WorldWideScience

Sample records for consumption aggravates high-fat

  1. Moderate alcohol consumption aggravates high fat-diet induced steatohepatitis in rats

    Science.gov (United States)

    Background: Nonalcoholic steatohepatitis (NASH) develops in the absence of chronic and excessive alcohol consumption. However, it remains unknown whether moderate alcohol consumption aggravates liver inflammation in pre-existing NASH condition. Methods: Sprague-Dawley rats were first fed ad libitum...

  2. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  4. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake.

    Science.gov (United States)

    van den Berg, Sjoerd A A; Heemskerk, Mattijs M; Geerling, Janine J; van Klinken, Jan-Bert; Schaap, Frank G; Bijland, Silvia; Berbée, Jimmy F P; van Harmelen, Vanessa J A; Pronk, Amanda C M; Schreurs, Marijke; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems

    2013-08-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, Pcentral regulation of food intake.

  5. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Yu, Yongquan [State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Xu, Hengsen [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Wang, Chao [State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Ji, Minghui; Gu, Jun [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Yang, Lu; Zhu, Jiansheng [State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Dong, Huibin [Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou 2013022 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China); Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166 (China)

    2017-05-15

    Growing evidence has revealed that a high-fat diet (HFD) could lead to disorders of glycolipid metabolism and insulin-resistant states, and HFDs have been associated with the inhibition of testicular steroidogenesis. Our previous study demonstrated that 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) could increase the risk of diabetes in humans and reduce testosterone production in rats. However, whether the HFD affects BDE47-inhibited testosterone production by elevating insulin levels and inducing related pathways remains unknown. In male rats treated with BDE47 by gavage for 12 weeks, the HFD significantly increased the BDE47 content of the liver and testis and increased the weight of the adipose tissue; increased macrovesicular steatosis in the liver and the levels of triglycerides, fasting glucose and insulin; further aggravated the disruption of the seminiferous epithelium; and lowered the level of testosterone, resulting in fewer sperm in the epididymis. Of note, the HFD enhanced BDE47-induced DAX-1 expression and decreased the expression levels of StAR and 3β-HSD in the testicular interstitial compartments in rats. In isolated primary Leydig cells from rats, BDE47 or insulin increased DAX-1 expression, decreased the expression of StAR and 3β-HSD, and reduced testosterone production, which was nearly reversed by knocking down DAX-1. These results indicated that the HFD aggravates BDE47-inhibited testosterone production through hyperinsulinemia, and the accumulation of testicular BDE47 that induces the up-regulation of DAX-1 and the subsequent down-regulation of steroidogenic proteins, i.e., StAR and 3β-HSD, in Leydig cells. - Highlights: • High-fat diet (HFD) aggravates the accumulation of BDE47 in liver and testis in rats. • HFD aggravates BDE47-inhibited testosterone production via DAX-1 in Leydig cells. • HFD enhances BDE47-induced the disorder of glycolipid metabolism and hyperinsulinemia. • Both hyperinsulinemia and accumulation of BDE47

  6. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats

    International Nuclear Information System (INIS)

    Zhang, Zhan; Yu, Yongquan; Xu, Hengsen; Wang, Chao; Ji, Minghui; Gu, Jun; Yang, Lu; Zhu, Jiansheng; Dong, Huibin; Wang, Shou-Lin

    2017-01-01

    Growing evidence has revealed that a high-fat diet (HFD) could lead to disorders of glycolipid metabolism and insulin-resistant states, and HFDs have been associated with the inhibition of testicular steroidogenesis. Our previous study demonstrated that 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) could increase the risk of diabetes in humans and reduce testosterone production in rats. However, whether the HFD affects BDE47-inhibited testosterone production by elevating insulin levels and inducing related pathways remains unknown. In male rats treated with BDE47 by gavage for 12 weeks, the HFD significantly increased the BDE47 content of the liver and testis and increased the weight of the adipose tissue; increased macrovesicular steatosis in the liver and the levels of triglycerides, fasting glucose and insulin; further aggravated the disruption of the seminiferous epithelium; and lowered the level of testosterone, resulting in fewer sperm in the epididymis. Of note, the HFD enhanced BDE47-induced DAX-1 expression and decreased the expression levels of StAR and 3β-HSD in the testicular interstitial compartments in rats. In isolated primary Leydig cells from rats, BDE47 or insulin increased DAX-1 expression, decreased the expression of StAR and 3β-HSD, and reduced testosterone production, which was nearly reversed by knocking down DAX-1. These results indicated that the HFD aggravates BDE47-inhibited testosterone production through hyperinsulinemia, and the accumulation of testicular BDE47 that induces the up-regulation of DAX-1 and the subsequent down-regulation of steroidogenic proteins, i.e., StAR and 3β-HSD, in Leydig cells. - Highlights: • High-fat diet (HFD) aggravates the accumulation of BDE47 in liver and testis in rats. • HFD aggravates BDE47-inhibited testosterone production via DAX-1 in Leydig cells. • HFD enhances BDE47-induced the disorder of glycolipid metabolism and hyperinsulinemia. • Both hyperinsulinemia and accumulation of BDE47

  7. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  8. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  9. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  10. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice.

    Science.gov (United States)

    Navarro, Claudia D C; Figueira, Tiago R; Francisco, Annelise; Dal'Bó, Genoefa A; Ronchi, Juliana A; Rovani, Juliana C; Escanhoela, Cecilia A F; Oliveira, Helena C F; Castilho, Roger F; Vercesi, Anibal E

    2017-12-01

    The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt +/+ ) or without (Nnt -/- ) NNT activity; the spontaneously mutated allele (Nnt -/- ) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt -/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt +/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt -/- mice was accompanied by an increased H 2 O 2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca 2+ -induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt -/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt -/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt +/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD. Copyright

  11. High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain.

    Science.gov (United States)

    Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne

    2008-01-01

    We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.

  12. Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice.

    Science.gov (United States)

    Morselli, Eugenia; Criollo, Alfredo; Rodriguez-Navas, Carlos; Clegg, Deborah J

    We show that chronic high fat diet (HFD) feeding affects the hypothalamus of male but not female mice. In our study we demonstrate that palmitic acid and sphingolipids accumulate in the central nervous system of HFD-fed males. Additionally, we show that HFD-feeding reduces proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) thus reducing estrogen receptor α (ERα) and driving hypothalamic inflammation in male but not female mice. Hypothalamic inflammation correlates with markers of metabolic dysregulation as indicated by dysregulation in glucose intolerance and myocardial function. Lastly, we demonstrate that there are blockages in mitophagy and lipophagy in hypothalamic tissues in males. Our data suggest there is a sexually dimorphic response to chronic HDF exposure, females; despite gaining the same amount of body weight following HFD-feeding, appear to be protected from the adverse metabolic effects of the HFD.

  13. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    Science.gov (United States)

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  14. A sexually dimorphic hypothalamic response to chronic high-fat diet consumption.

    Science.gov (United States)

    Morselli, E; Frank, A P; Palmer, B F; Rodriguez-Navas, C; Criollo, A; Clegg, D J

    2016-02-01

    In this review, we discuss the observations that, following chronic high-fat diet (HFD) exposure, male mice have higher levels of saturated fatty acids (FAs) and total sphingolipids, whereas lower amounts of polyunsaturated FAs in the central nervous system (CNS) than females. Furthermore, males, when compared with female mice, have higher levels of inflammatory markers in the hypothalamus following exposure to HFD. The increase in markers of inflammation in male mice is possibly due to the reductions in proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and estrogen receptor alpha (ERα), which is not recapitulated in female mice. Consistently, hypothalamic inflammation is induced both in male and female ERα total-body knockout mice when exposed to a HFD, thus confirming the key role of ERα in the regulation of HFD-induced hypothalamic inflammation. Finally, the HFD-induced depletion of hypothalamic ERα is associated with dysregulation in metabolic homeostasis, as evidenced by reductions in glucose tolerance and decrements in myocardial function.

  15. Decaffeinated coffee consumption induces expression of tight junction proteins in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Mazzone G

    2016-09-01

    Full Text Available Background: Recent evidence indicates that gut microbiota plays a key role in the development of NAFLD through the gut-liver axis. An altered gut permeability induced by alterations of tight junction (TJ proteins allows the passage of bacteria and substances leading to liver inflammation, hepatocyte damage and fibrosis. This study aims to evaluate the influence of decaffeinated coffee on gut permeability in a rat model of fat liver damage induced by a high fat diet (HFD. Methods: Twelve male Wistar rats were assigned to 3 groups. The first group received HFD for 5 months and drank water. The second group received HFD for 5 months and drank water added with 1.2mL decaffeinated coffee/day starting from the 4th month. The third group received standard diet (SD and drank water. Protein and mRNA expression levels of Toll-Like Receptor- 4 (TLR-4, Occludin and Zonula occludens-1 (ZO-1 were assessed in rat intestines. Results: A significant reduction of Occludin and ZO-1 was observed in HFD fed rats (0.97±0.05 vs 0.15±0.08 p˂0.01, and 0.97±0.05 vs 0.57±0.14 p˂0.001 respectively. This reduction was reverted in HFD+COFFEE rats (0.15±0.08 vs 0.83±0.27 p˂0.01 and 0.57±0.14 vs 0.85±0.12 p˂0.01 respectively. The TLR-4 expression up-regulated by HFD was partially reduced by coffee administration. Conclusions: HFD impairs the intestinal TJ barrier integrity. Coffee increases the expression of TJ proteins, reverting the altered gut permeability and reducing TLR-4 expression.

  16. Liver-specific deletion of the signal transducer and activator of transcription 5 gene aggravates fatty liver in response to a high-fat diet in mice.

    Science.gov (United States)

    Baik, Myunggi; Nam, Yoon Seok; Piao, Min Yu; Kang, Hyeok Joong; Park, Seung Ju; Lee, Jae-Hyuk

    2016-03-01

    Growth hormone (GH) signal is mediated by signal transducer and activator of transcription 5 (STAT5), which controls hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is clinically associated with a deficiency in GH. This study was performed to understand the role of local STAT5 signaling on hepatic lipid and glucose metabolism utilizing liver-specific STAT5 gene deletion (STAT5 LKO) mice under both normal diet and high-fat diet (HFD) feeding conditions. STAT5 LKO induced hepatic steatosis under HFD feeding, while this change was not observed in mice on normal diet. STAT5 LKO caused hyperglycemia, hyperinsulinemia, hyperleptinemia and elevated free fatty acid and cholesterol concentrations under HFD feeding but induced only hyperglycemia on normal diet. At the molecular level, STAT5 LKO up-regulated the expression of genes involved in lipid uptake (CD36), very low-density lipoprotein receptor (VLDLR), lipogenic stearoyl-CoA desaturase and adipogenic peroxisome proliferator-activated receptor gamma, in both diet groups. In response to HFD feeding, further increases in CD36 and VLDLR expression were found in STAT5 LKO mice. In conclusion, our study suggests that low STAT5 signaling on normal diet predisposes STAT5 LKO mice to early development of fatty liver by hyperglycemia and activation of lipid uptake and adipogenesis. A deficiency in STAT5 signaling under HFD feeding deregulates hepatic and body glucose and lipid metabolism, leading to the development of hepatic steatosis. Our study indicates that low STAT5 signaling, due to low GH secretion, may increase a chance for NAFLD development in elderly people. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Aggravation of nonalcoholic steatohepatitis by moderate alcohol consumption is associated with decreased SIRT1 activity in rats

    Science.gov (United States)

    Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...

  18. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes

    Science.gov (United States)

    Kalyan-Masih, Priya; Vega-Torres, Julio David; Haddad, Elizabeth; Rainsbury, Sabrina; Baghchechi, Mohsen

    2016-01-01

    Abstract Psychological trauma and obesity co-occur frequently and have been identified as major risk factors for psychiatric disorders. Surprisingly, preclinical studies examining how obesity disrupts the ability of the brain to cope with psychological trauma are lacking. The objective of this study was to determine whether an obesogenic Western-like high-fat diet (WD) predisposes rats to post-traumatic stress responsivity. Adolescent Lewis rats (postnatal day 28) were fed ad libitum for 8 weeks with either the experimental WD diet (41.4% kcal from fat) or the control diet (16.5% kcal from fat). We modeled psychological trauma by exposing young adult rats to a cat odor threat. The elevated plus maze and the open field test revealed increased psychological trauma-induced anxiety-like behaviors in the rats that consumed the WD when compared with control animals 1 week after undergoing traumatic stress (p < 0.05). Magnetic resonance imaging showed significant hippocampal atrophy (20% reduction) and lateral ventricular enlargement (50% increase) in the animals fed the WD when compared with controls. These volumetric abnormalities were associated with behavioral indices of anxiety, increased leptin and FK506-binding protein 51 (FKBP51) levels, and reduced hippocampal blood vessel density. We found asymmetric structural vulnerabilities to the WD, particularly the ventral and left hippocampus and lateral ventricle. This study highlights how WD consumption during adolescence impacts key substrates implicated in post-traumatic stress disorder. Understanding how consumption of a WD affects the developmental trajectories of the stress neurocircuitry is critical, as stress susceptibility imposes a marked vulnerability to neuropsychiatric disorders. PMID:27844058

  19. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet

    DEFF Research Database (Denmark)

    McClean, Paula L; Irwin, Nigel; Cassidy, Roslyn S

    2007-01-01

    The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce...... obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic......))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet....

  20. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of red wine, grape juice and resveratrol consumption on bone parameters of Wistar rats submitted to high-fat diet and physical training.

    Science.gov (United States)

    Cardoso, Letícia Monteiro da Fonseca; Pimenta, Nina Da Matta Alvarez; Fiochi, Raiza Da Silva Ferreira; Mota, Bruna Ferreira Mota; Monnerat, Juliana Arruda de Souza; Teixeira, Cristiane Correia; Ramalho, Renata Beatriz Da Rocha; Maldronato, Isabelle Waleska; Dolisnky, Manuela; Boaventura, Gilson Teles; Blondet, Vilma; Barroso, Sergio Girão; Costa, Carlos Alberto Soares da; Rocha, Gabrielle De Souza

    2017-10-27

    intake of diets with high saturated fat may produce deleterious effects on bone mineralization. Lifestyle changes help reduce the bone loss observed in osteoporosis. Resveratrol, present in grape juice and red wine, has osteogenic and osteoinductive effects, being potentially beneficial for bone health. to evaluate the effects of red grape juice, red wine and resveratrol consumption on bone parameters in Wistar rats submitted to a high-fat diet and physical training. female Wistar rats, with 90 days of age, were divided into five groups and followed up for 60 days: a) control group; b) high-fat group; c) grape juice group; d) red wine group; and e) resveratrol group. The different groups of animals performed a physical training protocol. Animal's weight and consumption were monitored weekly. After 60 days, femoral dimensions, bone mineral density (BMD) and bone mineral content (BMC) were evaluated. there was no difference in body mass; however, all groups consuming the high-fat diet had higher consumption (p diet.

  2. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study.

    Science.gov (United States)

    Gonçalves, Luciana Kneib; da Silva, Ivy Reichert Vital; Cechinel, Laura Reck; Frusciante, Marina Rocha; de Mello, Alexandre Silva; Elsner, Viviane Rostirola; Funchal, Claudia; Dani, Caroline

    2017-11-20

    This study aimed to investigate the impact of maternal consumption of a hyperlipid diet and grape juice on global histone H4 acetylation levels in the offsprinǵs hippocampus at different stages of development. During pregnancy and lactation of offspring, dams were divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice (PGJCD) and purple grape juice and high-fat diet (PGJHFD). Male Wistar rats were euthanized at 21days of age (PN21, adolescents) and at 50days of age (PN50, adults). The maternal consumption of grape juice increased global histone H4 acetylation levels in hippocampus of adolescents pups (PN21), an indicative of enhanced transcriptional activity and increased gene expression. On the other hand, the maternal high-fat diet diminished significantly this epigenetic marker in the adult phase (PN50), suggesting gene silencing. These preliminary findings demonstrated that the maternal choices are able to induce changes on histone H4 acetylation status in hippocampus of the offspring, which may modulate the expression of specific genes. Interestingly, this response occurs in an age and stimuli-dependent manner and strongly reinforce the importance of maternal choices during gestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet.......Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects...

  4. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    Science.gov (United States)

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  5. Systemic Oxidative Stress Is Increased to a Greater Degree in Young, Obese Women Following Consumption of a High Fat Meal

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2009-01-01

    Full Text Available High fat meals induce oxidative stress, which is associated with the pathogenesis of disease. Obese individuals have elevated resting biomarkers of oxidative stress compared to non-obese. We compared blood oxidative stress biomarkers in obese (n = 14; 30 ± 2 years; BMI 35 ± 1 kg•m−2 and non-obese (n = 16; 24 ± 2 years; BMI 23 ± 1 kg•m−2 women, in response to a high fat meal. Blood samples were collected pre-meal (fasted, and at 1, 2, 4 and 6 hours post meal, and assayed for trolox equivalent antioxidant capacity (TEAC, xanthine oxidase activity (XO, hydrogen peroxide (H2O2, malondialdehyde (MDA, triglycerides (TAG, and glucose. An obesity status effect was noted for all variables (p 0.05, contrasts revealed greater values in obese compared to non-obese women for XO, H2O2, MDA, TAG and glucose, and lower values for TEAC at times from 1–6 hours post feeding (p ≤ 0.03. We conclude that young, obese women experience a similar pattern of increase in blood oxidative stress biomarkers in response to a high fat meal, as compared to non-obese women. However, the overall oxidative stress is greater in obese women, and values appear to remain elevated for longer periods of time post feeding. These data provide insight into another potential mechanism related to obesity-mediated morbidity.

  6. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat.

    Science.gov (United States)

    Bake, T; Morgan, D G A; Mercer, J G

    2014-04-10

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study

  7. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague–Dawley rat

    Science.gov (United States)

    Bake, T.; Morgan, D.G.A.; Mercer, J.G.

    2014-01-01

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague–Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1–2 h and 10–11 h into the dark phase (2 × 1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2 × 1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic

  8. Hepatic NADlevels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice

    DEFF Research Database (Denmark)

    Dall, Morten; Penke, Melanie; Sulek, Karolina

    2018-01-01

    +have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60...... regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD...

  9. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity.

    Science.gov (United States)

    Ryan, Karen K; Woods, Stephen C; Seeley, Randy J

    2012-02-08

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  11. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men.

    Science.gov (United States)

    Edwards, Lindsay M; Murray, Andrew J; Holloway, Cameron J; Carter, Emma E; Kemp, Graham J; Codreanu, Ion; Brooker, Helen; Tyler, Damian J; Robbins, Peter A; Clarke, Kieran

    2011-03-01

    We recently showed that a short-term high-fat diet blunted exercise performance in rats, accompanied by increased uncoupling protein levels and greater respiratory uncoupling. In this study, we investigated the effects of a similar diet on physical and cognitive performance in humans. Twenty sedentary men were assessed when consuming a standardized, nutritionally balanced diet (control) and after 7 d of consuming a diet comprising 74% kcal from fat. Efficiency was measured during a standardized exercise task, and cognition was assessed using a computerized assessment battery. Skeletal muscle mitochondrial function was measured using (31)P magnetic resonance spectroscopy. The diet increased mean ± se plasma free fatty acids by 44% (0.32±0.03 vs. 0.46±0.05 mM; Pdiet consumption also increased subjects' simple reaction times (Pdiet blunts whole-body efficiency and cognition in sedentary men. We suggest that this effect may be due to increased respiratory uncoupling.

  12. [Frequency and preferences of consumption of high-fat products by students of catering school in Kraków].

    Science.gov (United States)

    Biezanowska-Kopeć, Renata; Kopeć, Aneta; Leszczyńska, Teresa; Pisulewski, Paweł M

    2012-01-01

    Dyslipidemia is one of the most important risk factors for atherosclerotic disease and may lead to coronary heart disease, obesity, type II diabetes and certain cancers. The choice of food and meals by adults is a large part determined by the dietary habits and knowledge acquired in earlier periods of life. The aim of this study was to evaluate frequency of consumption of food products containing fats among students of the Catering School in Kraków. The study was conducted with the participation of 140 students divided into two subgroups, depending on gender and age, in the autumn and winter season. During the studies a food frequency questionnaire containing question about frequency intake of selected groups of food products containing fats was used. This questionnaire was prepared at the Department of Human Nutrition Agricultural University of Kraków. A significant (P Catering School, despite the acquired knowledge of nutrition, make many mistakes.

  13. Acute Cocoa Supplementation Increases Postprandial HDL Cholesterol and Insulin in Obese Adults with Type 2 Diabetes after Consumption of a High-Fat Breakfast.

    Science.gov (United States)

    Basu, Arpita; Betts, Nancy M; Leyva, Misti J; Fu, Dongxu; Aston, Christopher E; Lyons, Timothy J

    2015-10-01

    Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function. We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal. Adults with T2D [n = 18; age (mean ± SE): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men] were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment. Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989. © 2015 American Society for Nutrition.

  14. Acute Cocoa Supplementation Increases Postprandial HDL Cholesterol and Insulin in Obese Adults with Type 2 Diabetes after Consumption of a High-Fat Breakfast123

    Science.gov (United States)

    Basu, Arpita; Betts, Nancy M; Leyva, Misti J; Fu, Dongxu; Aston, Christopher E; Lyons, Timothy J

    2015-01-01

    Background: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function. Objective: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food–style meal. Methods: Adults with T2D [n = 18; age (mean ± SE): 56 ± 3 y; BMI (in kg/m2): 35.3 ± 2.0; 14 women; 4 men] were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment. Results: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P cocoa vs. placebo (Δ: −1.6 ± 0.7 mL/mm Hg; P cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food–style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989. PMID:26338890

  15. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Suhana Samat

    2017-01-01

    Full Text Available Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  16. Urine and Serum Metabolite Profiling of Rats Fed a High-Fat Diet and the Anti-Obesity Effects of Caffeine Consumption

    Directory of Open Access Journals (Sweden)

    Hyang Yeon Kim

    2015-02-01

    Full Text Available In this study, we investigated the clinical changes induced by a high fat diet (HFD and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs, and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND, HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS, gas chromatography (GC-TOF-MS, and linear trap quadruple mass spectrometry (LTQ-XL-MS combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.

  17. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats.

    Science.gov (United States)

    Samat, Suhana; Kanyan Enchang, Francis; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  18. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Investigation of carryover effect of prior fibre consumption on growth, serum and tissue metabolic markers in Ossabaw pigs fed a high-fat diet.

    Science.gov (United States)

    Almeida, V V; Yan, H; Nakatsu, C H; Ajuwon, K M

    2018-04-14

    Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka-Floc®) and fat levels (5 or 15%) for the low-fat diet (LFD) and high-fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p Inulin increased (p ≤ .02) jejunal expression of SREBP-1c and CL-4, but reduced (p inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders. © 2018 Blackwell Verlag GmbH.

  20. Consumption of a liquid high-fat meal increases triglycerides but decreases high-density lipoprotein cholesterol in abdominally obese subjects with high postprandial insulin resistance.

    Science.gov (United States)

    Wang, Feng; Lu, Huixia; Liu, Fukang; Cai, Huizhen; Xia, Hui; Guo, Fei; Xie, Yulan; Huang, Guiling; Miao, Miao; Shu, Guofang; Sun, Guiju

    2017-07-01

    Abdominal obesity is associated with an increased risk of insulin resistance, which may be a potential contributor to dyslipidemia. However, the relationship between postprandial insulin resistance and lipid metabolism in abdominally obese subjects remains unknown. We hypothesized that postprandial dyslipidemia would be exaggerated in abdominally obese subjects with high postprandial insulin resistance. To test this hypothesis, serum glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and apolipoprotein B were measured at baseline and postprandial state at 0.5, 1, 2, 4, 6, and 8 hours after a liquid high-fat meal in non-abdominally obese controls (n=44) and abdominally obese subjects with low (AO-LPIR, n=40), middle (n=40), and high postprandial insulin resistance (AO-HPIR, n=40) based on the tertiles ratio of the insulin to glucose areas under the curve (AUC). Their serum adipokines were tested at baseline only. Fasting serum leptin was higher (Pinsulin resistance and controls. The present study indicated that the higher degree of postprandial insulin resistance, the more adverse lipid profiles in abdominally obese subjects, which provides insight into opportunity for screening in health. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Responses of dietary ileal amino acid digestibility to consumption of different cultivars of potatoes and conventional fibers in grower pigs fed a high-fat basal diet.

    Science.gov (United States)

    Wang, Q; Yang, X; Leonard, S; Archbold, T; Sullivan, J A; Duncan, A M; Ma, W D L; Bizimungu, B; Murphy, A; Htoo, J K; Fan, M Z

    2012-12-01

    Whereas dietary fibers are well recognized for nutritional management of human health issues, fiber is also known to be one of the dietary factors potentially affecting digestive use of dietary proteins. As a staple food, potato (Solanum tuberosum) may be a significant dietary fiber source. The objective of this study was to examine effects of dietary supplementation of six potato cultivar-genotype samples that differ in soluble fiber content and two conventional fiber components (i.e., cellulose and guar gum) on the apparent ileal AA digestibility in pigs fed a high-fat basal diet. The basal diet was formulated as a zero-fiber negative control (NC) to contain 41.5% poultry meal, 4% casein, 15% animal fat-oil blend, 2.8% sucrose, 31% corn (Zea mays) starch, 0.50% salt, and 0.40% trace mineral-vitamin supplement with fat contributing to 47% of the dietary GE. The two fiber diets were formulated by respectively diluting the basal diet with 10% guar gum and 10% cellulose at the expense of corn starch. Six other test diets were formulated by including 8.5% guar gum and further diluting the basal diet with 25.1% one of the six cultivar-genotype samples of dehydrated potato tuber powder to contain about 10% total dietary fiber at the expense of corn starch. Eighty-one 25-kg barrows were fitted with a simple T-cannula at the distal ileum and fed the diets according to a completely randomized block design with each block lasting 28 d. Compared with the NC, the ileal digestibility of Ala, Gly, and Pro were decreased (P guar gum whereas the digestibility of Gly was reduced (P guar gum compared with the NC. Our results suggest that dietary inclusion of fiber at 10% from guar gum and cellulose and contributed by potatoes may adversely affect digestive use of dietary protein.

  2. Consumption of a high-fat meal containing cheese compared with a vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomised controlled cross-over study.

    Science.gov (United States)

    Demmer, Elieke; Van Loan, Marta D; Rivera, Nancy; Rogers, Tara S; Gertz, Erik R; German, J Bruce; Zivkovic, Angela M; Smilowitz, Jennifer T

    2016-01-01

    Dietary recommendations suggest decreased consumption of SFA to minimise CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomised controlled cross-over trial was conducted in twenty overweight or obese adults with metabolic abnormalities. Individuals consumed two isoenergetic high-fat mixed meals separated by a 1- to 2-week washout period. Serum was collected at baseline, and at 1, 3 and 6 h postprandially and analysed for inflammatory markers (IL-6, IL-8, IL-10, IL-17, IL-18, TNFα, monocyte chemotactic protein-1 (MCP-1)), acute-phase proteins C-reactive protein (CRP) and serum amyloid-A (SAA), cellular adhesion molecules and blood lipids, glucose and insulin. Following both high-fat test meals, postprandial TAG concentrations rose steadily (P vegan-alternative test meal. A treatment effect was not observed for any other inflammatory markers; however, for both test meals, multiple markers significantly changed from baseline over the 6 h postprandial period (IL-6, IL-8, IL-18, TNFα, MCP-1, SAA). Saturated fat in the form of a cheese matrix reduced the iAUC for CRP compared with a vegan-alternative test meal during the postprandial 6 h period. The study is registered at clinicaltrials.gov under NCT01803633.

  3. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption.

    Science.gov (United States)

    Calo, Nicolas; Ramadori, Pierluigi; Sobolewski, Cyril; Romero, Yannick; Maeder, Christine; Fournier, Margot; Rantakari, Pia; Zhang, Fu-Ping; Poutanen, Matti; Dufour, Jean-François; Humar, Bostjan; Nef, Serge; Foti, Michelangelo

    2016-11-01

    miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21* . Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21 * as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats

    OpenAIRE

    Suhana Samat; Francis Kanyan Enchang; Fuzina Nor Hussein; Wan Iryani Wan Ismail

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using h...

  5. Baked corn (Zea mays L.) and bean (Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2.

    Science.gov (United States)

    Dominguez-Uscanga, Astrid; Loarca-Piña, Guadalupe; Gonzalez de Mejia, Elvira

    2017-12-01

    The aim was to determine the effect of consuming a baked white corn/bean snack (70/30% blend) on improving diet-induced dyslipidemia and liver differential gene expression in mice fed a high-fat diet (HFD). C57BL/6 mice were randomized into six groups and different doses of the snack (0.5-2.0 g/d) supplemented to a basal HFD for 12 weeks. Unsupplemented HFD and a standard diet were used as positive and negative controls, respectively. Groups receiving HFD1.0, HFD1.5 and HFD2.0 showed attenuation in body weight gain (20%). Serum cholesterol and triglycerides were reduced (Psnack. Histological analysis showed a reduction in adipocyte diameters (PSnack consumption induced differential expression of 529 genes in the liver; RGS16 was the highest up-regulated molecule (+15-fold change). Increased expression of this gene could have improved glucose metabolism in HFD2.0. Ingenuity Pathway Analysis downstream analysis showed a predicted inhibition of target genes of peroxisome PPARγ and key regulators of lipogenic genes in the liver. The results suggest that consumption of a white corn/bean snack (70%/30% blend) attenuates weight gain, fat mass accumulation, adipocyte size and nonalcoholic fatty liver disease in HFD-fed mice by inhibiting PPARγ and SREBF2. The study proposes that this type of product might be beneficial by preventing dyslipidemia, obesity and hepatic steatosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of high-fat diet exposure on learning & memory.

    Science.gov (United States)

    Cordner, Zachary A; Tamashiro, Kellie L K

    2015-12-01

    The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Maternal high-fat diet during pregnancy and lactation affects hepatic ...

    Indian Academy of Sciences (India)

    2017-04-18

    Apr 18, 2017 ... pregnancy, several studies suggest that maternal obesity might lead to insulin ... High-fat food consumption by maternal dams during re- stricted periods ..... Our findings might be of significance in uncovering the association of.

  8. Consumption of a high-fat soup preload leads to differences in short-term energy and fat intake between PROP non-taster and super-taster women.

    Science.gov (United States)

    Shafaie, Yasmine; Hoffman, Daniel J; Tepper, Beverly J

    2015-06-01

    Taste blindness to the bitterness of PROP (6-n-propylthiouracil) has been used as a genetic marker for food selection and adiposity. We have shown that PROP non-taster (NT) women have higher BMIs and habitually consume more fat and energy than either medium-taster (MT) or super-taster (ST) women. These data imply that differences in dietary selection underlie the body weight differences among PROP taster groups. However, no studies investigated energy compensation in women classified by PROP status. We investigated if NTs would compensate less accurately for the calories and fat in a high-fat soup preload in a subsequent test meal compared to MTs and STs. Energy intake from a buffet meal was measured in 75 healthy non-diet-restrained, lean women 30 min after the ingestion of a high-fat soup preload (0.8 kcal/g; 55% calories from fat), calculated to represent 10% of resting energy expenditure for each subject, or the same volume of water. Subjects (n = 20-28/taster group) ate a standard breakfast followed 3 hr later by an ad-libitum buffet lunch, on two occasions. There were no differences in energy intake or macronutrient selection across taster groups after water. After soup, NTs consumed more energy than STs. Fat intake (as %-energy) was higher in NTs (46.4% ± 2.4) compared to either MTs (36.1 ± 1.9%) or STs (38.1% ± 2.3; p < 0.05). NTs overate by 11% ± 5 after the soup compared to MTs and STs who underrate by 16% ± 6 and 26% ± 10, respectively (p < 0.01). These data suggest that small discrepancies in short-term energy compensation and selection of fat after a mixed-nutrient, high-fat preload may play a role in positive energy balance and increased adiposity in women with the PROP non-taster phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  10. Consumption of high-fat meal containing cheese compared to a vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomised controlled crossover study

    Science.gov (United States)

    Background. Dietary recommendations suggest decreased consumption of saturated fatty acids (SFA) to minimize cardiovascular disease risk, however not all foods rich in SFA are equivalent. It is proposed that the effect of SFA on postprandial inflammation is influenced by the specific composition and...

  11. Consumption of high-fat meal containing cheese compared with vegan alternative lowers postprandial C-reactive protein in overweight and obese individuals with metabolic abnormalities: a randomized controlled cross-over study

    Science.gov (United States)

    Dietary recommendations suggest decreased consumption of SFA to minimize CVD risk; however, not all foods rich in SFA are equivalent. To evaluate the effects of SFA in a dairy food matrix, as Cheddar cheese, v. SFA from a vegan-alternative test meal on postprandial inflammatory markers, a randomized...

  12. The role of high fat diet in the development of complications of chronic pancreatitis.

    Science.gov (United States)

    Castiñeira-Alvariño, M; Lindkvist, B; Luaces-Regueira, M; Iglesias-García, J; Lariño-Noia, J; Nieto-García, L; Domínguez-Muñoz, J E

    2013-10-01

    Little is known about risk factors for complications in chronic pancreatitis (CP). High fat diet (HFD) has been demonstrated to aggravate pancreatic injury in animal models. The aim of this study was to investigate the role of HFD in age at diagnosis of CP and probability of CP related complications. A cross-sectional case-case study was performed within a prospectively collected cohort of patients with CP. Diagnosis and morphological severity of CP was established by endoscopic ultrasound. Pancreatic exocrine insufficiency (PEI) was diagnosed by ¹³C mixed triglyceride breath test. Fat intake was assessed by a specific nutritional questionnaire. Odds ratios (OR) for CP related complications were estimated by multivariate logistic regression analysis. 168 patients were included (128 (76.2%) men, mean age 44 years (SD 13.5)). Etiology of CP was alcohol abuse in 89 patients (53.0%), other causes in 30 (17.9%) and idiopathic in the remaining 49 subjects (29.2%). 24 patients (14.3%) had a HFD. 68 patients (40.5%) had continuous abdominal pain, 39 (23.2%) PEI and 43 (25.7%) morphologically severe CP. HFD was associated with an increased probability for continuous abdominal pain (OR = 2.84 (95% CI, 1.06-7.61)), and a younger age at diagnosis (37.0 ± 13.9 versus 45.8 ± 13.0 years, p = 0.03) but not with CP related complications after adjusting for sex, years of follow-up, alcohol and tobacco consumption, etiology and body mass index. Compared with a normal fat diet, HFD is associated with a younger age at diagnosis of CP and continuous abdominal pain, but not with severity and complications of the disease. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  14. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  15. Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia

    Directory of Open Access Journals (Sweden)

    Olga I. Dadalko

    2015-09-01

    Conclusions: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors.

  16. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology.

    Directory of Open Access Journals (Sweden)

    Jesselea Carlin

    Full Text Available Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60% diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males, changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome.

  17. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study

    OpenAIRE

    Raider, Kayla; Ma, Delin; Harris, Janna L.; Fuentes, Isabella; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M.; Stanford, John A.

    2016-01-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy (1H-MRS) to measure neurochemicals in ...

  18. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  19. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  20. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  1. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    Science.gov (United States)

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  2. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  3. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2015-11-01

    Full Text Available High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  4. Inducing and Aggravating Factors of Gastroesophageal Reflux Symptoms

    Directory of Open Access Journals (Sweden)

    Radhiyatam Mardhiyah

    2016-12-01

    Full Text Available Gastroesophageal reflux disease (subsequently abbreviated as GERD is a disease commonly found in the community. Several factors have been recognized as inducing and aggravating factors of GERD symptoms such as older age, female gender, obesity, smoking habit, alcohol consumption, certain diet and poor eating habit like eating fatty, spicy, and acid food.

  5. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake

    NARCIS (Netherlands)

    Berg, S.A.A. van den; Heemskerk, M.M.; Geerling, J.J.; Klinken, J.B. van; Schaap, F.G.; Bijland, S.; Berbée, J.F.P.; Harmelen, V.J.A. van; Pronk, A.C.M.; Schreurs, M.; Havekes, L.M.; Rensen, P.C.N.; Dijk, K.W. van

    2013-01-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the

  6. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake

    NARCIS (Netherlands)

    van den Berg, Sjoerd A. A.; Heemskerk, Mattijs M.; Geerling, Janine J.; van Klinken, Jan-Bert; Schaap, Frank G.; Bijland, Silvia; Berbee, Jimmy F. P.; van Harmelen, Vanessa J. A.; Pronk, Amanda C. M.; Bijker-Schreurs, Marijke; Havekes, Louis M.; Rensen, Patrick C. N.; van Dijk, Ko Willems

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the

  7. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  8. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients.

    Science.gov (United States)

    Cai, Baiqiang; Zhu, Yuanjue; Ma, Y i; Xu, Zuojun; Zao, Y i; Wang, Jinglan; Lin, Yaoguang; Comer, Gail M

    2003-03-01

    One of the goals in treating patients with chronic obstructive pulmonary disease (COPD) who suffer from hypoxemia, hypercapnia, and malnutrition is to correct the malnutrition without increasing the respiratory quotient and minimize the production of carbon dioxide. This 3-wk study evaluated the efficacy of feeding a high-fat, low-carbohydrate (CHO) nutritional supplement as opposed to a high-carbohydrate diet in COPD patients on parameters of pulmonary function.S METHODS: Sixty COPD patients with low body weight (diet (15% protein, 20% to 30% fat, and 60% to 70% CHO), or the experimental group, which received two to three cans (237 mL/can) of a high-fat, low-CHO oral supplement (16.7% protein, 55.1% fat, and 28.2% CHO) in the evening as part of the diet. Measurements of lung function (forced expiratory volume in 1 s or volume of air exhaled in 1 s of maximal expiration, minute ventilation, oxygen consumption per unit time, carbon dioxide production in unit time, and respiratory quotient) and blood gases (pH, arterial carbon dioxide tension, and arterial oxygen tension) were taken at baseline and after 3 wk. Lung function measurements decreased significantly and forced expiratory volume increased significantly in the experimental group. This study demonstrates that pulmonary function in COPD patients can be significantly improved with a high-fat, low-CHO oral supplement as compared with the traditional high-CHO diet.

  10. Association of habitual high-fat intake and desire for protein and sweet food.

    Science.gov (United States)

    Tatano, Hiroshi; Yamanaka-Okumura, Hisami; Zhou, Bei; Adachi, Chisaki; Kawakami, Yuka; Katayama, Takafumi; Masuda, Masashi; Takeda, Eiji; Taketani, Yutaka

    2016-01-01

    Reducing dietary calorie density (CD) is useful in body weight management. This study investigates the association between dietary habits and preferences for different CDs. We conducted a randomized crossover study of 232 healthy subjects who consumed packed lunch boxes containing a control, high-meat and low-rice, low-vegetable, medium-fat and low-vegetable, high-fat, and high-fat and low-vegetable meals over six sessions. The subjective levels of sensory properties were assessed over time using a visual analog scale and the area under the curve. Subjects were assessed for dietary habits using a brief-type self-administered diet history questionnaire (BDHQ) and were divided into two groups based on a daily fat energy ratio ≥ 25% (high fat [HF], n=116) and kcal low-CD meals, a high-protein meal provided greater fullness and satisfaction and lower prospective consumption in the HF group than in the normal group. Therefore, our study demonstrates that postprandial appetite sensation is associated with dietary habits of fat intake. J. Med. Invest. 63: 241-247, August, 2016.

  11. Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice

    Directory of Open Access Journals (Sweden)

    Andre Bento Chaves Santana

    2014-01-01

    Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.

  12. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    Science.gov (United States)

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  13. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    Full Text Available BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease

  14. Exposure to Common Food Additive Carrageenan Alone Leads to Fasting Hyperglycemia and in Combination with High Fat Diet Exacerbates Glucose Intolerance and Hyperlipidemia without Effect on Weight

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2015-01-01

    Full Text Available Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia. Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared. Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state. Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.

  15. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The early infant gut microbiome varies in association with a maternal high-fat diet.

    Science.gov (United States)

    Chu, Derrick M; Antony, Kathleen M; Ma, Jun; Prince, Amanda L; Showalter, Lori; Moller, Michelle; Aagaard, Kjersti M

    2016-08-09

    .05) that persisted to 6 weeks of age. Similar to the primate, independent of maternal body mass index, a maternal high-fat diet is associated with distinct changes in the neonatal gut microbiome at birth which persist through 4-6 weeks of age. Our findings underscore the importance of counseling pregnant mothers on macronutrient consumption during pregnancy and lactation.

  17. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  18. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice.

    Science.gov (United States)

    Ma, Sihui; Huang, Qingyi; Yada, Koichi; Liu, Chunhong; Suzuki, Katsuhiko

    2018-05-25

    Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  19. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2018-05-01

    Full Text Available Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  20. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    OpenAIRE

    Trindade de Paula, Mariane; Poetini Silva, M?rcia R?sula; Machado Araujo, St?fani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L.; Jesse, Cristiano Ricardo; Franco, Jeferson Lu?s; Posser, Tha?s; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and a...

  1. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance.

    Science.gov (United States)

    Meakin, Paul J; Chowdhry, Sudhir; Sharma, Ritu S; Ashford, Fiona B; Walsh, Shaun V; McCrimmon, Rory J; Dinkova-Kostova, Albena T; Dillon, John F; Hayes, John D; Ashford, Michael L J

    2014-09-01

    Mice lacking the transcription factor NF-E2 p45-related factor 2 (Nrf2) develop more severe nonalcoholic steatohepatitis (NASH), with cirrhosis, than wild-type (Nrf2(+/+)) mice when fed a high-fat (HF) diet for 24 weeks. Although NASH is usually associated with insulin resistance, HF-fed Nrf2(-/-) mice exhibited better insulin sensitivity than HF-fed Nrf2(+/+) mice. In livers of HF-fed mice, loss of Nrf2 resulted in greater induction of lipogenic genes, lower expression of β-oxidation genes, greater reduction in AMP-activated protein kinase (AMPK) levels, and diminished acetyl coenzyme A (CoA) carboxylase phosphorylation than in the wild-type livers, which is consistent with greater fatty acid (FA) synthesis in Nrf2(-/-) livers. Moreover, primary Nrf2(-/-) hepatocytes displayed lower glucose and FA oxidation than Nrf2(+/+) hepatocytes, with FA oxidation partially rescued by treatment with AMPK activators. The unfolded protein response (UPR) was perturbed in control regular-chow (RC)-fed Nrf2(-/-) mouse livers, and this was associated with constitutive activation of NF-κB and JNK, along with upregulation of inflammatory genes. The HF diet elicited an antioxidant response in Nrf2(+/+) livers, and as this was compromised in Nrf2(-/-) livers, they suffered oxidative stress. Therefore, Nrf2 protects against NASH by suppressing lipogenesis, supporting mitochondrial function, increasing the threshold for the UPR and inflammation, and enabling adaptation to HF-diet-induced oxidative stress. Copyright © 2014 Meakin et al.

  2. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma

    Directory of Open Access Journals (Sweden)

    Rouhollah Haghshenas

    2014-04-01

    Full Text Available Objective(s:Consumption of high-fat foods is one of the major causes of obesity. Physical exercise is a strategy used to counteract obesity. The aim of this study was to investigate the effect of eight weeks endurance training and high-fat diet (HFD on appetite-regulating hormones in rat plasma. Materials and Methods:Twenty eight male Wistar rats were randomly divided into four groups: Control group with standard diet (CSD, endurance training with a standard diet (ESD, control group with high-fat diet (CHFD and endurance training with high-fat diet (EHFD. Twenty-four hr after the last training session, the blood samples were obtained and analyzed for hormones levels. Results: The significant increased weight gain and food intake and decreased plasma nesfatin-1 and PYY3-36 levels were observed in CHFD group, while exercise under the HFD antagonized these effects. There were no significant changes in ghrelin, insulin and leptin levels in different groups. Conclusion: These results suggest that exercise can prevent fattening effect of HFD. Probably, performing exercise makes a reduction of food intake and weight gain in rat via the increase in nesfatin-1 and PYY levels. However, further studies are necessary to understand the exact mechanisms involved in this field.

  3. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  4. Susceptibility of Nrf2-Null Mice to Steatohepatitis and Cirrhosis upon Consumption of a High-Fat Diet Is Associated with Oxidative Stress, Perturbation of the Unfolded Protein Response, and Disturbance in the Expression of Metabolic Enzymes but Not with Insulin Resistance

    Science.gov (United States)

    Meakin, Paul J.; Chowdhry, Sudhir; Sharma, Ritu S.; Ashford, Fiona B.; Walsh, Shaun V.; McCrimmon, Rory J.; Dinkova-Kostova, Albena T.; Dillon, John F.

    2014-01-01

    Mice lacking the transcription factor NF-E2 p45-related factor 2 (Nrf2) develop more severe nonalcoholic steatohepatitis (NASH), with cirrhosis, than wild-type (Nrf2+/+) mice when fed a high-fat (HF) diet for 24 weeks. Although NASH is usually associated with insulin resistance, HF-fed Nrf2−/− mice exhibited better insulin sensitivity than HF-fed Nrf2+/+ mice. In livers of HF-fed mice, loss of Nrf2 resulted in greater induction of lipogenic genes, lower expression of β-oxidation genes, greater reduction in AMP-activated protein kinase (AMPK) levels, and diminished acetyl coenzyme A (CoA) carboxylase phosphorylation than in the wild-type livers, which is consistent with greater fatty acid (FA) synthesis in Nrf2−/− livers. Moreover, primary Nrf2−/− hepatocytes displayed lower glucose and FA oxidation than Nrf2+/+ hepatocytes, with FA oxidation partially rescued by treatment with AMPK activators. The unfolded protein response (UPR) was perturbed in control regular-chow (RC)-fed Nrf2−/− mouse livers, and this was associated with constitutive activation of NF-κB and JNK, along with upregulation of inflammatory genes. The HF diet elicited an antioxidant response in Nrf2+/+ livers, and as this was compromised in Nrf2−/− livers, they suffered oxidative stress. Therefore, Nrf2 protects against NASH by suppressing lipogenesis, supporting mitochondrial function, increasing the threshold for the UPR and inflammation, and enabling adaptation to HF-diet-induced oxidative stress. PMID:24958099

  5. RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Wayne Hemphill

    2018-01-01

    Full Text Available Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.

  6. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    Science.gov (United States)

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  7. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  8. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  9. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    Jessie R. Wilburn

    2015-01-01

    Full Text Available Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1 EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2 (~600 kcal and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2 EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3 CON: no exercise control. Results The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL x 360 minutes and EX-DEF (499.4 ± 73.5 mg/dL x 360 minutes, respectively, compared to CON (660.2 ± 95.0 mg/dL x 360 minutes ( P < 0.05. Conclusions A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  10. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia.

    Science.gov (United States)

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  11. Effects of low-stearate palm oil and high-stearate lard high-fat diets on rat liver lipid metabolism and glucose tolerance

    NARCIS (Netherlands)

    Janssens, S.; Heemskerk, M.M.; van den Berg, S.A.; van Riel, N.A.; Nicolaij, K.; Willems van Dijk, K.; Prompers, J.

    2015-01-01

    Background: Excess consumption of energy-dense, high-fat Western diets contributes to the development of obesity and obesity-related disorders, such as fatty liver disease. However, not only the quantity but also the composition of dietary fat may play a role in the development of liver steatosis.

  12. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  13. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  14. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.

    Science.gov (United States)

    Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa

    2017-07-01

    Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.

  15. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    Science.gov (United States)

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology & Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-NancyUniversité, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-05-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  17. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    International Nuclear Information System (INIS)

    Li, Jing; Luo, Hanwen; Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu; Ma, Lu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  18. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  19. Effects of high-protein vs. high- fat snacks on appetite control, satiety, and eating initiation in healthy women.

    Science.gov (United States)

    Ortinau, Laura C; Hoertel, Heather A; Douglas, Steve M; Leidy, Heather J

    2014-09-29

    The purpose of this study was to determine whether a high-protein afternoon yogurt snack improves appetite control, satiety, and reduces subsequent food intake compared to other commonly-consumed, energy dense, high-fat snacks. Twenty, healthy women (age: 27 ± 2 y; BMI: 23.4 ± 0.7 kg/m2) completed the randomized crossover design study which included 3, 8-h testing days comparing the following 160 kcal afternoon snacks: high-protein yogurt (14 g protein/25 g CHO/0 g fat); high-fat crackers (0 g protein/19 g CHO/9 g fat); and high-fat chocolate (2 g protein/19 g CHO/9 g fat). Participants were acclimated to each snack for 3 consecutive days. On day 4, the participants consumed a standardized breakfast and lunch; the respective snack was consumed 3-h post-lunch. Perceived hunger and fullness were assessed throughout the afternoon until dinner was voluntarily requested. An ad libitum dinner was then provided. The consumption of the yogurt snack led to greater reductions in afternoon hunger vs. chocolate (p snack also delayed eating initiation by approximately 30 min compared to the chocolate snack (p snack led to approximately 100 fewer kcals consumed at dinner vs. the crackers (p = 0.08) and chocolate (p snacks, eating less energy dense, high-protein snacks like yogurt improves appetite control, satiety, and reduces subsequent food intake in healthy women.

  20. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    Science.gov (United States)

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior.

    Science.gov (United States)

    Purcell, Ryan H; Sun, Bo; Pass, Lauren L; Power, Michael L; Moran, Timothy H; Tamashiro, Kellie L K

    2011-09-01

    Chronic variable prenatal stress or maternal high-fat diet results in offspring that are significantly heavier by the end of the first postnatal week with increased adiposity by weaning. It is unclear, however, what role maternal care and diet play in the ontogenesis of this phenotype and what contributions come from differences already established in the rat pups. In the present studies, we examined maternal behavior and milk composition as well as offspring ingestive behavior. Our aim was to better understand the development of the obese phenotype in offspring from dams subjected to prenatal stress and/or fed a high-fat (HF) diet during gestation and lactation. We found that dams maintained on a HF diet through gestation and lactation spent significantly more time nursing their pups during the first postnatal week. In addition, offspring of prenatal stress dams consumed more milk at postnatal day (PND) 3 and offspring of HF dams consume more milk on PND 7 in an independent ingestion test. Milk from HF dams showed a significant increase in fat content from PND 10-21. Together these results suggest that gestational dietary or stress manipulations can alter the rat offspring's developmental environment, evidence of which is apparent by PND 3. Alterations in maternal care, milk composition, and pup consumption during the early postnatal period may contribute to long-term changes in body weight and adiposity induced by maternal prenatal stress or high-fat diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Diets with high-fat cheese, high-fat meat, or carbohydrate on cardiovascular risk markers in overweight postmenopausal women

    DEFF Research Database (Denmark)

    Thorning, Tanja Kongerslev; Raziani, Farinaz; Bendsen, Nathalie Tommerup

    2015-01-01

    BACKGROUND: Heart associations recommend limited intake of saturated fat. However, effects of saturated fat on low-density lipoprotein (LDL)-cholesterol concentrations and cardiovascular disease risk might depend on nutrients and specific saturated fatty acids (SFAs) in food. OBJECTIVE: We explored...... the effects of cheese and meat as sources of SFAs or isocaloric replacement with carbohydrates on blood lipids, lipoproteins, and fecal excretion of fat and bile acids. DESIGN: The study was a randomized, crossover, open-label intervention in 14 overweight postmenopausal women. Three full-diet periods of 2-wk...... duration were provided separated by 2-wk washout periods. The isocaloric diets were as follows: 1) a high-cheese (96-120-g) intervention [i.e., intervention containing cheese (CHEESE)], 2) a macronutrient-matched nondairy, high-meat control [i.e., nondairy control with a high content of high-fat processed...

  4. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences.

    Directory of Open Access Journals (Sweden)

    Sei Higuchi

    Full Text Available In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG and glial fibrillary acid protein (GFAP were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system.The conditioned place preference test (CPP test was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting.Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption.High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.

  5. Responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Susan J van Dijk

    Full Text Available The ability of subjects to respond to nutritional challenges can reflect the flexibility of their biological system. Nutritional challenge tests could be used as an indicator of health status but more knowledge on metabolic and immune responses of different subjects to nutritional challenges is needed. The aim of this study was to compare the responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes.In a cross-over design 42 men (age 50-70 y consumed three high-fat shakes containing saturated fat (SFA, monounsaturated fat (MUFA or n-3 polyunsaturated (PUFA. Men were selected on BMI and health status (lean, obese or obese diabetic and phenotyped with MRI for adipose tissue distribution. Before and 2 and 4 h after shake consumption blood was drawn for measurement of expression of metabolic and inflammation-related genes in peripheral blood mononuclear cells (PBMCs, plasma triglycerides (TAG, glucose, insulin, cytokines and ex vivo PBMC immune response capacity. The MUFA and n-3 PUFA challenge, compared to the SFA challenge, induced higher changes in expression of inflammation genes MCP1 and IL1β in PBMCs. Obese and obese diabetic subjects had different PBMC gene expression and metabolic responses to high-fat challenges compared to lean subjects. The MUFA challenge induced the most pronounced TAG response, mainly in obese and obese diabetic subjects.The PBMC gene expression response and metabolic response to high-fat challenges were affected by fat type and metabolic risk phenotype. Based on our results we suggest using a MUFA challenge to reveal differences in response capacity of subjects.ClinicalTrials.gov NCT00977262.

  6. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  7. Effects of vitamin D deficient and high-fat diets in the diabetic brain: focus on insulin signaling

    OpenAIRE

    Loureiro, Guilherme Alvarinhas de Assis

    2015-01-01

    Dissertação de Mestrado em Bioquímica, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Type 2 diabetes (T2D) is a chronic metabolic disorder that reached epidemic proportions, affecting almost 390 million people around the globe. Most cases of T2D result from unhealthy eating habits. In fact, consumption of high-fat diets and high intake of saturated fat are associated with an increased risk of obesity, meta...

  8. Disregarding Graduated Treatment: Why Transfer Aggravates Recidivism

    Science.gov (United States)

    Johnson, Kristin; Lanza-Kaduce, Lonn; Woolard, Jennifer

    2011-01-01

    These data merge correctional histories with official state and courthouse information for a sample of teenage offenders, some of whom had been transferred to the adult system. Previous research indicated that transfer aggravates recidivism after the age of 18. The correctional data allow the examination of the relationship between sanctions and…

  9. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  10. Development of a Single High Fat Meal Challenge to Unmask ...

    Science.gov (United States)

    Stress tests are used clinically to determine the presence of underlying disease and predict future cardiovascular risk. In previous studies, we used treadmill exercise stress in rats to unmask the priming effects of air pollution inhalation. Other day-to-day activities stress the cardiovascular system, and when modeled experimentally, may be useful in identifying latent effects of air pollution exposure. For example, a single high fat (HF) meal can cause transient vascular endothelial dysfunction and increases in LDL cholesterol, triglycerides (TG), oxidative stress, and inflammation. Given the prevalence of HF meals in western diets, the goal of this study was to develop a HF meal challenge in rats to see if air pollution primes the body for a subsequent stress-induced adverse response. Healthy male Wistar Kyoto rats were fasted for six hours and then administered a single oral gavage of isocaloric lard-based HF or low fat (LF) suspensions, or a water vehicle control. We hypothesized that rats given a HF load would elicit postprandial changes in cardiopulmonary function that were distinct from LF and vehicle controls. One to four hours after gavage, rats underwent whole body plethysmography to assess breathing patterns, cardiovascular ultrasounds, blood draws for measurements of systemic lipids and hormones and a test for sensitivity to aconitine-induced arrhythmia. HF gavage caused an increase in circulating TG relative to LF and vehicle controls and an incre

  11. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  12. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice

    Directory of Open Access Journals (Sweden)

    Nikul K. Soni

    2016-09-01

    Full Text Available Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM. Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD with purified marine fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (HFD-ED, a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4 protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  13. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model.

    Science.gov (United States)

    Achiwa, Koichi; Ishigami, Masatoshi; Ishizu, Yoji; Kuzuya, Teiji; Honda, Takashi; Hayashi, Kazuhiko; Hirooka, Yoshiki; Katano, Yoshiaki; Goto, Hidemi

    2016-01-29

    Nonalcoholic steatohepatitis (NASH) patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Several lines of evidence indicate that accumulation of lipopolysaccharide (LPS) and disruption of gut microbiota play contributory roles in HCC. Moreover, in a dextran sodium sulfate (DSS)-induced colitis model in mice, a high-fat diet increases portal LPS level and promotes hepatic inflammation and fibrosis. However, this diet-induced NASH model requires at least 50 weeks for carcinogenesis. In this study, we sought to determine whether increased intestinal permeability would aggravate liver inflammation and fibrosis and accelerate tumorigenesis in a diet-induced NASH model. Mice were fed a choline-deficient high-fat (CDHF) diet for 4 or 12 weeks. The DSS group was fed CDHF and intermittently received 1% DSS in the drinking water. Exposure to DSS promoted mucosal changes such as crypt loss and increased the number of inflammatory cells in the colon. In the DSS group, portal LPS levels were elevated at 4 weeks, and the proportions of Clostridium cluster XI in the fecal microbiota were elevated. In addition, levels of serum transaminase, number of lobular inflammatory cells, F4/80 staining-positive area, and levels of inflammatory cytokines were all elevated in the DSS group. Liver histology in the DSS group revealed severe fibrosis at 12 weeks. Liver tumors were detected in the DSS group at 12 weeks, but not in the other groups. Thus, DSS administration promoted liver tumors in a CDHF diet-induced NASH mouse over the short term, suggesting that the induction of intestinal inflammation and gut disruption of microbiota in NASH promote hepatic tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neuromedin U receptor 2 knockdown in the paraventricular nucleus modifies behavioral responses to obesogenic high-fat food and leads to increased body weight.

    Science.gov (United States)

    Benzon, C R; Johnson, S B; McCue, D L; Li, D; Green, T A; Hommel, J D

    2014-01-31

    Neuromedin U (NMU) is a highly conserved neuropeptide which regulates food intake and body weight. Transgenic mice lacking NMU are hyperphagic and obese, making NMU a novel target for understanding and treating obesity. Neuromedin U receptor 2 (NMUR2) is a high-affinity receptor for NMU found in discrete regions of the central nervous system, in particular the paraventricular nucleus of the hypothalamus (PVN), where it may be responsible for mediating the anorectic effects of NMU. We hypothesized that selective knock down of NMUR2 in the PVN of rats would increase their sensitivity to the reinforcing properties of food resulting in increased intake and preference for high-fat obesogenic food. To this end, we used viral-mediated RNAi to selectively knock down NMUR2 gene expression in the PVN. In rats fed a standard chow, NMUR2 knockdown produced no significant effect on food intake or body weight. However, when the same rats were fed a high-fat diet (45% fat), they consumed significantly more food, gained more body weight, and had increased feed efficiency relative to controls. Furthermore, NMUR2 knockdown rats demonstrated significantly greater binge-type food consumption of the high-fat diet and showed a greater preference for higher-fat food. These results demonstrate that NMUR2 signaling in the PVN regulates consumption and preference for high-fat foods without disrupting feeding behavior associated with non-obesogenic standard chow. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  16. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Maternal High-Fat Diet and Obesity Impact Palatable Food Intake and Dopamine Signaling in Nonhuman Primate Offspring

    Science.gov (United States)

    Rivera, Heidi M.; Kievit, Paul; Kirigiti, Melissa A.; Bauman, Leigh Ann; Baquero, Karalee; Blundell, Peter; Dean, Tyler A.; Valleau, Jeanette C.; Takahashi, Diana L.; Frazee, Tim; Douville, Luke; Majer, Jordan; Smith, M. Susan; Grove, Kevin L.; Sullivan, Elinor L.

    2015-01-01

    Objective To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food. We will also examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. Methods The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. We also examined the influence of maternal HFD consumption on the development of the prefrontal cortex-dopamine system at 13 months of age. Results During a preference test, offspring exposed to maternal obesity and HFD consumption displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 protein. Conclusion Our findings reveal that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling. PMID:26530932

  18. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  19. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    Full Text Available Objective: Celastrol was recently identified as a potential novel treatment for obesity. However, the effect of Celastrol on nonalcoholic fatty liver disease (NAFLD remains elusive. The aim of this study is to evaluate the role of Celastrol in NAFLD. Methods: Functional studies were performed using wild-type C57BL/6J (WT mice and liver specific Sirt1-deficient (LKO mice. The molecular mechanism was explored in primary mouse liver and primary hepatocytes. Results: When WT mice receiving a high-fat diet (HFD were treated with Celastrol, reductions in body weight, subcutaneous and visceral fat content, and liver lipid droplet formation were observed, along with reduced hepatic intracellular triglyceride and serum triglyceride, free fatty acid, and ALT concentrations. Furthermore, Celastrol decreased hepatic sterol regulatory element binding protein 1c (Srebp-1c expression, enhanced the phosphorylation of hepatic AMP-activated protein kinase α (AMPKα, and increased the expression of hepatic serine–threonine liver kinase B1 (LKB1. Additionally, Celastrol treatment improved glucose tolerance and insulin sensitivity in WT mice fed the HFD. Celastrol administration also improved the anti-inflammatory and anti-oxidative status by inhibiting nuclear factor kappa B (NFκB activity and the mRNA levels of proinflammatory cytokines and increasing mitochondrial DNA copy number and anti-oxidative stress genes expression in WT mice liver, in vivo and in vitro. Moreover, Celastrol induced hepatic Sirt1 expression in WT mice, in vivo and in vitro. These Celastrol-mediated protective effects in WT mice fed a HFD were abolished in LKO mice fed a HFD. It was more interesting that Celastrol aggravated HFD-induced liver damage in LKO mice fed a HFD by inhibiting the phosphorylation of AMPKα and boosting the translocation of NFκB into the nucleus, thereby resulting in the increase of Srebp-1c expression and the mRNA levels of liver proinflammatory cytokines

  20. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  1. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  2. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system.

    Science.gov (United States)

    Timmermans, Silke; Bogie, Jeroen F J; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A

    2014-03-01

    Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.

  3. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    Science.gov (United States)

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  4. The effects of high-fat diet, branched-chain amino acids and exercise on female C57BL/6 mouse Achilles tendon biomechanical properties

    OpenAIRE

    Boivin, G. P.; Platt, K. M.; Corbett, J.; Reeves, J.; Hardy, A. L.; Elenes, E. Y.; Charnigo, R. J.; Hunter, S. A.; Pearson, K. J.

    2013-01-01

    Objectives The goals of this study were: 1) to determine if high-fat diet (HFD) feeding in female mice would negatively impact biomechanical and histologic consequences on the Achilles tendon and quadriceps muscle; and 2) to investigate whether exercise and branched-chain amino acid (BCAA) supplementation would affect these parameters or attenuate any negative consequences resulting from HFD consumption. Methods We examined the effects of 16 weeks of 60% HFD feeding, voluntary exercise (free ...

  5. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  6. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    Science.gov (United States)

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Maternal High-Fat Diet Programming of the Neuroendocrine System and Behavior

    Science.gov (United States)

    Sullivan, Elinor L.; Riper, Kellie M.; Lockard, Rachel; Valleau, Jeanette C.

    2015-01-01

    Maternal obesity, metabolic state, and diet during gestation have profound effects on offspring development. The prevalence of neurodevelopmental and mental health disorders has risen rapidly in the last several decades in parallel with the rise in obesity rates. Evidence from epidemiological studies indicates that maternal obesity and metabolic complications increase the risk of offspring developing behavioral disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and schizophrenia. Animal models show that a maternal diet high in fat similarly disrupts behavioral programming of offspring, with animals showing social impairments, increased anxiety and depressive behaviors, reduced cognitive development, and hyperactivity. Maternal obesity, metabolic conditions, and high fat diet consumption increase maternal leptin, insulin, glucose, triglycerides, and inflammatory cytokines. This leads to increased risk of placental dysfunction, and altered fetal neuroendocrine development. Changes in brain development that likely contribute to the increased risk of behavioral and mental health disorders include increased inflammation in the brain, as well as alterations in the serotonergic system, dopaminergic system and hypothalamic pituitary adrenal (HPA) axis. PMID:25913366

  8. NFKB activity decreased in BALB/c mice with high fat diet and fructose

    Science.gov (United States)

    Nur'aini, Farida Dewi; Rahayu, Sri; Rifa'i, Muhaimin

    2017-05-01

    Excessive consumption of fat and fructose leads to obesity due to lipid accumulation. The excessive lipid causes hypertrophy in the adipocytes which lead to cell death. Consequently, dead adipocytes will produce adipokines, which cause macrophages and lymphocytes to infiltrate into the adipose tissue, elevating pro-inflammatory cytokines, thus triggering the production of pro-inflammatory cytokines through NFκB activity. Elicited soybeans extract (ESE) with bacteria and light contain Glyceollin and Isoflavones, which inhibit the activation of NFKB and reduce plasma cholesterol levels by upregulating cholesterol metabolism. This study aimed to analyze the effect of ESE against the relative number of CD4+ NFκB+ cells in BALB/c mice spleen after administrated by high-fat diet food and fructose (HFD) for 20 weeks. Mice were given orally with ESE after administrated by HFD at dose 78 mg/kgBW (D1), 104 mg/kgBW (D2), and 130 mg/kgBW (D3) for 4 weeks. This study also used positive control (HFD mice model without ESE treatment) and normal mice. Identification of NFKB activation was conducted using Flowcytometry analytical methods. Our result indicated that ESE could decrease significantly activation of NFκB in CD4 cell compare than positive control. The optimum dose that can decrease the relative number of CD4+ NFκB+ cells is dose 3.

  9. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation.

    Science.gov (United States)

    Phowthongkum, P; Ittiwut, C; Shotelersuk, V

    2017-11-21

    Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.

  11. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  12. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  13. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  14. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  15. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  16. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  17. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  18. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  19. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  20. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  1. High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

    Directory of Open Access Journals (Sweden)

    Laura L Hernandez

    Full Text Available Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat diet versus a low-fat diet (LFD; 10% kcal from fat to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1 and keratin 5 (K5, a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1, the rate-limiting enzyme in serotonin (5-HT biosynthesis, and the 5-HT(7 receptor (HTR7, which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6 and tumor necrosis factor-α (TNF- α. These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

  2. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  3. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  4. Six week follow-up of metabolic effects induced by a high-fat diet and streptozotocin in a rodent model of type 2 diabetes mellitus.

    Science.gov (United States)

    Atanasovska, Emilija; Tasic, Velibor; Slaninka-Miceska, Maja; Alabakovska, Sonja; Zafirov, Dimce; Kostova, Elena; Pavlovska, Kristina; Filipce, Venko; Labacevski, Nikola

    2014-01-01

    This study was initiated to refine and characterize a nongenetic experimental model of type 2 diabetes mellitus and to follow up various metabolic parameters up to six weeks after diabetes induction. Male Wistar rats were divided into 4 groups: CON group--consumed standard rat chow and served as control; HFD group--consumed high-fat diet (45% calories as fat); STZ group-was injected once intraperitoneally with streptozotocin (35 mg/kg) on day 14, and DM-2 group--consumed high-fat diet and was injected with streptozotocin. The metabolic parameters were measured one week after streptozotocin injection (week 3) and at the end of the study (week 9). Our results confirm that HFD-group developed dyslipidaemia, obesity and insulin resistance. All metabolic parameters remained largely unaltered in STZ-group during the study. Only the combination of high-fat diet and streptozotocin (DM-2 group) induced type 2 diabetes that was characterized with moderate hyperglycaemia, insulin resistance, hypertriglyceridaemia, elevated free fatty acids, hypercholesterolaemia and increased plasma glucagon levels at the time of diabetes onset (week 3). The observed changes of the metabolic parameters after six additional weeks demonstrated an aggravated diabetic state, as confirmed from significantly increased fasting plasma glucose values, insufficient insulin secretion, severe hyperlipidaemia, increased glucagon levels, decreased serum adiponectin concentrations and significantly elevated urinary protein excretion. These results indicate that apart from its utility as a model of diabetes aetiology, this model could also be used for elucidating the role of the hormones adiponectin and glucagon in the progression of type 2 diabetes, as well as for investigating the diabetic complications.

  5. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effect of a high-fat diet and alcohol on cutaneous repair: A systematic review of murine experimental models.

    Directory of Open Access Journals (Sweden)

    Daiane Figueiredo Rosa

    Full Text Available Chronic alcohol intake associated with an inappropriate diet can cause lesions in multiple organs and tissues and complicate the tissue repair process. In a systematic review, we analyzed the relevance of alcohol and high fat consumption to cutaneous and repair, compared the main methodologies used and the most important parameters tested. Preclinical investigations with murine models were assessed to analyze whether the current evidence support clinical trials.The studies were selected from MEDLINE/PubMed and Scopus databases, according to Fig 1. All 15 identified articles had their data extracted. The reporting bias was investigated according to the ARRIVE (Animal Research: Reporting of in Vivo Experiments strategy.In general, animals offered a high-fat diet and alcohol showed decreased cutaneous wound closure, delayed skin contraction, chronic inflammation and incomplete re-epithelialization.In further studies, standardized experimental design is needed to establish comparable study groups and advance the overall knowledge background, facilitating data translatability from animal models to human clinical conditions.

  7. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Emily C. Dunford

    2016-12-01

    Full Text Available Glucocorticoids (GCs are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD. Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.

  8. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Erica L. Underwood

    2016-01-01

    Full Text Available While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms.

  9. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats.

    Science.gov (United States)

    Tinkov, Alexey A; Nemereshina, Olga N; Popova, Elizaveta V; Polyakova, Valentina S; Gritsenko, Viktor A; Nikonorov, Alexandr A

    2014-04-01

    The primary objective of this study is to investigate the content of biologically active compounds producing an antioxidant effect in Plantago maxima and their influence on main mechanisms of dietary obesity development. Biologically active compounds in P. maxima were tested using paper chromatography. In in vivo experiment, high-fat-fed Wistar rats obtained P. maxima water extract for 3 months. Morphometric parameters, weight gain, serum adipokines, and cytokines, as well as oxidative stress biomarkers in rats’ tissues were evaluated. Gut microflora was also examined. Plantago maxima leaves used in the experiment contained significant amount of flavonoids, iridoids, phenol carboxylic acids, and tannins and ascorbic acid. Our in vivo experiment data demonstrate that P. maxima water extract prevents excessive adiposity in a diet-induced model. P. maxima consumption reduced serum leptin (twofold), macrophage chemoattractant protein-1 (sevenfold), tumornecrosis factor-α (25%), and interleukine-6 (26%) levels. P. maxima water extract decreased adipose tissue oxidative stress biomarkers in rats fed a high-fat diet. In addition, increased bacterial growth in the diet-induced obesity model was reversed by the P. maxima extract treatment. Plantago maxima water extract possessed antiadipogenic, antidiabetic, antiinflammatory, antioxidant activity, and normalized gut microflora in a rat model of diet-induced excessive adiposity due to a high content of biologically active compounds.

  10. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    2011-02-01

    Full Text Available To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD contained equivalent levels of n-3 fatty acids (FA's and higher levels of n-6 FA's than the control diet (CTR, we found significant decreases in docosahexaenoic acid (DHA and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

  11. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  12. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  13. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  14. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  15. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  16. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (

    Directory of Open Access Journals (Sweden)

    Janine Donaldson

    2017-05-01

    Full Text Available Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

  17. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.

    Science.gov (United States)

    Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold

    2008-06-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted

  18. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  19. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  20. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism.

    Science.gov (United States)

    Zilkha, N; Kuperman, Y; Kimchi, T

    2017-03-14

    The global increase in rates of obesity has been accompanied by a similar surge in the number of autism diagnoses. Accumulating epidemiological evidence suggest a possible link between overweight and the risk for autism spectrum disorders (ASD), as well as autism severity. In laboratory animals, several studies have shown a connection between various environmental factors, including diet-induced obesity, and the development of autism-related behaviors. However, the effect of high-fat or imbalanced diet on a pre-existing autism-like phenotype is unclear. In this study, we employed the BTBR inbred mouse strain, a well-established mouse model for autism, to assess the impact of inadequate fattening nutrition on the autism-related behavioral phenotype. Male mice were fed by high-fat diet (HFD) or control balanced diet (control) from weaning onward, and tested in a series of behavioral assays as adults. In addition, we measured the hypothalamic expression levels of several genes involved in oxytocin and dopamine signaling, in search of a possible neurobiological underlying mechanism. As an internal control, we also employed similar metabolic and behavioral measures on neurotypical C57 mice. Compared to control-fed mice, BTBR mice fed by HFD showed marked aggravation in autism-related behaviors, manifested in increased cognitive rigidity and diminished preference for social novelty. Moreover, the total autism composite (severity) score was higher in the HFD group, and positively correlated with higher body weight. Finally, we revealed negative correlations associating dopamine signaling factors in the hypothalamus, to autism-related severity and body weight. In contrast, we found no significant effects of HFD on autism-related behaviors of C57 mice, though the metabolic effects of the diet were similar for both strains. Our results indicate a direct causative link between diet-induced obesity and worsening of a pre-existing autism-related behavior and emphasize the need

  1. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Madsen, Andreas N.; Hansen, Axel K.

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth...... and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey......, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured...

  2. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  3. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  4. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  5. Inulin supplementation reduces the negative effect of a high-fat diet rich in SFA on bone health of growing pigs.

    Science.gov (United States)

    Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz

    2018-05-01

    Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.

  6. Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Alexandre Caron

    2016-02-01

    Full Text Available Background/Objective: The mechanistic target of rapamycin (mTOR is a serine–threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2 that regulate energy homeostasis. DEP-domain containing mTOR-interacting protein (DEPTOR is part of these complexes and is known to dampen mTORC1 function, consequently reducing mTORC1 negative feedbacks and promoting insulin signaling and Akt/PKB activation in several models. Recently, we observed that DEPTOR is expressed in several structures of the brain including the mediobasal hypothalamus (MBH, a region that regulates energy balance. Whether DEPTOR in the MBH plays a functional role in regulating energy balance and hypothalamic insulin signaling has never been tested. Methods: We have generated a novel conditional transgenic mouse model based on the Cre-LoxP system allowing targeted overexpression of DEPTOR. Mice overexpressing DEPTOR in the MBH were subjected to a metabolic phenotyping and MBH insulin signaling was evaluated. Results: We first report that systemic (brain and periphery overexpression of DEPTOR prevents high-fat diet-induced obesity, improves glucose metabolism and protects against hepatic steatosis. These phenotypes were associated with a reduction in food intake and feed efficiency and an elevation in oxygen consumption. Strikingly, specific overexpression of DEPTOR in the MBH completely recapitulated these phenotypes. DEPTOR overexpression was associated with an increase in hypothalamic insulin signaling, as illustrated by elevated Akt/PKB activation. Conclusion: Altogether, these results support a role for MBH DEPTOR in the regulation of energy balance and metabolism. Keywords: mTOR, DEPTOR, Hypothalamus, Energy balance, Glucose metabolism

  7. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver.

    Science.gov (United States)

    Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J; White, Thomas A; Liu, Chen; Choi, Jeong-Hyeon; Miller, Jordan D; Roberts, Lewis R; LeBrasseur, Nathan K; Robertson, Keith D

    2017-01-02

    High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.

  8. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  9. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jiunn-Ming Sheen

    2016-04-01

    Full Text Available Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF group than the vehicle plus high-fat diet (VHF group in the intraperitoneal glucose tolerance test (IPGTT. Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  10. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  11. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    Science.gov (United States)

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  12. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin eTain

    2015-12-01

    Full Text Available Prenatal dexamethasone (DEX exposure and high-fat (HF intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS, to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.

  13. Islet inflammation, hemosiderosis, and fibrosis in intrauterine growth-restricted and high fat-fed Sprague-Dawley rats.

    Science.gov (United States)

    Delghingaro-Augusto, Viviane; Madad, Leili; Chandra, Arin; Simeonovic, Charmaine J; Dahlstrom, Jane E; Nolan, Christopher J

    2014-05-01

    Prenatal and postnatal factors such as intrauterine growth restriction (IUGR) and high-fat (HF) diet contribute to type 2 diabetes. Our aim was to determine whether IUGR and HF diets interact in type 2 diabetes pathogenesis, with particular attention focused on pancreatic islet morphology including assessment for inflammation. A surgical model of IUGR (bilateral uterine artery ligation) in Sprague-Dawley rats with sham controls was used. Pups were fed either HF or chow diets after weaning. Serial measures of body weight and glucose tolerance were performed. At 25 weeks of age, rat pancreases were harvested for histologic assessment. The birth weight of IUGR pups was 13% lower than that of sham pups. HF diet caused excess weight gain, dyslipidemia, hyperinsulinemia, and mild glucose intolerance, however, this was not aggravated further by IUGR. Markedly abnormal islet morphology was evident in 0 of 6 sham-chow, 5 of 8 sham-HF, 4 of 8 IUGR-chow, and 8 of 9 IUGR-HF rats (chi-square, P = 0.007). Abnormal islets were characterized by larger size, irregular shape, inflammation with CD68-positive cells, marked fibrosis, and hemosiderosis. β-Cell mass was not altered by IUGR. In conclusion, HF and IUGR independently contribute to islet injury characterized by inflammation, hemosiderosis, and fibrosis. This suggests that both HF and IUGR can induce islet injury via converging pathways. The potential pathogenic or permissive role of iron in this process of islet inflammation warrants further investigation. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Neonatal overfeeding attenuates acute central pro-inflammatory effects of short-term high fat diet

    Directory of Open Access Journals (Sweden)

    Guohui eCai

    2015-01-01

    Full Text Available Neonatal obesity predisposes individuals to obesity throughout life. In rats, neonatal overfeeding also leads to early accelerated weight gain that persists into adulthood. The phenotype is associated with dysfunction in a number of systems including paraventricular nucleus of the hypothalamus (PVN responses to psychological and immune stressors. However, in many cases weight gain in neonatally overfed rats stabilizes in early adulthood so the animal does not become more obese as it ages. Here we examined if neonatal overfeeding by suckling rats in small litters predisposes them to exacerbated metabolic and central inflammatory disturbances if they are also given a high fat diet in later life. In adulthood we gave the rats normal chow, 3 days, or 3 weeks high fat diet (45% kcal from fat and measured peripheral indices of metabolic disturbance. We also investigated hypothalamic microglial changes, as an index of central inflammation, as well as PVN responses to lipopolysaccharide (LPS. Surprisingly, neonatal overfeeding did not predispose rats to the metabolic effects of a high fat diet. Weight changes and glucose metabolism were unaffected by the early life experience. However, short term (3 day high fat diet was associated with more microglia in the hypothalamus and a markedly exacerbated PVN response to LPS in control rats; effects not seen in the neonatally overfed. Our findings indicate neonatally overfed animals are not more susceptible to the adverse metabolic effects of a short-term high fat diet but may be less able to respond to the central effects.

  15. Role of high-fat diet in stress response of Drosophila.

    Directory of Open Access Journals (Sweden)

    Erilynn T Heinrichsen

    Full Text Available Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA, which in turn leads to blood gas disturbances, including intermittent hypoxia (IH. Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001 and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001. Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.

  16. Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats.

    Science.gov (United States)

    McGuire, Blaine A; Baladi, Michelle G; France, Charles P

    2011-05-11

    Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1-10mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Proprietary tomato extract improves metabolic response to high-fat meal in healthy normal weight subjects

    Directory of Open Access Journals (Sweden)

    Xavier Deplanque

    2016-10-01

    Full Text Available Background: Low-density lipoprotein (LDL oxidation is a risk factor for atherosclerosis. Lycopene and tomato-based products have been described as potent inhibitors of LDL oxidation. Objectives: To evaluate the effect of a 2-week supplementation with a carotenoid-rich tomato extract (CRTE standardized for a 1:1 ratio of lycopene and phytosterols, on post-prandial LDL oxidation after a high-fat meal. Design: In a randomized, double-blind, parallel-groups, placebo-controlled study, 146 healthy normal weight individuals were randomly assigned to a daily dose of CRTE standardized for tomato phytonutrients or placebo during 2 weeks. Oxidized LDL (OxLDL, glucose, insulin, and triglyceride (TG responses were measured for 8 h after ingestion of a high-fat meal before and at the end of intervention. Results: Plasma lycopene, phytofluene, and phytoene were increased throughout the study period in the CRTE group compared to placebo. CRTE ingestion significantly improved changes in OxLDL response to high-fat meal compared to placebo after 2 weeks (p<0.0001. Changes observed in glucose, insulin, and TG responses were not statistically significant after 2 weeks of supplementation, although together they may suggest a trend of favorable effect on metabolic outcomes after a high-fat meal. Conclusions: Two-week supplementation with CRTE increased carotenoids levels in plasma and improved oxidized LDL response to a high-fat meal in healthy normal weight individuals.

  19. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  20. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  1. Hiperbilirrubinemia neonatal agravada Aggravated neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Ana Campo González

    2010-09-01

    Full Text Available INTRODUCCIÓN. La mayoría de las veces la ictericia en el recién nacido es un hecho fisiológico, causado por una hiperbilirrubinemia de predominio indirecto, secundario a inmadurez hepática e hiperproducción de bilirrubina. El objetivo de este estudio fue determinar el comportamiento de la hiperbilirrubinemia neonatal en el Hospital Docente Ginecoobstétrico de Guanabacoa en los años 2007 a 2009. MÉTODOS. Se realizó un estudio descriptivo y retrospectivo de 173 recién nacidos que ingresaron al Departamento de Neonatología con diagnóstico de hiperbilirrubinemia agravada. RESULTADOS. La incidencia de hiperbilirrubinemia neonatal agravada fue del 3,67 % y predominó en hermanos con antecedentes de ictericia (56,65 %. El tiempo de aparición fue de 48 a 72 h (76,87 % y entre los factores agravantes se hallaron el nacimiento pretérmino y el bajo peso al nacer. La mayoría de los pacientes fueron tratados con luminoterapia (90,17 %. CONCLUSIÓN. La hiperbilirrubinemia neonatal agravada constituye un problema de salud. Los factores agravantes son la prematuridad y el bajo peso al nacer. La luminoterapia es una medida terapéutica eficaz para su tratamiento.INTRODUCTION. Most of times jaundice in newborn is a physiological fact due to hyperbilirubinemia of indirect predominance, secondary to liver immaturity and to bilirubin hyperproduction. The aim of present of present study was to determine the behavior of neonatal hyperbilirubinemia in the Gynecology and Obstetrics Teaching Hospital of Guanabacoa municipality from 2007 to 2009. METHODS. A retrospective and descriptive study was conducted in 173 newborn patients admitted in the Neonatology Department diagnosed with severe hyperbilirubinemia. RESULTS. The incidence of severe neonatal hyperbilirubinemia was of 3,67% with predominance in brothers with a history of jaundice (56,65%. The time of appearance was of 48 to 72 hrs (76,87% and among the aggravating factors were the preterm birth and

  2. Pregnancy aggravates proteinuria in subclinical glomerulonephritis in the rat

    NARCIS (Netherlands)

    Faas, MM; Bakker, WW; Poelman, RT; Schuiling, GA

    Because subclinical renal disease may be aggravated during pregnancy-as reflected in the occurrence of proteinuria, for example-we investigated whether a subclinical glomerulonephritis (SG) in the non-pregnant rat (passive Heymann nephritis), a condition without proteinuria, is aggravated when the

  3. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  4. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs

    DEFF Research Database (Denmark)

    Haagensen, Annika Maria Juul; Sørensen, Dorte Bratbo; Sandøe, Peter

    2014-01-01

    High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake...... of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour....... Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test...

  5. Non-fasting factor VII coagulant activity (FVII:C) increased by high-fat diet

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Marckmann, P; Sandström, B

    1994-01-01

    :Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII:Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet....... The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis. Udgivelsesdato: 1994-Jun......Preliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20...

  6. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  7. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  8. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity.

    Science.gov (United States)

    Xu, X; Ren, J

    2015-03-01

    Macrophage migration inhibitory factor (MIF) has a role in the development of obesity and diabetes. However, whether MIF has a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high-fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Adult male wild-type (WT) and MIF knockout (MIF(-/-)) mice were placed on 45% high-fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio, locomotor activity and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using terminal dUTP nick end labeling staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF(-/-) mice were treated with recombinant mouse MIF (rmMIF). High-fat diet feeding elicited increased body weight gain, insulin resistance and caloric disturbance in WT and MIF(-/-) mice. High-fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac

  9. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment

    Directory of Open Access Journals (Sweden)

    de la Monte Suzanne M

    2009-12-01

    Full Text Available Abstract Background The current epidemics of type 2 diabetes mellitus (T2DM, non-alcoholic steatohepatitis (NASH, and Alzheimer's disease (AD all represent insulin-resistance diseases. Previous studies linked insulin resistance diseases to high fat diets or exposure to streptozotocin, a nitrosamine-related compound that causes T2DM, NASH, and AD-type neurodegeneration. We hypothesize that low-level exposure to nitrosamines that are widely present in processed foods, amplifies the deleterious effects of high fat intake in promoting T2DM, NASH, and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. Injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 6 weeks. Rats were evaluated for cognitive impairment, insulin resistance, and neurodegeneration using behavioral, biochemical, molecular, and histological methods. Results NDEA and HFD ± NDEA caused T2DM, NASH, deficits in spatial learning, and neurodegeneration with hepatic and brain insulin and/or IGF resistance, and reductions in tau and choline acetyltransferase levels in the temporal lobe. In addition, pro-ceramide genes, which promote insulin resistance, were increased in livers and brains of rats exposed to NDEA, HFD, or both. In nearly all assays, the adverse effects of HFD+NDEA were worse than either treatment alone. Conclusions Environmental and food contaminant exposures to low, sub-mutagenic levels of nitrosamines, together with chronic HFD feeding, function synergistically to promote major insulin resistance diseases including T2DM, NASH, and AD-type neurodegeneration. Steps to minimize human exposure to nitrosamines and consumption of high-fat content foods are needed to quell these costly and devastating epidemics.

  10. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

    Directory of Open Access Journals (Sweden)

    Ma Wenhong

    2012-08-01

    Full Text Available Abstract Background Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively. Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Methods Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group or a high-fat diet (obese group for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. Results In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvs.9.3%, Pvs. 93.1%, P Conclusions This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

  11. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    Science.gov (United States)

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  12. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    Science.gov (United States)

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-06-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation ( e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  13. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet–fed dams

    Science.gov (United States)

    McKee, Sarah E.; Grissom, Nicola M.; Herdt, Christopher T.; Reyes, Teresa M.

    2017-01-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)–fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life—particularly within the prefrontal cortex (PFC), a brain region critical for executive function—we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.—McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation

  14. High fat feeding affects the number of GPR120 cells and enteroendocrine cells in the mouse stomach

    Directory of Open Access Journals (Sweden)

    Patricia eWidmayer

    2015-02-01

    Full Text Available Long-term intake of dietary fat is supposed to be associated with adaptive reactions of the organism and it is assumptive that this is particularly true for fat responsive epithelial cells in the mucosa of the gastrointestinal tract. Recent studies suggest that epithelial cells expressing the receptor for medium and long chain fatty acids, GPR120 (FFAR4, may operate as fat sensors. Changes in expression level and/or cell density are supposed to be accompanied with a consumption of high fat (HF diet. To assess whether feeding a HF diet might impact on the expression of fatty acid receptors or the number of lipid sensing cells as well as enteroendocrine cell populations, gastric tissue samples of non-obese and obese mice were compared using a real time PCR and immunohistochemical approach. In this study, we have identified GPR120 cells in the corpus region of the mouse stomach which appeared to be brush cells. Monitoring the effect of HF diet on the expression of GPR120 revealed that after 3 weeks and 6 months the level of mRNA for GPR120 in the tissue was significantly increased which coincided with and probably reflected a significant increase in the number of GPR120 positive cells in the corpus region; in contrast, within the antrum region, the number of GPR120 cells decreased. Furthermore, dietary fat intake also led to changes in the number of enteroendocrine cells producing either ghrelin or gastrin. After 3 weeks and even more pronounced after 6 months the number of ghrelin cells and gastrin cells was significantly increased. These results imply that a HF diet leads to significant changes in the cellular repertoire of the stomach mucosa. Whether these changes are a consequence of the direct exposure to high fat in the luminal content or a physiological response to the high level of fat in the body remains elusive.

  15. β1-Adrenoceptor blocker aggravated ventricular arrhythmia.

    Science.gov (United States)

    Wang, Yan; Patel, Dimpi; Wang, Dao Wu; Yan, Jiang Tao; Hsia, Henry H; Liu, Hao; Zhao, Chun Xia; Zuo, Hou Juan; Wang, Dao Wen

    2013-11-01

    To assess the impact of β1 -adrenoceptor blockers (β1 -blocker) and isoprenaline on the incidence of idiopathic repetitive ventricular arrhythmia that apparently decreases with preprocedural anxiety. From January 2010 to July 2012, six patients were identified who had idiopathic ventricular arrhythmias that apparently decreased (by greater than 90%) with preprocedural anxiety. The number of ectopic ventricular beats per hour (VPH) was calculated from Holter or telemetry monitoring to assess the ectopic burden. The mean VPH of 24 hours from Holter before admission (VPH-m) was used as baseline (100%) for normalization. β1 -Blockers, isoprenaline, and/or aminophylline were administrated successively on the ward and catheter lab to evaluate their effects on the ventricular arrhythmias. Among 97 consecutive patients with idiopathic ventricular arrhythmias, six had reduction in normalized VPHs in the hour before the scheduled procedure time from (104.6 ± 4.6%) to (2.8 ± 1.6%) possibly due to preprocedural anxiety (P < 0.05), then increased to (97.9 ± 9.7%) during β1 -blocker administration (P < 0.05), then quickly reduced to (1.6 ± 1.0%) during subsequent isoprenaline infusion. Repeated β1 -blocker quickly counteracted the inhibitory effect of isoprenaline, and VPHs increased to (120.9 ± 2.4%) from (1.6 ± 1.0%; P < 0.05). Isoprenaline and β1 -blocker showed similar effects on the arrhythmias in catheter lab. In some patients with structurally normal heart and ventricular arrhythmias there is a marked reduction of arrhythmias associated with preprocedural anxiety. These patients exhibit a reproducible sequence of β1 -blocker aggravation and catecholamine inhibition of ventricular arrhythmias, including both repetitive ventricular premature beats and monomorphic ventricular tachycardia. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  16. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators.

    Science.gov (United States)

    Shiraev, T; Chen, H; Morris, M J

    2009-07-01

    The rapid rise in obesity has been linked to altered food consumption patterns. There is increasing evidence that, in addition to total energy intake, the macronutrient composition of the diet may influence the development of obesity. The present study aimed to examine the impact of high dietary fat content, under both isocaloric and hypercaloric conditions, compared with a low fat diet, on adiposity, glucose and lipid metabolism, and brain appetite regulators in rats. Male Sprague-Dawley rats were exposed to one of three diets: control (14% fat), ad lib high-fat palatable (HFD, 35% fat) or high-fat palatable restricted (HFD-R, matched to the energy intake of control) and were killed in the fasting state 11 weeks later. Body weight was increased by 28% in unrestricted HFD fed rats, with an almost tripling of caloric intake and fat mass (P < 0.001) and double the plasma triglycerides of controls. Glucose intolerance and increased insulin levels were observed. HFD-R animals calorie matched to control had double their fat mass, plasma insulin and triglycerides (P < 0.05). Only ad lib consumption of the HFD increased the hypothalamic mRNA expression of the appetite-regulating peptides, neuropeptide Y and pro-opiomelanocortin. Although restricted consumption of palatable HFD had no significant impact on hypothalamic appetite regulators or body weight, it increased adiposity and circulating triglycerides, suggesting that the proportion of dietary fat, independent of caloric intake, affects fat deposition and the metabolic profile.

  17. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    Full Text Available High-fat diet (HFD-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group or a HFD (60% of calorie from fat; HFD group for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a a significant decrease of insulin receptor substrate (IRS-1 phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment; this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a an inactivation of the IRS-1 and, consequentially, (b a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c a suppression of the ERK/CREB pathway, and (d a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity. It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  18. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  19. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Science.gov (United States)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  20. Effects of high fat diet on incidence of spontaneous tumors in Wistar rats

    DEFF Research Database (Denmark)

    KRISTIANSEN, E.; Madsen, Charlotte Bernhard; Meyer, Otto A.

    1993-01-01

    In a 2.5-year carcinogenicity study, two groups, both including male and female Wistar rats, were fed two different diets with 4% and 16% fat. In addition to 4% soybean oil, the high-fat diet contained 12% mono- and diglycerides, of which 85% was stearic acid and 13% palmitic acid...

  1. A short-term high fat diet increases exposure to midazolam and omeprazole in healthy subjects

    NARCIS (Netherlands)

    Achterbergh, Roos; Lammers, Laureen A.; van Nierop, Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Mathôt, Ron A. A.; Romijn, Johannes A.

    2016-01-01

    Knowledge of factors contributing to variation in drug metabolism is of vital importance to optimize drug treatment. This study assesses the effects of a short-term hypercaloric high fat diet on metabolism of five oral drugs, which are each specific for a single P450 isoform: midazolam (CYP3A4),

  2. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  4. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    A slight decrease in hepatic α-amylase gene expression was observed only in. E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound. Keywords: High-fat diet, Inulin, Obesity, Blood glucose, Biochemical profile. Tropical Journal of Pharmaceutical Research is ...

  5. Impairment of mitochondrial function of rat hepatocytes by high fat diet and oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Garnol, T.; Endlicher, R.; Kučera, O.; Drahota, Zdeněk; Červinková, Z.

    2014-01-01

    Roč. 63, č. 2 (2014), s. 271-274 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LL1204 Grant - others:Univerzita Karlova(CZ) PRVOUK P37/02 Institutional support: RVO:67985823 Keywords : hepatocytes * high fat diet * mitochondrial activities * ROS Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  6. Osteoarthritis and a high-fat diet: the full 'OA syndrome' in a small animal model.

    NARCIS (Netherlands)

    Kraan, P.M. van der

    2010-01-01

    Obesity is one of the main risk factors for osteoarthritis (OA) and due to the global rise in obesity this will increasingly contribute to OA development. The article of Griffin and co-workers in this issue of Arthritis Research and Therapy shows that a high-fat diet leads to obesity and OA in the

  7. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 ...

  8. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  9. Hypothalamic PGC-1 alpha Protects Against High-Fat Diet Exposure by Regulating ER alpha

    NARCIS (Netherlands)

    Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P.; Li, Dan L.; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F.; Tschöp, Matthias H.; Clegg, Deborah J.

    2014-01-01

    High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor alpha (ER alpha) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1 alpha

  10. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Science.gov (United States)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  11. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs.

    Directory of Open Access Journals (Sweden)

    Annika Maria Juul Haagensen

    Full Text Available High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.

  12. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  13. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  14. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  15. Guarana (Paullinia cupana Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Natália da Silva Lima

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA. Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight. Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE, as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.

  16. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2016-01-01

    Full Text Available Korean pine nut oil (PNO has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO (PC, SC or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD, for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively compared with SHFD. Hepatic triacylglycerol (TG level was significantly lower in PHFD than the SHFD (26% lower. PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  17. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  18. High-fat diet determines the composition of the murine gut microbiome independently of obesity.

    Science.gov (United States)

    Hildebrandt, Marie A; Hoffmann, Christian; Sherrill-Mix, Scott A; Keilbaugh, Sue A; Hamady, Micah; Chen, Ying-Yu; Knight, Rob; Ahima, Rexford S; Bushman, Frederic; Wu, Gary D

    2009-11-01

    The composition of the gut microbiome is affected by host phenotype, genotype, immune function, and diet. Here, we used the phenotype of RELMbeta knockout (KO) mice to assess the influence of these factors. Both wild-type and RELMbeta KO mice were lean on a standard chow diet, but, upon switching to a high-fat diet, wild-type mice became obese, whereas RELMbeta KO mice remained comparatively lean. To investigate the influence of diet, genotype, and obesity on microbiome composition, we used deep sequencing to characterize 25,790 16S rDNA sequences from uncultured bacterial communities from both genotypes on both diets. We found large alterations associated with switching to the high-fat diet, including a decrease in Bacteroidetes and an increase in both Firmicutes and Proteobacteria. This was seen for both genotypes (ie, in the presence and absence of obesity), indicating that the high-fat diet itself, and not the obese state, mainly accounted for the observed changes in the gut microbiota. The RELMbeta genotype also modestly influenced microbiome composition independently of diet. Metagenomic analysis of 537,604 sequence reads documented extensive changes in gene content because of a high-fat diet, including an increase in transporters and 2-component sensor responders as well as a general decrease in metabolic genes. Unexpectedly, we found a substantial amount of murine DNA in our samples that increased in proportion on a high-fat diet. These results demonstrate the importance of diet as a determinant of gut microbiome composition and suggest the need to control for dietary variation when evaluating the composition of the human gut microbiome.

  19. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  20. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  1. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Directory of Open Access Journals (Sweden)

    Yang Ching-Hsiu

    2008-09-01

    Full Text Available Abstract Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2 and DNA glycosylase (Ogg1, MutY. Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.

  2. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Science.gov (United States)

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  3. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Science.gov (United States)

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  4. Hypoxia Aggravates Inactivity-Related Muscle Wasting

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2018-05-01

    Full Text Available Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg, (ii bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg. Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001 was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027. Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47. Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017 and calf (-3.3%, SE 0.7%, P < 0.001 muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05. Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.

  5. Does gender activism aggravate the superiority of one gender over ...

    African Journals Online (AJOL)

    Does gender activism aggravate the superiority of one gender over the other? ... findings reveal that firstly, failure to value and embrace diversity by males, perpetuate gender discrimination. ... Keywords: Context, Culture, Structures, Systems ...

  6. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  7. Influence of chronic stress on the compositions of hepatic cholesterol and triglyceride in male Wistar rats fed a high fat diet.

    Science.gov (United States)

    Gao, Siyuan; Han, Xue; Fu, Jihua; Yuan, Xiaoling; Sun, Xing; Li, Qiang

    2012-07-01

      We determined the influence of chronic stress (CS) on the compositions of hepatic cholesterol and triglyceride (TG) in rats fed a high fat diet (HFD).   Male Wistar rats were fed either a standard diet or a HFD and half of the HFD fed rats were given CS (electric foot shock assisted with noise) for 8 weeks.   Compared with the control group, the levels of hepatic total cholesterol (TC) and TG were significantly elevated in the HFD and HFD with chronic stress (HFD+CS) groups, and the more severe elevations of them were found in the HFD group. Inversely, the more severe elevations of hepatic water-soluble parts of TC and TG were found in the HFD+CS group, as the elevations of low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol in liver and serum, tumor necrosis factor-α, interleukin-1β and malondialdehyde in liver. Meanwhile, downregulated mRNA expressions of hepatic liver X receptor-α (LXR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were also more severe in the HFD+CS group.   CS can aggravate the high levels of water-soluble compositions of hepatic TC and TG induced by HFD as it aggravates hepatic inflammation and oxidative stress; in spite of that, however, it cannot further promote hepatic lipidosis. This is consistent with the downregulated mRNA expressions of LXR-α and PPAR-γ. © 2012 The Japan Society of Hepatology.

  8. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Thompson

    2017-07-01

    Full Text Available Perinatal exposure to maternal obesity and high-fat diet (HFD consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.

  9. Association between High Fat-low Carbohydrate Diet Score and Newly Diagnosed Type 2 Diabetes in Chinese Population

    NARCIS (Netherlands)

    Na, Y.; Feskens, E.J.M.; Li, Y.P.; Zhang, J.; Fu, P.; Ma, G.S.; Yang, X.G.

    2012-01-01

    Objective To study the association between high fat-low carbohydrate diet score and newly diagnosed type 2 diabetes in Chinese population. Methods Data about 20 717 subjects aged 45-59 years from the cross-sectional 2002 China National Nutrition and Health Survey were analyzed. High fat-low

  10. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  11. Exercise as a mean to reverse the detrimental effect of high-fat diet on bone’s fracture characteristics

    Directory of Open Access Journals (Sweden)

    Ilias Doulamis

    2017-04-01

    Full Text Available The aim of this study is to investigate whether exercise can reverse some of the adverse effects of high-fat-diet-induced obesity on lipid metabolism and bone biomechanical properties. A total of 26 adult male C57bl/6J mice were randomly assigned into three groups: (A Control group (n=6, (B High-fat diet group (n=10, (C High-fat diet and exercise group (n=10. Body mass and relevant biochemical parameters were measured for the duration of the experimental protocol (37 weeks. Mechanical strength of both femurs of each animal was assessed in-vitro based on three point bending tests. It was re¬vealed that exposure to high-fat diet led to significant increase of body mass and cholesterol levels and also to substantial changes in bone mor-phology and strength. Ultimate stress for the animals exposed to high-fat diet and those exposed to high-fat-diet and exercise was 25% and 24% lower compared to control, respectively. Exercise increased bone thickness by 15% compared to animals that were not exposed to exer¬cise. It was concluded that high-fat-diet ap¬pears to have a detrimental effect on bone biomechanics and strength. Exer¬cise reversed the reduction in bone thickness that appears to be induced by high-fat diet. However no statistically significant increase in bone strength was observed.

  12. Beneficial Effects of an Alternating High- Fat Dietary Regimen on Systemic Insulin Resistance, Hepatic and Renal Inflammation and Renal Function

    NARCIS (Netherlands)

    Yakala, Gopala K.; van der Heijden, Roel; Molema, Grietje; Schipper, Martin; Wielinga, Peter Y.; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2012-01-01

    Background: An Alternating high-cholesterol dietary regimen has proven to be beneficial when compared to daily high-cholesterol feeding. In the current study we explored whether the same strategy is applicable to a high-fat dietary regimen. Objective: To investigate whether an alternating high-fat

  13. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  14. (--Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Eleonora Cremonini

    2018-04-01

    Full Text Available Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (--epicatechin (EC supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2–20 mg/kg body weight mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption. Keywords: Intestinal permeability, (--Epicatechin, Steatosis, Insulin resistance, Endotoxemia, NADPH oxidase

  15. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice.

    Science.gov (United States)

    He, Cong; Cheng, Dandan; Peng, Chao; Li, Yanshu; Zhu, Yin; Lu, Nonghua

    2018-01-01

    Accumulating evidence suggests that high-fat diet (HFD) induced metabolic disorders are associated with dysbiosis of gut microbiota. However, no study has explored the effect of HFD on the gastric microbiota. This study established the HFD animal model to determine the impact of HFD on the gastric microbiota and its relationship with the alterations of gut microbiota. A total of 40 male C57BL/6 mice were randomly allocated to receive a standard chow diet (CD) or HFD for 12 weeks (12CD group and 12HFD group) and 24 weeks (24CD group and 24HFD group) ( n = 10 mice per group). Body weight and length were measured and Lee's index was calculated at different time points. The insulin sensitivity and serum levels of metabolic parameters including blood glucose, insulin and lipid were also evaluated. The gastric mucosa and fecal microbiota of mice were characterized by 16S rRNA gene sequencing. The body weight was much heavier and the Lee's index was higher in 24HFD group than 12HFD. The insulin resistance and serum level of lipid were increased in 24HFD group compared to 12HFD, indicating the aggravation of metabolic disorders as HFD went on. 16S rRNA gene sequencing showed dysbiosis of gastric microbiota with decreased community diversity while no significant alteration in gut microbiota after 12 weeks of HFD. The phyla Firmicutes and Proteobacteria tended to increase whereas Bacteroidetes and Verrucomicrobia decrease in the gastric microbiota of 12HFD mice compared to 12CD. Moreover, a remarkable reduction of bacteria especially Akkermansia muciniphila , which has beneficial effects on host metabolism, was observed firstly in the stomach of 12HFD group and then in the gut of 24HFD group, indicating the earlier alterations of microbiota in stomach than gut after HFD. We also found structural segregation of microbiota in the stomach as well as gut between 12HFD and 24HFD group, which is accompanied by the aggregation of metabolic disorders. These data suggest that HFD

  16. Liver protein expression in young pigs in response to a high-fat diet and diet restriction

    DEFF Research Database (Denmark)

    Sejersen, Henrik; Sørensen, Martin Tang; Larsen, Torben

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents...... to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P high-fat diet had normal glucose tolerance and liver lipid content despite a general increase (P ...-density lipoprotein decreased (P high-fat diet in young pigs is similar to that of humans in terms of increased fatty acid oxidation whereas the liver response to diet restriction is similar to humans...

  17. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  18. Long-term oral exposure to safe dose of bisphenol A in association with high-fat diet stimulate the prostatic lesions in a rodent model for prostate cancer.

    Science.gov (United States)

    Facina, Camila H; Campos, Silvana G P; Gonçalves, Bianca F; Góes, Rejane M; Vilamaior, Patricia S L; Taboga, Sebastião R

    2018-02-01

    Studies have shown that exposure to environmental chemicals known as endocrine disruptors can cause permanent changes in genital organs, such as the prostate. Among these environmental chemicals stands out bisphenol A (BPA). Another factor associated with prostate changes is the consumption of a high-fat diet. Although the relationship between the consumption of a high-fat diet and an increased risk of prostate cancer is well established, the mechanisms that lead to the establishment of this disease are not completely understood, nor the simultaneous action of BPA and high-fat diet. Adult gerbils (100 days old) were divided in four groups (n = 6 per group): Control (C): animals that received a control diet and filtered water; Diet (D): animals that received a high-fat diet and filtered water; BPA: animals that received a control diet and BPA - 50 µg kg -1 day -1 in drinking water; BPA + Diet (BPA + D): animals that received a high-fat diet + BPA - 50 µg kg -1 day -1 in drinking water. After the experimental period (6 months), the dorsolateral and ventral prostate lobes were removed, and analyzed by several methods. Histological analysis indicated premalignant and malignant lesions in both prostatic lobes. However, animals of the D, BPA, and BPA + D groups showed a higher incidence and larger number of prostatic lesions; inflammatory foci were also common. Markers to assess prostate lesions, such as increased activation of the DNA repair system (PCNA-positive cells), androgen receptor (AR), and number of basal cells, confirmed the histology. However, serum levels of testosterone did not change under the experimental conditions. The results indicated that the methodology used was effective in generating metabolic changes, which directly compromised prostatic homeostasis. Diet and BPA appear to modulate the activation of the AR pathway and thereby optimize tumor establishment in the gerbil prostate. © 2017 Wiley Periodicals, Inc.

  19. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  20. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  1. Effects and Interactions of Prenatal Ethanol Exposure, a Post-Weaning High-Fat Diet and Gender on Adult Hypercholesterolemia Occurrence in Offspring Rats.

    Science.gov (United States)

    Qi, Yongjian; Luo, Hanwen; Hu, Shuwei; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2017-01-01

    Prenatal ethanol exposure (PEE) could induce intrauterine programming of hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolism, resulting in intrauterine growth retardation and susceptibility to adult hypercholesterolemia in offspring. This study aimed to analyse the effects and interactions of PEE, a post-weaning high-fat diet (HFD) and gender on the occurrence of adult hypercholesterolemia in offspring rats. Wistar female rats were treated with ethanol (4 g/kg.d) at gestational days 11-20. The offspring were given a normal diet or HFD after weaning, and the blood cholesterol metabolism phenotype and expression of hepatic cholesterol metabolism related genes were detected in 24-week-old offspring. Furthermore, the interactions among PEE, HFD, and gender on hypercholesterolemia occurrence were analysed. PEE increased the serum total cholesterol (TCH) and low-density lipoprotein-cholesterol (LDL-C) levels and decreased the serum high-density lipoprotein-cholesterol (HDL-C) level in adult offspring rats; the changes in female offspring were greater than those in males. At the same time, the mRNA expression levels of hepatic cholesterol metabolic enzymes (apolipoprotein B (ApoB) and 7α-hydroxylase (CYP7A1))-were increased, while the mRNA expression levels of the scavenger receptor B1 (SR-B1) and LDL receptor (LDLR) were decreased. Furthermore, a three-way ANOVA showed there were interactions among PEE, post-weaning HFD and gender. For PEE offspring, a post-weaning HFD aggravated the elevated hepatic ApoB and CYP7A1 expression and reduced SR-B1 and LDLR expression; the changes in hepatic SR-B1 and CYP7A1 expression were greater in female HFD rats than in males. Our findings suggest that a post-weaning HFD could aggravate offspring hypercholesterolemia caused by PEE and that this mechanism might be associated with hepatic cholesterol metabolic disorders that are aggravated by a post-weaning HFD; hepatic cholesterol metabolism was more sensitive to

  2. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    Science.gov (United States)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  4. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    OpenAIRE

    Jessie R. Wilburn; Jeffrey Bourquin; Andrea Wysong; Christopher L. Melby

    2015-01-01

    Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight ...

  5. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat

    OpenAIRE

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective: To evaluate the hypolipidemic effect of Piper betel (P. betel) in high fat diet induced hyperlipidemia rat. Methods: The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of 250 mg/kg body weight and administered orally. Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results: In group II animals, the activity levels of serum total cholesterol (TC), triglycerides (TG), low densi...

  6. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  7. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    OpenAIRE

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook; Oak, Min-Ho

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: ...

  8. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  9. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  10. Maternal deprivation exacerbates the response to a high fat diet in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Virginia Mela

    Full Text Available Maternal deprivation (MD during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND 9. Upon weaning on PND22 half of each group received a control diet (CD and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.

  11. Voluntary exercise improves murine dermal connective tissue status in high-fat diet-induced obesity.

    Science.gov (United States)

    Lőrincz, Kende; Haluszka, Dóra; Kiss, Norbert; Gyöngyösi, Nóra; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert M

    2017-04-01

    Obesity is a risk factor for several cardiovascular and metabolic diseases. Its influence on the skin is less obvious, yet certain negative effects of adipose tissue inflammation on the dermis have been suggested. Excess weight is closely associated with sedentary behavior, so any increase in physical activity is considered beneficial against obesity. To investigate the effects of obesity and physical exercise on the skin, we established a mouse model in which mice were kept either on a high-fat diet or received standard chow. After the two groups achieved a significant weight difference, physical exercise was introduced to both. Animals were given the opportunity to perform voluntary exercise for 40 min daily in a hamster wheel for a period of 8 weeks. We evaluated the status of the dermis at the beginning and at the end of the exercise period by in vivo nonlinear microscopy. Obese mice kept on high-fat diet lost weight steadily after they started to exercise. In the high-fat diet group, we could detect significantly larger adipocytes and a thicker layer of subcutaneous tissue; both changes started to normalize after exercise. Nonlinear microscopy revealed an impaired collagen structure in obese mice that improved considerably after physical activity was introduced. With the ability to detect damage on collagen structure, we set out to address the question whether this process is reversible. With the use of a novel imaging method, we were able to show the reversibility of connective tissue deterioration as a benefit of physical exercise.

  12. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  13. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  14. Protective effects of Arctium lappa L. root extracts (AREs) on high fat diet induced quail atherosclerosis.

    Science.gov (United States)

    Wang, Zhi; Li, Ping; Wang, Chenjing; Jiang, Qixiao; Zhang, Lei; Cao, Yu; Zhong, Weizhen; Wang, Chunbo

    2016-01-08

    This study was designed to evaluate the protective effects of Arctium lappa L. root extracts (AREs) from different extraction methods (aqueous, ethanol, chloroform and flavone) on atherosclerosis. Quails (Coturnix coturnix) were subjected to high fat diet, with or without one of the four different AREs or positive control simvastatin. Blood samples were collected before treatment, after 4.5 weeks or ten weeks to assess lipid profile (Levels of total cholesterol (TC), Triacylglycerol (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL)). After ten weeks, the serum levels of nitric oxide (NO) as well as antioxidant and pro-oxidative status (Levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione peroxidase (GSH-Px)) were measured. Furthermore, aortas were collected after ten weeks treatment, aorta lipid contents (TC, TG and LDL) were assessed, and histology was used to confirm atherosclerotic changes. The results indicated that high fat diet significantly deteriorated lipid profile and antioxidant status in quail serum, while all the extracts significantly reverted the changes similar to simvastatin. Aorta lipid profile assessment revealed similar results. Histology on aortas from quails treated for ten weeks confirmed atherosclerotic changes in high fat diet group, while the extracts significantly alleviated the atherosclerotic changes similar to simvastatin. Among the different extracts, flavones fraction exerted best protective effects. Our data suggest that the protective effects of AREs were medicated via hypolipidemic and anti-oxidant effects. Underlying molecular mechanisms are under investigation.

  15. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  16. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats.

    Science.gov (United States)

    Shoeb, Ahsan; Alwar, M C; Shenoy, Preethi J; Gokul, P

    2016-04-01

    The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey's post-hoc test. The p juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (pjuice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats.

  17. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  18. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available A high-fat diet (HFD, one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control, a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16. HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible.

  19. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  20. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  1. RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    2017-08-01

    Full Text Available The transmembrane protein, STRA6, functions as a vitamin A transporter and a cytokine receptor when activated by vitamin A-bound serum retinol binding protein 4 (RBP4. STRA6 activation transduces a JAK2-STAT3 signaling cascade and promotes tumorigenesis in a xenograft mouse model of colon cancer. We show here that RBP4 and STRA6 expression is associated with poor oncologic prognosis. Downregulating STRA6 or RBP4 in colon cancer cells decreased the fraction of cancer stem cells and their sphere and tumor initiation frequency. Furthermore, we show that high-fat diet (HFD increases LGR5 expression and promotes tumor growth in a xenograft model independent of obesity. HFD increased STRA6 levels, and downregulation of STRA6 delays and impairs tumor initiation, tumor growth, and expression of stemness markers. Together, these data demonstrate a key role of STRA6 and RBP4 in the maintenance of colon cancer self-renewal and that this pathway is an important link through which consumption of HFD contributes to colon carcinogenesis.

  2. Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet.

    Science.gov (United States)

    Myers, Kevin P

    2017-05-01

    Sensory-specific satiety (SSS) is the temporary decreased pleasantness of a recently eaten food, which inhibits further eating. Evidence is currently mixed whether SSS is weaker in obese people, and whether such difference precedes or follows from the obese state. Animal models allow testing whether diet-induced obesity causes SSS impairment. Female rats (n = 24) were randomly assigned to an obesogenic high-fat, high-sugar choice diet or chow-only control. Tests of SSS involved pre-feeding a single palatable, distinctively-flavored food (cheese- or cocoa-flavored) prior to free choice between both foods. Rats were tested for short-term SSS (2 h pre-feeding immediately followed by 2 h choice) and long-term SSS (3 day pre-feeding prior to choice on day 4). In both short- and long-term tests rats exhibited SSS by shifting preference towards the food not recently eaten. SSS was not impaired in obese rats. On the contrary, in the long-term tests they showed stronger SSS than controls. This demonstrates that neither the obese state nor a history of excess energy consumption fundamentally causes impaired SSS in rats. The putative impaired SSS in obese people may instead reflect a specific predisposition, properties of the obesogenic diet, or history of restrictive dieting and bingeing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster.

    Science.gov (United States)

    Trindade de Paula, Mariane; Poetini Silva, Márcia Rósula; Machado Araujo, Stífani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L; Jesse, Cristiano Ricardo; Franco, Jeferson Luís; Posser, Thaís; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1) were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  4. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mariane Trindade de Paula

    2016-01-01

    Full Text Available The consumption of a high-fat diet (HFD causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1 were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.

  5. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    Science.gov (United States)

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize

  6. Effects of high-fat diet and fructose-rich diet on obesity, dyslipidemia and hyperglycemia in the WBN/Kob-Leprfa rat, a new model of type 2 diabetes mellitus.

    Science.gov (United States)

    Namekawa, Junichi; Takagi, Yoshiichi; Wakabayashi, Kaoru; Nakamura, Yuki; Watanabe, Ayaka; Nagakubo, Dai; Shirai, Mitsuyuki; Asai, Fumitoshi

    2017-06-10

    Obesity and type 2 diabetes mellitus (T2DM) are occurring at epidemic-like rates, and these epidemics appear to have emerged largely from changes in daily diet. In the present study, we compared effects of high-fat diet (HFD) and fructose-rich diet (FRD) in WBN/Kob-Lepr fa (WBKDF) rats that spontaneously develop obesity, dyslipidemia and T2DM. After a 4-week feeding of each diet, WBKDF-HFD and WBKDF-FRD rats exhibited aggravated obesity and dyslipidemia compared with WBKDF rats fed standard diet (STD). In contrast, hyperglycemia developed in WBKDF-STD rats was significantly inhibited in WBKDF-FRD rats, but not in WBKDF-HFD rats. The present study demonstrated that the 4-week feeding of HFD and FRD caused diet-induced obesity with a distinct phenotype in the glucose metabolism in WBKDF rats.

  7. Acetone as biomarker for ketosis buildup capability--a study in healthy individuals under combined high fat and starvation diets.

    Science.gov (United States)

    Prabhakar, Amlendu; Quach, Ashley; Zhang, Haojiong; Terrera, Mirna; Jackemeyer, David; Xian, Xiaojun; Tsow, Francis; Tao, Nongjian; Forzani, Erica S

    2015-04-22

    Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy. A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual's energy expenditure. On Day 7, ketone buildup from FK was measured. A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R(2) = 0.92), and lower body mass index (R(2) = 0.71) was observed during FK.

  8. Measuring the short-term substrate utilization response to high-carbohydrate and high-fat meals in the whole-body indirect calorimeter.

    Science.gov (United States)

    Gribok, Andrei; Leger, Jayme L; Stevens, Michelle; Hoyt, Reed; Buller, Mark; Rumpler, William

    2016-06-01

    The paper demonstrates that minute-to-minute metabolic response to meals with different macronutrient content can be measured and discerned in the whole-body indirect calorimeter. The ability to discriminate between high-carbohydrate and high-fat meals is achieved by applying a modified regularization technique with additional constraints imposed on oxygen consumption rate. These additional constraints reduce the differences in accuracy between the oxygen and carbon dioxide analyzers. The modified technique was applied to 63 calorimeter sessions that were each 24 h long. The data were collected from 16 healthy volunteers (eight males, eight females, aged 22-35 years). Each volunteer performed four 24-h long calorimeter sessions. At each session, they received one of four treatment combinations involving exercise (high or low intensity) and diet (a high-fat or high-carbohydrate shake for lunch). One volunteer did not complete all four assignments, which brought the total number of sessions to 63 instead of 64. During the 24-h stay in the calorimeter, subjects wore a continuous glucose monitoring system, which was used as a benchmark for subject's postprandial glycemic response. The minute-by-minute respiratory exchange ratio (RER) data showed excellent agreement with concurrent subcutaneous glucose concentrations in postprandial state. The averaged minute-to-minute RER response to the high-carbohydrate shake was significantly different from the response to high-fat shake. Also, postprandial RER slopes were significantly different for two dietary treatments. The results show that whole-body respiration calorimeters can be utilized as tools to study short-term kinetics of substrate oxidation in humans. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Oral haloperidol or olanzapine intake produces distinct and region-specific increase in cannabinoid receptor levels that is prevented by high fat diet.

    Science.gov (United States)

    Delis, Foteini; Rosko, Lauren; Shroff, Aditya; Leonard, Kenneth E; Thanos, Panayotis K

    2017-10-03

    Clinical studies show higher levels of cannabinoid CB1 receptors (CB1R) in the brain of schizophrenic patients while preclinical studies report a significant functional interaction between dopamine D2 receptors and CB1Rs as well as an upregulation of CB1Rs after antipsychotic treatment. These findings prompted us to study the effects of chronic oral intake of a first and a second generation antipsychotic, haloperidol and olanzapine, on the levels and distribution of CB1Rs in the rat brain. Rats consumed either regular chow or high-fat food and drank water, haloperidol drinking solution (1.5mg/kg), or olanzapine drinking solution (10mg/kg) for four weeks. Motor and cognitive functions were tested at the end of treatment week 3 and upon drug discontinuation. Two days after drug discontinuation, rats were euthanized and brains were processed for in vitro receptor autoradiography. In chow-fed animals, haloperidol and olanzapine increased CB1R levels in the basal ganglia and the hippocampus, in a similar, but not identical pattern. In addition, olanzapine had unique effects in CB1R upregulation in higher order cognitive areas, in the secondary somatosensory cortex, in the visual and auditory cortices and the geniculate nuclei, as well as in the hypothalamus. High fat food consumption prevented antipsychotic-induced increase in CB1R levels in all regions examined, with one exception, the globus pallidus, in which they were higher in haloperidol-treated rats. The results point towards the hypothesis that increased CB1R levels could be a confounding effect of antipsychotic medication in schizophrenia that is circumveneted by high fat feeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Semi-physiological model of postprandial triglyceride response in lean, obese and very obese individuals after a high-fat meal.

    Science.gov (United States)

    Leohr, Jennifer; Heathman, Michael; Kjellsson, Maria C

    2018-03-01

    To quantify the postprandial triglyceride (TG) response of chylomicrons and very-low-density lipoprotein-V6 (VLDL-V6) after a high-fat meal in lean, obese and very obese healthy individuals, using a mechanistic population lipokinetic modelling approach. Healthy individuals from three body mass index population categories: lean (18.5-24.9 kg/m 2 ), obese (30-33 kg/m 2 ), and very obese (34-40 kg/m 2 ) were enrolled in a clinical study to assess the TG response after a high-fat meal, containing 60% fat. Non-linear mixed-effect modelling was used to analyse the TG concentrations of chylomicrons and large VLDL-V6 particles. The TGs in chylomicrons and VLDL-V6 particles had a prominent postprandial peak and represented the majority of the postprandial response; only the VLDL-V6 showed a difference across the populations. A turn-over model successfully described the TG concentration-time profiles of both chylomicrons and large VLDL-V6 particles after the high-fat meal. This model consisted of four compartments: two transit compartments for the lag between meal consumption and appearance of TGs in the blood, and one compartment each for the chylomicrons and large VLDL-V6 particles. The rate constants for the production of chylomicrons and elimination of large VLDL-V6 particles, along with the conversion rate of chylomicrons to large VLDL-V6 particles were well defined. This is the first lipokinetic model to describe the absorption of TGs from dietary fats into the blood stream and compares the dynamics of TGs in chylomicrons and large VLDL-V6 particles among lean, obese and very obese people. Such a model can be used to identify where pharmacological therapies act, thereby improving the determination of efficacy, and identifying complementary mechanisms for combinational drug therapies. © 2017 John Wiley & Sons Ltd.

  11. Effects of Acute Active Video Games on Endothelial Function Following a High-Fat Meal in Overweight Adolescents.

    Science.gov (United States)

    Park, Soo Hyun; Yoon, Eun Sun; Lee, Yong Hee; Kim, Chul-Ho; Bunsawat, Kanokwan; Heffernan, Kevin S; Fernall, Bo; Jae, Sae Young

    2015-06-01

    We tested the hypothesis that an active video game following a high-fat meal would partially prevent the unfavorable effect of a high-fat meal on vascular function in overweight adolescents. Twenty-four overweight adolescents were randomized to either a 60-minute active video game (AVG) group (n = 12) or seated rest (SR) as a control group (n = 12) after a high-fat meal. Blood parameters were measured, and vascular function was measured using brachial artery flow-mediated dilation (FMD) at baseline and 3 hours after a high-fat meal. No significant interaction was found in any blood parameter. A high-fat meal significantly increased blood triglyceride and glucose concentrations in both groups in a similar manner. Brachial artery FMD significantly decreased in the SR group (13.8 ± 3.2% to 11.8 ± 2.5), but increased in the AVG group (11.4 ± 4.0% to 13.3 ± 3.5), with a significant interaction (P = .034). These findings show that an active video game attenuated high-fat meal-induced endothelial dysfunction. This suggests that an active video game may have a cardioprotective effect on endothelial function in overweight adolescents when exposed to a high-fat meal.

  12. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  13. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  14. No difference in acute effects of supplemental v. dietary calcium on blood pressure and microvascular function in obese women challenged with a high-fat meal: a cross-over randomised study.

    Science.gov (United States)

    Ferreira, Thaís da Silva; Leal, Priscila Mansur; Antunes, Vanessa Parada; Sanjuliani, Antonio Felipe; Klein, Márcia Regina Simas Torres

    2016-11-01

    Recent studies suggest that supplemental Ca (SC) increases the risk of cardiovascular events, whereas dietary Ca (DC) decreases the risk of cardiovascular events. Although frequently consumed with meals, it remains unclear whether Ca can mitigate or aggravate the deleterious effects of a high-fat meal on cardiovascular risk factors. This study aimed to evaluate the effects of SC or DC on blood pressure (BP) and microvascular function (MVF) in the postprandial period in obese women challenged with a high-fat meal. In this cross-over controlled trial, sixteen obese women aged 20-50 years were randomly assigned to receive three test meals (2908 kJ (695 kcal); 48 % fat): high DC (HDCM; 547 mg DC), high SC (HSCM; 500 mg SC-calcium carbonate) and low Ca (LCM; 42 mg DC). BP was continuously evaluated from 15 min before to 120 min after meals by digital photoplethysmography. Before and 120 min after meals, participants underwent evaluation of serum Ca and microvascular flow after postocclusive reactive hyperaemia (PORH) by laser speckle contrast imaging. Ionised serum Ca rose significantly only after HSCM. Systolic BP increased after the three meals, whereas diastolic BP increased after LCM and HDCM. Hyperaemia peak, hyperaemia amplitude and AUC evaluated after PORH decreased with LCM. After HDCM, there was a reduction in hyperaemia peak and hyperaemia amplitude, whereas HSCM decreased only hyperaemia peak. However, comparative analyses of the effects of three test meals on serum Ca, BP and MVF revealed no significant meal×time interaction. This study suggests that in obese women SC and DC do not interfere with the effects of a high-fat meal on BP and MVF.

  15. Adolescent maturational transitions in the prefrontal cortex and dopamine signalling as a risk factor for the development of obesity and high fat / high sugar diet induced cognitive deficits

    Directory of Open Access Journals (Sweden)

    Amy Claire Reichelt

    2016-10-01

    Full Text Available Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex, a critical region for behavioural control and self-regulation, is enduring, not reaching functional maturity until the early 20s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviours such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of junk foods. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioural control compared to the mature adult brain, appears to be a risk for aberrant eating behaviours that may underpin the development of obesity. This review explores the neurodevelopmental changes in the prefrontal cortex and mesocortical dopamine signalling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet induced cognitive deficits.

  16. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  17. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer.

    Science.gov (United States)

    Llaverias, Gemma; Escolà-Gil, Joan Carles; Lerma, Enrique; Julve, Josep; Pons, Cristina; Cabré, Anna; Cofán, Montserrat; Ros, Emilio; Sánchez-Quesada, José Luis; Blanco-Vaca, Francisco

    2013-01-01

    Dietary phytosterol supplements are readily available to consumers since they effectively reduce plasma low-density lipoprotein cholesterol. Several studies on cell cultures and xenograft mouse models suggest that dietary phytosterols may also exert protective effects against common cancers. We examined the effects of a dietary phytosterol supplement on tumor onset and progression using the well-characterized mouse mammary tumor virus polyoma virus middle T antigen transgenic mouse model of inherited breast cancer. Both the development of mammary hyperplastic lesions (at age 4 weeks) and total tumor burden (at age 13 weeks) were reduced after dietary phytosterol supplementation in female mice fed a high-fat, high-cholesterol diet. A blind, detailed histopathologic examination of the mammary glands (at age 8 weeks) also revealed the presence of less-advanced lesions in phytosterol-fed mice. This protective effect was not observed when the mice were fed a low-fat, low-cholesterol diet. Phytosterol supplementation was effective in preventing lipoprotein oxidation in mice fed the high-fat diet, a property that may explain - at least in part - their anticancer effects since lipoprotein oxidation/inflammation has been shown to be critical for tumor growth. In summary, our study provides preclinical proof of the concept that dietary phytosterols could prevent the tumor growth associated with fat-rich diet consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Maternal High Fat Feeding Does Not Have Long-Lasting Effects on Body Composition and Bone Health in Female and Male Wistar Rat Offspring at Young Adulthood

    Directory of Open Access Journals (Sweden)

    Paula M. Miotto

    2013-12-01

    Full Text Available High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.

  19. A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Hoe-Yune Jung

    2016-01-01

    Full Text Available This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA, which is a combination of four natural components: Fomitopsis pinicola Jeseng; Acanthopanax senticosus; Viscum album coloratum; and Allium tuberosum. High-fat diet- (HFD- fed male C57BL/6J mice were treated with FAVA (200 mg/kg/day for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD. Body and white adipose tissue (WAT weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serum lipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.

  20. Impaired fat oxidation after a single high-fat meal in insulin-sensitive nondiabetic individuals with a family history of type 2 diabetes.

    Science.gov (United States)

    Heilbronn, Leonie K; Gregersen, Søren; Shirkhedkar, Deepali; Hu, Dachun; Campbell, Lesley V

    2007-08-01

    Individuals with insulin resistance and type 2 diabetes have an impaired ability to switch appropriately between carbohydrate and fatty acid oxidation. However, whether this is a cause or consequence of insulin resistance is unclear, and the mechanism(s) involved in this response is not completely elucidated. Whole-body fat oxidation and transcriptional regulation of genes involved in lipid metabolism in skeletal muscle were measured after a prolonged fast and after consumption of either high-fat (76%) or high-carbohydrate (76%) meals in individuals with no family history of type 2 diabetes (control, n = 8) and in age- and fatness-matched individuals with a strong family history of type 2 diabetes (n = 9). Vastus lateralis muscle biopsies were performed before and 3 h after each meal. Insulin sensitivity and fasting measures of fat oxidation were not different between groups. However, subjects with a family history of type 2 diabetes had an impaired ability to increase fatty acid oxidation in response to the high-fat meal (P FAT)/CD36 (P fat meal in both groups, but it was not changed after the high-carbohydrate meal. In conclusion, an impaired ability to increase fatty acid oxidation precedes the development of insulin resistance in genetically susceptible individuals. PGC1alpha and FAT/CD36 are likely candidates in mediating this response.

  1. Prenatal Metformin Therapy Attenuates Hypertension of Developmental Origin in Male Adult Offspring Exposed to Maternal High-Fructose and Post-Weaning High-Fat Diets

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Widespread consumption of a Western diet, comprised of highly refined carbohydrates and fat, may play a role in the epidemic of hypertension. Hypertension can take origin from early life. Metformin is the preferred treatment for type 2 diabetes. We examined whether prenatal metformin therapy can prevent maternal high-fructose plus post-weaning high-fat diets-induced hypertension of developmental origins via regulation of nutrient sensing signals, uric acid, oxidative stress, and the nitric oxide (NO pathway. Gestating Sprague–Dawley rats received regular chow (ND or chow supplemented with 60% fructose diet (HFR throughout pregnancy and lactation. Male offspring were onto either the ND or high-fat diet (HFA from weaning to 12 weeks of age. A total of 40 male offspring were assigned to five groups (n = 8/group: ND/ND, HFR/ND, ND/HFA, HFR/HFA, and HFR/HFA+metformin. Metformin (500 mg/kg/day was administered via gastric gavage for three weeks during the pregnancy period. Combined maternal HFR plus post-weaning HFA induced hypertension in male adult offspring, which prenatal metformin therapy prevented. The protective effects of prenatal metformin therapy on HFR/HFA-induced hypertension, including downregulation of the renin-angiotensin system, decrease in uric acid level, and reduction of oxidative stress. Our results highlighted that the programming effects of metformin administered prenatally might be different from those reported in adults, and that deserves further elucidation.

  2. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats.

    Science.gov (United States)

    Kubant, R; Poon, A N; Sánchez-Hernández, D; Domenichiello, A F; Huot, P S P; Pannia, E; Cho, C E; Hunschede, S; Bazinet, R P; Anderson, G H

    2015-12-14

    Obesity is associated with increased consumption and preference for dietary fat. Experimental models of fat-induced obesity use either lard or vegetable shortening. Yet, there are no direct comparisons of these commonly used fat sources, or the influence of their fatty acid composition, on the development of diet-induced obesity. To compare the effects of lard and hydrogenated vegetable-shortening diets, which differ in their fatty acid composition, on weight gain and the development of obesity and insulin resistance in rats. Male Wistar rats were fed ad libitum for 14 weeks high-fat diets containing either (1) high vegetable fat (HVF, 60 kcal% from vegetable shortening) or (2) high lard fat (HLF, 60 kcal% from lard). Rats fed normal-fat (NF, 16 kcal% from vegetable shortening) diet served as control. Body weight, food intake, adipose tissue mass, serum 25[OH]D3, glucose, insulin and fatty acid composition of diets were measured. Rats fed either of the two high-fat diets had higher energy intake, weight gain and fat accretion than rats fed normal-fat diet. However, rats fed the HLF diet consumed more calories and gained more weight and body fat with greater increases of 32% in total (158.5±8.2 vs 120.2±6.6 g, P<0.05), 30% in visceral (104.4±5.2 vs 80.3±4.2 g, P<0.05) and 36% in subcutaneous fat mass (54.1±3.6 vs 39.9±3.1 g, P<0.05), compared with rats fed the HVF diet. Higher visceral adiposity was positively correlated with serum insulin (r=0.376, P<0.05) and homeostatic model assessment insulin resistance (r=0.391, P<0.05). We conclude that lard-based high-fat diets accentuate the increase in weight gain and the development of obesity and insulin resistance more than hydrogenated vegetable-shortening diets. These results further point to the importance of standardizing fatty acid composition and type of fat used in determining outcomes of consuming high-fat diets.

  3. Enhanced preference for high-fat foods following a simulated night shift.

    Science.gov (United States)

    Cain, Sean W; Filtness, Ashleigh J; Phillips, Craig L; Anderson, Clare

    2015-05-01

    Shift workers are prone to obesity and associated co-morbidities such as diabetes and cardiovascular disease. Sleep restriction associated with shift work results in dramatic endocrine and metabolic effects that predispose shift workers to these adverse health consequences. While sleep restriction has been associated with increased caloric intake, food preference may also play a key role in weight gain associated with shift work. This study examined the impact of an overnight simulated night shift on food preference. Sixteen participants [mean 20.1, standard deviation (SD) 1.4 years; 8 women] underwent a simulated night shift and control condition in a counterbalanced order. On the following morning, participants were provided an opportunity for breakfast that included high- and low-fat food options (mean 64.8% and 6.4% fat, respectively). Participants ate significantly more high-fat breakfast items after the simulated night shift than after the control condition [167.3, standard error of the mean (SEM 28.7) g versus 211.4 (SEM 35.6) g; P=0.012]. The preference for high-fat food was apparent among the majority of individuals following the simulated night shift (81%), but not for the control condition (31%). Shift work and control conditions did not differ, however, in the total amount of food or calories consumed. A simulated night shift leads to preference for high-fat food during a subsequent breakfast opportunity. These results suggest that food choice may contribute to weight-related chronic health problems commonly seen among night shift workers.

  4. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  5. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  6. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  7. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    Science.gov (United States)

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  9. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  10. High-fat diet feeding differentially affects the development of inflammation in the central nervous system

    OpenAIRE

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D.; Al Houayek, Mireille; Muccioli, Giulio

    2016-01-01

    Background Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. Methods We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16?weeks) a group of ...

  11. A high fat meal activates blood coagulation factor vii in rats

    DEFF Research Database (Denmark)

    Olsen, A. K.; Bladbjerg, E. M.; Kornerup Hansen, A.

    2002-01-01

    In humans, high fat meals cause postprandial activation of blood coagulation factor VII (FVII), but human studies have not provided definite evidence for a prothrombotic effect of dietary FVII activation. An animal model would be an attractive way to pursue this question and therefore we tested...... the LEW/Mol rat. We gavaged 3 mL of a fat emulsion (n = 42) or 3 mL isotonic glucose (n = 42). Blood was sampled by heart puncture 2, 4 and 6 h (n = 14/group at each time) after the fat/glucose load. Furthermore, blood was sampled from 16 untreated rats to determine the baseline levels. Triglyceride...

  12. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  13. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure and insulin resistance in offspring rats.

    Science.gov (United States)

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.

  14. Beyond Bullying: Aggravating Elements of Peer Victimization Episodes

    Science.gov (United States)

    Turner, Heather A.; Finkelhor, David; Shattuck, Anne; Hamby, Sherry; Mitchell, Kimberly

    2015-01-01

    This study sought to identify features of peer victimization that aggravate negative outcomes in children. The features that were assessed include "power imbalance," a commonly used criterion in defining bullying, and 5 other characteristics: injury, weapon involvement, Internet involvement, sexual content, and bias content. Three…

  15. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  16. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  17. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  18. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  19. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  20. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  1. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  2. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    International Nuclear Information System (INIS)

    Brown, C.M.; Layman, D.K.

    1988-01-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of 14 C-labeled chylomicron-triglyceride ( 14 C-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from 14 C-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of 14 C-CM-TG from plasma and the half-lives of 14 C-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides

  3. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet.

    Directory of Open Access Journals (Sweden)

    Daniel Beiroa

    Full Text Available Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.

  4. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  5. GDF-3 is an adipogenic cytokine under high fat dietary condition

    International Nuclear Information System (INIS)

    Wang Wei; Yang Yan; Meng Ying; Shi Yanggu

    2004-01-01

    Growth differentiation factor 3 (GDF-3) is structurally a bone morphogenetic protein/growth differentiation factor subfamily member of the TGF-β superfamily. GDF-3 exhibits highest level of expression in white fat tissue in mice and is greatly induced by high fat diet if fat metabolic pathway is blocked. To identify its biological function, GDF-3 was overexpressed in mice by adenovirus mediated gene transfer. Mice transduced with GDF-3 displayed profound weight gain when fed with high fat diet. The phenotypes included greatly expanded adipose tissue mass, increased body adiposity, highly hypertrophic adipocytes, hepatic steatosis, and elevated plasma leptin. GDF-3 stimulated peroxisome proliferator activated receptor expression in adipocytes, a master nuclear receptor that controls adipogenesis. However, GDF-3 was not involved in blood glucose homeostasis or insulin resistance, a condition associated with obesity. In contrast, similar phenotypes were not observed in GDF-3 mice fed with normal chow, indicating that GDF-3 is only active under high lipid load. Thus, GDF-3 is a new non-diabetic adipogenic factor tightly coupled with fat metabolism

  6. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Antihyperlipidemic Effects of Sesamum indicum L. in Rabbits Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2013-01-01

    Full Text Available The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol, hypercholesterolemic diet (1% cholesterol + sesame seed (10%, and hypercholesterolemic diet (1% cholesterol + sesame oil (5%. Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P0.05. In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P0.05. Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.

  9. High fat diet prevents over-crowding induced decrease of sex ratio in mice.

    Directory of Open Access Journals (Sweden)

    Madhukar Shivajirao Dama

    Full Text Available Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. In the present study, we tested the effect of housing mice under crowded condition on the sex ratio and whether the fat content of the diet has any influence on the outcome of pregnancies. Three-week-old mice were placed on the control diet (NFD for 3 weeks. Thereafter the mice were allotted randomly to two groups of 7 cages each with 4, 6, 8, 10, 12, 14, and 16 mice in every cage to create increasing crowding gradient and fed either NFD or high fat diet (HFD. After 4 weeks, dams were bred and outcomes of pregnancy were analyzed. The average dam body weight (DBW at conception, litter size (LS and SR were significantly higher in HFD fed dams. Further, male biased litters declined with increasing crowding in NFD group but not in HFD. The LS and SR in NFD declined significantly with increasing crowding, whereas only LS was reduced in HFD group. We conclude that female mice housed under overcrowding conditions shift offspring SR in favor of daughters in consistent with the TW hypothesis and high fat diet reduces this influence of overcrowding.

  10. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  11. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Decrease of postprandial endothelial dysfunction by spice mix added to high-fat hamburger meat in men with Type 2 diabetes mellitus.

    Science.gov (United States)

    Li, Z; Henning, S M; Zhang, Y; Rahnama, N; Zerlin, A; Thames, G; Tseng, C H; Heber, D

    2013-05-01

    Consumption of a high-fat diet has been demonstrated to promote endothelial dysfunction, possibly through an increase in lipid peroxidation and decrease in serum nitric oxide. The present study was designed to investigate whether consumption of a hamburger cooked with a polyphenol-rich spice mixture will reduce postprandial lipid oxidation and endothelial dysfunction in men with Type 2 diabetes. Twenty-two subjects consumed burgers cooked with salt only (control burger) or with salt and spice mix (spice burger) in randomized order. The postprandial concentration of urinary malondialdehyde and nitrate/nitrite as well as the peripheral arterial tonometry score were determined. Eighteen subjects completed the study. Postprandial serum glucose, insulin and triglyceride concentrations were similar in all subjects after control burger or spice burger consumption. Urine malondialdehyde excretion in mmol/g creatinine was reduced by 31% (P spice burger compared with the control burger. Two hours after consumption of the burgers, the peripheral arterial tonometry score was significantly different between control burger consumption (-9.7 ± 21.5%) and spice burger consumption (+18.0 ± 42.4%) (P = 0.025). Mean urinary nitrate/nitrite concentrations in urine collected during the 6 h after consumption of the control burger was 9.09 ± 5.7 mmol/g creatinine, but 12.37 ± 7.00 mmol/g creatinine after the spice burger (P = 0.053). Adding a spice mix to hamburger meat prior to cooking resulted in a reduction in urinary malondialdehyde, an increase in urinary nitrate/nitrite and improvement of postprandial endothelial dysfunction in men with Type 2 diabetes. Therefore, cooking a hamburger with a polyphenol-rich spice mixture may lead to potential cardiovascular benefits in patients with Type 2 diabetes mellitus. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  13. Effect of high fat diet on pulmonary expression of parathyroid hormone-related protein and its downstream targets

    Directory of Open Access Journals (Sweden)

    Learta Oruqaj

    2016-10-01

    Full Text Available Aims: Parathyroid hormone-related protein (PTHrP is involved in lung development and surfactant production. The latter one requires a paracrine interaction between type II alveolar cells and lipofibroblasts in which leptin triggers PTHrP-induced effects. Whether increased plasma leptin levels, as they occur in high fat diet, modify the expression of PTHrP remains unclear. Furthermore, the effect of high fat diet under conditions of forced pulmonary remodelling such as response to post myocardial infarction remains to be defined. Materials and methods: C57 bl/6 mice were randomized to either normal diet or high fat diet at an age of 6 weeks. Seven months later, the mice were euthanized and the lung was removed and frozen in fluid nitrogen until use. Samples were analyzed by real-time RT-PCR and western blot. Leptin deficient mice were used to investigate the effect of leptin on pulmonary expression of PTHrP more directly. A subgroup of mice with and without high fat diet underwent in vivo ischemia (45 min and reperfusion (4 weeks. Finally, experiments were repeated with prolonged high-fat diet. Key findings: High fat diet increased plasma leptin levels by 30.4% and the pulmonary mRNA expression of PTHrP (1,447-fold, PTH-1 receptor (4.21-fold, and PTHrP-downstream targets ADRP (7.54-fold and PPARγ (5.27-fold. Pulmonary PTHrP expression was reduced in leptin deficient mice by 88% indicating leptin dependent regulation. High fat diet further improved changes in pulmonary adaptation caused by ischemia/reperfusion (1.48-fold increased PTH-1 receptor protein expression. These effects were lost during prolonged high fat diet. Significance: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may

  14. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an ob...

  15. Central Nervous System Mechanisms Linking the Consumption of Palatable High-Fat Diets to the Defense of Greater Adiposity

    OpenAIRE

    Ryan, Karen K.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in envir...

  16. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  17. High fat diet intake during pre and periadolescence impairs learning of a conditioned place preference in adulthood

    Directory of Open Access Journals (Sweden)

    Sanabria Federico

    2011-06-01

    Full Text Available Abstract Background Brain regions that mediate learning of a conditioned place preference (CPP undergo significant development in pre and periadolescence. Consuming a high fat (HF diet during this developmental period and into adulthood can lead to learning impairments in rodents. The present study tested whether HF diet intake, consumed only in pre and periadolescence, would be sufficient to cause impairments using a CPP procedure. Methods Rats were randomly assigned to consume a HF or a low fat (LF diet during postnatal days (PD 21-40 and were then placed back on a standard lab chow diet. A 20-day CPP procedure, using HF Cheetos® as the unconditioned stimulus (US, began either the next day (PD 41 or 40 days later (PD 81. A separate group of adult rats were given the HF diet for 20 days beginning on PD 61, and then immediately underwent the 20-day CPP procedure beginning on PD 81. Results Pre and periadolescent exposure to a LF diet or adult exposure to a HF diet did not interfere with the development of a HF food-induced CPP, as these groups exhibited robust preferences for the HF Cheetos® food-paired compartment. However, pre and periadolescent exposure to the HF diet impaired the development of a HF food-induced CPP regardless of whether it was assessed immediately or 40 days after the exposure to the HF diet, and despite showing increased consumption of the HF Cheetos® in conditioning. Conclusions Intake of a HF diet, consumed only in pre and periadolescence, has long-lasting effects on learning that persist into adulthood.

  18. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  19. Pathophysiology of metabolic syndrome: The onset of natural recovery on withdrawal of a high-carbohydrate, high-fat diet.

    Science.gov (United States)

    Hazarika, Ankita; Kalita, Himadri; Chandra Boruah, Dulal; Chandra Kalita, Mohan; Devi, Rajlakshmi

    2016-10-01

    Chronic consumption of high-carbohydrate, high-fat (HCHF) diet induces metabolic syndrome (MetS) and markedly impairs the ultra-structure of organs. To our knowledge, no scientific study has yet to report the effect of withdrawal of an HCHF diet on MetS-associated ultra-structural abnormalities in affected organs and tissues. Therefore, the aim of this study was to investigate the effects of subchronic withdrawal of the HCHF diet, specifically with a pathophysiological approach. Wister albino rats (N = 72) were divided into three groups: Groups A and B were fed a standard basal diet and an HCHF diet, respectively, for 16 wk. Group C was on an HCHF diet for the initial 12 wk and then returned to basal diet for 4 wk. Histopathological changes in the heart, lungs, liver, spleen, pancreas, small intestine, kidney, white adipose tissue (WAT), skeletal muscle, and hippocampus of the brain were monitored at 4, 8, 12, and 16 wk. Lipid droplets (LDs) in liver, fibrosis in the pancreas, abnormalities in the glomerulus of the kidney, and an increase in the size of adipocytes were observed in groups B and C at week 12. Withdrawal of the HCHF diet in group C showed the onset of regenerative features at the ultra-structural level. HCHF diet-fed rats in group B had higher body weights; raised lipid profiles, blood glucose levels, and insulin resistance than basal diet-fed rats in group A and HCHF to basal diet-fed rats in group C at week 16. An HCHF diet induces ultra-structural abnormalities, which are significantly reversed by subchronic withdrawal of a MetS-inducing HCHF diet, indicating the onset of natural recovery at the ultra-structural level of affected organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  1. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  2. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Maillard, Elisa; Bietiger, William; Peronet, Claude; Pinget, Michel; Schini-Kerth, Valérie; Sigrist, Séverine

    2017-06-01

    Individuals with metabolic syndrome (MS) show several metabolic abnormalities including insulin resistance, dyslipidaemia, and oxidative stress (OS). Diet is one of the factors influencing the development of MS, and current nutritional advice emphasises the benefits of fruit and vegetable consumption. Here, we assessed the effects of naturally occurring antioxidants, red wine polyphenols (RWPs), on MS and OS. Wistar rats (n = 20) weighing 200-220 g received a high-fat diet (HFD) for 2 months before they were divided into two groups that received either HFD only or HFD plus 50 mg/kg RWPs in their drinking water for an additional 2 months. A control group (n = 10) received a normal diet (ND) for 4 months. Rats receiving HFD increased body weight over 20 % throughout the duration of the study. They also showed increased blood levels of C-peptide, glucose, lipid peroxides, and oxidised proteins. In addition, the HFD increased OS in hepatic, pancreatic, and vascular tissues, as well as induced pancreatic islet cell hyperplasia and hepatic steatosis. Addition of RWPs to the HFD attenuated these effects on plasma and tissue OS and on islet cell hyperplasia. However, RWPs had no effect on blood glucose levels or hepatic steatosis. RWPs showed an antioxidant mechanism of action against MS. This result will inform future animal studies exploring the metabolic effects of RWPs in more detail. In addition, these findings support the use of antioxidants as adjunctive nutritional treatments for patients with diabetes.

  3. Mice deficient in cryptochrome 1 (Cry1-/- exhibit resistance to obesity induced by a high fat diet

    Directory of Open Access Journals (Sweden)

    Guy eGriebel

    2014-04-01

    Full Text Available Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD-induced obesity in mice. Despite similar caloric intake, Cry1-/- mice on HFD gained markedly less weight (-18 % at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT littermates (-61 %, suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1-/- and WT mice. Both Cry1-/- and Cry2-/- mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for antiobesity therapy.

  4. Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit resistance to obesity induced by a high-fat diet.

    Science.gov (United States)

    Griebel, Guy; Ravinet-Trillou, Christine; Beeské, Sandra; Avenet, Patrick; Pichat, Philippe

    2014-01-01

    Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY) family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study, we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD)-induced obesity in mice. Despite similar caloric intake, Cry1 (-/-) mice on HFD gained markedly less weight (-18%) at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT) littermates (-61%), suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1 (-/-) and WT mice. Both Cry1 (-/-) and Cry2 (-/-) mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for anti-obesity therapy.

  5. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Chartoumpekis, Dionysios V; Ziros, Panos G; Psyrogiannis, Agathoklis I; Papavassiliou, Athanasios G; Kyriazopoulou, Venetsana E; Sykiotis, Gerasimos P; Habeos, Ioannis G

    2011-10-01

    Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. Nrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.

  6. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  7. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    Science.gov (United States)

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  8. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise

    Directory of Open Access Journals (Sweden)

    Carlos A. Ibáñez

    2017-11-01

    Full Text Available An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF diet during adolescence. The effect of physical training (Ex in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w for 30 days then subsequently fed a normal fat diet (NF for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se. At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive

  9. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    Science.gov (United States)

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  11. Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease.

    Directory of Open Access Journals (Sweden)

    Koro Gotoh

    Full Text Available Obesity is associated with systemic low-grade inflammation and is a risk factor for non-alcoholic fatty pancreas disease (NAFPD, but the molecular mechanisms of these associations are not clear. Interleukin (IL-10, a potent anti-inflammatory cytokine, is released during acute pancreatitis and is known to limit inflammatory responses by downregulating the release of proinflammatory mediators. The origin of IL-10 that suppresses pancreatitis has not been investigated. Since obesity is known to reduce expression of proinflammatory cytokines in the spleen, we examined whether spleen-derived IL-10 regulates NAFPD caused by high-fat (HF diet-induced obesity. The following investigations were performed: 1 IL-10 induction from spleen was examined in male mice fed a HF diet; 2 triglyceride content, expression of pro- and anti-inflammatory cytokines and infiltration of M1 and M2 macrophages were determined to evaluate ectopic fat accumulation and inflammatory responses in the pancreas of splenectomy (SPX-treated mice fed HF diet; 3 exogenous IL-10 was systemically administered to SPX-treated obese mice and the resulting pathogenesis caused by SPX was assessed; and 4 IL-10 knockout (IL-10KO mice were treated with SPX and ectopic fat deposition and inflammatory conditions in the pancreas were investigated. Obesity impaired the ability of the spleen to synthesize cytokines, including IL-10. SPX aggravated fat accumulation and inflammatory responses in the pancreas of HF diet-induced obese mice and these effects were inhibited by systemic administration of IL-10. Moreover, SPX had little effect on fat deposition and inflammatory responses in the pancreas of IL-10KO mice. Our findings indicate that obesity reduces IL-10 production by the spleen and that spleen-derived IL-10 may protect against the development of NAFPD.

  12. An acute intake of theobromine does not change postprandial lipid metabolism, whereas a high-fat meal lowers chylomicron particle number.

    Science.gov (United States)

    Smolders, Lotte; Mensink, Ronald P; Plat, Jogchum

    2017-04-01

    Postprandial responses predict cardiovascular disease risk. However, only a few studies have compared acute postprandial effects of a low-fat, high-carbohydrate (LF) meal with a high-fat, low-carbohydrate (HF) meal. Furthermore, theobromine has favorably affected fasting lipids, but postprandial effects are unknown. Because both fat and theobromine have been reported to increase fasting apolipoprotein A-I (apoA-I) concentrations, the main hypothesis of this randomized, double-blind crossover study was that acute consumption of an HF meal and a theobromine meal increased postprandial apoA-I concentrations, when compared with an LF meal. Theobromine was added to the LF meal. Nine healthy men completed the study. After meal intake, blood was sampled frequently for 4hours. Postprandial apoA-I concentrations were comparable after intake of the 3 meals. Apolipoprotein B48 curves, however, were significantly lower and those of triacylglycerol were significantly higher after HF as compared with LF consumption. Postprandial free fatty acid concentrations decreased less, and glucose and insulin concentrations increased less after HF meal consumption. Except for an increase in the incremental area under the curve for insulin, theobromine did not modify responses of the LF meal. These data show that acute HF and theobromine consumption does not change postprandial apoA-I concentrations. Furthermore, acute HF consumption had divergent effects on postprandial apolipoprotein B48 and triacylglycerol responses, suggesting the formation of less, but larger chylomicrons after HF intake. Finally, except for an increase in the incremental area under the curve for insulin, acute theobromine consumption did not modify the postprandial responses of the LF meal. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High-fat feeding increases hepatic vitamin C synthesis and its circulatory mobilization in mice

    DEFF Research Database (Denmark)

    Christensen, Britt Tranberg; Hansen, Axel Jacob Kornerup; Lykkesfeldt, Jens

    2014-01-01

    , glucose and vitC concentrations. Hepatic vitC concentration and gulonolactone oxidase (GLO) capacity, as a measure of vitC de novo biosynthesis, were analyzed in liver homogenates. RESULTS: HF diet significantly increased plasma concentrations of vitC compared with a control diet low in fat (P ... to modulate their vitC homeostasis during high-fat (HF) feeding. METHODS: Twenty-five male 5-week-old C57BL/6 mice were fed high- or low-fat diets for 14 weeks. An oral glucose tolerance test (OGTT) was performed after 12 weeks of intervention. Terminal fasting plasma samples were analyzed for insulin.......05). Hepatic de novo biosynthesis of vitC was upregulated (P glucose and insulin concentrations...

  14. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  15. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  16. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  17. Hyperleptinemia Exacerbates High-Fat Diet-Mediated Atrial Fibrosis and Fibrillation.

    Science.gov (United States)

    Fukui, Akira; Ikebe-Ebata, Yuki; Kondo, Hidekazu; Saito, Shotaro; Aoki, Kohei; Fukunaga, Naoya; Shinohara, Tetsuji; Masaki, Takayuki; Teshima, Yasushi; Takahashi, Naohiko

    2017-06-01

    Obesity including metabolic syndrome is an independent risk factor of atrial fibrillation (AF). Although hyperleptinemia is usually a characteristic of obese subjects, the relationship with atrial fibrosis and AF is unknown. We tested the hypothesis that high-fat diet (HFD)-induced hyperleptinemia exacerbates atrial fibrosis and AF. Eight-week-old male C57BL/6 (WT) and leptin-deficient ob/ob (Ob) mice were treated with a normal-fat diet (NFD) or 60% HFD. After 8 weeks, transesophageal burst pacing and electrophysiological study using isolated perfused hearts were performed and left atrial (LA) tissues were collected for histological analysis, hydroxyproline assay, and reverse transcription-polymerase chain reaction. HFD treatment increased body weight in both WT and Ob mice compared with NFD (both P atrial fibrosis and AF. Inhibition of leptin signaling may become a novel therapeutic target to prevent obesity-related AF. © 2017 Wiley Periodicals, Inc.

  18. One-year high fat diet affects muscle-but not brain mitochondria

    DEFF Research Database (Denmark)

    Joergensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-01-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletalmuscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistarrats were fed either chow (13E% fat......) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulinresistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P .... Adding also succinate in state 3 resulted in ahigher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P mitochondria from the same animal showed no changes with the substrates relevant...

  19. STORAGE, NUTRITIONAL AND SENSORY PROPERTIES OF HIGH-FAT FISH AND RICE FLOUR COEXTRUDATES

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay; Amarender Singh Bawa

    2013-10-01

    The present research is on understanding the storage, nutritional and sensory characteristics of high-fat fish (khoira) and rice flour coextrudates at storage temperature of 30C. The extruder processing conditions used are barrel temperature (200C), screw speed (109 rpm), fish content of feed (44%) and feed moisture content (39%). Sorption isotherm data indicated that the safe aw level was about 0.4–0.7. Guggenheim -Anderson -de Boer model described the sorption data adequately with an r2 value of 0.99. During the initial 15 days of storage, there was a loss of vitamin A and total tocopherols by 64.4 and 20.6%, and an increase in peroxides and free fatty acid content by about 116 mg/kg and 21.7%. The nonlinear mathematical model developed has adequately described the changes in nutritional and storage properties. Sensory attributes indicated that the product fried for 15 s was most acceptable.

  20. Proteomic Analysis of Peripheral Blood Mononuclear Cells after a High-Fat, High-Carbohydrate Meal with Orange Juice.

    Science.gov (United States)

    Chaves, Daniela F S; Carvalho, Paulo C; Brasili, Elisa; Rogero, Marcelo M; Hassimotto, Neuza A; Diedrich, Jolene K; Moresco, James J; Yates, John R; Lajolo, Franco M

    2017-11-03

    Oxidative stress and inflammation play a role in the physiopathology of insulin resistance, diabetes and cardiovascular disease. A single high-fat, high-carbohydrate (HFHC) meal induces an increase in inflammatory and oxidative stress markers in peripheral blood mononuclear cells (PBMC). Previous studies have shown that orange juice is able to prevent this response by inhibiting toll like receptors (TLR) expression and endotoxemia. Our goal was to study the proteome response in PBMC after the consumption of a HFHC meal consumed with water, orange juice or an isocaloric beverage (water with glucose). Twelve healthy individuals completed the protocol in a crossover design, and blood samples were obtained before and 1, 3, and 5 h after consumption. Proteomic profile, glucose, insulin, lipid and cytokines levels were investigated. The glycemic and insulinemic response was higher when the meal was consumed with glucose, while there was no difference in the response between water and orange juice. Proteome analysis in PBMC was carried out using TMT ten-plex. A total of 3813 proteins, originating from 15 662 peptides were identified. Three proteins showed significantly altered expression in the three treatments: apolipoprotein A-II, ceruloplasmin and hemopexin. When the HFHC meal was consumed with water there was an increase in some inflammatory pathways such as the Fc-gamma receptor dependent phagocytosis and the complement cascade, but the immune system as a whole was not significantly altered. However, when the meal was consumed with glucose, the immune system was up regulated. Among the pathways induced after 3 h were those of the adaptive immune system and cytokine signaling. Five hours after the meal, pathways of the complement cascade and classical antibody mediated complement activation were up regulated. When the meal was consumed with orange juice there was an up regulation of proteins involved in signal transduction, DNA replication and cell cycle. The

  1. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  2. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Yida Z

    2015-07-01

    Full Text Available Zhang Yida,1,2 Mustapha Umar Imam,1 Maznah Ismail,1,3 Norsharina Ismail,1 Zhiping Hou1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Cardiology Department, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People’s Republic of China; 3Faculty of Medicine and Health Sciences, Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Edible bird’s nest (EBN is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD- induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipo­protein (oxLDL, adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. Keywords: edible bird’s nest, coagulation, high-fat diet, hypercholesterolemia, nutrigeno­mics

  3. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  4. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  5. Anti-hyperglycemic and anti-hyperlipidaemic effect of Arjunarishta in high-fat fed animals

    Directory of Open Access Journals (Sweden)

    Sushant A. Shengule

    2018-01-01

    Full Text Available Background: Arjunarishta (AA, a formulation used as cardiotonic is a hydroalcoholic formulation of Terminalia arjuna (Roxb. Wight and Arn. (TA belonging to family Combretaceae. Objective: To evaluate the anti-hyperglycemic and anti-hyperlipidemic effect of Arjunarishta on high-fat diet fed animals. Materials and methods: High-fat diet fed (HFD Wistar rats were randomly divided into three groups and treated with phytochemically standardized Arjunarishta (1.8 ml/kg, and hydroalcoholic extract of T. arjuna (TAHA (250 mg/kg and rosuvastatin (10 mg/kg, for 3 months. Intraperitoneal glucose tolerance test, blood biochemistry, liver triglyceride and systolic blood pressure were performed in all the groups. Effect of these drugs on the expression of tumor necrosis factor-α (TNF-α and insulin receptor substrate-1 (IRS-1 and peroxisome proliferators activated receptor γ coactivator 1-α (PGC-1α were studied in liver tissue using Quantitative Real-time PCR. Results: HFD increased fasting blood glucose, liver triglyceride, systolic blood pressure and gene expression of TNF-α, IRS-1 and PGC-1α. Treatment of AA and TAHA significantly reduced fasting blood glucose, systolic blood pressure, total cholesterol and triglyceride levels. These treatments significantly decreased gene expression of TNF-α (2.4, 2.2 and 2.6 fold change; increased IRS-1 (2.8, 2.9 and 2.8 fold change and PGC-1α (2.9, 3.7 and 3.3 fold change as compared to untreated HFD. Conclusion: Anti-hyperglycemic, anti-hyperlipidemic effect of Arjunarishta may be mediated by decreased TNF-α and increased PGC-1α and IRS-1. Keywords: Rosuvastatin, Type 2 diabetes, Insulin sensitizer genes, Arjunarishta

  6. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia.

    Science.gov (United States)

    Baufeld, Caroline; Osterloh, Anja; Prokop, Stefan; Miller, Kelly R; Heppner, Frank L

    2016-09-01

    Diets high in fat (HFD) are known to cause an immune response in the periphery as well as the central nervous system. In peripheral adipose tissue, this immune response is primarily mediated by macrophages that are recruited to the tissue. Similarly, reactivity of microglia, the innate immune cells of the brain, has been shown to occur in the hypothalamus of mice fed a high-fat diet. To characterize the nature of the microglial response to diets high in fat in a temporal fashion, we studied the phenotypic spectrum of hypothalamic microglia of mice fed high-fat diet for 3 days and 8 weeks by assessing their tissue reaction and inflammatory signature. While we observed a significant increase in Iba1+ myeloid cells and a reaction of GFAP+ astrocytes in the hypothalamus after 8 weeks of HFD feeding, we found the hypothalamic myeloid cell reaction to be limited to endogenous microglia and not mediated by infiltrating myeloid cells. Moreover, obese humans were found to present with signs of hypothalamic gliosis and exacerbated microglia dystrophy, suggesting a targeted microglia response to diet in humans as well. Notably, the glial reaction occurring in the mouse hypothalamus was not accompanied by an increase in pro-inflammatory cytokines, but rather by an anti-inflammatory reaction. Gene expression analyses of isolated microglia not only confirmed this observation, but also revealed a downregulation of microglia genes important for sensing signals in the microenvironment. Finally, we demonstrate that long-term exposure of microglia to HFD in vivo does not impair the cell's ability to respond to additional stimuli, like lipopolysaccharide. Taken together, our findings support the notion that microglia react to diets high in fat in a region-specific manner in rodents as well as in humans; however, this response changes over time as it is not exclusively pro-inflammatory nor does exposure to HFD prime microglia in the hypothalamus.

  7. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  8. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  9. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    International Nuclear Information System (INIS)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a ‘2-hit’ paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: ► Characterizes a mouse model of arsenic enhanced NAFLD. ► Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. ► This effect is associated with increased inflammation.

  10. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  11. House dust mite allergen causes certain features of steroid resistant asthma in high fat fed obese mice.

    Science.gov (United States)

    Singh, Vijay Pal; Mabalirajan, Ulaganathan; Pratap, Kunal; Bahal, Devika; Maheswari, Deepanshu; Gheware, Atish; Bajaj, Aabha; Panda, Lipsa; Jaiswal, Ashish; Ram, Arjun; Agrawal, Anurag

    2018-02-01

    Obesity is a high risk factor for diseases such as cardiovascular, metabolic syndrome and asthma. Obese-asthma is another emerging phenotype in asthma which is typically refractive to steroid treatment due to its non-classical features such as non-eosinophilic cellular inflammation. The overall increased morbidity, mortality and economical burden in asthma is mainly due to steroid resistant asthma. In the present study, we used high fat diet induced obese mice which when sensitized with house dust mite (HDM) showed steroid resistant features. While the steroid, dexamethasone (DEX), treatment to high fat fed naïve mice could not reduce the airway hyperresponsiveness (AHR) induced by high fat, DEX treatment to high fat fed allergic mice could not reduce the HDM allergen induced airway remodeling features though it reduced airway inflammation. Further, these HDM induced high fat fed mice with or without DEX treatment had shown the increased activity and expression of arginase as well as the inducible nitric oxide synthase (iNOS) expression. However, DEX treatment had reduced the expressions of high iNOS and arginase I in control chow diet fed mice. Thus, we speculate that the steroid resistance seen in human obese asthmatics could be stemming from altered NO metabolism and its induced airway remodeling and with further investigations, it would encourage new treatments specific to obese-asthma phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring.

    Science.gov (United States)

    Keleher, Madeline Rose; Zaidi, Rabab; Shah, Shyam; Oakley, M Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.

  13. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    Science.gov (United States)

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  14. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman

    2014-01-01

    Full Text Available Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20% with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders.

  15. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish.

    Science.gov (United States)

    Vargas, Rafael; Vásquez, Isabel Cristina

    2017-12-01

    Obesity is a complex global health problem because it is a risk factor for multiple chronic pathologies such as cardiovascular, endocrine, metabolic, and neoplastic diseases. It is considered a multicausal disease, and one of the determining factors is nutritional imbalances, which include high-fat diets. In this paper, we use the zebrafish model to assess the impact of overfeeding and a high-fat diet in somatic and cardiac parameters in young and adult zebrafish. The results show that fish receiving a high-fat diet showed greater weight gain compared to fish receiving a standard fat diet. Additionally, changes in the heart, including increases in size, a change in the triangular shape of the ventricle to a globular shape, and an increase in the thickness of the trabeculae of the spongy myocardium were observed. These changes could be indicators of cardiovascular overload. The results show that there is a direct relationship between the intake of a high-fat diet and obesity, which in turn can induce cardiac changes, supporting the hypothesis of the relationship between high-fat diets and cardiovascular risk factors. Given the genetic similarity between zebrafish and humans, these results could be extrapolated to human beings, and the findings similarly highlight the importance of incorporating a balanced diet from the early life stages to reduce the risk of cardiovascular disease.

  16. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  17. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    Directory of Open Access Journals (Sweden)

    Kanokwan Jarukamjorn

    2016-01-01

    Full Text Available Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD, associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  18. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet.

    Science.gov (United States)

    Webster, Christopher C; Noakes, Timothy D; Chacko, Shaji K; Swart, Jeroen; Kohn, Tertius A; Smith, James A H

    2016-08-01

    Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis). We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet. We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet. The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet. The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well-trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6-(2) H2 ]-glucose and the ingestion of (2) H2 O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg(-1)  min(-1) , Mixed, 7.8 ± 1.1 mg kg(-1)  min(-1) , P < 0.01; Exercise GLY

  19. The link between high-fat meals and postprandial activation of blood coagulation factor VII possibly involves kallikrein

    DEFF Research Database (Denmark)

    Larsen, L F; Marckmann, P; Bladbjerg, Else-Marie

    2000-01-01

    Contrary to low-fat meals, high-fat meals are known to cause postprandial factor VII (FVII) activation, but the mechanism is unknown. To study the postprandial FVII activation in detail, 18 young men consumed in randomized order high-fat or low-fat test meals. Fasting and non-fasting blood samples...... that triglyceride-rich lipoproteins may activate prokallikrein. Neither plasma triglycerides nor kallikrein and activated FVII were statistically associated. This may suggest that additional factors are involved in the postprandial FVII activation. No clear evidence for a role of tissue factor expression...... by monocytes, factor XII or insulin in postprandial FVII activation was observed. Tissue factor pathway inhibitor and prothrombin fragment 1+2, a marker of thrombin generation, were not affected postprandially after either the high-fat or the low-fat meals. Our findings indicate that triglyceride...

  20. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    Science.gov (United States)

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  3. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  4. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  5. Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men.

    Science.gov (United States)

    Howe, Harold R; Heidal, Kimberly; Choi, Myung Dong; Kraus, Ray M; Boyle, Kristen; Hickner, Robert C

    2011-07-01

    The purpose of this study was to determine if a high-fat diet would result in a higher lipolytic rate in subcutaneous adipose tissue than a lower-fat diet in sedentary nonlean men. Six participants (healthy males; 18-40 years old; body mass index, 25-37 kg/m(2)) underwent 2 weeks on a high-fat or well-balanced diet of similar energy content (approximately 6695 kJ) in randomized order with a 10-day washout period between diets. Subcutaneous abdominal adipose tissue lipolysis was determined over the course of a day using microdialysis after both 2-week diet sessions. Average interstitial glycerol concentrations (index of lipolysis) as determined using microdialysis were higher after the high-fat diet (210.8 ± 27.9 μmol/L) than after a well-balanced diet (175.6 ± 23.3 μmol/L; P = .026). There was no difference in adipose tissue microvascular blood flow as determined using the microdialysis ethanol technique. These results demonstrate that healthy nonlean men who diet on the high-fat plan have a higher lipolytic rate in subcutaneous abdominal adipose tissue than when they diet on a well-balanced diet plan. This higher rate of lipolysis may result in a higher rate of fat mass loss on the high-fat diet; however, it remains to be determined if this higher lipolytic rate in men on the high-fat diet results in a more rapid net loss of triglyceride from the abdominal adipose depots, or if the higher lipolytic rate is counteracted by an increased rate of lipid storage. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  7. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    Science.gov (United States)

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  8. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  9. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  10. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  11. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  12. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  13. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  14. n-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice

    Directory of Open Access Journals (Sweden)

    Awada Manar

    2013-02-01

    Full Text Available Abstract Background Dietary intake of n-3 polyunsaturated fatty acids (PUFA is primarily recognized to protect against cardiovascular diseases, cognitive dysfunctions and the onset of obesity and associated metabolic disorders. However, some of their properties such as bioavailability can depend on their chemical carriers. The objective of our study was to test the hypothesis that the nature of n-3 PUFA carrier results in different metabolic effects related to adiposity, oxidative stress and inflammation. Methods 4 groups of C57BL/6 mice were fed for 8 weeks low fat (LF diet or high-fat (HF, 20% diets. Two groups of high-fat diets were supplemented with long-chain n-3 PUFA either incorporated in the form of phospholipids (HF-ω3PL or triacylglycerols (HF-ω3TG. Results Both HF-ω3PL and HF-ω3TG diets reduced the plasma concentrations of (i inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1 and interleukin 6 (IL-6, (ii leptin and (iii 4-hydroxy-2-nonenal (4-HNE, a marker of n-6 PUFA-derived oxidative stress compared with the control HF diet. Moreover, in both HF-ω3PL and HF-ω3TG groups, MCP-1 and IL-6 gene expressions were decreased in epididymal adipose tissue and the mRNA level of gastrointestinal glutathione peroxidase GPx2, an antioxidant enzyme, was decreased in the jejunum compared with the control HF diet. The type of n-3 PUFA carrier affected other outcomes. The phospholipid form of n-3 PUFA increased the level of tocopherols in epididymal adipose tissue compared with HF-ω3TG and resulted in smaller adipocytes than the two others HF groups. Adipocytes in the HF-ω3PL and LF groups were similar in size distribution. Conclusion Supplementation of mice diet with long-chain n-3 PUFA during long-term consumption of high-fat diets had the same lowering effects on inflammation regardless of triacyglycerol or phospholipid carrier, whereas the location of these fatty acids on a PL carrier had a major effect on decreasing

  15. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding

    DEFF Research Database (Denmark)

    Jacobsen, Stine C; Gillberg, Linn; Bork-Jensen, Jette

    2014-01-01

    The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW...... individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after...... a control and a 5 day high-fat overfeeding diet....

  16. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF

    OpenAIRE

    Moy, Gregory A.; McNay, Ewan C.

    2012-01-01

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer’s disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration...

  17. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    Science.gov (United States)

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  18. Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet.

    Science.gov (United States)

    Alheiros-Lira, Maria Cláudia; Jurema-Santos, Gabriela Carvalho; da-Silva, Helyson Tomaz; da-Silva, Amanda Cabral; Moreno Senna, Sueli; Ferreira E Silva, Wylla Tatiana; Ferraz, José Candido; Leandro, Carol Góis

    2017-03-01

    This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.

  19. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  20. High Caloric Diet for ALS Patients: High Fat, High Carbohydrate or High Protein

    Directory of Open Access Journals (Sweden)

    Sarvin Sanaie

    2015-01-01

    . They showed that patients in the highcarbohydrate/high-calorie groups gained 0.39 kg more weight per month, compared with 0.11kg per month in the control group, and there was an average weight loss of 0.46 kg per month in the high-fat/high-calorie group. However, there are some concerns that highcarbohydrate low-fat diets might increase the risk of ALS and these findings should be interpreted with caution (4. Furthermore, according to Wills et al. high fat-high caloric diets could not be ideal regimens for these patients due to the associated gastrointestinal complications (3. Dorst and associates, in their study, showed that high caloric food supplement with high fat is suitable to establish body weight compared to high carbohydrate formula. Hence, it seems that high protein-high caloric diets could be more appropriate options for both improving negative nitrogen balance and decreasing muscle atrophy in patients with ALS based on the pathophysiology of proteinenergy malnutrition and hypermetabolism which is thought to be due to mitochondria problem. The multifactorial pathophysiology of ALS has resulted in hypotheses that there may be subgroups of patients, eventually defined by a specific underlying etiology or clinical presentation, which selectively respond to a particular regimen. Consequently, further RCTs with larger sample size are required to clarify the best regimen for weight gain and improved survival in ALS patients and it seems that personalized nutritional support or combined regimens might be the best way and could improve the quality of life considering the complex pathophysiology of malnutrition.

  1. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    Science.gov (United States)

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  2. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2009-10-01

    Full Text Available Abstract Background Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. Aim To investigate the development of obesity in response to a high fat diet (HFD and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. Method White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr, 30 rats fed a high-fat diet (HFD for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD, the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments for 4 weeks. Body weight, lipid profile & renal function (urea, uric acid creatinine ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB the oxidative stress marker reduced glutathione (GSH, and Malondialdehyde (MDA catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Results Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG, total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile. Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia

  3. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  4. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  5. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  6. Effects of Kudingcha Nanoparticles in Hyperlipidaemic Rats Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Hongliang Zhang

    2018-03-01

    Full Text Available Background/Aims: The herbal medicine Kudingcha has a bitter taste and low bioavailability for lipid reduction. To improve the bioavailability and ameliorate the compliance, we prepared Kudingcha nanoparticles and investigated their effect in hyperlipidaemic rats. In addition, the safety and lipid-lowering mechanism of the Kudingcha nanoparticles were examined. Methods: Kudingcha nanoparticles were prepared by ionotropic gelation and spray-drying. Seventy rats were randomly assigned into eight groups: a normal fat diet group (NF, a high-fat group (HF, a spontaneous recovery group (SR, a Kudingcha group (KDC, a blank nanoparticle group (B-N, and a Kudingcha nanoparticle groups (low, medium and high doses. All groups (except for the normal fat diet group were fed a high-fat diet to establish hyperlipidaemia. Different interventions were administered to the treatment groups for four weeks. Serum lipids were measured using commercially available kits according to the recommended protocols. Liver morphology and histopathology were examined by a light microscope. The mRNA and protein levels of TLR4 and NF-κB were determined by RT-PCR and Western blotting, respectively. In addition, acute toxicity was evaluated by the LD50 test. Results: The Kudingcha nanoparticles were spherical and had a smooth surface. The size distribution of the nanoparticles was 100-600 nm. Acute toxicity results revealed that the Kudingcha nanoparticles were a non-toxic substance. Compared with regular Kudingcha, TG and TC decreased distinctly in the Kudingcha nanoparticles, especially for the moderate and high dose groups (p<0.05. Moreover, the Kudingcha nanoparticles were superior in lowering body, liver and adipose tissue weights compared to Kudingcha (p<0.05. With respect to antioxidant properties, the nanoparticles also revealed an outstanding impact on serum SOD and MDA. In addition, liver morphology and histology in the moderate and high dose nanoparticle groups were

  7. Aggravating andmitigating factors associated with cyclist injury severity in Denmark

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Vavatsoulas,, Konstantinos; Prato, Carlo Giacomo

    2014-01-01

    severity on Danish roads by examining a comprehensive set of accidents involving a cyclist and a collision partner between 2007 and 2011. Method: This study estimates a generalized ordered logit model of the severity of cyclist injuries because of its ability to accommodate the ordered-response nature...... of severity while relaxing the proportional odds assumption. Results: Model estimates show that cyclist fragility (children under 10 years old and elderly cyclists over 60 years of age) and cyclist intoxication are aggravating individual factors,while helmet use is a mitigating factor. Speed limits above 70...

  8. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  9. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  10. High Fat Diet-Induced Changes in Mouse Muscle Mitochondrial Phospholipids Do Not Impair Mitochondrial Respiration Despite Insulin Resistance

    Science.gov (United States)

    Hulshof, Martijn F. M.; van den Berg, Sjoerd A. A.; Schaart, Gert; van Dijk, Ko Willems; Smit, Egbert; Mariman, Edwin C. M.

    2011-01-01

    Background Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. Methodology C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. Principal Findings At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. Conclusions/Interpretation Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  11. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  12. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  13. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  14. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet

    Directory of Open Access Journals (Sweden)

    Daofeng Qu

    Full Text Available ABSTRACT The objective of this study was to analyze the antioxidant activities of chitooligosaccharides (COS both in vitro and in high-fat diet (HFD-mouse model. In antioxidant assays in HFD-mouse model, mice were administered with normal diet, HFD, or HFD with 0.5% COS for six weeks. The administration of HFD with 0.5% COS resulted in significant increase in the activity of superoxide dismutase, catalase, and glutathione peroxidase in stomach, liver, and serum of mice as compared with the HFD-fed group, which means that COS may have certain antioxidant activity and can restore the activity of the enzymes affected by the HFD. Through morphological measurements of the small intestinal mucosa, mice fed HFD showed decreased villus height compared with other groups. On the other hand, HFD with 0.5% COS group showed similar ratio of villus height to depth compared with control mice, indicating that intestinal integrity was improved when COS was added. Chitooligosaccharides have potent antioxidant activity that can protect mice from oxidative stress.

  15. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    Science.gov (United States)

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p competence in HFD rats.

  16. Edible Bird’s Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-01-01

    Full Text Available Edible bird’s nest (EBN is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD- induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.

  17. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    Science.gov (United States)

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  20. Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate

    Directory of Open Access Journals (Sweden)

    Kulbhushan Tikoo

    2017-01-01

    Full Text Available Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2 and phosphorylation of nuclear factor-kappa B (NF-kB was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.

  1. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Science.gov (United States)

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  2. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  3. Antagonistic Effect of Atorvastatin on High Fat Diet Induced Survival during Acute Chagas Disease

    Science.gov (United States)

    Zhao, Dazhi; Lizardo, Kezia; Cui, Min Hui; Ambadipudi, Kamalakar; Lora, Jose; Jelicks, Linda A; Nagajyothi, Jyothi F

    2016-01-01

    Chagasic cardiomyopathy, which is seen in Chagas Disease, is the most severe and life-threatening manifestation of infection by the kinetoplastid Trypanosoma cruzi. Adipose tissue and diet play a major role in maintaining lipid homeostasis and regulating cardiac pathogenesis during the development of Chagas cardiomyopathy. We have previously reported that T. cruzi has a high affinity for lipoproteins and that the invasion rate of this parasite increases in the presence of cholesterol, suggesting that drugs that inhibit cholesterol synthesis, such as statins, could affect infection and the development of Chagasic cardiomyopathy. The dual epidemic of diabetes and obesity in Latin America, the endemic regions for Chagas Disease, has led to many patients in the endemic region of infection having hyperlipidemia that is being treated with statins such as atorvastatin. The current study was performed to examine using mice fed on either regular or high fat diet the effect of atorvastatin on T. cruzi infection-induced myocarditis and to evaluate the effect of this treatment during infection on adipose tissue physiology and cardiac pathology. Atorvastatin was found to regulate lipolysis and cardiac lipidopathy during acute T. cruzi infection in mice and to enhance tissue parasite load, cardiac LDL levels, inflammation, and mortality in during acute infection. Overall, these data suggest that statins, such as atorvastatin, have deleterious effects during acute Chagas disease. PMID:27416748

  4. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  5. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  6. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner.

    Science.gov (United States)

    Perello, Mario; Sakata, Ichiro; Birnbaum, Shari; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Woloszyn, Jakub; Yanagisawa, Masashi; Lutter, Michael; Zigman, Jeffrey M

    2010-05-01

    Ghrelin is a potent orexigenic hormone that likely impacts eating via several mechanisms. Here, we hypothesized that ghrelin can regulate extra homeostatic, hedonic aspects of eating behavior. In the current study, we assessed the effects of different pharmacological, physiological, and genetic models of increased ghrelin and/or ghrelin-signaling blockade on two classic behavioral tests of reward behavior: conditioned place preference (CPP) and operant conditioning. Using both CPP and operant conditioning, we found that ghrelin enhanced the rewarding value of high-fat diet (HFD) when administered to ad lib-fed mice. Conversely, wild-type mice treated with ghrelin receptor antagonist and ghrelin receptor-null mice both failed to show CPP to HFD normally observed under calorie restriction. Interestingly, neither pharmacologic nor genetic blockade of ghrelin signaling inhibited the body weight homeostasis-related, compensatory hyperphagia associated with chronic calorie restriction. Also, ghrelin's effects on HFD reward were blocked in orexin-deficient mice and wild-type mice treated with an orexin 1 receptor antagonist. Our results demonstrate an obligatory role for ghrelin in certain rewarding aspects of eating that is separate from eating associated with body weight homeostasis and that requires the presence of intact orexin signaling. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet

    Science.gov (United States)

    Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia

    2017-01-01

    Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809

  8. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Changes in the Diaphragm Lipid Content after Administration of Streptozotocin and High-Fat Diet Regime

    Directory of Open Access Journals (Sweden)

    Bartlomiej Lukaszuk

    2017-01-01

    Full Text Available The diaphragm is a dome-shaped skeletal muscle indispensable for breathing. Its activity contributes up to 70% of the total ventilatory function at rest. In comparison to other skeletal muscles, it is distinguished by an oxidative phenotype and uninterrupted cyclic contraction pattern. Surprisingly, the research regarding diaphragm diabetic phenotype particularly in the light of lipid-induced insulin resistance is virtually nonexistent. Male Wistar rats were randomly allocated into 3 groups: control, streptozotocin-induced (STZ type-1 diabetes, and rodents fed with high-fat diet (HFD. Additionally, half of the animals from each group were administered with myriocin, a robust, selective inhibitor of ceramide synthesis and, therefore, a potent agent ameliorating insulin resistance. Diaphragm lipid contents were evaluated using chromatography. Fatty acid transporter expression was determined by Western blot. The STZ and HFD rats had increased concentration of lipids, namely, ceramides (CER and diacylglycerols (DAG. Interestingly, this coincided with an increased concentration of long-chain (C ≥ 16 saturated fatty acid species present in both the aforementioned lipid fractions. The CER/DAG accumulation was accompanied by an elevated fatty acid transporter expression (FATP-1 in HFD and FATP-4 in STZ. Surprisingly, we observed a significantly decreased triacylglycerol content in the diaphragms of STZ-treated rats.

  10. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  11. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Shu-Fang Xia

    2016-12-01

    Full Text Available Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD. C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS levels, and increased antioxidative enzyme activities, including catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1 and NAD(PH quinone dehydrogenase 1 (NQO1, reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.

  12. Hypothalamic PGC-1α Protects Against High-Fat Diet Exposure by Regulating ERα

    Directory of Open Access Journals (Sweden)

    Eugenia Morselli

    2014-10-01

    Full Text Available High-fat diets (HFDs lead to obesity and inflammation in the central nervous system (CNS. Estrogens and estrogen receptor α (ERα protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.

  13. Reversal of dopamine system dysfunction in response to high-fat diet.

    Science.gov (United States)

    Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M

    2013-12-01

    To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.

  14. Hypothalamic PGC-1α protects against high-fat diet exposure by regulating ERα.

    Science.gov (United States)

    Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P; Li, Dan L; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F; Tschöp, Matthias H; Clegg, Deborah J

    2014-10-23

    High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor α (ERα) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA) and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.

  15. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    Science.gov (United States)

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  17. High-fat diet prevents adaptive peripartum-associated adrenal gland plasticity and anxiolysis.

    Science.gov (United States)

    Perani, Clara V; Neumann, Inga D; Reber, Stefan O; Slattery, David A

    2015-10-07

    Maternal obesity is associated with lower basal plasma cortisol levels and increased risk of postpartum psychiatric disorders. Given that both obesity and the peripartum period are characterized by an imbalance between adrenocorticotropic hormone (ACTH) and cortisol, we hypothesized that the adrenal glands undergo peripartum-associated plasticity and that such changes would be prevented by a high-fat diet (HFD). Here, we demonstrate substantial peripartum adrenal gland plasticity in the pathways involved in cholesterol supply for steroidogenesis in female rats. In detail, the receptors involved in plasma lipid uptake, low density lipoprotein (LDL) receptor (LDLR) and scavenger receptor class B type 1 (SRB1), are elevated, intra-adrenal cholesterol stores are depleted, and a key enzyme in de novo cholesterol synthesis, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is downregulated; particularly at mid-lactation. HFD prevented the lactation-associated anxiolysis, basal hypercorticism, and exaggerated the corticosterone response to ACTH. Moreover, we show that HFD prevented the downregulation of adrenal cholesterol stores and HMGCR expression, and LDLR upregulation at mid-lactation. These findings show that the adrenal gland is an important regulator of peripartum-associated HPA axis plasticity and that HFD has maladaptive consequences for the mother, partly by preventing these neuroendocrine and also behavioural changes.

  18. Ghrelin enhances cue-induced bar pressing for high fat food.

    Science.gov (United States)

    St-Onge, Veronique; Watts, Alexander; Abizaid, Alfonso

    2016-02-01

    Ghrelin is an orexigenic hormone produced by the stomach that acts on growth hormone secretagogue receptors (GHSRs) both peripherally and centrally. The presence of GHSRs in the ventral tegmental area (VTA) suggests that ghrelin signaling at this level may increase the incentive value of palatable foods as well as other natural and artificial rewards. The present investigation sought to determine if ghrelin plays a role in relapse to such foods following a period of abstinence. To achieve this, thirty-six male Long Evans rats were trained to press a lever to obtain a high fat chocolate food reward on a fixed ratio schedule of 1. Following an extinction period during which lever presses were not reinforced, rats were implanted with a cannula connected to a minipump that continuously delivered ghrelin, a GHSR antagonist ([d-Lys-3]-GHRP-6), or saline in the VTA for 14days. One week later, food reward-associated cues, food reward priming, and an overnight fast were used to induce reinstatement of the lever pressing response. Our results indicate that intra-VTA ghrelin enhances cue-induced reinstatement of responses for palatable food pellets. To the extent that the reinstatement paradigm is considered a valid model of relapse in humans, this suggests that ghrelin signaling facilitates relapse to preferred foods in response to food cues through GHSR signaling in the VTA. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jing-Na Deng

    2015-01-01

    Full Text Available This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2, which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c, fatty acid synthesis (FAS, and acetyl-CoA carboxylase (ACC proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.

  20. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chien

    2016-07-01

    Full Text Available The aim of this study was to investigate and compare the effects of three herbal mixture extracts on obesity induced by high-fat diet (HFD in rats. The prescriptions—Pericarpium citri reticulatae and Fructus crataegi—were used as matrix components and mixed with Ampelopsis grossedentata, Salvia miltiorrhiza, and epigallocatechin-3-gallate (EGCG to form T1, T2, and T3 complexes, respectively. Results revealed that HFD feeding significantly increased body weight gain, fat deposition, plasma lipid profiles, hepatic lipid accumulation, and hepatic vacuoles formation, but decreased plasma levels of adiponectin in rats. Only the T1 complex showed the tendency, although not significantly so, for decreased HFD-induced body weight gain. T1 and T3 complexes significantly reduced HFD-induced fat deposition, and plasma levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Only the T1 complex significantly increased HFD-reduced adiponectin levels in plasma, but decreased HFD-increased triglyceride content in liver tissues. All complexes effectively inhibited HFD-induced vacuoles formation. The content of dihydromyricetin, salvianolic acid B, and EGCG in T1, T2, and T3 complexes was 18.25 ± 0.07%, 22.20 ± 0.10%, and 18.86 ± 0.04%, respectively. In summary, we demonstrated that herbal mixture extracts, especially T1 complex, exhibit antiobesity activity in HFD-fed rats.

  1. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  2. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2016-01-01

    Full Text Available Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF in a high fat diet- (HFD- induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.. Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC, triglyceride (TG, and low-density lipoprotein (LDL, accompanied by an increase in serum high-density lipoprotein (HDL. Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia.

  3. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.

    Directory of Open Access Journals (Sweden)

    Sarah J Glastras

    Full Text Available Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease.Female C57BL/6 mice were fed high-fat diet (HFD for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p. or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32.HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity.Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.

  4. High-fat diets and seizure control in myoclonic-astatic epilepsy: a single center's experience.

    Science.gov (United States)

    Simard-Tremblay, Elisabeth; Berry, Patricia; Owens, Aaron; Cook, William Byron; Sittner, Haley R; Mazzanti, Marta; Huber, Jennifer; Warner, Molly; Shurtleff, Hillary; Saneto, Russell P

    2015-02-01

    To determine the efficacy of the Modified Atkins Diet (MAD) and Ketogenic Diet (KD) in seizure control within a population of myoclonic-astatic epilepsy (MAE) patients. This was a retrospective, single center study evaluating the seizure control by high fat diets. Seizure diaries kept by the parents performed seizure counts. All patients met the clinical criteria for MAE. Nine patients met the clinical criteria. We found that both the MAD and KD were efficacious in complete seizure control and allowed other medications to be stopped in seven patients. Two patients had greater than 90% seizure control without medications, one on the KD and the other on the MAD. Seizure freedom has ranged from 13 to 36 months, and during this time four patients have been fully weaned off of diet management. One patient was found to have a mutation in SLC2A1. Our results suggest that strictly defined MAE patients respond to the MAD with prolonged seizure control. Some patients may require the KD for seizure freedom, suggesting a common pathway of increased requirement for fats. Once controlled, those fully responsive to the Diet(s) could be weaned off traditional seizure medications and in many, subsequently off the MAD or KD. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  5. PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding.

    Science.gov (United States)

    Long, Lihong; Toda, Chitoku; Jeong, Jing Kwon; Horvath, Tamas L; Diano, Sabrina

    2014-09-01

    Activation of central PPARγ promotes food intake and body weight gain; however, the identity of the neurons that express PPARγ and mediate the effect of this nuclear receptor on energy homeostasis is unknown. Here, we determined that selective ablation of PPARγ in murine proopiomelanocortin (POMC) neurons decreases peroxisome density, elevates reactive oxygen species, and induces leptin sensitivity in these neurons. Furthermore, ablation of PPARγ in POMC neurons preserved the interaction between mitochondria and the endoplasmic reticulum, which is dysregulated by HFD. Compared with control animals, mice lacking PPARγ in POMC neurons had increased energy expenditure and locomotor activity; reduced body weight, fat mass, and food intake; and improved glucose metabolism when exposed to high-fat diet (HFD). Finally, peripheral administration of either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ ablation. Taken together, our data indicate that PPARγ mediates cellular, biological, and functional adaptations of POMC neurons to HFD, thereby regulating whole-body energy balance.

  6. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Santana-Farre, Ruyman; Vesterlund, Mattias

    2012-01-01

    in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice...

  7. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  8. Role of glycogen-lowering exercise in the change of fat oxidation in response to a high-fat diet.

    NARCIS (Netherlands)

    Schrauwen, P.; van Marken Lichtenbelt, W.D.; Saris, W.H.M.; Westerterp, K.R.

    1997-01-01

    Department of Human Biology, Maastricht University, The Netherlands. One of the candidate factors for determining the increase of fat oxidation after a switch from a reduced-fat diet to a high-fat diet is the size of the glycogen storage. Therefore, we studied the effect of low glycogen stores on

  9. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  10. Beneficial Effects of an Alternating High- Fat Dietary Regimen on Systemic Insulin Resistance, Hepatic and Renal Inflammation and Renal Function

    NARCIS (Netherlands)

    Yakala, G.K.; Heijden, R. van der; Molema, G.; Schipper, M.; Wielinga, P.Y.; Kleemann, R.; Kooistra, T.; Heeringa, P.

    2012-01-01

    Background: An Alternating high- cholesterol dietary regimen has proven to be beneficial when compared to daily high- cholesterol feeding. In the current study we explored whether the same strategy is applicable to a high- fat dietary regimen. Objective: To investigate whether an alternating high-

  11. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    Science.gov (United States)

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  12. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis

    NARCIS (Netherlands)

    Allick, G; Bisschop, PH; Ackermans, MT; Endert, E; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2004-01-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients

  13. Curcumin and salsalate suppresses colonic inflammation and procarcinogenic signaling in high-fat-fed, azoxymethane-treated mice

    Science.gov (United States)

    High-fat diets (HFDs) and excess adiposity increase proinflammatory cytokines in the colon, altering gene expression in a manner that promotes the development of colorectal cancer (CRC). Thus, compounds that reduce this biochemical inflammation are potential chemopreventive agents. Curcumin (CUR), a...

  14. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García Moreno, Pedro Jesús

    2018-01-01

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50–70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein...

  15. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  16. Application of an in vivo hepatic triacylglycerol production method in the setting of a high fat diet in mice

    Science.gov (United States)

    High fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Changes in TAG metabolism contribute to the development of hepatic steatosis including changes in production rate from de novo lipogenes...

  17. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia

    NARCIS (Netherlands)

    La Fleur, S. E.; van Rozen, A. J.; Luijendijk, M. C. M.; Groeneweg, F.; Adan, R. A. H.

    2010-01-01

    The mechanisms for how saturated fat and sugar-based beverages contribute to human obesity are poorly understood. This paper describes a series of experiments developed to examine the response of hypothalamic neuropeptides to diets rich in sugar and fat, using three different diets: a high-fat

  18. Concurrence of High Fat Diet and APOE Gene Induces Allele Specific Metabolic and Mental Stress Changes in an AD Model

    Directory of Open Access Journals (Sweden)

    Yifat Segev

    2016-09-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases, including Alzheimer’s disease (AD. However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental, and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat diet would synergize with a genetic factor to affect the metabolic and cognitive state in the ApoE4 mouse model of AD. Our data suggest that a high-fat diet induces diabetes mellitus-like metabolism in ApoE4 mice, as well as changes in BACE1 protein levels between the two ApoE strains. Furthermore, high-fat diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via high-fat nutrition.

  19. Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats

    NARCIS (Netherlands)

    Ciapaite, Jolita; van den Broek, Nicole M.; te Brinke, Heleen; Nicolay, Klaas; Jeneson, Jeroen A.; Houten, Sander M.; Prompers, Jeanine J.

    2011-01-01

    Imbalance in the supply and utilization of fatty acids (FA) is thought to contribute to intrahepatic lipid (IHL) accumulation in obesity. The aim of this study was to determine the time course of changes in the liver capacity to oxidize and store FA in response to high-fat diet (HFD). Adult male

  20. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice

    NARCIS (Netherlands)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang; Chen, Ning; Xia, Zhongkui; Li, Xiaoping; Fang, Zhiwei; Zhang, Dongya; Fjære, Even; Midtbø, Lisa Kolden; Derrien, Muriel; Hugenholtz, Floor; Tang, Longqing; Li, Junhua; Zhang, Jianfeng; Liu, Chuan; Hao, Qin; Vogel, Ulla Birgitte; Mortensen, Alicja; Kleerebezem, Michiel; Licht, Tine Rask; Yang, Huanming; Wang, Jian; Li, Yingrui; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2017-01-01

    BACKGROUND: It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those

  1. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  2. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats.

    Science.gov (United States)

    Gao, Ya; Wang, Changjiang; Pan, Tianrong; Luo, Li

    2014-02-01

    Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.

  3. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass...

  4. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men

    DEFF Research Database (Denmark)

    Brøns, Charlotte; Jensen, Christine B.; Storgaard, Heidi

    2009-01-01

    A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2...

  5. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  6. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions.

    Science.gov (United States)

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki; Kitamura, Hiromi; Minato, Kumiko

    2017-05-20

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differences in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The efficacy of the appetite suppressant, diethylpropion, is dependent on both when it is given (day vs. night) and under conditions of high fat dietary restriction.

    Science.gov (United States)

    Kalyanasundar, B; Solorio, Jessica; Perez, Claudia I; Hoyo-Vadillo, Carlos; Simon, Sidney A; Gutierrez, Ranier

    2016-05-01

    Obesity is a public health problem caused by excessive consumption of high caloric diets and/or lack of physical activity. Although treatments for obesity include low caloric diets and exercise programs, these activities frequently are supplemented with appetite suppressants. For the short-term treatment of weight loss, diethylpropion (DEP) is a commonly used appetite suppressant. However, little is known with regard to how to improve its weight loss efficacy. We therefore evaluated, in rats, two administration protocols where the animals received daily injections of DEP. First, when these nocturnal animals were normally active (at night) and when they were normally inactive (daytime), and second, with or without high fat dietary restriction (HFDR). We observed that DEP induced a greater weight-loss administered when the animals were in their active phase than in their inactive phase. Moreover, DEP's administration during the inactive phase (and to a lesser degree in the active phase) promotes the consumption of food during normal sleeping time. In addition, we found that DEP-induced weight loss under ad libitum access to a HF diet, but its efficacy significantly improved under conditions of HFDR. In summary, the efficacy of DEP, and presumably other like appetite suppressants, is enhanced by carefully controlling the time it is administered and under dietary restriction of HF diets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  9. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  10. Does simultaneous bilingualism aggravate children's specific language problems?

    Science.gov (United States)

    Korkman, Marit; Stenroos, Maria; Mickos, Annika; Westman, Martin; Ekholm, Pia; Byring, Roger

    2012-09-01

    There is little data on whether or not a bilingual upbringing may aggravate specific language problems in children. This study analysed whether there was an interaction of such problems and simultaneous bilingualism. Participants were 5- to 7-year-old children with specific language problems (LANG group, N = 56) or who were typically developing (CONTR group, N = 60). Seventy-three children were Swedish-Finnish bilingual and 43 were Swedish-speaking monolingual. Assessments (in Swedish) included tests of expressive language, comprehension, repetition and verbal memory. Per definition, the LANG group had lower scores than the CONTR group on all language tests. The bilingual group had lower scores than the monolingual group only on a test of body part naming. Importantly, the interaction of group (LANG or CONTR) and bilingualism was not significant on any of the language scores. Simultaneous bilingualism does not aggravate specific language problems but may result in a slower development of vocabulary both in children with and without specific language problems. Considering also advantages, a bilingual upbringing is an option also for children with specific language problems. In assessment, tests of vocabulary may be sensitive to bilingualism, instead tests assessing comprehension, syntax and nonword repetition may provide less biased methods. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.

  11. A Behaviorally Specific, Empirical Alternative to Bullying: Aggravated Peer Victimization.

    Science.gov (United States)

    Finkelhor, David; Shattuck, Anne; Turner, Heather; Hamby, Sherry

    2016-11-01

    To test a behaviorally specific measure of serious peer victimization, called aggravated peer victimization (APV), using empirically derived aggravating elements of episodes (injury, weapon, bias content, sexual content, multiple perpetrators, and multiple contexts) and compare this measure with the conventional Olweus bullying (OB) measure, which uses repetition and power imbalance as its seriousness criteria. The data for this study come from The National Survey of Children's Exposure to Violence 2014, a study conducted via telephone interviews with a nationally representative sample. This analysis uses the 1,949 youth ages 10-17 from that survey. The APV measure identified twice as many youth with serious episodes involving injury, weapons, sexual assaults, and bias content as the OB measure. In terms of demographic and social characteristics, the groups were very similar. However, the APV explained significantly more of the variation in distress than the OB (R 2  = .19 vs. .12). An empirical approach to identifying the most serious incidents of peer victimization has advantages in identifying more of the youth suffering the effects of peer victimization. Moreover, its behaviorally specific criteria also bypass the difficult challenge of trying to reliably assess what is truly bullying with its ambiguous definitional element of power imbalance. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  12. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Ken-Ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles have been proposed and are being clarified, their aggravating effects on pre-existing pathological conditions have not been fully investigated. In this review, we provide insights into the immunotoxicity of both airborne and engineered nanoparticles as an exacerbating factor on hypersusceptible subjects, especially those with immune-mediated pulmonary inflammation, using our in vivo experimental model. First, we exhibit the effects of nanoparticles on pulmonary inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS as a disease model in innate immunity, and demonstrate that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Second, we introduce the effects of nanoparticles on allergic pulmonary inflammation as a disease model in adaptive immunity, and show that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic inflammation, including adjuvant effects on Th2-milieu. Third, we show that very small nanoparticle exposure exacerbates emphysematous pulmonary inflammation, which is concomitant with enhanced lung expression of proinflammatory molecules (including those that are innate immunity related. Taken together, nanoparticle exposure may synergistically facilitate pathological pulmonary inflammation via both innate and adaptive immunological impairment.

  13. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    Science.gov (United States)

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.

  14. Effects of high-carbohydrate and high-fat dietary treatments on measures of heart rate variability and sympathovagal balance.

    Science.gov (United States)

    Millis, Richard M; Austin, Rachel E; Bond, Vernon; Faruque, Mezbah; Goring, Kim L; Hickey, Brian M; Blakely, Raymond; Demeersman, Ronald E

    2009-07-17

    We tested the hypothesis that respiratory quotient (RQ) determines sympathovagal balance associated with metabolism of stored and dietary energy substrates. Six 18-20 year-old African-American males were studied after two control pretreatments of fasting and post-treatments of metabolizing high-fat and high-carbohydrate beverages. RQ, heart rate (HR), energy expenditure (EE) and blood pressure (BP) were recorded at rest and repeated 1 h-3 h after ingesting isocaloric high-carbohydrate and high-fat beverages. Sympathovagal modulation of HR was quantified by the low frequency/high frequency (LF/HF) ratio from fast Fourier transform (spectral) analysis of the electrocardiogram RR intervals during paced breathing at 0.2 Hz. Significance of differences of peak post-treatment values from controls was evaluated by analysis of covariance and of correlations by linear regression at Pcarbohydrate and high-fat treatments increased RQ, EE, HR and LF/HF with significant interactions between covariates. LF/HF values were not significant after eliminating covariance of RQ, EE and HR for the control vs. high-fat and for the high-fat vs. high-carbohydrate and after eliminating covariance of EE and HR for the control vs. high-carbohydrate treatments. Across the RQ values, correlations were significant for EE and LF/HF. These findings imply that high RQ and sympathetic modulation produced by metabolizing carbohydrate is associated with high resting energy expenditure. We conclude that respiratory quotient may be an important determinant of the LF/HF ratio in the heart rate variability spectrum, likely, by a respiratory chemosensory mechanism.

  15. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quin