60-62% of the totality had reactivity to one or more patches. Four major groups of allergens were able to consider, following the incidence in their power of sensitize. First group with strong incidence include: Nickel, Chromate, Cobalt, T.M.T.D.,P.P.D.A., Mercapto mix., and Wood tars. Second and third groups with medium incidence contain: Caines, Carbonates, Neomycin, Balsam of Peru, Mercury, Lanolin, Naphtyl mix., Formaldehyde, Benzalkonium chloride, P. P. D. A. mix, and Turpentine. Four group show very low incidence substances, as: Epoxi, Sulfonamides, Etilendiamine, Parabens, Chinoform, Colophony and Cinnamon oil. Few comments about age and occupations are included.

  3. Research on the Problem of Spur Gear Teeth Contact in the Car Gear Box

    Directory of Open Access Journals (Sweden)

    Viktor Skrickij

    2011-04-01

    Full Text Available The article presents research on the problem of two gear contact in the car gearbox. Contact stiffness is evaluated for the whole period of mesh. Also, contact stresses are evaluated in the contact place. The presented method can be used for calculating spur gear.Article in Lithuanian

  4. Neutron research on condensed matter: a study of the facilities and scientific opportunities in the United States

    International Nuclear Information System (INIS)

    1977-01-01

    An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included

  5. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  6. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  7. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    International Nuclear Information System (INIS)

    Tanrikut, A.

    1996-01-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs

  8. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanrikut, A [Turkish Atomic Energy Authority, Ankara (Turkey)

    1996-12-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs.

  9. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2000-07-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.

  10. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2001-07-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.

  11. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2001-01-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10 14 n cm -2 s 1 which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided

  12. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2000-01-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided

  13. Contact Between Adoptive and Birth Families: Perspectives from the Minnesota Texas Adoption Research Project.

    Science.gov (United States)

    Grotevant, Harold D; McRoy, Ruth G; Wrobel, Gretchen M; Ayers-Lopez, Susan

    2013-09-01

    A growing number of adoptive families have contact with their children's birth relatives. The Minnesota Texas Adoption Research Project is examining longitudinally the consequences of variations in contact arrangements for birth mothers, adoptive parents, and adopted children in domestic infant adoptions, and is studying the dynamics of relationships within these family systems. Individuals who had contact were more satisfied with their arrangements than those who did not have contact. Satisfaction with contact predicted more optimal adjustment among adopted adolescents and emerging adults. Adoption-related communication predicted identity development among adopted adolescents and emerging adults. Birth mothers who were more satisfied with their contact arrangements, regardless of level of contact, had less unresolved grief 12 to 20 years after placement. Adoptive and birth relatives who engage in contact need flexibility, strong interpersonal skills, and commitment to the relationship. These skills can be learned, and they can be supported by others, through informal, psychoeducational, and therapeutic means.

  14. Experimental research on in-tube condensation in the presence of air

    International Nuclear Information System (INIS)

    Tanrikut, A.; Yesin, O.

    2000-01-01

    In this research work, in-tube condensation in the presence of air is investigated experimentally for different operating conditions, and inhibiting effect of air is analyzed by comparing the experimental data of air/steam mixture with the data of corresponding pure steam cases, with respect to temperature, heat flux, and heat transfer coefficient. The test matrix covers the range of; P=2-6 bar, Re v =45000-94000, and X i =0%-52%. The inhibiting effect of air manifests itself as a remarkable decrease in centerline temperature (10 deg. C - 50 deg. C), depending on inlet air mass fraction. However, the measured centerline temperature is suppressed compared to the predicted one, from the Gibbs-Dalton Law, which indicates that the centerline temperature measurements are highly affected by inner wall thermal conditions, possibly due to narrow channel and high vapor Reynolds number. Even at the lowest air quality (10%) the reduction of the heat flux is 20% while it reaches up to 50% for the quality of 40%. Maximum percent decrease of the heat transfer coefficient was observed in runs with the system pressure of 2 bar; 45% and 65%, for the air mass fraction of 10% and 28%, respectively. (author)

  15. Fundamental research on the cooling characteristic of PCCS with dropwise condensation

    International Nuclear Information System (INIS)

    Masahiro Kawakubo; Mitsuo Matsuzaki; Hiroshige Kikura; Masanori Aritomi; Toshihiro Komeno

    2005-01-01

    Safety system consists of many active systems in recent years. However, there are always probabilities of failures of these active safety systems' due to faulty operation by human-error overlaps causing a severe accident as happened in Chernobyl and Three Mile Island cases. Passive Containment Cooling System (PCCS) is one of the cooling safety systems, which prevents nuclear reactor containment from over-pressurizing and breaking in case of the loss of coolant accident. A conventional PCCS is installed in the upper part of nuclear reactor containment, and the containment pressure decreases by the steam condensation. However, for a country with frequent earthquakes, it is not suitable for installing PCCS because the system requires earthquake-proof design and the water capacity in the tank is restricted. The concept of PCCS with vertical heat transfer pipe considering above challenges, which equipped vertical long heat transfer pipe inside, has been proposed by Aritomi et al. The objective of this study is to clarify the heat transfer characteristics of PCCS with vertical pipe to experimentally investigate the influence of non-condensable gas on condensation. Furthermore, a digital video camera is used to measure the behavior of condensation drops. The experimental apparatus consists of a tank, a cooling water supply system and a heat exchanger. The tank is made of a stainless steel and simulated the nuclear reactor containment during an accident. The cooling pipe installed in the tank is made of stainless steel tube. Cooling water at a constant temperature is poured in the test part of heat transfer pipe perpendicularly installed in the tank by forced circulation, and then condensation is induced at the heat transfer surface. At that time, the temperature of the cooling water between inlet and outlet of the pipe has been measured to calculation the over-all heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer

  16. Developments in contact X-ray microscopy in biomedical research

    International Nuclear Information System (INIS)

    Davies, R.L.; Flores, N.A.; Pye, J.K.

    1985-01-01

    Contact X-ray microscopy (microradiography) is a method of studying the microstructure of biological tissue. These techniques have been used to study the historadiological details of human breast tissue and sections of human ear ossicles. X-ray microscopy can also be used to demonstrate variations in structural densities seen in histological specimens including the detection of microcalcification. A modification of existing apparatus is described which has resulted in improved image-contrast and detail. The ability of X-rays to penetrate relatively thick sections of tissue makes it an ideal method for studying the morphology of biological structures, particularly in calcified tissue. The tissues may be further examined by conventional histology, elemental analysis, etc. The technique has a complementary role to alternative methods of tissue microscopy. (author)

  17. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  18. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  19. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  20. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  1. Research observation: Hydrolyzable and condensed tannins in plants of northwest Spain forests

    Science.gov (United States)

    Gonzalez-Hernandez, M. P.; Karchesy, J.; Starkey, E.E.

    2003-01-01

    Tannins are secondary metabolites that may influence feeding by mammals on plants. We analyzed hydrolyzable and condensed tannins in 30 plant species consumed by livestock and deer, as a preliminary attempt to study their possible implications on browsing and grazing in forest ecosystems. Heathers (Ericaceae) and plants of the Rose (Rosaceae) family had tannins, while forbs, grasses and shrubs other than the heathers did not show astringency properties. We found the highest tannin content of all the species in Rubus sp., with the highest value around 180 mg TAE/g dry weight in spring. Potentilla erecta, Alnus glutinosa and Quercus robur were next with 57 to 44 mg TAE/g dw. Total tannins in heathers ranged from 22 to 36 mg TAE/g dw. Levels of condensed tannins were higher than hydrolyzable for most of the species. Only Betula alba, Calluna vulgaris, Pteridium aquilinum and Vaccinium myrtillus had 100% hydrolyzable tannins. Tannin content of the species changed seasonally with highest values during the growing season, corresponding to late winter or early spring, depending on the species.

  2. Research observation: Hydrolyzable and condensed tannins in plants of the northwest

    Science.gov (United States)

    Gonzalez-Hernandez, M. P.; Karchesy, J.; Starkey, Edward E.

    2003-01-01

    Tannins are secondary metabolites that may influence feeding by mammals on plants. We analyzed hydrolyzable and condensed tannins in 30 plant species consumed by livestock and deer, as a preliminary attempt to study their possible implications on browsing and grazing in forest ecosystems. Heathers (Ericaceae) and plants of the Rose (Rosaceae) family had tannins, while forbs, grasses and shrubs other than the heathers did not show astringency properties. We found the highest tannin content of all the species in Rubus sp., with the highest value around 180 mg TAE/g dry weight in spring. Potentilla erecta, Alnus glutinosa and Quercus robur were next with 57 to 44 mg TAE/g dw. Total tannins in heathers ranged from 22 to 36 mg TAE/g dw. Levels of condensed tannins were higher than hydrolyzable for most of the species. Only Betula alba, Calluna vulgaris, Pteridium aquilinum and Vaccinium myrtillus had 100% hydrolyzable tannins. Tannin content of the species changed seasonally with highest values during the growing season, corresponding to late winter or early spring, depending on the species.

  3. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Directory of Open Access Journals (Sweden)

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  4. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yuchen Du

    2014-09-01

    Full Text Available Layered two-dimensional (2D semiconducting transition metal dichalcogenides (TMDs have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future thin film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.

  5. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  6. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Christian Sabin; Macian-Juan, Rafael [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Nukleartechnik

    2013-03-15

    A Hybrid Heat Transfer Coefficient module has been developed based on two Surface Renewal Theory models using CFD simulations. The validation of the model has been done on a meso-scale computational grid for CFD simulations and on a macro-scale computational grid for System Code analysis. The CFD simulation was performed for a stratified co-current two phase flow between saturated steam and sub-cooled water while the System Code analysis was performed for a Condensation Induced Water Hammer experiment. (orig.)

  7. The Coupling Effect Research of Ash Deposition and Condensation in Low Temperature Flue Gas

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-01-01

    Full Text Available Ash deposition is a key factor that deteriorates the heat transfer performance and leads to higher energy consumption of low pressure economizer working in low temperature flue gas. In order to study the ash deposition of heat exchange tubes in low temperature flue gas, two experiments are carried out with different types of heat exchange tubes in different flue gas environments. In this paper, Nusselt Number Nu and fouling factor ε are calculated to describe the heat transfer characteristics so as to study the ash deposition condition. The scanning electron microscope (SEM is used for the analysis of ash samples obtained from the outer wall of heat exchange tubes. The dynamic process of ash deposition is studied under different temperatures of outer wall. The results showed that ash deposition of heat exchanger will achieve a stable state in constant flue gas environment. According to the condition of condensation of acid vapor and water vapor, the process of ash deposition can be distinguished as mere ash deposition, acid-ash coupling deposition, and acid-water-ash coupling deposition.

  8. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  9. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  10. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    Science.gov (United States)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  11. Numerical simulation of the direct contact condensation phenomena for PTS-related in single and combined-effect thermal hydraulic test facilities using TransAT CMFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, Rabah, E-mail: kadi.rkhaled@hotmail.com [Laboratory for Thermal-Hydraulics, Nuclear Research Center of Birine (Algeria); Aissani, Slimane [Hydrocarbons and Chemistry Faculty, University of Boumerdes (Algeria); Bouam, Abdellah [Laboratory for Thermal-Hydraulics, Nuclear Research Center of Birine (Algeria)

    2015-11-15

    Highlights: • TransAT CMFD code application to DCC phenomenon. • LEIS methodology to predict the condensing steam flow rate. • Validation of interfacial phase-change heat transfer and turbulence models. • Correction of damping function at the free surface region. • Numerical validation of previous models using LIM and KAERI & KAIST test facilities. - Abstract: The use of CFD for the industrial studies related to PTS, including DCC is already possible; improvements of the two-phase modeling capabilities have to be undertaken to qualify the codes for the simulation of such flows. The DCC in horizontally stratified flow regime constitutes very considerable challenge exercises for a computational fluid dynamics (CFD) simulation of the thermal hydraulics PTS phenomenon because the interplay between turbulence and interfacial heat and mass transfer problem. The main purpose of our study is to investigate numerically the DCC in horizontally stratified steam water flow in a 2D and 3D channel using TransAT CMFD code. The new methodology known as Large-Eddy & Interface (LEIS) have been implemented for treatment of turbulence combined with interface tracking ITM (level set approach). Among of the so-called ‘coarse-grained’ ITM's models, the modified original surface divergence has been chosen as well as the treatment of the turbulence by URANS and VLES. This contribution addressed on the validation of interfacial phase-change heat transfer and turbulence models with special correction of the damping function at the free surface for single and combined-effect thermal hydraulic studies for LIM and KAERI & KAIST test facilities. The LIES methodology was found to apply successfully to predict the condensing steam flow rate in the all cases of the LIM test case involving a Smooth to Wavy turbulent, concurrent stratified steam-water flow in a 2D channel. The CMFD TransAT code predicting capability is analyzed, comparing the liquid temperature and to much the

  12. Research in the theory of condensed matter and elementary particles. [Progress report

    International Nuclear Information System (INIS)

    1985-01-01

    The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs

  13. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.

    1975-01-01

    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  14. DFT, Its Impact on Condensed Matter and on ``Materials-Genome'' Research

    Science.gov (United States)

    Scheffler, Matthias

    research, how to find (hidden) structure in the data in order to advance materials science, identify new scientific phenomena, and to provide support towards industrial applications. The NOMAD Laboratory Center of Excellence, European Union's Horizon 2020 research and innovation program, Grant agreement no. 676580.

  15. Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J; Castellazzi, D; Shea-Braun, M [eds.

    2002-03-01

    The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D{sub 2}O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided.

  16. Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, J.; Castellazzi, D.; Shea-Braun, M.

    2002-03-01

    The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D 2 O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided

  17. Study of steam condensation at sub-atmospheric pressure: setting a basic research using MELCOR code

    Science.gov (United States)

    Manfredini, A.; Mazzini, M.

    2017-11-01

    One of the most serious accidents that can occur in the experimental nuclear fusion reactor ITER is the break of one of the headers of the refrigeration system of the first wall of the Tokamak. This results in water-steam mixture discharge in vacuum vessel (VV), with consequent pressurization of this container. To prevent the pressure in the VV exceeds 150 KPa absolute, a system discharges the steam inside a suppression pool, at an absolute pressure of 4.2 kPa. The computer codes used to analyze such incident (eg. RELAP 5 or MELCOR) are not validated experimentally for such conditions. Therefore, we planned a basic research, in order to have experimental data useful to validate the heat transfer correlations used in these codes. After a thorough literature search on this topic, ACTA, in collaboration with the staff of ITER, defined the experimental matrix and performed the design of the experimental apparatus. For the thermal-hydraulic design of the experiments, we executed a series of calculations by MELCOR. This code, however, was used in an unconventional mode, with the development of models suited respectively to low and high steam flow-rate tests. The article concludes with a discussion of the placement of experimental data within the map featuring the phenomenon characteristics, showing the importance of the new knowledge acquired, particularly in the case of chugging.

  18. High energy synchrotron radiation. A new probe for condensed matter research

    International Nuclear Information System (INIS)

    Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von

    1994-01-01

    The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)

  19. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C. [LOCA Integrated Services I, Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  20. Paul Scherrer Institut Scientific Report 2001. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Castellazzi, D.; Shea-Braun, M. (eds.)

    2002-03-01

    The SINQ-facility stopped operation at the end of the year 2001 for the scheduled shut down. By that time the spallation target of the 'Cannelloni'-type (D{sub 2}O-cooled steel pins filled with lead) had received a total charge of more then 10 Ah at an average proton current higher than 1 mA. Thereby nearly 4 mols of neutrons had been released from this target. The two operational years with this target delivered the neutrons for about 300 experiments. During this operational period not one single interrupt caused by the spallation target has been recorded -indeed a convincing evidence for the reliability of this system. The probes inserted into the target and some of its parts will now soon be available to the materials scientists for careful investigation. SINQ as a continuous spallation neutron source was considered to be a 'high risk' project. Furthermore it was often accompanied with the suspicion to represent the 'worst of two worlds' - meaning that this facility would suffer from the disadvantages but not benefit from the advantage of a spallation neutron source - the pulse structure. According to our operational experience these fears are not justified provided the various concerns have been properly taken into consideration during design and construction. This report testifies what can be achieved at a continuous spallation neutron source. We believe that these research activities compare well with those from a beam-tube reactor of medium flux. A list of scientific publications in 2000 is also provided.

  1. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  2. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  3. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  4. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  5. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  6. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  7. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  8. Research in the theory of condensed matter and elementary particles: Final report, September 1, 1984-November 30, 1987

    International Nuclear Information System (INIS)

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry

  9. Desalination Using the Condensation Irrigation System, A Case Study of the Research Farm of Shahid Chamran University of Ahvaz

    Directory of Open Access Journals (Sweden)

    Bagher Yousefi

    2015-07-01

    Full Text Available Condensation Irrigation (CI is a combination of simultaneous desalination and irrigation/drinking water production. As saline water evaporates in a solar distiller and the hot and humid air is transferred into an underground pipeline, fresh water will condense on the inner pipe surface due to cooling of air by the ground. The water thus condensed infiltrates into the soil through pores in the perforated drainage pipes laid in the ground to transfer the humidified air. In this study, the CI system was developed using common buried pipes to determine the amount of water produced. In this setup, condensed water is collected at the end of the pipe to be used for drinking. Observations and calculations indicated a mean water production capacity of 4 liters every 8 hours along a pipe 25m long. Less water was produced on the first day because some of the water was lost to the wetting of the internal pipe walls. Finally, examination of temperature effects revealed that water production along the pipe reduces as we move farther away from the inlet part of the pipe.

  10. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  11. Contact heterogeneities in feral swine: implications for disease management and future research

    Science.gov (United States)

    Pepin, Kim; Davis, Amy J.; Beasley, James; Boughton, Raoul; Campbell, Tyler; Cooper, Susan; Gaston, Wes; Hartley, Stephen B.; Kilgo, John C.; Wisely, Samantha; Wyckoff, Christy; VerCauteren, Kurt

    2016-01-01

    Contact rates vary widely among individuals in socially structured wildlife populations. Understanding the interplay of factors responsible for this variation is essential for planning effective disease management. Feral swine (Sus scrofa) are a socially structured species which pose an increasing threat to livestock and human health, and little is known about contact structure. We analyzed 11 GPS data sets from across the United States to understand the interplay of ecological and demographic factors on variation in co-location rates, a proxy for contact rates. Between-sounder contact rates strongly depended on the distance among home ranges (less contact among sounders separated by >2 km; negligible between sounders separated by >6 km), but other factors causing high clustering between groups of sounders also seemed apparent. Our results provide spatial parameters for targeted management actions, identify data gaps that could lead to improved management and provide insight on experimental design for quantitating contact rates and structure.

  12. Multicenter Patch Testing With Methylisothiazolinone and Methylchloroisothiazolinone/Methylisothiazolinone Within the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E

    2017-01-01

    BACKGROUND: The preservatives methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) and MI are well-known contact sensitizers. Recently, an increase in the contact allergy frequency for MI 0.2% aqueous (aq) has been seen in many European countries paralleled with an increase in MCI/MI allerg...

  13. Multicenter Patch Testing With Methylisothiazolinone and Methylchloroisothiazolinone/Methylisothiazolinone Within the International Contact Dermatitis Research Group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Elsner, Peter; Goh, Chee-Leok; Goossens, An; Jerajani, Hemangi; Matsunaga, Kayoko; McFadden, John; Bruze, Magnus

    The preservatives methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) and MI are well-known contact sensitizers. Recently, an increase in the contact allergy frequency for MI 0.2% aqueous (aq) has been seen in many European countries paralleled with an increase in MCI/MI allergy. Many of the MI-allergic patients do not react to MCI/MI 0.01% or 0.02% because the concentration of MI in these preparations is too low (25 and 50 ppm, respectively) to elicit a positive patch test reaction. The aims of this study were to investigate the prevalence of contact allergy to MI in the participating clinics representing various countries all over the world, to assess how many additional individuals with contact allergy are found by testing MI 0.2% aq in parallel with MCI/MI 0.02%, and to assess the clinical relevance of MI and MCI/MI allergies. In 9 dermatology clinics representing 9 countries, 3865 consecutive patients with dermatitis were patch tested with MI 0.2% aq and in parallel with MCI/MI 0.02% aq, provisionally included into the baseline series. An assessment of clinical relevance in those allergic to MI was also made. Contact allergy to MI was found in 284 patients (7.3%). The frequency of contact allergy varied from 0.8% to 10.9% in different centers. Simultaneous reactivity to 200 ppm of MCI/MI was found in 67.3% of the MI-positive patients. Contact allergy to MI alone without any simultaneous contact allergy to 200 ppm of MCI/MI was diagnosed in 93 patients (32.7%; 2.4% of all tested patients). The contact allergy to MI and/or MCI/MI could explain or contribute to dermatitis in more than 60% of the MI-allergic patients. Methylisothiazolinone of 2000 ppm needs to be patch tested on its own to not miss contact allergy.

  14. 1D models for condensation induced water hammer in pipelines

    International Nuclear Information System (INIS)

    Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas

    2013-01-01

    Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)

  15. 1D models for condensation induced water hammer in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2013-03-15

    Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)

  16. Plan for the future of neutron research on condensed matter: an Argonne National Laboratory report prepared in response to the Report of the Review Panel on Neutron Scattering

    International Nuclear Information System (INIS)

    1981-01-01

    The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables

  17. Animal Contact Exhibits_Legal Epidemiology Research Procedure and Code Book_2016

    Data.gov (United States)

    U.S. Department of Health & Human Services — Animals at petting zoos and agricultural fairs can be carriers of pathogens, such as Escherichia coli. Disease outbreaks at animal contact exhibits can be prevented...

  18. Clinical research on high oxygen permeable contact lens used after photorefractive keratectomy surgery

    Directory of Open Access Journals (Sweden)

    Hao-Jiang Yang

    2013-07-01

    Full Text Available AIM: To evaluate the outcome of high oxygen permeable contact lens used after photorefractive keratectomy(PRKsurgery.METHODS: Totally 95 patients(190 eyesafter PRK were included. Patients were randomly assigned to wear high oxygen permeable contact lens in one eye and normal lens in the fellow eye after surgery. The subjective symptoms and corneal epithelial status after PRK were evaluated. Uncorrected visual acuity(UCVAand haze were assessed at 6 months after PRK.RESULTS: Complaints of blurred vision, pain and photophobia were statistically more among the normal lens group than high oxygen permeable contact lens group(PPP=0.35. There was no difference in UCVA and haze 6 months after surgery(P=0.55. CONCLUSION: High oxygen permeable contact lens can significantly produce less the corneal irritated symptoms, reduce the discomfort feeling and promote healing of corneal epithelium after PRK.

  19. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    Science.gov (United States)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  20. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  1. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  2. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  3. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  4. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  5. Patch Testing To a Textile Dye Mix by the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E

    2015-01-01

    .2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. CONCLUSIONS: Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix...... should be considered for inclusion into the international baseline series....

  6. Patch testing to a textile dye mix by the international contact dermatitis research group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.

  7. Experimental research on friction factor of end faces of contacting mechanical seals

    Science.gov (United States)

    Wei, Long; Gu, Bo-qin; Feng, Xiu; Sun, Jian-jun

    2008-11-01

    The friction of the seal faces is the most important phenomenon in working process of contacting mechanical seals. The friction factor f is a key parameter for expressing the friction regime of the seal faces, the frictional power, the wearing capacity, the friction heat productivity, the temperature distortion of the end face and the temperature of the end face. The relationship between the friction factor f and the friction regime of the end faces of contacting mechanical seals was discussed from a microscopic point of view. The friction factor is usually worked out by the friction torque which is measured in the test. In the computer aided testing device of the mechanical seal system, the experimental investigations on the basic performance of the B104a-70 contacting mechanical seal was carried out. The test results indicate that the bigger the spring pressure of B104a-70 contacting mechanical seal, the bigger the friction factor. When the spring pressure is less, the bigger the rotational speed, the bigger the friction factor. But when the spring pressure is equal to 0.0866 MPa, the friction factor is not almost influenced by the rotational speed. When the rotational speed and spring pressure are less, the medium pressure has a less influence on the friction factor. When the rotational speed or spring pressure is bigger, the bigger the medium pressure, the less the friction factor.

  8. Learning about Student Research Practices through an Ethnographic Investigation: Insights into Contact with Librarians and Use of Library Space

    Directory of Open Access Journals (Sweden)

    Eamon Tewell

    2017-12-01

    Full Text Available Abstract Objective – Student research habits and expectations continue to change, complicating the design of library spaces and the provision of research support. This study’s intent was to explore undergraduate and graduate student research and study needs at a mid-sized university’s two campuses in the Northeastern United States, and to improve librarians’ understandings of these practices so that more appropriate services and spaces may be developed to support student learning. Methods – The research project utilized a primarily qualitative design for data collection that spanned from fall 2012 to summer 2013, consisting of an online questionnaire, unobtrusive observations, and in-depth semi-structured interviews. Data collection commenced with a questionnaire consisting of 51 items, distributed through campus email to all students and receiving 1182 responses. Second, 32 hours of unobtrusive observations were carried out by librarians, who took ethnographic “field notes” in a variety of Library locations during different times and days of the week. The final method was in-depth interviews conducted with 30 undergraduate and graduate students. The qualitative data were analyzed through the application of a codebook consisting of 459 codes, developed by a data analysis team of 4 librarians. Results – The results address topical areas of student interactions with librarians, contact preferences, and use of library space. Of the interviewees, 60% contacted a librarian at least once, with texting being the most popular method of contact (27%. In being contacted by the library, students preferred a range of methods and generally indicated interest in learning about library news and events through posters and signage. Participants were less interested in receiving library contact via social media, such as Facebook or Twitter. Regarding student use of and preference for library space, prominent themes were students creating their own

  9. Children’s Contact With Their Incarcerated Parents: Research Findings and Recommendations

    OpenAIRE

    Poehlmann, Julie; Dallaire, Danielle; Loper, Ann Booker; Shear, Leslie D.

    2010-01-01

    Approximately 1.7 million children have parents who are incarcerated in prison in the United States, and possibly millions of additional children have a parent incarcerated in jail. Many affected children experience increased risk for developing behavior problems, academic failure, and substance abuse. For a growing number of children, incarcerated parents, caregivers, and professionals, parent– child contact during the imprisonment period is a key issue. In this article, we present a concept...

  10. The complement of research and theory in practice: contact theory at work in nonfamilial intergenerational programs.

    Science.gov (United States)

    Jarrott, Shannon E; Smith, Cynthia L

    2011-02-01

    We assessed whether a shared site intergenerational care program informed by contact theory contributed to more desirable social behaviors of elders and children during intergenerational programming than a center with a more traditional programming approach that lacks some or all of the contact theory tenets. We observed 59 elder and child participants from the two sites during intergenerational activities. Using the Intergenerational Observation Scale, we coded participants' predominant behavior in 15-s intervals through each activity's duration. We then calculated for each individual the percentage of time frames each behavior code was predominant. Participants at the theory-based program demonstrated higher rates of intergenerational interaction, higher rates of solitary behavior, and lower rates of watching than at the traditional program. Contact theory tenets were optimized when coupled with evidence-based practices. Intergenerational programs with stakeholder support that promotes equal group status, cooperation toward a common goal, and mechanisms of friendship among participants can achieve important objectives for elder and child participants in care settings.

  11. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  12. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus; Diepgen, Thomas; Elsner, Peter; Goossens, An; Goh, Chee-Leok; Jerajani, Hemangi; Maibach, Howard; Matsunaga, Kayoko; McFadden, John; Nixon, Rosemary; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. The aims of this study were to investigate the contact allergy rate to PFR-2 in an international population and to investigate associated simultaneous allergic reactions. Thirteen centers representing the International Contact Dermatitis Research Group included PFR-2 into their patch test baseline series during a period of 6 months in 2012. Of 2259 patients tested, 28 (1.2%) reacted to PFR-2. Of those 28 individuals, one had a positive reaction to formaldehyde and 2 to p-tertiary-butylphenol-formaldehyde resin. Simultaneous allergic reactions were noted to colophonium in 3, to Myroxylon pereirae in 5, and to fragrance mix I in 8. The contact allergy frequency in the tested population (1.2%) merits its inclusion into the international baseline series and possibly also into other baseline series after appropriate investigations. Significantly, overrepresented simultaneous allergic reactions were noted for M. pereirae and fragrance mix I.

  13. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.; Quevedo-Ló pez, Manuel Angel Quevedo; Majhi, Prashant

    2011-01-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena

  14. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  15. Computational and experimental research on infrared trace by human being contact

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Zonglong; Yang Kuntao; Ding Wenxiu; Zhang Nanyangsheng; Zheng Wenheng

    2010-06-20

    The indoor detection of the human body's thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph's contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

  16. Computational and experimental research on infrared trace by human being contact

    International Nuclear Information System (INIS)

    Xiong Zonglong; Yang Kuntao; Ding Wenxiu; Zhang Nanyangsheng; Zheng Wenheng

    2010-01-01

    The indoor detection of the human body's thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph's contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

  17. Synthesis and identification of organic components of 'Red Oil' (contact research)

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Takada, Junichi; Nakagiri, Naotaka; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji; Nishio, Gunji

    1999-05-01

    To make clear the organic constituents of the energetic material described as 'Red Oil', laboratory studies were made on the synthesis and identification of chemical constituents of the materials obtained in the synthesis. In the studies, the synthesis was made using a variety of solvent systems (100%TBP/HNO 3 , 100%TBP/HNO 3 /U, 30%TBP/70%n-Dodecane/HNO 3 , 30%TBP/70%n-Dodecane/HNO 3 /U) with an experimental apparatus (1.0 liter under) under conditions, e.g., a temperature range 129 - 192degC and a reaction time 90 - 270 minutes, and GC and GC/MS techniques were mainly used for the identification. A GC analysis showed that the 'Red Oil' prepared from a solvent system (30%TBP/70%n-Dodecane/HNO 3 ) should comprised more than 150 degraded products, 94 products of which were identified purely by a GC/MS technique. Major components found, except for TBP and n-Dodecane being used as the starting materials, were mono- and di-nitro compounds of them, dodecanones, n-butyl nitrate, DBP and MBP. The quantitative analysis of gases formed in the 'Red Oil' synthesis experiments showed that they consisted of various compounds, the order of decreasing content in volume % were NO 2 (23 - 50), CO 2 (17 - 34), N 2 O(5.5 - 15), N 2 (4.3 - 12), CO(4 - 12), NO(1.5 - 8), and hydrocarbons (0.7 - 1.2), and that no detectable presence of O 2 and N 2 . Most of the components in the distillated volatiles collected in the condenser were n-botyl nitrate, but n-butanol were found in relatively small quantities. No significant effect of uranyl nitrate was found on the organic constituents in the 'Red Oil' synthesized. (author)

  18. Synthesis and identification of organic components of `Red Oil` (contact research)

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Takada, Junichi; Nakagiri, Naotaka; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji; Nishio, Gunji

    1999-05-01

    To make clear the organic constituents of the energetic material described as `Red Oil`, laboratory studies were made on the synthesis and identification of chemical constituents of the materials obtained in the synthesis. In the studies, the synthesis was made using a variety of solvent systems (100%TBP/HNO{sub 3}, 100%TBP/HNO{sub 3}/U, 30%TBP/70%n-Dodecane/HNO{sub 3}, 30%TBP/70%n-Dodecane/HNO{sub 3}/U) with an experimental apparatus (1.0 liter under) under conditions, e.g., a temperature range 129 - 192degC and a reaction time 90 - 270 minutes, and GC and GC/MS techniques were mainly used for the identification. A GC analysis showed that the `Red Oil` prepared from a solvent system (30%TBP/70%n-Dodecane/HNO{sub 3}) should comprised more than 150 degraded products, 94 products of which were identified purely by a GC/MS technique. Major components found, except for TBP and n-Dodecane being used as the starting materials, were mono- and di-nitro compounds of them, dodecanones, n-butyl nitrate, DBP and MBP. The quantitative analysis of gases formed in the `Red Oil` synthesis experiments showed that they consisted of various compounds, the order of decreasing content in volume % were NO{sub 2} (23 - 50), CO{sub 2} (17 - 34), N{sub 2}O(5.5 - 15), N{sub 2}(4.3 - 12), CO(4 - 12), NO(1.5 - 8), and hydrocarbons (0.7 - 1.2), and that no detectable presence of O{sub 2} and N{sub 2}. Most of the components in the distillated volatiles collected in the condenser were n-botyl nitrate, but n-butanol were found in relatively small quantities. No significant effect of uranyl nitrate was found on the organic constituents in the `Red Oil` synthesized. (author)

  19. Research of the Resistance of Contact Welding Joint of R65 Type Rail

    Directory of Open Access Journals (Sweden)

    Kęstutis Dauskurdis

    2015-03-01

    Full Text Available In the article the R65 type rail joints that were welded by resistance welding are analysed. Survey methodology of the research consists of the following parts: visual inspection of welded joint, ultrasonic rail inspection, hardness test of upper part of the rail, fusion area research, the measurement hardness test of heat-softened area, the measurement microhardness test, microstructure research of the welded joint, impact strength experiments, chemical analysis of welded joint, wheel-rail interaction research using the finite element method (FEM. The results of the research are analysed and the quality of weld is evaluated. The conclusion is based on the results of this research.

  20. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  1. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2016-01-01

    Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.

  2. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  3. Condensation: the new deal; Condensation: la nouvelle donne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The principle of condensation boilers is based on the recovery of the latent heat of the steam generated by the combustion of natural gas. This technology was introduced in France at the end of the 80's but failed in its promise because of the complexity of the equipments available at that time. Today, constructors' offer is more mature and reliable and the context has changed. This technology can conciliate three goals: a mastery of energy consumptions, the comfort of the user and the respect of environment. This meeting organized by the research center of Gaz de France (Cegibat), was a good opportunity to makes a status of the market of individual condensation systems in France and in Europe, to present the situation of this technology today and the 10 golden rules for the fitting and maintenance of individual condensation boilers, and to present some technical references, examples and results of today's offer. (J.S.)

  4. Modeling of Kerena Emergency Condenser

    Science.gov (United States)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  5. Modeling of Kerena Emergency Condenser

    Directory of Open Access Journals (Sweden)

    Bryk Rafał

    2017-12-01

    Full Text Available KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA was built in Karlstein, Germany. The emergency condenser (EC system transfers heat from the reactor pressure vessel (RPV to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA. The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  6. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  7. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  8. Research of formation of deposits in technological devices and corrosion of contact devices from stainless steel

    Directory of Open Access Journals (Sweden)

    KATAMANOV Vladimir Leonidovich

    2017-11-01

    Full Text Available The paper shows that for majority of technological plants used to process hydrocarbon raw materials when operating a problem of formation of deposits in still-head pipes after the rectifying and stabilization columns, furnaces and other technology devices in oil processing is still of great importance. The structure of still-head deposits of furnace coils and rectifying columns has been studied by the example of small technological plant (STP of JSC Kondensat (Aksay, the Republic of Kazakhstan. It was determined that key components of these deposits are sulfides of iron and copper as well as elementary sulfur. It is shown that the surface of contact devices of STP – grids made of stainless steel of brand 12X18H10T, is substantially subject to corrosion. These samples are the structures which are still keeping geometry of initial grids, but lost their functional properties and characteristics. When mechanical influence is applied such samples easily transform into gray high-disperse powder. During operation period of STP various corrosion inhibitors and deemulgators (for example, TAL-25-13-R have been tested. At the same time practically all tested brands of corrosion inhibitors couldn't decrease corrosion of stainless steel and formation of firm deposits in still-head pipes of technological devices. The existing corrosion inhibitors create protection on the boundary of phases metallic surface – liquid, but they aren't efficient on the boundary of phases metallic surface – liquid – steam-gas phase (at the temperature of 150–250оC. The authors propose the mechanism of formation of these compounds based on result of corrosion of metal gauzes made of stainless steels brand X6CrNiTi18-10in the presence of sulphurous compounds.An active method of corrosion prevention is recommended to apply. The method is based on creation of nanodimensional anticorrosion coatings from binary compounds (such as titanium nitride or pure metals (Ni, Cr, Ti

  9. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  10. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  11. Emergency condensator for BWR type reactor

    International Nuclear Information System (INIS)

    Ubakai, Yoichi; Narumi, Yuichi; Sakata, Yuji.

    1992-01-01

    An emergency condensator is constituted with heat transfer pipes, a steam chamber, an upper pipe plate, a lower pipe plate and a condensate chamber. The upper pipe plate is secured by supports, and a steam pipe is connected to the upper pipe plate. A condensate pipeline and a incondensible gas vent pipe are disposed to the condensate chamber. Taking thermal expansion of the steam pipes and thermal expansion of the heat transfer pipes into consideration, the heat transfer pipe is made as an L-shaped pipe having a vertical portion and a horizontal portion so as to absorb each of the thermal expansion smoothly. The L-shaped heat transfer pipes are constituted as a bundle of pipes having the end portions thereof secured to the upper pipe plate and the lower pipe plate. The emergency condensator is disposed in a emergency condensator pool chamber. Cooling water in contact with the outer side of the L-shaped heat transfer pipes is the pool water in the pool chamber, and the condensator chamber is disposed in concrete walls of the pool chamber. With such a constitution, stress due to thermal expansion of the heat transfer pipes is mitigated, and heat transfer performance, earth quake resistance and maintenancability are improved. (I.N.)

  12. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    Science.gov (United States)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  13. The (in)stability of 21st century orthopedic patient contact information and its implications on clinical research: A cross-sectional study.

    Science.gov (United States)

    London, Daniel A; Stepan, Jeffrey G; Goldfarb, Charles A; Boyer, Martin I; Calfee, Ryan P

    2017-04-01

    In clinical research, minimizing patients lost to follow-up is essential for data validity. Researchers can employ better methodology to prevent patient loss. We examined how orthopedic surgery patients' contact information changes over time to optimize data collection for long-term outcomes research. Patients presenting to orthopedic outpatient clinics completed questionnaires regarding methods of contact: home phone, cell phone, mailing address, and e-mail address. They reported currently available methods of contact, if they changed in the past 5 and 10 years, and when they changed. Differences in the rates of change among methods were assessed via Fisher's exact tests. Whether participants changed any of their contact information in the past 5 and 10 years was determined via multivariate modeling, controlling for demographic variables. Among 152 patients, 51% changed at least one form of contact information within 5 years, and 66% changed at least one form within 10 years. The rate of change for each contact method was similar over 5 (15%-28%) and 10 years (26%-41%). One patient changed all four methods of contact within the past 5 years and seven within the past 10 years. Females and younger patients were more likely to change some type of contact information. The type of contact information least likely to change over 5-10 years is influenced by demographic factors such as sex and age, with females and younger participants more likely to change some aspect of their contact information. Collecting all contact methods appears necessary to minimize patients lost to follow-up, especially as technological norms evolve.

  14. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  15. Purification method for condensate

    International Nuclear Information System (INIS)

    Shimoda, Akiyoshi.

    1996-01-01

    Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)

  16. Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface

    International Nuclear Information System (INIS)

    Wu, Yanpeng; Zhang, Chaoying

    2013-01-01

    Wetting theory about superhydrophobic surfaces reveals that hydrophobicity of surfaces has great relationship with surface roughness and surface free energy. Adopt electrochemical plus fluorine silane modified method to prepare superhydrophobic surface on anodic aluminum oxide surface, which not only enhances surface roughness, but also reduces surface free energy, even the static contact angle can reach 159.2° and anti-condensation is authenticated. Based on the experimental findings, analyze the reason of anti-condensation on superhydrophobic surfaces: one is that the density of droplets formed on superhydrophobic surfaces is low and the number of droplets is little; the other is bigger static contact angle and smaller rolling angle on superhydrophobic surfaces make droplets easy to detach on smaller tilt angle. This research can solve some condensation problems of equipment using in HVAC systems, such as heat exchangers in air conditioning system, cold radiation boards, air supply outlets, and so on. Highlights: • Prepare superhydrophobic surface on anodic aluminum oxide surface. • Analyze the reason of anti-condensation on superhydrophobic surfaces. • The density of droplets formed on superhydrophobic surfaces is low. • Droplets on superhydrophobic surfaces are easy to detach. • This research can solve some problems of equipment using in HVAC systems

  17. 缩合单宁对反刍动物瘤胃发酵的影响与研究进展%Research Progress on Effects of Condensed Tannins on Rumen Fermentation

    Institute of Scientific and Technical Information of China (English)

    邱清华

    2016-01-01

    Condensed tannin are found in many forage plants as a common anti-nutritional factor. Recent researches on ruminants found condensed tannins showed nutritional functions in increasing rumen bypass protein, controlling methane emissions and controling rumen fermentation. This paper reviews the effect of condensed tannins on the structure of ruminal microflora, pH, ammonia nitrogen, methane production and production of microbial crude protein. New research directions and prospects of condensed tannins were proposed as well.%缩合单宁作为一种常见的抗营养因子,存在于众多饲草植物中。近年来在反刍动物上的研究发现缩合单宁在提高过瘤胃蛋白、控制甲烷排放以及调控瘤胃发酵方面表现出营养作用。本文综述了缩合单宁对瘤胃微生物区系结构、pH、甲烷产量、氨态氮以及微生物蛋白含量的影响,并提出了缩合单宁新的研究方向和应用前景。

  18. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  19. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  20. Condensation in complex geometries

    International Nuclear Information System (INIS)

    Lauro, F.

    1975-01-01

    A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr

  1. New research on glass beads confirms trade and contact between Southern Africa and Southeast Asia ca. AD 950-1250

    International Nuclear Information System (INIS)

    Saitowitz-Fenton, S.J.

    1997-01-01

    Luxury goods, used in Muslim and medieval long distance trade between ca. AD 900-1250, found an important market among the Iron Age peoples of southern Africa. Indirect evidence of this trade can be seen in the form of archaeological collections of glass beads at sites throughout Africa and Southeast Asia. Texts, chronicles, glass weights, scribal notes and receipts confirm that it was already a successful industrial centre with a history of glass-making when the Fatimids gained control of Egypt. In this study the author addressed three aspects of research to investigate the trade networks associated with internal and foreign contact: (1) the manufacturing origins of the beads, (2) who brought them to southern Africa, and (3) their dispersal in the region. Glass material from Egypt, Palestine, Syria and Southeast Asia was used for comparison, and as possible source material. Scientific techniques were used to confirm these operations. The beads were described, classified, and sampled selectively for physical and chemical analysis. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) used to determine the rare earth element (REE) shows that a particular glass, used to make beads in Egypt, is the same as that used to make some of the beads found at sites in the northern and eastern Transvaal. They document the existence of a trade link with the Mediterranean via the Red Sea 1000 years ago. Until now, both the origin of this contact and the extent of indigenous responses were largely unknown. These findings cast a different light on maritime trade along the east coast of Africa a millennium ago, and on external influences which helped to launch significant political developments in southern Africa

  2. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  3. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  4. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  5. 不同通风条件对环网柜凝露现象的影响%Research on RMU Condensation Phenomenon Under Different Ventilation Conditions

    Institute of Scientific and Technical Information of China (English)

    耿江海; 钦雨晨; 郭沁; 刘若溪; 王兴越; 律方成

    2017-01-01

    As one of the factors that affect the reliability of the power system,the condensation phenomenon seriously threatens the safe operation of electrical equipment.An experiment system of ring main unit (RMU) is set up in an artificial climate chamber,and the formation time of condensation on the cabinet inner wall is recorded under different conditions of full ventilation,half ventilation and non-ventilation of the RMU's shell with different ambient temperatures and relative humidity.The results show that,when the ambient humidity is constant within a certain temperature range,the formation time of condensation under ventilation is longer than that under non-ventilation,and the half ventilation has the longest condensation time.When the ambient temperature reaches a certain value,the ventilation,however,can stimulate the formation of condensation.With the increase of ambient temperatures,the formation time of condensation increases before decreasing,and the lower the relative humidity,the better the ventilation effects are.A suitable ambient temperature and ventilation area can make the better effects of anti-condensation under ventilation.%凝露现象作为影响电力系统可靠性的因素之一,威胁着电气设备的安全运行.在人工环境气候室内搭建了环网柜实验系统,记录了环网柜壳体全通风、半通风、不通风以及不同环境温湿度条件下,柜体内壁凝露形成时间.结果表明:当环境湿度不变时,在一定环境温度范围内,通风情况下的凝露时间比不通风时要长.且半通风时凝露时间最长,而当环境温度达到一定值时,通风反而会促进凝露形成;凝露时间随环境温度的增加呈现先增大后减小的趋势,且环境相对湿度越低,通风效果越好;存在适宜的环境温度以及通风面积.使得通风条件下的防凝露效果相对较好.

  6. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  7. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  8. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  9. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  10. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  11. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  12. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  13. Contact and symplectic topology

    CERN Document Server

    Colin, Vincent; Stipsicz, András

    2014-01-01

    Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

  14. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, M.; Ale, I.; Andersen, Klaus Ejner

    2015-01-01

    Background Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. Objective The aims of this study were to investigate the contact allergy rate to PFR-2.......2%) reacted to PFR-2. Of those 28 individuals, one had a positive reaction to formaldehyde and 2 to p-tertiary-butylphenol-formaldehyde resin. Simultaneous allergic reactions were noted to colophonium in 3, to Myroxylon pereirae in 5, and to fragrance mix I in 8. Conclusions The contact allergy frequency...

  15. CONTACT RESISTANCE MODELING

    Directory of Open Access Journals (Sweden)

    S. V. LOSKUTOV

    2018-05-01

    Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

  16. Condensation During Nuclear Reactor Loca

    International Nuclear Information System (INIS)

    Rihan, Y.; Teamah, M.; Sorour, M.; Soliman, S.

    2008-01-01

    Two-phase channel flow with condensation is a common phenomenon occurs in a number of nuclear reactor accident scenarios. It also plays an important role during the operation of the safety coolant injection systems in advanced nuclear reactors. Semiempirical correlations and simple models based on the analogy between heat and mass transfer processes have been previously applied. Rigorous models, compatible with the state-of-the-art numerical algorithms used in thermal-hydraulic computer codes, are scare, and are of great interest. The objective of this research is to develop a method for modeling condensation, with noncondensable gases, compatible with the state-of-the-art numerical methods for the solution of multi-phase field equations. A methodology for modeling condensation, based on the stagnant film theory, and compatible with the reviewed numerical algorithms, is developed. The model treats the coupling between the heat and mass transfer processes, and allows for an implicit treatment of the mass and momentum exchange terms as the gas-liquid interphase, without iterations. The developed model was used in the application of loss of coolant in pressurized water reactor accidents

  17. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  18. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  19. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  20. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  1. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  2. Continuous condensation device for vapors in the atmosphere

    International Nuclear Information System (INIS)

    Tricot, M.

    1983-01-01

    The continuous condensation device for vapors from the atmosphere is such those in which this atmosphere circulates in contact with a cold source involving the condensation of these vapors. It includes a thermoelectric module using the Peltier effect; the hot side is bonded to a heat sink and the cold side is in contact with an insulated condensation chamber in which flows the atmosphere charged with vapors to be condensated. The condensation chamber has a metallic structure through which a low voltage direct current is passed; this structure has small blades with holes, through which the condensate flows under gravity in the lower part of the chamber which have a hole to evacuate this liquid. The thermoelectric module comprises an assembly of thermocouples made of an array of alloy plates. The temperature inside the condensation chamber is maintained at just above 0 0 C. This device is used for the sampling of atmosphere water especially in the determination of tritium content of the atmosphere around nuclear installations [fr

  3. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  4. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  5. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  6. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  7. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  8. Bose Condensate in He II

    International Nuclear Information System (INIS)

    Svensson, E.C.

    1984-01-01

    The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described

  9. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  10. Systematic text condensation: a strategy for qualitative analysis.

    Science.gov (United States)

    Malterud, Kirsti

    2012-12-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies. Giorgi's psychological phenomenological analysis is the point of departure and inspiration for systematic text condensation. The basic elements of Giorgi's method and the elaboration of these in systematic text condensation are presented, followed by a detailed description of procedures for analysis according to systematic text condensation. Finally, similarities and differences compared with other frequently applied methods for qualitative analysis are identified, as the foundation of a discussion of strengths and limitations of systematic text condensation. Systematic text condensation is a descriptive and explorative method for thematic cross-case analysis of different types of qualitative data, such as interview studies, observational studies, and analysis of written texts. The method represents a pragmatic approach, although inspired by phenomenological ideas, and various theoretical frameworks can be applied. The procedure consists of the following steps: 1) total impression - from chaos to themes; 2) identifying and sorting meaning units - from themes to codes; 3) condensation - from code to meaning; 4) synthesizing - from condensation to descriptions and concepts. Similarities and differences comparing systematic text condensation with other frequently applied qualitative methods regarding thematic analysis, theoretical methodological framework, analysis procedures, and taxonomy are discussed. Systematic text condensation is a strategy for analysis developed from traditions shared by most of the methods for analysis of qualitative data. The method offers the novice researcher a process of intersubjectivity, reflexivity, and feasibility, while maintaining a responsible level of methodological rigour.

  11. Research on the mechanism of inhibition of stress corrosion cracking by water chemistry of nuclear reactor. JAERI's nuclear research promotion program, H10-004 (contact research)

    International Nuclear Information System (INIS)

    Shibata, Toshio; Haruna, Takumi; Fujimoto, Shinji; Zhang, Shenghan

    2000-09-01

    We have developed a slow strain rate testing apparatus combined with a CCD camera system for researching stress corrosion cracking of the materials in high temperature and high pressure water, like nuclear reactor environment. The features of the tensile testing apparatus are the following; pressure up to 100 kg/cm 2 , temperature up to 300degC, and cross head speed down to 10 -5 mm/min. In addition, initiation and propagation of the multiple crack appearing on the material surface in the water at high pressure and high temperature can be clearly observed through a sapphire window penetrating an autoclave. Using the apparatus, we investigated the effects of temperature and species of anion, SO 4 2- and B 4 O 7 2- on the crack initiation and propagation of sensitized 304 stainless steel. The following were revealed: in the sulfate solutions, crack initiation time decreased with increase in temperature from 100 to 250degC, while crack initiation frequency showed maximum at 150degC. In the borate solutions, however, no crack was found on the gauge section of the specimen at any temperatures. This indicates the borate can suppress the initiation of cracks. The effect of anion on the crack initiation may be explained by hardness of anion based on the hard and soft acids and bases concept and the passive film model. (author)

  12. Multicenter Patch Testing With Methylchloroisothizoline/Methylisothiazolinone in 100 and 200 ppm Within the International Contact Dermatitis Research Group.

    Science.gov (United States)

    Engfeldt, Malin; Ale, Iris; Andersen, Klaus E; Elsner, Peter; Goh, Chee-Leok; Goossens, An; Jerajani, Hemangi; Matsunaga, Kayoko; Bruze, Magnus

    The preservative methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) is a well-known contact sensitizer. Historically, there have been different opinions on the optimal patch test concentration of MCI/MI, and both 0.01% and 0.02% aqueous (aq.) have been proposed. In 2011, based on literature reviews, it was recommended that the concentration of 0.02% aq. should be used in the international baseline series. The aim of this study was to verify the recommendation from 2011 by comparing the patch test results from consecutive patch testing with MCI/MI 0.01% and 0.02% in clinics representing countries around the world. Two thousand seven hundred three consecutive patients with dermatitis in 8 dermatology clinics representing 8 countries were patch tested with MCI/MI 0.01% aq. and, in parallel with MCI/MI 0.02% aq., provisionally included in the baseline series. Contact allergy to MCI/MI at 0.01% and 0.02% was found in 3.7% and 5.6% of the patients, respectively (P contact allergy than 0.01% (dose, 3 μg/cm), without resulting in more adverse reactions. Methylchloroisothiazolinone/MI at 0.02% aq. should therefore be continuously used in the international baseline series.

  13. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  14. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  15. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  16. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  17. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  18. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  19. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  20. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  1. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  2. Condenser performance monitoring and cleaning

    International Nuclear Information System (INIS)

    Walden, J.V.

    1998-01-01

    The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control

  3. Methodological developments in qualitative longitudinal research: the advantages and challenges of regular telephone contact with participants in a qualitative longitudinal interview study.

    Science.gov (United States)

    Carduff, Emma; Murray, Scott A; Kendall, Marilyn

    2015-04-11

    Qualitative longitudinal research is an evolving methodology, particularly within health care research. It facilitates a nuanced understanding of how phenomena change over time and is ripe for innovative approaches. However, methodological reflections which are tailored to health care research are scarce. This article provides a synthesised and practical account of the advantages and challenges of maintaining regular telephone contact between interviews with participants in a qualitative longitudinal study. Participants with metastatic colorectal cancer were interviewed at 3 time points over the course of a year. Half the group also received monthly telephone calls to explore the added value and the feasibility of capturing change as close to when it was occurring as possible. The data gathered from the telephone calls added context to the participants' overall narrative and informed subsequent interviews. The telephone calls meant we were able to capture change close to when it happened and there was a more evolved, and involved, relationship between the researcher and the participants who were called on a monthly basis. However, ethical challenges were amplified, boundaries of the participant/researcher relationship questioned, and there was the added analytical burden. The telephone calls facilitated a more nuanced understanding of the illness experience to emerge, when compared with the interview only group. The findings suggest that intensive telephone contact may be justified if retention is an issue, when the phenomena being studied is unpredictable and when participants feel disempowered or lack control. These are potential issues for research involving participants with long-term illness.

  4. Capillary Condensation in Pores with Rough Walls:

    Czech Academy of Sciences Publication Activity Database

    Bryk, P.; Rżysko, W.; Malijevský, Alexandr; Sokołowski, S.

    2007-01-01

    Roč. 313, č. 1 (2007), s. 41-52 ISSN 0021-9797 Grant - others:TOK(XE) 509249 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : adsorption * pore * capillary condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.309, year: 2007

  5. Corrosion-related failures in power plant condensers. Final report

    International Nuclear Information System (INIS)

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1980-08-01

    A survey of the literature has been conducted for the Electric Power Research Institute on corrosion failures in surface condensers. The survey was directed toward condenser failures in pressurized water reactor (PWR) power plants but includes pertinent literature related to fossil and to other nuclear power plants. It includes literature on reported service failures and on experimental studies that impact on these failures

  6. [Contact characteristics research of acetabular weight-bearing area with different internal fixation methods after compression fracture of acetabular dome].

    Science.gov (United States)

    Xu, Bowen; Zhang, Qingsong; An, Siqi; Pei, Baorui; Wu, Xiaobo

    2017-08-01

    To establish the model of compression fracture of acetabular dome, and to measure the contact characteristics of acetabular weight-bearing area of acetabulum after 3 kinds of internal fixation. Sixteen fresh adult half pelvis specimens were randomly divided into 4 groups, 4 specimens each group. Group D was the complete acetabulum (control group), and the remaining 3 groups were prepared acetabular dome compression fracture model. The fractures were fixed with reconstruction plate in group A, antegrade raft screws in group B, and retrograde raft screws in group C. The pressure sensitive films were attached to the femoral head, and the axial compression test was carried out on the inverted single leg standing position. The weight-bearing area, average stress, and peak stress were measured in each group. Under the loading of 500 N, the acetabular weight-bearing area was significantly higher in group D than in other 3 groups ( P area were significantly higher in group B and group C than in group A, and the average stress and peak stress were significantly lower than in group A ( P 0.05). For the compression fracture of the acetabular dome, the contact characteristics of the weight-bearing area can not restore to the normal level, even if the anatomical reduction and rigid internal fixation were performed; compared with the reconstruction plate fixation, antegrade and retrograde raft screws fixations can increase the weight-bearing area, reduce the average stress and peak stress, and reduce the incidence of traumatic arthritis.

  7. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  8. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  9. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  10. Design analysis of a Helium re-condenser

    Science.gov (United States)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  11. Method for extending the unrestricted operating range of condensing steam turbines

    International Nuclear Information System (INIS)

    Csaba, G.; Bannerth, Cs.

    2009-01-01

    The allowed condenser temperature of the condensing steam turbines is determined by the design parameters of the steam turbine (casing geometry, exhaust area, blade length, blade angle, blade profile etc.). The fluctuations of condenser temperature may lead to reduced power output of the condensing steam turbine. Solutions where the low pressure turbine casings have the same exhaust area can be kept in operation at narrow condenser temperature range without restrictions. Exceeding the mentioned temperature range the exhaust hood temperature restriction, undergoing the temperature range choking point restriction appears causing increased operation cost. The aim of the paper is to present a condensing steam turbine - direct-contact condenser system that can extend the unrestricted operating range. The examined system consists of more parallelly connected low pressure turbine casings so-called diabolo that having at least two exhausts separated at the steam side. The exhausts, utilizing varying input-temperature coolant, are connected to the condensers that are separated at the steam side and serially connected at the coolant side. The casings have the same inlet areas while the exhausts have different areas resulting different volume flows and temperature operating range. The economic advantage of this solution approaches the savings between the serially connected direct-contact condensers and condensers in parallel of a dry cooling system. It can be proven by a simple calculation using the ambient air temperature duration diagram that is presented in the paper. (author)

  12. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    Science.gov (United States)

    Kang, Huang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  13. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  14. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  15. LANL Contacts

    Science.gov (United States)

    : (505) 665-3664 ethics@lanl.gov Journalist queries Communications Office (505) 667-7000 Media contacts programs and employee resources. General Employee directory Emergency communication Communications Office (505) 667-7000 Ethics & Audits Internal Audit: (505) 665-3104 Ethics Office: (505) 667-7506 Fax

  16. Assessment and improvement of condensation model in RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Hui Cheon; Choi, Kee Yong; Park, Hyeon Sik; Kim, Sang Jae [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Lee, Sang Il [Korea Power Engineering Co., Inc., Seoul (Korea, Republic of)

    1997-07-15

    The objective of this research is to remove the uncertainty of the condensation model through the assessment and improvement of the various heat transfer correlations used in the RELAP5/MOD3 code. The condensation model of the standard RELAP5/MOD3 code is systematically arranged and analyzed. A condensation heat transfer database is constructed from the previous experimental data on various condensation phenomena. Based on the constructed database, the condensation models in the code are assessed and improved. An experiment on the reflux condensation in a tube of steam generator in the presence of noncondensable gases is planned to acquire the experimental data.

  17. Optimal design of condenser weight

    International Nuclear Information System (INIS)

    Zheng Jing; Yan Changqi; Wang Jianjun

    2011-01-01

    The condenser is an important component in nuclear power plants, which dimension and weight will effect the economical performance and the arrangement of the nuclear power plants. In this paper, the calculation model is established according to the design experience. The corresponding codes are also developed, and the sensitivity of design parameters which influence the condenser weight is analyzed. The present design optimization of the condenser, taking the weight minimization as the objective, is carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme, and also verify the feasibility of the complex-genetic algorithm. (authors)

  18. The order of condensation in capillary grooves

    International Nuclear Information System (INIS)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-01-01

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p co (L) described, for large widths, by the Kelvin equation p sat − p co (L) = 2σcosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θ cap ; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σsinθ cap /L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θ cap = 0 and the influence of corner menisci on adsorption isotherms are presented. (fast track communication)

  19. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  20. The pyrolysis of gas condensate at the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Magaril, R.Z.; Khankuliyev, K.; Kul' zhayev, B.A.; Sergiyenko, S.R.

    1984-01-01

    The continuing growth in industrial demand for lower olefins for the manufacture of polymer materials has necessitated an expansion in the manufacture of ethylene. Gas condensate may serve as a source of ethylene manufacturing. The influence of the contact temperature and time in the pyrolysis of unseparated condensate from the Shatlyk field on the yield of lower olefins was investigated. It was discovered that the total yield of lower olefins (C2-C4) increases with an increase in the pyrolysis temperature, reaching a maximum of 63 to 67 percent by weight at a temperature of 1098 degrees Kelvin and contact time of .5 to .7 seconds, and at 1123 degrees Kelvin and .3 seconds, the maximum ethylene yield (40 percent) was obtained at 1123 degrees Kelvin, and at all previously noted temperatures with a contact time of .9 seconds.

  1. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  2. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  3. Bose-Einstein Condensation

    International Nuclear Information System (INIS)

    Jaksch, D

    2003-01-01

    The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is

  4. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  5. CFD simulation on condensation inside a Hybrid SIT

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Ryu, Sung Uk; Kim, Seok; Euh, Dong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of Hybrid Safety Injection Tank system (Hybrid SIT) was proposed by Korea Atomic Energy Research Institute (KAERI) aiming at Advanced Power Reactor Plus. The main advantage of the system is the ready injection of coolant into the reactor coolant system at high pressure. In this paper, a CFD simulation is conducted as a preliminary study. In Hybrid SITs, condensation inside the tank affects its pressure rise and injection time. In an attempt to explore the condensation in detail, we manufactured a dedicated experimental facility for visualization of condensation-induced thermal mixing and conducted a preliminary CFD simulation. Its condensation models were validated first and then computational domain was constructed. The water region was modeled as a solid for stable calculation. The CFD results gave less condensation and excessive pressurization because of lack of steam penetration into the water. In the future, the water region will be modeled as liquid using a VOF model.

  6. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  7. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  8. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  9. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  10. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  11. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  12. Emotional Satisfaction of Customer Contacts

    OpenAIRE

    Güngör, Hüseyin

    2007-01-01

    For marketing and customer services researchers and professionals who are interested in customer contacts, customer satisfaction and loyalty issues. Contact centers are playing a pivotal role in customer services of the 21st century. Nevertheless, despite their growing importance and presence, contact centers are increasingly becoming the center for customer frustration, and frequently associated with negative comments in the media. Therefore, this research explores the Emotional, Cognitive, ...

  13. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  14. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  15. Development of coaxial speaker-like non-contact electrostatic sensor for aviation engine exhaust electrostatic character research

    Directory of Open Access Journals (Sweden)

    Du Zhaoheng

    2015-01-01

    Full Text Available Electrostatic sensor is the most important equipment in aero-engine exhaust electrostatic character research. By comparing a variety of sensor test programs, the coaxial speaker-like noncontact electrostatic sensor program is proposed. Numerical simulation analysis indicates the electric field distribution of electrostatic sensor, the influence principle of gap width, outer diameter, center diameter, angle and other factors on the sensor capacitance values which identify the key indicators of electrostatic sensor. The experiment test shows that the simulation analysis is in good agreement with the experimental results.

  16. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  17. Condensation in Nanoporous Packed Beds.

    Science.gov (United States)

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  18. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  19. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  20. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  1. Optimal contact definition for reconstruction of Contact Maps

    Directory of Open Access Journals (Sweden)

    Stehr Henning

    2010-05-01

    Full Text Available Abstract Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a to what accuracy does a contact map represent its corresponding 3D structure, b what is the best contact map representation with regard to reconstructability and c what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through

  2. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  3. Intervention implementation research: an exploratory study of reduction strategies for occupational contact dermatitis in the printing industry.

    Science.gov (United States)

    Brown, Terry P; Rushton, Lesley; Williams, Hywel C; English, John S C

    2007-01-01

    Occupational dermatitis is a problem in the printing industry but can be avoided through adequate protective measures. Research into intervention implementation is fundamental to the success of a formal intervention effectiveness trial. The preliminary testing of four risk reduction strategies for occupationally caused dermatitis, which represent a range of approaches and cost implications. The strategies, the provision of (i) skin checks plus treatment advice; provision of (ii) gloves of the correct type/size plus use of an after-work cream; provision of (iii) information highlighting the problem of occupational dermatitis and (iv) development of a best practice skin care policy, were evaluated over 3 months in two non-randomly selected companies. A post-intervention evaluation into the effectiveness and efficacy of the intervention was also carried out. All interventions were found to be acceptable to some extent. No single intervention appeared to be completely effective. The most practical intervention appeared to be the regular use of gloves of the correct type and size. This preliminary intervention study has demonstrated an improvement in the skin condition of workers examined and points towards the need for further testing of risk reduction strategies for the prevention of dermatitis in the printing industry on a much larger scale.

  4. Aerobic microbial metabolism of condensed thiophenes found in petroleum

    International Nuclear Information System (INIS)

    Kropp, K. G.

    1997-01-01

    The aerobic microbial degradation of 21 condensed thiophenes found in petroleum or synthetic fuels have been studied, motivated by recent research which showed that resistance to biodegradation increases with increasing methyl-substitution. The specific objective was to identify metabolites in pure cultures of aromatic hydrocarbon-degrading Pseudomonas spp. incubated in mineral medium in the presence of an aromatic growth substrate and a condensed thiophene. Over 80 metabolites of the condensed thiophenes were identified using gas chromatography analysis with an atomic emission detector. Among the metabolites identified were sulfoxides, sulfones, hydroxy- and carboxyl-substituted benzothiophenes, hydroxy-substituted dibenzothiophenes, substituted benzothiophene-2,3-diones, and 3-hydroxy-2-formylbenzothiophenes

  5. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  6. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  7. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  8. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  9. Estimation of the Influence of Operational Factors on the Oxygen Content of the Turbine Condensate at the Outlet from the Condenser of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Shempelev A. G.

    2017-08-01

    Full Text Available The aim of the article is to analyze the influence of different factors on the oxygen content in the condensate using the example of the condenser of the steam turbine unit T-110/120-130. For the first time, the authors of the article analyze in details how the basic parameters of the condenser's operation (the condenser heat load, the flow and temperature of the cooling water, the air inflow in the condenser, the condition of the heat exchange surface influence the oxygen content of the condensate. The authors come to the conclusion that with standard air inflow in the vacuum system, the equilibrium oxygen content, which corresponds to the norms in the condensate at the condenser outlet, is only possible in its operation modes when the steam flow to the condenser is more than 50% of the nominal flow and cooling water temperatures are equal to or greater than calculated for this type of condenser. The conclusions are confirmed by the experimental material. The results of the research are the basis for the development of measures aimed to increase the deaerating capacity of condensers depending on specific operating conditions.

  10. Solar engineering - a condensed course

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars

    2011-11-15

    The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.

  11. Patch testing with methylchloroisothiazolinone/methylisothiazolinone 200 ppm aq. detects significantly more contact allergy than 100 ppm. A multicentre study within the European Environmental and Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Bruze, Magnus; Isaksson, Marléne; Gruvberger, Birgitta

    2014-01-01

    , and that for IQ Chambers(®) was 25 µl. RESULTS: Contact allergy to MCI/MI at 100 and 200 ppm was found in 1.2% and 2.1% of patients, respectively (p more contact allergy than the presently used concentration of 100 ppm (dose...... 0.003 mg/cm(2)), without resulting in more adverse reactions. MCI/MI at 200 ppm should therefore be considered for inclusion in the European baseline test series....

  12. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  13. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  14. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  15. Microscopic observations of condensation of water on lotus leaves

    Science.gov (United States)

    Cheng, Yang-Tse; Rodak, Daniel E.; Angelopoulos, Anastasios; Gacek, Ted

    2005-11-01

    We report an in situ observation of water condensation and evaporation on lotus leaf surfaces inside an environmental scanning electron microscope. The real-time observation shows, at the micrometer length scale, how water drops grow to large contact angles during water condensation, and decrease in size and contact angle during the evaporation phase of the experiment. To rationalize the observations, we propose a geometric model for liquid drops on rough surfaces when the size of the drop and surface roughness scale are comparable. This model suggests that when drop size and surface roughness are of the same magnitude, such as micrometer size water drops on lotus leaves, well-known equations for wetting on rough surfaces may not be applicable.

  16. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  17. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  18. Studies of condensation/evaporation processes in the Glowworm Cave, New Zealand

    Directory of Open Access Journals (Sweden)

    de Freitas Chris R.

    2006-07-01

    Full Text Available The condensation/evaporation process is important in caves, especially in tourist caves where there is carbon dioxide enriched air caused by visitors. The cycle of condensation and evaporation of condensate is believed to enhance condensation corrosion. The problem is condensation is difficult to measure. This study addresses the problem and reports on a method for measuring and modelling condensation rates in a limestone cave. Electronic sensors for measuring condensation and evaporation of the condensate as part of a single continuous process of water vapour flux are tested and used to collect 12 months of data. The study site is the Glowworm tourist cave in New Zealand. The work describes an explanatory model of processes leading to condensation using data based on measurements of condensation and evaporation as part of a single continuous process of water vapour flux. The results show that the model works well. However, one of the most important messages from the research reported here is the introduction of the condensation sensor. The results show that condensation in caves can actually be measured and monitored, virtually in real time. In conjunction with the recent developments in data logging equipment, this opens exciting perspectives in cave climate studies, and, more generally, in hydrogeological studies in karst terrains.

  19. Recommendation to increase the test concentration of methylchloroisothiazolinone/methylisothiazolinone in the European baseline patch test series - on behalf of the European Society of Contact Dermatitis and the European Environmental and Contact Dermatitis Research Group.

    Science.gov (United States)

    Bruze, Magnus; Goossens, An; Isaksson, Marléne

    2014-07-01

    Methylchloroisothiazolinone (MCI)/methylisothiazolinone (MI) in aqua is present in the European baseline patch test series at 100 ppm, whereas 200 ppm has been used in Sweden since 1986, in Spain in the late 1980s, and, in recent years, also in the United Kingdom and Ireland. With regard to MCI/MI, to investigate the data on contact allergy rates in dermatitis patients, the frequencies of allergic contact dermatitis in the same group, and adverse reactions, particularly patch test sensitization in tested dermatitis patients, and to find the optimal patch test concentration as dose in mg/cm(2) . We performed a survey of the literature found via the National Library of Medicine (PubMed, http://www.ncbi.nlm.nih.gov/pubmed, last accessed 20 February 2014). MCI/MI at 200 ppm aq. diagnosis substantially more contact allergy and allergic contact dermatitis, without any registered increase in patch test sensitization, than the presently used concentration of 100 ppm. MCI/MI at 200 ppm aq. is recommended to be included in the European baseline patch test series. To avoid patch test sensitization, a dose of 0.006 mg/cm(2) must not be exceeded, which means a volume of 15 µl for Finn Chambers(®) (Ø 8 mm). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  1. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  2. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  3. Emotional Satisfaction of Customer Contacts

    NARCIS (Netherlands)

    Güngör, Hüseyin

    2007-01-01

    For marketing and customer services researchers and professionals who are interested in customer contacts, customer satisfaction and loyalty issues. Contact centers are playing a pivotal role in customer services of the 21st century. Nevertheless, despite their growing importance and presence,

  4. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  5. Study of condensate removal from wells

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, Z I

    1967-01-01

    A pressure profile of well No. 218 in the Karadag condensate field showed that pressure did not vary linearly with depth. Calculations indicated that at depths of 3,000-3,640 m, produced fluid had a density of 0.29g/ cmU3D, whereas pure condensate gas should have a density of 0.11g/cmU3D. Apparently liquid was accumulating in the well. Other data showed that gas velocity in the well at various depths varied from 6 to 11 m/sec. It was also found that this same range of gas velocities was sufficient to prevent liquid accumulation in other wells. In an effort to solve this problem, the upward flow of gas-water and of gas-condensate mixtures in tubes was studied. Each had a different flow regime. Gas-condsensate formed foam, whereas the gas-water mixture did not. This resolved the problem, since foam is known to aid the removal of liquid by gas. Additional research showed that water was present in, and promoted accumulation of, liquid in well No. 218.

  6. Experimental study of EHD pseudo-dropwise condensation

    International Nuclear Information System (INIS)

    Yabe, A.; Taketani, T.; Yoshizawa, Y.; Sunada, K.

    1991-01-01

    This paper reports that in order to realize a higher performance heat pump, an electrohydrodynamical (EHD) condenser utilizing a combination of two kinds of EHD phenomena has been researched. In this study, to maximize the augmentation effect, an experimental study has been carried out to clarify the details of an EHD pseudo-dropwise condensation. The diameter of the drops has decreased with the increase of the electric field. The condensation heat transfer coefficients have increased in proportion to the electric field strength, realizing the maximum local heat transfer coefficients of over 9000 W/m 2 K for CFC113 and over 11000W/m 2 K for HCFC123. Furthermore, the heat transfer coefficients have become the same for the same electric field strength, independent of the surface temperature of the heat transfer plate, if the amount of the falling condensate is the same

  7. ALLERGIC CONTACT DERMATITIS

    Directory of Open Access Journals (Sweden)

    Trisna Yuliharti Tersinanda

    2013-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Allergic contact dermatitis is an immunologic reaction that tends to involve the surrounding skin and may even spread beyond affected sites. This skin disease is one of the more frequent, and costly dermatologic problems. Recent data from United Kingdom and United States suggest that the percentage of occupational contact dermatitis due to allergy may be much higher, thus raising the economic impact of occupational allergic contact dermatitis. There is not enough data about the epidemiology of allergic contact dermatitis in Indonesia, however based on research that include beautician in Denpasar, about 27,6 percent had side effect of cosmetics, which is 25,4 percent of it manifested as allergic contact dermatitis. Diagnosis of allergic contact dermatitis is based on anamnesis, physical examination, patch test, and this disease should be distinguished from other eczematous skin disease. The management is prevention of allergen exposure, symptomatic treatment, and physicochemical barrier /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  8. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  9. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  10. Condensational theory of stationary tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.

    2011-01-01

    Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.

  11. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  12. Dynamics of inhomogeneous chiral condensates

    Science.gov (United States)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  13. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...

  14. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  15. Bose-Einstein condensation

    Indian Academy of Sciences (India)

    Science. His current research involves trapping of atoms to carry out high precision tests of ... experimental techniques involved in achieving it, and high- light some of the ... is n-1!3, and from kinetic theory, the mean de Broglie wavelength.

  16. A Study on Condensation Heat Transfer at the Exterior Surface of S.A.M. Coated Titanium Tube Using in Steam Condensers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung-Gu; Lee, Sang-Hyup; Ji, Dae-Yun; Park, Hyun-Gyu; Lee, Kwon-Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    Condensation occurs when the temperature of a steam is reduced below its saturation temperature. There exist two forms of condensation on cooling surface: dropwise, and film condensations. Usually, dropwise condensation has a better heat transfer performance than film condensation, but it has limit of short period. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas exist, the condensation heat transfer coefficient is decreased. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes in 70 kPa vacuum condition respectively. Most of power plants use sea water as coolant, so the surface of metal tubes could be corroded by the coolant. We had researched an experimental study related to condensation heat transfer on surface modified titanium tube. Our experimental facility was designed to show how two kinds of tube's heat transfer performances are different in a same condition. We changed the range of saturation pressure and coolant flow rate to observe tube's performance change. When saturation pressure and coolant flow rate increase, overall heat transfer coefficients were increased. When residue of non-condensable gases was decreased, the overall heat transfer coefficients were increased. S.A.M. coated tube's overall heat transfer coefficients were lower than those of bare tube, because the droplets didn't have a tendency of frequently falling down.

  17. Minimum Leakage Condenser Test Program

    International Nuclear Information System (INIS)

    1978-05-01

    This report presents the results and analysis of tests performed on four critical areas of large surface condensers: the tubes, tubesheets, tube/tubesheet joints and the water chambers. Significant changes in operation, service duty and the reliability considerations require that certain existing design criteria be verified and that improved design features be developed. The four critical areas were treated analytically and experimentally. The ANSYS finite element computer program was the basic analytical method and strain gages were used for obtaining experimental data. The results of test and analytical data are compared and recommendations made regarding potential improvement in condenser design features and analytical techniques

  18. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  19. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  20. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  1. Bose-Einstein condensation in atomic alkali gases

    Science.gov (United States)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  2. Review of prediction for thermal contact resistance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.

  3. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  4. On condensation-induced waves

    NARCIS (Netherlands)

    Cheng, W.; Luo, X.; Dongen, van M.E.H.

    2010-01-01

    Complex wave patterns caused by unsteady heat release due to cloud formation in confined compressible flows are discussed. Two detailed numerical studies of condensation-induced waves are carried out. First, the response of a flow of nitrogen in a slender Laval nozzle to a sudden addition of water

  5. KAON CONDENSATION IN NEUTRON STARS

    International Nuclear Information System (INIS)

    RAMOS, A.; SCHAFFNER-BIELICH, J.; WAMBACH, J.

    2001-01-01

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed

  6. Thermodynamic entanglement of magnonic condensates

    Science.gov (United States)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  7. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  8. Approaching Bose-Einstein Condensation

    Science.gov (United States)

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  9. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan

    2017-01-17

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  10. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan

    2017-01-01

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  11. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  12. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  13. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  14. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  15. Some concepts in condensed phase chemical kinetics

    International Nuclear Information System (INIS)

    Adelman, S.A.

    1986-01-01

    Some concepts in condensed phase chemical kinetics which have emerged from a recent rigorous statistical mechanical treatment of condensed phase chemical reaction dynamics (S.A. Adelman, Adv. Chem. Phys.53:61 (1983)) are discussed in simple physical terms

  16. A study on the initiation of condensation-induced water hammer in a long horizontal pipe

    International Nuclear Information System (INIS)

    Park, Joo Wan

    1992-02-01

    Condensation-induced water hammer (CIWH) is the most severe and has the highest frequency among the water hammer events occurred in nuclear power plants. Among mechanisms associated with this type of water hammer, the steam and water countercurrent flow in a horizontal pipe is known as the dominant mechanism in Pressurized Water Reactors. The CIWH due to steam-water counter-flow in a long horizontal pipe has been analytically investigated with emphasis on the effect of pipe length, in order to identify the conditions necessary to initiate a water hammer and to provide stability maps describing the zone of water hammer to be avoided with the combination of filling water flowrate and pipe length. Analytical models which can be used to predict the limiting boundaries, upper and lower one, of CIWH initiation have been developed and the calculation results have been compared with the data of an actual incident occurred previously in a nuclear power plant. From the approach used in this study, boundary estimates including simple relationships between critical inlet water flowrates and pipe length-to-diameter on the CIWH initiation in a long horizontal pipe could be made, and several corrective actions to prevent water hammer recurrence could be taken. However, because of the limited understanding of the direct-contact condensation phenomena in the typical range of nuclear power plant operation, it is likely that the overall uncertainty of the analysis results will be high. Therefore, further research on this area including scaling analysis is required

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  19. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  20. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  1. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  2. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures

    Science.gov (United States)

    Panter, J. R.; Kusumaatmaja, H.

    2017-03-01

    The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for square posts and reentrant structures in three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantify how capillary condensation and vapour cavitation affect wetting state stabilities. At high contact angles, cavitation is enhanced about wide, closely-spaced square posts, leading to the existence of suspended states without an associated collapsed state. At low contact angles, narrow reentrant pillars suppress condensation and enable the suspension of even highly wetting liquids. Secondly, two distinct collapse mechanisms are observed for 3D reentrant geometries, base contact and pillar contact, which are operative at different pillar heights. As well as morphological differences in the interface of the penetrating liquid, each mechanism is affected differently by changes in the contact angle with the solid. Finally, for highly-wetting liquids, condensates are shown to critically modify the transition pathways in both the base contact and pillar contact modes.

  3. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  4. Condensed matter physics aspects of electrochemistry

    International Nuclear Information System (INIS)

    Tosi, M.P.; Kornyshev, A.A.

    1991-01-01

    This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs

  5. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  6. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  7. Some issues in the ghost condensation scenario

    International Nuclear Information System (INIS)

    Anisimov, A.

    2004-01-01

    In the recently proposed 'ghost condensation' scenario a model of consistent infrared modification of gravity was suggested. We first review the basic ideas of this scenario. We discuss various phenomenological aspects of the ghost condensation, such as stability of the condensate, bounds on the UV cut-off scale of the corresponding effective field theory and other issues. (author)

  8. Computations for a condenser. Experimental results

    International Nuclear Information System (INIS)

    Walden, Jean.

    1975-01-01

    Computations for condensers are presented with experimental results. The computations are concerned with the steam flux at the condenser input, and inside the tube bundle. Experimental results are given for the flux inside the condenser sleeve and the flow passing through the tube bundle [fr

  9. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  10. Inflation via Gravitino Condensation in Dynamically Broken Supergravity

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E

    2015-01-01

    Gravitino-condensate-induced inflation via the super-Higgs effect is a UV-motivated scenario for both inflating the early universe and breaking local supersymmetry dynamically, entirely independent of any coupling to external matter. As an added benefit, this also removes the (as of yet unobserved) massless Goldstino associated to global supersymmetry breaking from the particle spectrum. In this review we detail the pertinent properties and outline previously hidden details of the various steps required in this context in order to make contact with current inflationary phenomenology. The class of models of SUGRA we use to exemplify our approach are minimal four-dimensional N=1 supergravity and conformal extensions thereof (with broken conformal symmetry). Therein, the gravitino condensate itself can play the role of the inflaton, however the requirement of slow-roll necessitates unnaturally large values of the wave-function renormalisation. Nevertheless, there is an alternative scenario that may provide Staro...

  11. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  12. Supersymmetry breaking by gaugino condensation

    International Nuclear Information System (INIS)

    Casas, J.A.

    1991-01-01

    We briefly review the status and some of the recent work on supersymmetry breaking by gaugino condensation effects in the context of superstring theories. This issue is intimately related to the structure of the effective potential coming from superstrings. Minimization of this not only allows to find the scale of supersymmetry breaking, but also to determine dynamically other fundamental parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. In a multiple condensate scenario these get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. Some directions for future work are examined too. (author). 23 refs

  13. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  14. Atomistic modeling of dropwise condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L. [Department of Mechanical Engineering, Amity University Uttar Pradesh, Noida (India); Muralidhar, K.; Khandekar, S. [Department of Mechanical Engineering, IIT Kanpur (India)

    2016-05-23

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  15. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  16. LOFCON-LOFT condenser program

    International Nuclear Information System (INIS)

    Lemmon, E.C.; MacKay, D.B.

    1978-01-01

    LOFCON is a program developed for the LOFT air condenser system contained in the secondary coolant system. Although the basic theory described herein is general, the program given is not--it is specifically for the LOFT configuration. LOFCON is presented in subroutine form so that it may be easily incorporated into a larger program describing the complete secondary side. Specifically LOFCON was written to be incorporated into the detailed CSMP model of the LOFT secondary coolant system simulation

  17. Scandinavian experience of titanium condensers

    International Nuclear Information System (INIS)

    Multer, I.; Hedstroem, M.

    1985-01-01

    The Albrass condenser tubing in Sweden and Finnish nuclear power plants has caused much concern. After the appearance of the first tube leak, the deterioration has been very rapid. A typical development is represented by the Ringhals unit 2 eddy current (EC) measurements. They are, despite the difference in salinity, almost identical with Forsmark units 1 and 2 and units 1 and 2 of the TVO power company at Olkiluoto, Finland. For instance, in summer 1984, 3000 tubes were plugged in TVO 2 after four years of operation. The cause was pitting and/or erosion-corrosion. The failure rate, although the plugging criteria have been different from the EPRI concept, has exceeded that reported in the US and UK; and it has been necessary, especially with the strict feed water chemistry requirements in the PWR's, to arrange for retubing after a very short time, approximately 3 years after the first leak. The history of the nuclear plant condensers is shown; the average condenser life span has been approximately 6.5 years

  18. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  19. Multiple spectator condensates from inflation

    Science.gov (United States)

    Hardwick, Robert J.

    2018-05-01

    We investigate the development of spectator (light test) field condensates due to their quantum fluctuations in a de Sitter inflationary background, making use of the stochastic formalism to describe the system. In this context, a condensate refers to the typical field value found after a coarse-graining using the Hubble scale H, which can be essential to seed the initial conditions required by various post-inflationary processes. We study models with multiple coupled spectators and for the first time we demonstrate that new forms of stationary solution exist (distinct from the standard exponential form) when the potential is asymmetric. Furthermore, we find a critical value for the inter-field coupling as a function of the number of fields above which the formation of stationary condensates collapses to H. Considering some simple two-field example potentials, we are also able to derive a lower limit on the coupling, below which the fluctuations are effectively decoupled, and the standard stationary variance formulae for each field separately can be trusted. These results are all numerically verified by a new publicly available python class (nfield) to solve the coupled Langevin equations over a large number of fields, realisations and timescales. Further applications of this new tool are also discussed.

  20. Quality factors to consider in condensate selection

    Energy Technology Data Exchange (ETDEWEB)

    Lywood, B. [Crude Quality Inc., Edmonton, AB (Canada)

    2009-07-01

    Many factors must be considered when assessing the feasibility of using condensates as a diluent for bitumen or heavy crude production blending. In addition to commercial issues, the effect of condensate quality is a key consideration. In general, condensate quality refers to density and viscosity. However, valuation decisions could be enhanced through the expansion of quality definitions and understanding. This presentation focused on the parameters that are important in choosing a diluent grade product. It also reviewed pipeline and industry specifications and provided additional information regarding general properties for bitumen and condensate compatibility; sampling and quality testing needs; and existing sources of information regarding condensate quality. tabs., figs.

  1. Statistical mechanics and applications in condensed matter

    CERN Document Server

    Di Castro, Carlo

    2015-01-01

    This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...

  2. Ghost condensate and generalized second law

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2009-01-01

    Dubovsky and Sibiryakov recently proposed a scenario in which particles of different species propagate with different speeds due to their direct couplings to ghost condensate. It was argued that this extended version of ghost condensate allows a gedanken experiment leading to violation of the generalized second law. However, in the original ghost condensate scenario, difference in propagation speeds is suppressed by M 2 /M Pl 2 , where M is the order parameter of spontaneous Lorentz breaking and M Pl is the Planck scale. In this case the energy transfer necessary for the gedanken experiment is so slow that the timescale of decrease of entropy, if any, is always longer than the Jeans timescale of ghost condensate. Hence the generalized second law is not violated by the gedanken experiment in the original ghost condensate scenario. This conclusion trivially extends to gauged ghost condensation by taking into account accretion of gauged ghost condensate into a black hole.

  3. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  4. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  5. Exhaled Breath Condensate: Technical and Diagnostic Aspects.

    Science.gov (United States)

    Konstantinidi, Efstathia M; Lappas, Andreas S; Tzortzi, Anna S; Behrakis, Panagiotis K

    2015-01-01

    The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  6. Exhaled Breath Condensate: Technical and Diagnostic Aspects

    Directory of Open Access Journals (Sweden)

    Efstathia M. Konstantinidi

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC, biomarkers, pH, asthma, gastroesophageal reflux (GERD, smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH, idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA, and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  7. Open problems in condensed matter physics, 1987

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs

  8. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.

  9. Optimization design for drain to nuclear power condenser

    International Nuclear Information System (INIS)

    Ding Jiapeng; Jiang Chengren

    2010-01-01

    Characters and varieties of drain to nuclear power condenser are discussed in this paper. Take the main steam system of a nuclear power as an example, normal and detailed optimization design are introduced, related expatiate are used as a reference for the drain of other systems. According to the characters of nuclear power instant operation, the influence and needed actions related with the optimization design are also analyzed. Based on the above research, the scheme has been carried out in a nuclear power station and safety for the condenser operation of the nuclear power has been improved largely. (authors)

  10. Proceedings of condensed papers on alternate energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. (ed.)

    1979-01-01

    The conference covers the results of research and developments which have taken place during the last 2 years. It includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or waste, hydrogen production and uses. The volume of the Proceedings presents the papers and lectures in condensed format grouped by their subjects under 40 technical sessions. Condensed papers are presented for the 336 presentations; abstracts have previously appeared in the DOE Energy Data Base for 33 of the full-length papers.

  11. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  12. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-01-01

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to: (1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, (2) assess the RELAP5 and TRACE computer code against the experimental data, and (3) develop mathematical model and heat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal-hydraulic codes assessment

  13. Effective Purification of Biogas by Condensing-Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Poloncarzová, Magda; Vejražka, Jiří; Veselý, Václav; Izák, Pavel

    2010-01-01

    Roč. 50, č. 3 (2010), s. 669-671 ISSN 1433-7851 R&D Projects: GA MPO FR-TI1/245 Institutional research plan: CEZ:AV0Z40720504 Keywords : biogas purification * condensing liquid * gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 12.730, year: 2010

  14. Physics in Brazil in the next decade: condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)

  15. Study of Capillary Condensation of Butane in Vycor Membrane

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Petričkovič, Roman; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 264, 1-2 (2005), s. 27-36 ISSN 0376-7388 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : capillary condensation * mass transport * porous membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2005

  16. Hydrodynamic excitations in a Bose-Einstein condensate

    NARCIS (Netherlands)

    Meppelink, R

    2009-01-01

    The field of Bose-Einstein condensation (BEC) in dilute atomic gases provides a fruitful playground to test well-developed theories of quantum fluids. Research using BECs can address open questions relating to the many-body aspects of two-component quantum liquids, namely the interaction between the

  17. Design Of The Canal System Of KLA-60 Condensation Produce

    International Nuclear Information System (INIS)

    Sriawan; Wiranto, Slamet

    2000-01-01

    The RSG-GAS reactor pool ventilation system (KLA-60) which be used to avoid circulation of contamination air in the reactor hall, flow the 60% air from the pool surface to stack through the various filters. In case the isolation building the air from the pool surface is flooded back to the operation hall after exceed the heat exchanger, cooler and the various filters. One of the weakness of this system and must be solved by RSG is handing of the condensation water because in the canal system of the KLA-60 condensation produce is to be found some soiled like algae and to go the reactor pool. To solve this problem should be carried out research about the canal system of KLA-60 condensation produce and design the new canal system to find the good function. At the first design is carried out study about the function of the old of canal system of KLA-60 condensation produce. Base on this study have been carried out design of the canal system KLA-60 condensation produce, with can prevent the soiled to go to the reactor pool

  18. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  19. Investigation of viscosity of whole hydrolyze sweetened condensed milk

    Directory of Open Access Journals (Sweden)

    O. Kalinina

    2015-05-01

    Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.

  20. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  1. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  2. Application of passive radiative cooling for dew condensation

    International Nuclear Information System (INIS)

    Beysens, Daniel; Muselli, Marc; Milimouk, Iryna

    2006-01-01

    Dew water was collected from several passive foil-based radiative condensers established in a variety of geographic settings: continental (Grenoble, in an alpine valley, and Brive-la-Gaillarde, in the Central Massif volcanic area, both in France), French Atlantic coast (Bordeaux), eastern Mediterranean (Jerusalem, Israel), and the island of Corsica (Ajaccio, France) in the Mediterranean Sea. In Ajaccio two large 30 m 2 condensers have been operating since 2000. Additional semi-quantitative dew measurements were also carried out for Komiza, island of Vis (Croatia) in the Adriatic Sea, and in Mediterranean Zadar and Dubrovnik (both in Croatia). Dew potential was calculated for the Pacific Ocean island of Tahiti (French Polynesia). The data show that significant amounts of dew water can be collected. Selected chemical and biological analyses established that dew is, in general, potable. Continued research is required for new and inexpensive materials that can enhance dew condensation

  3. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only in the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.

  4. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  5. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  6. Compressibility and specific heats of heavier condensed rare gases near the liquid-vapour critical point

    International Nuclear Information System (INIS)

    March, N.H.

    2003-08-01

    Sarkisov (J. Chem. Phys. 119, 373, 2003) has recently discussed the structural behaviour of a simple fluid near the liquid-vapour critical point. His work, already compared with computer simulation studies, is here brought into direct contact for the heavier condensed rare gases Ar, Kr and Xe with (a) experiment and (b) earlier theoretical investigations. Directions for future studies then emerge. (author)

  7. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  8. Method of continuously cleaning condensers

    International Nuclear Information System (INIS)

    Tomita, Akira; Takahashi, Sankichi.

    1982-01-01

    Purpose: To prevent marine livings from depositing to the inside of ball recycling pipeways. Method: Copper electrodes are provided to the downstream of a sponge ball collector in a sponge ball recycling pipeways for cleaning through the cooling pipes of a condenser. Electrical current is supplied by way of a variable resister to the electrodes and copper ions resulted from the dissolution of the electrodes are fed in the pipes to kill the marine livings such as barnacles and prevent the marine livings from depositing to the inside of the sponge ball recycling pipeways. (Seki, T.)

  9. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  10. Experimental and computational analysis of steam condensation in the presence of air and helium

    International Nuclear Information System (INIS)

    Bucci, M.

    2010-01-01

    Among the different phenomena expected to occur within nuclear reactor containments during a postulated loss of coolant accident, condensation on containment walls plays a major role, since it represents an important heat sink for evacuating the energy released by the discharge of the primary water. Nevertheless, condensation strongly affects other relevant phenomena, like containment atmosphere mixing, that influences the distribution of non-condensable gases hypothetically delivered in severe accident conditions. In this scenario, the role of condensation is not obvious, since it can locally aid the hydrogen produced by the oxidation of the core claddings to concentrate and reach flammability limits, providing a dangerous effect instead of a positive one. The understanding of condensation in the presence of air and hydrogen is therefore a fundamental task for the safety analyses of reactor containments. This research has been carried out with the aim to contribute to the understanding of these phenomena. A double strategy has been adopted, including complementary experimental and computational activities. Novel data have been made available by the CONAN facility, investigating the effects induced by light non-condensable gases in experimental configurations that were scarcely investigated in past studies. Computational fluid dynamics (CFD) condensation models have been developed and validated. The suitability of helium as a substitute for hydrogen in experimental activities has been investigated by theoretical and computational analyses allowing to establish simple criteria for the scaling of condensation tests in the presence of a light non-condensable gas. (authors)

  11. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). The results are applicable to integral Small Modular Reactor (SMR) designs, including NuScale, mPower, Westinghouse SMR, Holtec-160 and other integral reactors with small containments of relatively high pressures under accidental conditions. Testing has been conducted at the OrSU laboratory in the existing MASLWR (Multi-Application Small Light Water Reactor) integral test facility sponsored by the US Department of Energy. Its highpressure stainless steel containment model (~2 MPa) is scaled to the NuScale SMR currently under development at NuScale Power, Inc.. Minor modifications to the model containment have been made to control the non-condensable gas fraction and to utilize the secondary loop stable steam flow for condensation testing. UW-Madison has developed a containment condensation model, which leveraged previous validated containment heat transfer work carried out at UW-Madison, and extended the range of applicability of the model to integral SMR designs that utilize containment vessels of high heat transfer efficiencies. In this final report, the research background and literature survey are presented in Chapter 2 and 3, respectively. The test facility description and modifications are summarized in Chapter 4, and the scaling analysis is introduced in Chapter 5. The tests description, procedures, and data analysis are presented in Chapter 6, while the numerical modeling is presented in Chapter 7, followed by a conclusion section in Chapter 8.

  12. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    Science.gov (United States)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  13. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  14. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  15. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  16. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  17. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  18. On scalar condensate baryogenesis model

    International Nuclear Information System (INIS)

    Kiriloval, D.P.; Valchanov, T.V.

    2004-09-01

    We discuss the scalar field condensate baryogenesis model, which is among the baryogenesis scenarios preferred today, compatible with inflation. According to that model a complex scalar field φ, carrying baryon charge B≠0 is generated at inflation. The baryon excess in the Universe results from the φ decay at later stages of Universe evolution (T 15 GeV). We updated the model's parameters range according to the current observational cosmological constraints and analyzed numerically φ evolution after the inflationary stage till its decay φ → qq-barlγ. During that period oscillated with a decreasing amplitude due to Universe expansion and particle production processes due to the coupling of the field to fermions gφf 1 f 2 . It was shown that particle creation processes play an essential role for evolution and its final value. It may lead to a considerable decrease of the field's amplitude for large g and/or large H values, which reflects finally into strong damping of the baryon charge carried by the condensate. The analysis suggests that for a natural range of the model's parameters the observed value of the baryon asymmetry can be obtained and the model can serve as a successful baryogenesis model, compatible with inflation. (author)

  19. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  20. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  1. Condensation induced water hammer safety

    International Nuclear Information System (INIS)

    Gintner, M.A.

    1997-01-01

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer

  2. Condensation induced water hammer safety

    Energy Technology Data Exchange (ETDEWEB)

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  3. Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Khatir, Z.; Kubiak, K.J.; Jimack, P.K.; Mathia, T.G.

    2016-01-01

    Highlights: • Droplets jumping phenomenon can enhance condensate evacuation from the surface. • Droplets jumping velocity depends on droplets radius and surface static contact angle. • Optimum conditions are for droplets with radius 35–40 μm and contact angle near 160°. • Jumping phenomenon occurs only when static contact angle is above 140°. • The optimal functional surface design maximises jumping velocity and heat flux. - Abstract: Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using Design of Experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r = 20–40 μm and static contact angle θ_s ∼ 160°. Moreover, the jumping phenomenon was observed for droplets with initial

  4. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  5. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  6. Nonlinear behavior of the radiative condensation instability

    International Nuclear Information System (INIS)

    McCarthy, D.; Drake, J.F.

    1991-01-01

    An investigation of the nonlinear behavior of the radiative condensation instability is presented in a simple one-dimensional magnetized plasma. It is shown that the radiative condensation is typically a nonlinear instability---the growth of the instability is stronger once the disturbance reaches finite amplitude. Moreover, classical parallel thermal conduction is insufficient by itself to saturate the instability. Radiative collapse continues until the temperature in the high density condensation falls sufficiently to reduce the radiation rate

  7. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over-the-Counter Costume Contact Lenses Can ... was in severe pain and on medication for four weeks, and couldn't see well enough to ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...

  13. Colored Contact Lens Dangers

    Science.gov (United States)

    ... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  15. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  20. Dermatitis, contact (image)

    Science.gov (United States)

    This picture shows a skin inflammation (dermatitis) caused by contact with a material that causes an allergic reaction in this person. Contact dermatitis is a relatively common condition, and can be caused ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... the United States. All contact lenses are medical devices that require a prescription and proper fitting by an eye-care professional. Retailers that sell contacts without a ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  3. Strangeness condensation and ''clearing'' of the vacuum

    International Nuclear Information System (INIS)

    Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)

  4. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  5. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  6. Contact Lens Risks

    Science.gov (United States)

    ... There is a risk of eye infection from bacteria in swimming pool water, hot tubs, lakes and the ocean Replace your contact lens storage case every 3 months or as directed by your eye care professional. Other Risks of Contact Lenses Other risks of contact lenses include pink eye ( ...

  7. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  8. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  9. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  11. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  12. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable

  13. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  14. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  15. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  16. Quasiparticles in condensed matter systems

    Science.gov (United States)

    Wölfle, Peter

    2018-03-01

    Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

  17. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  18. Contact arc metal cutting (CAMC), a young cutting technique has matured. Successful use under water in the demolition of the Karlsruhe multipurpose research reactor (MFZR)

    International Nuclear Information System (INIS)

    Stanke, D.; Bienia, H.; Loeb, A.; Thoma, M.; Eisenmann, B.; Prechtl, E.; Suessdorf, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    Dismantling radiologically burdened large components is among the most complex and difficult jobs in the demolition of nuclear installations. The technologies used and their safe operation play a key role in demolition. Dismantling highly activated components as a rule requires shielding by water. As a consequence, the techniques employed must be designed for use under water. A variety of technologies are available for these applications. One established mechanical cutting method is water abrasive suspension jet cutting (WASS). Because of the small cutting nozzle employed, this highly flexible cutting technique can be used nearly anywhere together with different guiding systems. In the course of disassembly under water of the MZFR, plasma cutting has been found to be a reliable and efficient technique for remote operation. Contact arc metal cutting is a thermal cutting technique allowing all electrically conducting materials, including those with claddings, to be cut nearly irrespective of their component geometries. The methods, technology, possible uses, and practical operation of contact arc metal cutting in the demolition of the MZFR are covered in this article. (orig.)

  19. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  20. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  1. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  2. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...

  3. Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard P A; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  4. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  5. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  6. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  7. Clinical update on contact allergy

    DEFF Research Database (Denmark)

    Uter, Wolfgang; Johansen, Jeanne Duus; Orton, David I

    2005-01-01

    PURPOSE OF REVIEW: The aim of this article is to review recent findings in contact allergy, regarding clinical research. RECENT FINDINGS: The biocide methyldibromo glutaronitrile was identified to be an important sensitizer. Subsequently, it was banned from leave-on cosmetics in the European Union...... a classification of newly introduced chemicals; increasingly, the local lymph node assay is supplementing and potentially replacing the guinea pig maximization test. Recent advances in occupational contact allergy include, for example, some attempts to improve diagnostics for epoxy resin and other plastic, glue...

  8. Condensate growth in trapped Bose gates

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.

  9. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  10. Bosonization with inclusion of the gluon condensate

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1994-01-01

    The effects of the gluon condensate on the quark condensate and on masses and coupling constants of composite mesons are discussed within a QCD-motivated Nambu-Jona-Lasinio model for zero temperature as well as for the case of finite temperature and baryon number density. (orig.)

  11. Collision of Bose Condensate Dark Matter structures

    International Nuclear Information System (INIS)

    Guzman, F. S.

    2008-01-01

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  12. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  13. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  14. Hydrophilic structures for condensation management in appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  15. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results.

  16. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    International Nuclear Information System (INIS)

    1994-10-01

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results

  17. PT -symmetric gain and loss in a rotating Bose-Einstein condensate

    Science.gov (United States)

    Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter

    2018-03-01

    PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.

  18. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    Science.gov (United States)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  19. Titanium application to power plant condensers

    International Nuclear Information System (INIS)

    Itoh, H.

    1987-01-01

    Recently, the growth of operating performance and construction plan of titanium-tubed condensers in thermal and unclear power plants has been very impressive. High-quality, thinner welded titanium tubes used for cooling tubes, matching design specifications of condensers, have been stably supplied through mass production. It now can be said that various technical problems for titanium-tubed condensers have been solved, but data on operating performance in large-scale commercial plants are still scarce, and site-by-site information needs be exchanged more frequently and on a larger scale. Projects to replace existing condenser cooling tubes with those of corrosion-resistant titanium have been actively furthered, with the only remaining barrier to full employment being cost effectiveness. It is hoped that condenser and tube manufacturers will conduct more joint value analyses

  20. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  1. Accident localization system with jet condensers for VVER 440-V 230 NPP at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Murani, J.

    1995-01-01

    The operational safety of the V1 nuclear power plant (NPP) is unsatisfactory and does not correspond to present requirements as to nuclear safety. Further NPP operation after 1995 is conditional on nuclear safety enhancement to a level comparable with that in West European countries. This aim should be achieved by a principal reconstruction involving in addition to others also backfitting the V1 NPP with technical facilities aimed at coping with a design basis accident (DBA).To cope with such an accident the Power Equipment Research Institute (VUEZ) designed an accident localization system with jet condensers. This system consists of (a) an air trap (one for each unit, mutually interconnected) with an expansion bell enclosed within, placed on a plate with 200 pipes of jet condensers passing through, and (b) a connecting duct between the hermetic zone and the air trap. The vertical jet condenser is an essential element of the system designed for steam condensation. Apart from condensation it serves as a water seal separating units 1 and 2.Demonstration tests of the jet condenser (model 1:1) condensing function were carried out at the testing unit of the All-Union Research Institute for NPP Operation (VNIIAES), Moscow in Kashir, 11-22 September 1992. These experiments proved the jet condenser ability to ensure complete condensation of the steam produced. Experimental verification of the sealing function (model 1:1) was carried out at the testing unit of the VUEZ Tlmace. These experiments concerning the dynamics and overpressure in the free space above the pool were close to the conditions in the air trap during DBA. The jet condenser height was proved to be sufficient to ensure the sealing function. Design and experimental work has been implemented in close cooperation with Russian experts Mr. V.N. Bulynin from the VNIIAES, Moscow, and Mr. M.V. Kuznecov from the Scientific and Engineering Center for Nuclear and Radiological Safety, Moscow. (orig.)

  2. Proposed ICDRG Classification of the Clinical Presentation of Contact Allergy

    DEFF Research Database (Denmark)

    Pongpairoj, Korbkarn; Ale, Iris; Andersen, Klaus Ejner

    2016-01-01

    The International Contact Dermatitis Research Group proposes a classification for the clinical presentation of contact allergy. The classification is based primarily on the mode of clinical presentation. The categories are direct exposure/contact dermatitis, mimicking or exacerbation of preexisting....../mucosal symptoms, oral contact dermatitis, erythroderma/exfoliative dermatitis, minor forms of presentation, and extracutaneous manifestations....

  3. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  4. Introduction to contact mechanics

    CERN Document Server

    Fischer-Cripps, Anthony C

    2000-01-01

    Contact mechanics deals with the elastic or plastic contact between two solid objects, and is thus intimately connected with such topics as fracture, hardness, and elasticity.This text, intended for advanced undergraduates, begins with an introduction to the mechanical properties of materials, general fracture mechanics, and fractures in brittle solids.This is followed by a detailed discussion of stresses and the nature of elastic and elastic-plastic contact.

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial ...

  6. Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Meltem Önder

    2009-03-01

    Full Text Available Allergic contact dermatitis is the delayed type hypersensitivity reaction to exogenous agents. Allergic contact dermatitis may clinically present acutely after allergen exposure and initial sensitization in a previously sensitized individual. Acute phase is characterized by erythematous, scaly plaques. In severe cases vesiculation and bullae in exposed areas are very characteristic. Repeated or continuous exposure of sensitized individual with allergen result in chronic dermatitis. Lichenification, erythematous plaques, hyperkeratosis and fissuring may develop in chronic patients. Allergic contact dermatitis is very common dermatologic problem in dermatology daily practice. A diagnosis of contact dermatitis requires the careful consideration of patient history, physical examination and patch testing. The knowledge of the clinical features of the skin reactions to various contactans is important to make a correct diagnosis of contact dermatitis. It can be seen in every age, in children textile product, accessories and touch products are common allergens, while in adults allergic contact dermatitis may be related with topical medicaments. The contact pattern of contact dermatitis depends on fashion and local traditions as well. The localization of allergic reaction should be evaluated and patients’ occupation and hobbies should be asked. The purpose of this review is to introduce to our collaques up dated allergic contact dermatitis literatures both in Turkey and in the World.

  7. Colors and contact dermatitis.

    Science.gov (United States)

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  8. Ice-condenser aerosol tests

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K.

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between ∼0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m 3 /s resulted in stable thermal stratification whereas flows less than 0.1 m 3 /s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs

  9. Condensing embryology teaching: alternative perspectives

    Directory of Open Access Journals (Sweden)

    Hasan M

    2018-03-01

    Full Text Available Mohammad Hasan, Syed Maaz Tariq, Syed Ali Haider Department of MBBS, Jinnah Sindh Medical University, Karachi, PakistanWe read the article “Condensing embryology teaching for medical students: can it be taught in 2 hours?” by Kazzazi and Bartlett quite attentively. The authors were successful in mentioning an effective mode of teaching embryology. Embryology is indeed an important subject that forms the base for appreciating anatomy and has immense practical implementations in different parts of medicine, for example, in pediatrics and ENT surgery. However, it is often neglected and is only taught in preclinical years.1 The authors proposed a method for teaching embryology splendidly from their perspective; therefore, we felt the need to expand the discussion from the perspective of third-year medical students who have just completed their preclinical years. Hence, we would like to mention few limitations to this study as well.Authors’ replyFawz Kazzazi, Jonathan Bartlett School of Clinical Medicine, University of Cambridge, Cambridge, UKWe read with interest the response letter by Hasan et al. We must first commend the editor and journal on their great ability to unify the medical community and extend topics for debate internationally.View the original paper by Kazzazi and Bartlett.

  10. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  11. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new

  12. Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1985-09-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

  13. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    Science.gov (United States)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  14. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  15. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  16. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  17. Active condensation of water by plants

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2013-10-01

    Full Text Available This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomenon in question is found everywhere, but it is particularly important for plants in arid ecosystems.

  18. Biomolecular condensates: organizers of cellular biochemistry.

    Science.gov (United States)

    Banani, Salman F; Lee, Hyun O; Hyman, Anthony A; Rosen, Michael K

    2017-05-01

    Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid-liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

  19. Model of a chromomagnetic condensate in QCD

    International Nuclear Information System (INIS)

    Vladimirsky, V.V.

    1996-01-01

    The simplest form of the effective Lagrangian of a gluon field leads to a deep degeneracy of a magnetic condensate that arises when the stability of the standard perturbative vacuum is violated by quantum effects. The inclusion of terms in the effective Lagrangian that conserve color and Lorentz invariance enables the possible types of Abelian and non-Abelian condensate fields to be classified. The degeneracy is partially removed. One of the four types of the condensate permits the emergence of closed vortex lines that correspond to cyclic permutations of colors upon circumventions around stringlike singularities

  20. Bose-Einstein condensation in real space

    International Nuclear Information System (INIS)

    Valencia, J.J.; Llano, M. de; Solis, M.A.

    2004-01-01

    We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)

  1. Landau-Migdal parameters and pion condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)

    1999-08-01

    The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)

  2. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  3. Quark virtuality and QCD vacuum condensates

    International Nuclear Information System (INIS)

    Zhou Lijuan; Ma Weixing

    2004-01-01

    Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions

  4. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  5. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Dynamics of capillary condensation in aerogels.

    Science.gov (United States)

    Nomura, R; Miyashita, W; Yoneyama, K; Okuda, Y

    2006-03-01

    Dynamics of capillary condensation of liquid 4He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  7. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  8. Topflow-experiments on direct condensation and bubble entrainment. Technical report

    International Nuclear Information System (INIS)

    Seidel, Tobias; Lucas, Dirk; Beyer, Matthias

    2016-01-01

    Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena. This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.

  9. A simple modelling of mass diffusion effects on condensation with noncondensable gases for the CATHARE Code

    Energy Technology Data Exchange (ETDEWEB)

    Coste, P.; Bestion, D. [Commissariat a l Energie Atomique, Grenoble (France)

    1995-09-01

    This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.

  10. Condensation heat transfer coefficient in horizontal stratified cocurrent flow of steam and cold water

    International Nuclear Information System (INIS)

    Kim, Kap; Kim, Hho Jung

    1986-01-01

    Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationship. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial parameters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here recommended since it is based on the turbulent properties which may be closely related to the condensation phenomena. (Author)

  11. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation

  12. Efficient, Long-Life Biocidal Condenser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity. Condensing surfaces must be...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care professional. Retailers that sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of the lenses found online or in beauty salons, novelty shops or in pop-up ... contact lenses from a retailer that does not ask for a prescription. ...

  14. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Get follow up exams with your eye care provider. If you notice redness, swelling, excessive discharge, pain or discomfort from wearing contact lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ...

  16. Sciences & Nature: Contact

    African Journals Online (AJOL)

    Principal Contact. Ehouan Etienne Ehile Professor University of Abobo-Adjamé 02 BP 801 Abidjan 02. Phone: (+225) 2030 4201. Fax: (+225) 2030 4203. Email: eh_ehile@yahoo.fr. Support Contact. Irie Zoro Bi Email: banhiakalou@yahoo.fr. ISSN: 1812-0741. AJOL African Journals Online. HOW TO USE AJOL.

  17. Contact Us | DOepatents

    Science.gov (United States)

    advance. Your help is appreciated. Contact us by email Email doepatentscomments@osti.gov NOTE: Email us by phone Phone Phone (865) 241-5275 Contact us in writing Mail U.S. Department of Energy Office of non-federal websites. Their policies may differ from this site. Javascript Not Enabled Email Link

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care team . Consumer warning about the improper use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the FDA? Check the FDA's database of approved contact lenses . Related Stories Prevent Infection ...

  19. Contact dermatitis. A review

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Benezra, C; Burrows, D

    1987-01-01

    In recent years, there has been a dramatic rise in our understanding of contact dermatitis. This paper is a review of our knowledge of the mechanisms involved in contact dermatitis and related phenomena, the investigation of these events and the emergence of significant new allergens during...

  20. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  1. Contact Quality in Participation

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Jensen, Olav Storm

    2016-01-01

    We investigate the concept of participation from the perspective of quality of the contact in the communicative interactions between participants. We argue for the need for an academic-personal competence that qualifies the human contact central in all Participatory Design (PD) activities as a way...

  2. Nigerian Food Journal: Contact

    African Journals Online (AJOL)

    Nigerian Food Journal. ... Nigerian Food Journal: Contact. Journal Home > About the Journal > Nigerian Food Journal: Contact. Log in or Register to get access to full text downloads. ... Mailing Address. Department of Food Science and Technology University of Agriculture, Makurdi, Nigeria ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far ... Use Facts About Colored Contacts and Halloween Safety Colored ...

  4. Fragrance contact allergy in Iran.

    Science.gov (United States)

    Firooz, A; Nassiri-Kashani, M; Khatami, A; Gorouhi, F; Babakoohi, S; Montaser-Kouhsari, L; Davari, P; Dowlati, Y

    2010-12-01

    Fragrances are considered as one of the most common causes of allergic contact dermatitis. About 1-4% of the general population suffer from fragrance contact allergy (FCA). To determine the frequency of FCA and its clinical relevance in a sample of Iranian patients with history of contact and/or atopic dermatitis from January 2004 to December 2008. Standardized patch testing with 28-allergen screening series recommended by the German Contact Dermatitis Research Group and European Standard Series was used at six dermatological clinics in Iran. Fragrance allergens comprised of fragrance mix I (FM I), Myroxylon pereirae (MP; balsam of Peru), Lyral, turpentine and FM II. Fragrance contact allergy was detected in 7.2% of the patients. The frequency of positive reactions to FM I, MP and FM II were 3.7% (41/1105), 2.8% (32/1135) and 1.1% (3/267) respectively. 82.4% of the reactions to fragrance allergens were clinically relevant. The most common involved areas were hands (68.4%) and face (35.4%). Fragrance allergy predominantly affected women aged more than 40 years (P=0.008). Positive reaction to more than two allergens was significantly higher in FCA patients compared with other contact dermatitis patients (P<0.0001), and FM I, nickel and MP were the most frequent allergens in these patients. Despite less frequency of FCA in comparison with some European countries, its clinical relevance in Iranian patients seems to be high. It mostly affects the hands and the face predominantly in women aged more than 40 years. © 2010 The Authors. Journal compilation © 2010 European Academy of Dermatology and Venereology.

  5. Condensed Matter Theories: Volume 25

    Science.gov (United States)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  6. Noneczematous Contact Dermatitis

    Science.gov (United States)

    Foti, Caterina; Vestita, Michelangelo; Angelini, Gianni

    2013-01-01

    Irritant or allergic contact dermatitis usually presents as an eczematous process, clinically characterized by erythematoedematovesicous lesions with intense itching in the acute phase. Such manifestations become erythematous-scaly as the condition progresses to the subacute phase and papular-hyperkeratotic in the chronic phase. Not infrequently, however, contact dermatitis presents with noneczematous features. The reasons underlying this clinical polymorphism lie in the different noxae and contact modalities, as well as in the individual susceptibility and the various targeted cutaneous structures. The most represented forms of non-eczematous contact dermatitis include the erythema multiforme-like, the purpuric, the lichenoid, and the pigmented kinds. These clinical entities must obviously be discerned from the corresponding “pure” dermatitis, which are not associated with contact with exogenous agents. PMID:24109520

  7. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  8. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  9. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  10. Bose-Einstein condensation and crystallization

    International Nuclear Information System (INIS)

    Suetoe, A.

    2008-01-01

    The paper describes history and state of art theory of Bose-Einstein condensation and crystallization as cases of breaking continuous symmetries. Emphasizes that these problems have not been solved exactly. (TRA)

  11. Condenser design for AMTEC power conversion

    Science.gov (United States)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  12. Droplet condensation in rapidly decaying pressure fields

    International Nuclear Information System (INIS)

    Peterson, P.F.; Bai, R.Y.; Schrock, V.E.; Hijikata, K.

    1992-01-01

    Certain promising schemes for cooling inertial confinement fusion reactors call for highly transient condensation in a rapidly decaying pressure field. After an initial period of condensation on a subcooled droplet, undesirable evaporation begins to occur. Recirculation within the droplet strongly impacts the character of this condensation-evaporation cycle, particularly when the recirculation time constant is of the order of the pressure decay time constant. Recirculation can augment the heat transfer, delay the onset of evaporation, and increase the maximum superheat inside the drop by as much as an order of magnitude. This numerical investigation identifies the most important parameters and physics characterizing transient, high heat flux droplet condensation. The results can be applied to conceptual designs of inertial confinement fusion reactors, where initial temperature differences on the order of 1,500 K decay to zero over time spans the order of tens of milliseconds

  13. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  14. Recent developments in Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Kalman, G.

    1997-01-01

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations

  15. Recent developments in Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  16. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  17. Fermion condensation and gapped domain walls in topological orders

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)

    2017-03-31

    We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.

  18. The ethics of contacting family members of a subject in a genetic research study to return results for an autosomal dominant syndrome.

    Science.gov (United States)

    Taylor, Holly A; Wilfond, Benjamin S

    2013-01-01

    This case explores the ethical landscape around recontacting a subject's relatives to return genetic research results when the informed consent form signed by the original cohort of subjects is silent on whether investigators may share new information with the research subject's family. As a result of rapid advances in genetic technology, methods to identify genetic markers can mature during the life course of a study. In this case, the investigators identified the genetic mutation responsible for the disorder after a number of their original subjects had died. The researchers now have the ability to inform relatives of the subject about their risk of developing the same disease. Mark Rothstein, JD, from the University of Louisville School of Medicine, provides an overview of the medical/scientific, legal, and ethical issues underlying this case. Lauren Milner, PhD, and colleagues at Stanford University explore how the relationship between researcher and subject affect this debate. Seema Shah, JD, and colleagues at the National Institutes of Health and University of California, Los Angeles (UCLA) discuss whether and how requirements of the duty to warn are applicable in this case.

  19. Biofouling and its prevention in condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, K; Minamoto, K; Kyohara, S [Kobe Steel Ltd. (Japan). Central Research and Development Lab.

    1979-04-01

    In this paper, biofouling in condenser tubes and methods of prevention are described. Biofouling has a tendency to occur in tubes under lower velocity of sea water, and fouling organisms, if allowed to build up, cannot be removed by ordinary nylon brush cleaning. As the results of our investigation, it was concluded that sponge ball cleaning should be employed when the condenser is operated under lower velocity of sea water in the bacteria breeding season.

  20. Chiral Lagrangians and quark condensate in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)

  1. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  2. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  3. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  4. Vector condensate model of electroweak interactions

    International Nuclear Information System (INIS)

    Cynolter, G.; Pocsik, G.

    1997-01-01

    Motivated by the fact that the Higgs is not seen, a new version of the standard model is proposed where the scalar doublet is replaced by a vector doublet and its neutral member forms a nonvanishing condensate. Gauge fields are coupled to the new vector fields B in a gauge invariant way leading to mass terms for the gauge fields by condensation. The model is presented and some implications are discussed. (K.A.)

  5. Air Pollutants Minimalization of Pollutant Absorber with Condensation System

    International Nuclear Information System (INIS)

    Ruhiat, Yayat; Wibowo, Firmanul Catur; Oktarisa, Yuvita

    2017-01-01

    Industrial development has implications for pollution, one of it is air pollution. The amount of air pollutants emitted from industrial depend on several factors which are capacity of its fuel, high chimneys and atmospheric stability. To minimize pollutants emitted from industries is created a tool called Pollutant Absorber (PA) with a condensing system. Research and Development with the approach of Design for Production was used as methodology in making PA. To test the function of PA, the simulation had been done by using the data on industrial emissions Cilegon industrial area. The simulation results in 15 years period showed that the PA was able to minimize the pollutant emissions of SO2 by 38% NOx by 37% and dust by 64%. Differences in the absorption of pollutants shows the weakness of particle separation process in the separator. This condition happen because the condensation process is less optimal during the absorption and separation in the separator. (paper)

  6. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  7. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  8. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  9. Numerical analysis of transient pressure variation in the condenser of a nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)

    2016-02-15

    To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.

  10. Effect of capillary condensation on friction force and adhesion.

    Science.gov (United States)

    Feiler, Adam A; Stiernstedt, Johanna; Theander, Katarina; Jenkins, Paul; Rutland, Mark W

    2007-01-16

    Friction force measurements have been conducted with a colloid probe on mica and silica (both hydrophilic and hydrophobized) after long (24 h) exposure to high-humidity air. Adhesion and friction measurements have also been performed on cellulose substrates. The long exposure to high humidity led to a large hysteresis between loading and unloading in the friction measurements with separation occurring at large negative applied loads. The large hysteresis in the friction-load relationship is attributed to a contact area hysteresis of the capillary condensate which built up during loading and did not evaporate during the unloading regime. The magnitude of the friction force varied dramatically between substrates and was lowest on the mica substrate and highest on the hydrophilic silica substrate, with the hydrophobized silica and cellulose being intermediate. The adhesion due to capillary forces on cellulose was small compared to that on the other substrates, due to the greater roughness of these surfaces.

  11. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  12. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  13. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  14. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

    Science.gov (United States)

    Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

    2012-04-24

    Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.

  15. Evaluation of sea water chlorine demand in condenser cooling water at TAPS 1 and 2

    International Nuclear Information System (INIS)

    Papachan, Deepa; Gupta, P.K.; Patil, D.P.; Save, C.B.; Anilkumar, K.R.

    2008-01-01

    To prevent microbiological growth in the condenser tubes, condenser cooling water chlorination is very important. For effective chlorination, chlorine dose rate and frequency of dosing has to be determined on the basis of sea water chlorine demand. TAPS 1 and 2 is located near Arabian sea and draws water from this sea for its condenser cooling. The present practice of chlorine dosing at TAPS 1 and 2, based on the analysis carried out by GE in 1969, is 2500 kg/day/CWpump and 90 kg/day/SSWpump for a contact period of 25 minutes. Normal frequency of dosing is once per 8 hour and booster dose is once in a week at the same rate for 1 hour. The criteria of effective chlorination is to get residual chlorine of 2-3 ppm at the condenser water box outlet during chlorination at water box inlet/CW pump suction header in the recommended dose rate. The other option of chlorination was continuous dosing to get 0.5 ppm residual chlorine. This option has its own limitations as it is more expensive and also that micro organisms get immune to chlorine eventually due to continuous dosing. Nevertheless higher chlorine dosing is detrimental to AI-brass condenser tubes. Therefore the second option was not adopted at TAPS 1 and 2. Tarapur Atomic Power Station-1 is in the process of replacement of condenser tubes due to frequent condenser tube failures in the recent years. It was essential to analyse the present sea water chlorine demand and re-determine the chlorine dose rate because of development of industries under Maharashtra Industrial Development Corporation (MIDC) and simultaneous population growth around this area over a period of three decades. This paper discusses the experimental observations regarding significant change in sea water chlorine demand over this period and the effect of seasonal changes on sea water chlorine demand. (author)

  16. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  17. Gas-liquid contacting in mixing vessels

    International Nuclear Information System (INIS)

    Mann, R.

    1983-01-01

    This report by Dr. R. Mann of UMIST presents a critical survey of literature on the contacting of gases with liquids in stirred vessels. Research undertaken in the last fifteen years in analysed, and promising areas for future research are identified. The report deals with physical contacting, mass transfer between the gas and liquid phases and the utilisation of the stirred vessel as a gas-liquid reactor. Three sections are given on gas-liquid contacting: physical aspects; interphase mass transfer; and chemical reactions. It also discusses recent new approaches and includes a summary of conclusions, nomenclature and references

  18. Endurance and Heat-Transfer Performance of Polymer Coatings for the Promotion of Dropwise Condensation of Steam.

    Science.gov (United States)

    1984-12-01

    34Relation of Egailibrium Contact Angle to Liquid and Solid Constitution," Advances in Chemislrj Series, v.43, 1964. 10. Hannemann R.J._, and Mikic B.B... Hannemann , R.J. "Condensing Surface Thickness Effects in Dropwise Conhensation" I . eat Mass Transfer, v.21, 1o.1, January, 1976. 15. Naas P. Straub

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not been properly fitted by an eye care professional, the lenses stuck to my eye like a ... prescription and proper fitting by an eye-care professional. Retailers that sell contacts without a prescription are ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...