WorldWideScience

Sample records for consumer-informed recharge profiles

  1. Consumer Information. NASFAA Task Force Report. Consumer Information

    Science.gov (United States)

    National Association of Student Financial Aid Administrators, 2014

    2014-01-01

    The National Association of Student Financial Aid and Administrators (NASFAA) Consumer Information Task Force was convened to conduct a thorough review of the current student consumer information requirements and propose ways to streamline both the content and delivery of those requirements. The proposals in the this report were produced for…

  2. 7 CFR 1230.5 - Consumer information.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Consumer information. 1230.5 Section 1230.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... nutritional attributes of pork and pork products, including the role of pork and pork products in a...

  3. Estimation of rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger using the chloride profile method.

    NARCIS (Netherlands)

    Bromley, J.; Edmunds, W.M.; Fellman, E.; Brouwer, J.; Gaze, S.R.; Sudlow, J.; Taupin, J.D.

    1997-01-01

    An estimate of direct groundwater recharge below a region of natural woodland (tiger bush) has been made in south-west Niger using the solute profile technique. Data has been collected from a 77 m deep well dug within the study area covered by HAPEX-Sahel (Hydrological and Atmospheric Pilot Experime

  4. 7 CFR 1230.60 - Promotion, research, and consumer information.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Promotion, research, and consumer information. 1230... PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Pork Promotion, Research, and Consumer Information Order Promotion, Research, and Consumer Information § 1230.60 Promotion, research, and...

  5. 12 CFR 41.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 41.83 Disposal of consumer information. (a) Definitions as used in this section. (1) Bank means national banks... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposal of consumer information. 41.83...

  6. 12 CFR 334.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... GENERAL POLICY FAIR CREDIT REPORTING Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 334.83 Disposal of consumer information. (a) In general. You must properly... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Disposal of consumer information....

  7. 12 CFR 222.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... RESERVE SYSTEM FAIR CREDIT REPORTING (REGULATION V) Duties of Users of Consumer Reports Regarding Identity Theft § 222.83 Disposal of consumer information. (a) Definitions as used in this section. (1) You means... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Disposal of consumer information....

  8. 12 CFR 571.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... REPORTING Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 571.83 Disposal of consumer information. (a) Scope. This section applies to savings associations whose deposits... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Disposal of consumer information....

  9. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Eshel, Gil, E-mail: eshelgil@gmail.com [Soil Erosion Research Station, Ministry of Agriculture and Rural Development, HaMaccabim Road, Rishon-Lezion. P.O.B. 30, Beit-Dagan, 50250 (Israel); Lin, Chunye [School of Environment, Beijing Normal University, 19 Xinjiekouwaidajie St., Beijing, 100875 (China); Banin, Amos [Department of Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot (Israel)

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4 m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. - Highlights: • Sc proved as a reliable tracer for reconstructing the initial soil elemental contents. • Mass-balance for 18 elements resulting from 19 years of SAT operation is presented. • After 19 years of operation Cr, Ni, and P inputs may not reach the groundwater. • The inputs of other 15 elements may reach the groundwater. • 58, 60, 30% of initial soil content of Mn, Ca, Co res. leached from the upper 2-m.

  10. 76 FR 79114 - Tire Fuel Efficiency Consumer Information Program

    Science.gov (United States)

    2011-12-21

    ... include any of the requirements for the consumer information and education portions of the TFECIP.\\4... two types of submissions would streamline the data management process. Finally, RMA cited Congress's... is often used to represent the finite element or mathematical model of a tire, rather than the name...

  11. Analysis of consumer information brochures on osteoporosis prevention and treatment

    Directory of Open Access Journals (Sweden)

    Mühlhauser, Ingrid

    2007-01-01

    Full Text Available Purpose: Evidence-based consumer information is a prerequisite for informed decision making. So far, there are no reports on the quality of consumer information brochures on osteoporosis. In the present study we analysed brochures on osteoporosis available in Germany. Method: All printed brochures from patient and consumer advocacy groups, physician and governmental organisations, health insurances, and pharmaceutical companies were initially collected in 2001, and updated in December 2004. Brochures were analysed by two independent researchers using 37 internationally proposed criteria addressing evidence-based content, risk communication, transparency of the development process, and layout and design. Results: A total of 165 brochures were identified; 59 were included as they specifically targeted osteoporosis prevention and treatment. Most brochures were provided by pharmaceutical companies (n=25, followed by health insurances (n=11 and patient and consumer advocacy groups (n=11. Quality of brochures did not differ between providers. Only 1 brochure presented lifetime risk estimate; 4 mentioned natural course of osteoporosis. A balanced report on benefit versus lack of benefit was presented in 2 brochures and on benefit versus adverse effects in 8 brochures. Four brochures mentioned relative risk reduction, 1 reported absolute risk reduction through hormone replacement therapy (HRT. Out of 28 brochures accessed in 2004 10 still recommended HRT without discussing adverse effects. Transparency of the development process was limited: 25 brochures reported publication date, 26 cited author and only 1 references. In contrast, readability and design was generally good. Conclusion: The quality of consumer brochures on osteoporosis in Germany is utterly inadequate. They fail to give evidence-based data on diagnosis and treatment options. Therefore, the material is not useful to enhance informed consumer choice.

  12. Analysis of consumer information brochures on osteoporosis prevention and treatment.

    Science.gov (United States)

    Meyer, Gabriele; Steckelberg, Anke; Mühlhauser, Ingrid

    2007-01-11

    Evidence-based consumer information is a prerequisite for informed decision making. So far, there are no reports on the quality of consumer information brochures on osteoporosis. In the present study we analysed brochures on osteoporosis available in Germany. All printed brochures from patient and consumer advocacy groups, physician and governmental organisations, health insurances, and pharmaceutical companies were initially collected in 2001, and updated in December 2004. Brochures were analysed by two independent researchers using 37 internationally proposed criteria addressing evidence-based content, risk communication, transparency of the development process, and layout and design. A total of 165 brochures were identified; 59 were included as they specifically targeted osteoporosis prevention and treatment. Most brochures were provided by pharmaceutical companies (n=25), followed by health insurances (n=11) and patient and consumer advocacy groups (n=11). Quality of brochures did not differ between providers. Only 1 brochure presented lifetime risk estimate; 4 mentioned natural course of osteoporosis. A balanced report on benefit versus lack of benefit was presented in 2 brochures and on benefit versus adverse effects in 8 brochures. Four brochures mentioned relative risk reduction, 1 reported absolute risk reduction through hormone replacement therapy (HRT). Out of 28 brochures accessed in 2004 10 still recommended HRT without discussing adverse effects. Transparency of the development process was limited: 25 brochures reported publication date, 26 cited author and only 1 references. In contrast, readability and design was generally good. The quality of consumer brochures on osteoporosis in Germany is utterly inadequate. They fail to give evidence-based data on diagnosis and treatment options. Therefore, the material is not useful to enhance informed consumer choice.

  13. 7 CFR 1220.230 - Promotion, research, consumer information, and industry information.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Promotion, research, consumer information, and...), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Expenses and Assessments § 1220.230 Promotion, research, consumer information, and...

  14. 75 FR 31730 - Popcorn Promotion, Research, and Consumer Information Order; Reapportionment

    Science.gov (United States)

    2010-06-04

    ... Agricultural Marketing Service 7 CFR Part 1215 Popcorn Promotion, Research, and Consumer Information Order... the Popcorn Promotion, Research and Consumer Information Order (Order) which is authorized by the Popcorn Promotion, Research and Consumer Information Act (Act), the number of members on the Board may...

  15. 78 FR 14909 - Pork Promotion, Research, and Consumer Information Program; Section 610 Review

    Science.gov (United States)

    2013-03-08

    ... Agricultural Marketing Service 7 CFR Part 1230 Pork Promotion, Research, and Consumer Information Program... Pork Promotion, Research, and Consumer Information Program (Program), commonly known as the Pork...). Based upon this review, AMS concluded that there is a continued need for the Pork Promotion,...

  16. 7 CFR 1260.169 - Promotion, research, consumer information and industry information.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Promotion, research, consumer information and...), DEPARTMENT OF AGRICULTURE BEEF PROMOTION AND RESEARCH Beef Promotion and Research Order Beef Promotion Operating Committee § 1260.169 Promotion, research, consumer information and industry information....

  17. 75 FR 67609 - Popcorn Promotion, Research, and Consumer Information Order; Reapportionment

    Science.gov (United States)

    2010-11-03

    ... Agricultural Marketing Service 7 CFR Part 1215 Popcorn Promotion, Research, and Consumer Information Order... Popcorn Promotion, Research and Consumer Information Order (Order) to reduce the Popcorn Board (Board..., fewer popcorn processors in the industry. In accordance with the Popcorn Promotion, Research...

  18. The level of consumer information about health insurance in Nanjing, China.

    Science.gov (United States)

    Xu, Weiwei; Van de Ven, Wynand P M M

    2014-01-01

    The Chinese government is considering a (regulated) competitive healthcare system. Sufficient consumer information is a crucial pre-condition to benefit from such a change. We conducted a survey on the level of consumer information regarding health insurance among the insured population in Nanjing, China in 2009. The results from descriptive analysis and binary logistic regression demonstrate that the current level of consumer information about health insurance is low. The level of consumer information is positively correlated with the subscribers' motivation to obtain the information and its availability. The level of searching for health insurance information is also low; moreover, even upon searching, the chance of finding relevant information is less than 25%. We conclude that the level of consumer information is currently insufficient in China. If the Chinese government is determined to adopt market mechanisms in the healthcare sector, it should take the lead in making valid and reliable information publicly available and easily accessible.

  19. Market structure and the role of consumer information in the physician services industry: an empirical test.

    Science.gov (United States)

    Wong, H S

    1996-04-01

    This paper applies Panzar and Rosse's (1987) econometric test of market structure to examine two long-debated issues: What is the market structure for physician services? Do more physicians in a market area raise the search cost of obtaining consumer information and increase prices (Satterthwaite, 1979, 1985)? For primary care and general and family practice physicians, the monopolistically competitive model prevailed over the competing hypotheses--monopoly, perfect competition, and monopolistic competition characterized by consumer informational confusion. Although less conclisive, there is some evidence to support the monopolistically competitive model for surgeons and the consumer informational confusion model for internal medicine physicians.

  20. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  1. 76 FR 43879 - Business Affiliate Marketing and Disposal of Consumer Information Rules

    Science.gov (United States)

    2011-07-22

    ... COMMISSION 17 CFR Part 162 RIN 3038-AD12 Business Affiliate Marketing and Disposal of Consumer Information... Definitions. Subpart A--Business Affiliate Marketing Rules 162.3 Affiliate marketing opt out and exceptions..., and includes any person registered as such thereunder. Subpart A--Business Affiliate Marketing...

  2. Deciding on PSA-screening - Quality of current consumer information on the Internet

    NARCIS (Netherlands)

    I.J. Korfage; R.C.N. van den Bergh; M.L. Essink-Bot

    2010-01-01

    Purpose of the study: Given that screening for prostate cancer has the potential to reduce prostate cancer mortality at the expense of considerable overdiagnosis and overtreatment, the availability of core consumer information - correct, balanced and supportive of autonomous decision-making - is a m

  3. The influence of older consumers' information search activities on their use of health care innovations.

    Science.gov (United States)

    Strutton, H D; Pelton, L E

    1992-01-01

    Research has yet to consider the relationship between the older consumers' information search and their use of health care innovations, despite suggestions that such a characterization may prove useful to marketing practitioners. In this investigation of a national sample of autonomous elderly consumers, distinct patterns of information search behavior are observed which distinguish adopters from nonusers of a pair of health care innovations. Implications for marketing health care innovations are discussed.

  4. Artificial recharge of groundwater

    Science.gov (United States)

    The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

  5. Deciding on PSA-screening - Quality of current consumer information on the Internet.

    Science.gov (United States)

    Korfage, Ida J; van den Bergh, Roderick C N; Essink-Bot, Marie-Louise

    2010-11-01

    Given that screening for prostate cancer has the potential to reduce prostate cancer mortality at the expense of considerable overdiagnosis and overtreatment, the availability of core consumer information - correct, balanced and supportive of autonomous decision-making - is a must. We assessed the quality of consumer information available through the Internet per November 2009 and its possible contribution to informed decision-making by potential screenees. Consumer information on PSA-screening was sought through the Internet in November 2009. Materials had to be targeted at potential consumers, offered by not-for-profit organisations, released in 2005 or after, in English or Dutch. Per material 2 of the authors assessed independently from each other whether standardised pre-defined topics were addressed, whether the content was correct and which approach was taken towards the decision-making process about uptake. Twenty-three materials were included, of which 11 were released (shortly) after the results of 2 large randomized-controlled trials (RCTs) that evaluated the effectiveness of screening for prostate cancer had been published in March 2009. That a PSA-test result can be abnormal because of non-cancerous conditions (false positive) and that it may miss prostate cancer (false negative) was not addressed in 2/23 and 8/23 materials, respectively. The risk of overdiagnosis and overtreatment was not mentioned in 6 out of 23. PSA-screening was presented as a usual thing to do in some materials, whereas other materials emphasised the voluntary nature of PSA-screening ('it is your decision'). The content of 19/23 materials was considered sufficiently informative according to the pre-defined criteria, 12/23 materials were considered supportive of informed decision-making by men. Most materials of not-for-profit organizations supplied adequate information about PSA-screening, whilst the degree of persuasion towards uptake reflected variations in opinions on men

  6. Quality and availability of consumer information on heart failure in Australia

    Directory of Open Access Journals (Sweden)

    Semple Susan J

    2008-12-01

    Full Text Available Abstract Background Provision of consumer information and patient education are considered an essential part of chronic disease management programmes developed for patients with heart failure. This study aimed to review the quality and availability of consumer information materials for people with heart failure in Australia. Methods The availability of consumer information was assessed through a questionnaire-based survey of the major organisations in Australia known, or thought, to be producing or using consumer materials on heart failure, including hospitals. The questionnaire was designed to explore issues around the use, production and dissemination of consumer materials. Only groups that had produced consumer information on heart failure were asked to complete the totality of the questionnaire. The quality of information booklets was assessed by using a standardised checklist. Results Of 101 organisations which were sent a questionnaire, 33 had produced 61 consumer resources on heart failure including 21 information booklets, 3 videos, 5 reminder fridge magnets, 7 websites, 15 self-management diaries and 10 self-management plans. Questionnaires were completed for 40 separate information resources. Most had been produced by hospitals or health services. Two information booklets had been translated into other languages. There were major gaps in the availability of these resources as more than half of the resources were developed in 2 of the 8 Australian states and territories, New South Wales and Victoria. Quality assessment of 19 information booklets showed that most had good presentation and language. Overall eight high quality booklets were identified. There were gaps in terms of topics covered, provision of references, quantitative information about treatment outcomes and quality and level of scientific evidence to support medical recommendations. In only one case was there evidence that consumers had been involved in the production of

  7. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  8. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  9. Rechargeable power supply

    NARCIS (Netherlands)

    Den Uijl, S.; Bouman, C.; Smit, W.

    2006-01-01

    The invention relates to a rechargeable power supply suitable to be used in a battery-operated device comprising at least one supercapacitor and at least a first and a second DC-DC converter connected in series, wherein the supercapacitor is connectable to an entry of the first DC-DC converter and t

  10. Soil moisture data as a constraint for groundwater recharge estimation

    Science.gov (United States)

    Mathias, Simon A.; Sorensen, James P. R.; Butler, Adrian P.

    2017-09-01

    Estimating groundwater recharge rates is important for water resource management studies. Modeling approaches to forecast groundwater recharge typically require observed historic data to assist calibration. It is generally not possible to observe groundwater recharge rates directly. Therefore, in the past, much effort has been invested to record soil moisture content (SMC) data, which can be used in a water balance calculation to estimate groundwater recharge. In this context, SMC data is measured at different depths and then typically integrated with respect to depth to obtain a single set of aggregated SMC values, which are used as an estimate of the total water stored within a given soil profile. This article seeks to investigate the value of such aggregated SMC data for conditioning groundwater recharge models in this respect. A simple modeling approach is adopted, which utilizes an emulation of Richards' equation in conjunction with a soil texture pedotransfer function. The only unknown parameters are soil texture. Monte Carlo simulation is performed for four different SMC monitoring sites. The model is used to estimate both aggregated SMC and groundwater recharge. The impact of conditioning the model to the aggregated SMC data is then explored in terms of its ability to reduce the uncertainty associated with recharge estimation. Whilst uncertainty in soil texture can lead to significant uncertainty in groundwater recharge estimation, it is found that aggregated SMC is virtually insensitive to soil texture.

  11. The health belief model and consumer information searches: toward an integrated model.

    Science.gov (United States)

    Risker, D C

    1996-01-01

    Some health data organizations (HDOs) are producing consumer-level health services information. National reform proposals would suggest that competition between health plans will be developed through the use of outcome information. Policy makers have paid little attention to how consumers might use that information or how that information might be most effectively packaged for consumer use. This paper argues that marketing literature developed over the last ten to fifteen years could prove to be an informative resource for policy makers and the health services provider community alike. This paper suggests that combining a consumer decision model (CDM) with the health belief model (HBM) will provide an important step toward an increased understanding of consumer information search behavior. This integrated model could form the basis of future research in this important area.

  12. Smooth handling: the lack of safety-related consumer information in car advertisements.

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2007-10-01

    To examine the content and trends of safety-related consumer information in magazine vehicle advertisements, as a case study within the worldwide marketing of vehicles. Content analysis of popular current affairs magazines in New Zealand for the 5-year period 2001-2005 was undertaken (n = 514 advertisements), supplemented with vehicle data from official websites. Safety information in advertisements for light passenger vehicles was relatively uncommon with only 27% mentioning one or more of nine key safety features examined (average: 1.7 out of nine features in this 27%). Also included were potentially hazardous features of: speed imagery (in 29% of advertisements), power references (14%), and acceleration data (4%). The speed and power aspects became relatively more common over the 5-year period (p advertisements and vehicle marketing - as already occurs with many other consumer products.

  13. Measuring consumers' information acquisition and decision behavior with the computer-based information-display-matrix

    DEFF Research Database (Denmark)

    Aschemann-Witzel, Jessica; Hamm, Ulrich

    2011-01-01

    The former judgement that the process-tracing method information-display-matrix (IDM) lacks external validity should be questioned in the light of technical advances and changing consumer behaviour. The new research environment offers possibilities for a close-to-realistic refinement and further...... development of the method: starting points are choice of location, increased relevance of choice, individual adjustment of task structure, simplified navigation and realistic layout. Used in multi-measurement-approaches, the IDM can provide detailed background information about consumer information behaviour...... prior to decisions reached in interviews or choice experiments. The contribution introduces to the method and its´ development, use and (dis-)advantages. Results of a survey illustrate the options for analysis and indicate that consumer behaviour in the IDM, compared to face-to-face-interviews, is less...

  14. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, Kelley E.; Flint, Alan L.; Flint, Lorraine E.; Gaye, Cheikh B.; Edmunds, W. Michael; Simmers, Ian

    2006-10-01

    Global synthesis of the findings from 140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374 000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to 720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977-1998) relative to periods dominated by La Niñas (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU

  15. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The

  16. Evolution of consumer information preferences with market maturity in solar PV adoption

    Science.gov (United States)

    Cale Reeves, D.; Rai, Varun; Margolis, Robert

    2017-07-01

    Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent markets across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. The analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.

  17. Quantifying Potential Groundwater Recharge In South Texas

    Science.gov (United States)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  18. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  19. Rechargeable Lithium Metal Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  20. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    Directory of Open Access Journals (Sweden)

    Y. Ganot

    2017-09-01

    Full Text Available We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015 of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area, groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1. This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1 or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016 fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  1. Quantifying Groundwater Recharge Uncertainty: A Multiple-Model Framework and Case Study

    Science.gov (United States)

    Kikuchi, C.; Ferré, T. P. A.

    2014-12-01

    In practice, it is difficult to estimate groundwater recharge accurately. Despite this challenge, most recharge investigations produce a single, best estimate of recharge. However, there is growing recognition that quantification of natural recharge uncertainty is critical for groundwater management. We present a multiple-model framework for estimating recharge uncertainty. In addition, we show how direct water flux measurements can be used to reduce the uncertainty of estimates of total basin recharge for an arid, closed hydrologic basin in the Atacama Desert, Chile. We first formulated multiple hydrogeologic conceptual models of the basin based on existing data, and implemented each conceptual model for the purpose of conducting numerical simulations. For each conceptual model, groundwater recharge was inversely estimated; then, Null-Space Monte Carlo techniques were used to quantify the uncertainty on the initial estimate of total basin recharge. Second, natural recharge components - including both deep percolation and streambed infiltration - were estimated from field data. Specifically, vertical temperature profiles were measured in monitoring wells and streambeds, and water fluxes were estimated from thermograph analysis. Third, calculated water fluxes were incorporated as prior information to the model calibration and Null-Space Monte Carlo procedures, yielding revised estimates of both total basin recharge and associated uncertainty. The fourth and final component of this study uses value of information analyses to identify potentially informative locations for additional water flux measurements. The uncertainty quantification framework presented here is broadly transferable; furthermore, this research provides an applied example of the extent to which water flux measurements may serve to reduce groundwater recharge uncertainty at the basin scale.

  2. Reusable Energy and Power Sources: Rechargeable Batteries

    Science.gov (United States)

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  3. Groundwater Diffuse Recharge and its Response to Climate Changes in Semi-Arid Northwestern China

    Directory of Open Access Journals (Sweden)

    Lin Deng

    2015-01-01

    Full Text Available Understanding the processes and rates of groundwater recharge in arid and semi-arid areas is crucial for utilizing and managing groundwater resources sustainably. We obtained three chloride profiles of the unsaturated-zone in the desert/loess transition zone of northwestern China and reconstructed the groundwater recharge variations over the last 11, 21, and 37 years, respectively, using the generalized chloride mass balance (GCMB method. The average recharge rates were 43.7, 43.5, and 45.1 mm yr-1, respectively, which are similar to those evaluated by the chloride mass balance (CMB or GCMB methods in other semi-arid regions. The results indicate that the annual recharge rates were not in complete linear proportion to the corresponding annual precipitations, although both exhibited descending tendencies on the whole. Comparisons between the daily precipitation aggregate at different intensity and recharge rates reveal that the occurrence of relatively heavy daily precipitation per year may contribute to such nonlinearity between annual precipitation and recharge. The possible influences of vegetation cover alterations following precipitation change cannot be excluded as well. The approximately negative correlation between the average annual recharge and temperature suggests that changes in temperature have had significant influences on recharge.

  4. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  5. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  6. Monitoring of recharge water quality under woodland

    Science.gov (United States)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  7. Rechargeable battery which combats shape change of the zinc anode

    Science.gov (United States)

    Cohn, E. M. (Inventor)

    1976-01-01

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes. The ion flow is greatest at the edges of the electrodes and least at the centers, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed in which the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile.

  8. Automating Recession Curve Displacement Recharge Estimation.

    Science.gov (United States)

    Smith, Brennan; Schwartz, Stuart

    2017-01-01

    Recharge estimation is an important and challenging element of groundwater management and resource sustainability. Many recharge estimation methods have been developed with varying data requirements, applicable to different spatial and temporal scales. The variability and inherent uncertainty in recharge estimation motivates the recommended use of multiple methods to estimate and bound regional recharge estimates. Despite the inherent limitations of using daily gauged streamflow, recession curve displacement methods provide a convenient first-order estimate as part of a multimethod hierarchical approach to estimate watershed-scale annual recharge. The implementation of recession curve displacement recharge estimation in the United States Geologic Survey (USGS) RORA program relies on the subjective, operator-specific selection of baseflow recession events to estimate a gauge-specific recession index. This paper presents a parametric algorithm that objectively automates this tedious, subjective process, parameterizing and automating the implementation of recession curve displacement. Results using the algorithm reproduce regional estimates of groundwater recharge from the USGS Appalachian Valley and Piedmont Regional Aquifer-System Analysis, with an average absolute error of less than 2%. The algorithm facilitates consistent, completely automated estimation of annual recharge that complements more rigorous data-intensive techniques for recharge estimation. © 2016, National Ground Water Association.

  9. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  11. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  12. Karst Aquifer Recharge: A Case History of over Simplification from the Uley South Basin, South Australia

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2015-02-01

    Full Text Available The article “Karst aquifer recharge: Comments on ‘Characteristics of Point Recharge in Karst Aquifers’, by Adrian D. Werner, 2014, Water 6, doi:10.3390/w6123727” provides misrepresentation in some parts of Somaratne [1]. The description of Uley South Quaternary Limestone (QL as unconsolidated or poorly consolidated aeolianite sediments with the presence of well-mixed groundwater in Uley South [2] appears unsubstantiated. Examination of 98 lithological descriptions with corresponding drillers’ logs show only two wells containing bands of unconsolidated sediments. In Uley South basin, about 70% of salinity profiles obtained by electrical conductivity (EC logging from monitoring wells show stratification. The central and north central areas of the basin receive leakage from the Tertiary Sand (TS aquifer thereby influencing QL groundwater characteristics, such as chemistry, age and isotope composition. The presence of conduit pathways is evident in salinity profiles taken away from TS water affected areas. Pumping tests derived aquifer parameters show strong heterogeneity, a typical characteristic of karst aquifers. Uley South QL aquifer recharge is derived from three sources; diffuse recharge, point recharge from sinkholes and continuous leakage of TS water. This limits application of recharge estimation methods, such as the conventional chloride mass balance (CMB as the basic premise of the CMB is violated. The conventional CMB is not suitable for accounting chloride mass balance in groundwater systems displaying extreme range of chloride concentrations and complex mixing [3]. Over simplification of karst aquifer systems to suit application of the conventional CMB or 1-D unsaturated modelling as described in Werner [2], is not suitable use of these recharge estimation methods.

  13. Estimation of Groundwater Recharge Using Tracers and Numerical Modeling in the North China Plain

    Directory of Open Access Journals (Sweden)

    Qinghua Wu

    2016-08-01

    Full Text Available Water resource shortage has been a serious problem since the 1980s in the North China Plain (NCP, resulting in plenty of environmental problems. Estimating the groundwater recharge rate accurately is vital for managing groundwater effectively. This study applied several methods, including chloride mass-balance, tracers (bromide and tritium and numerical modeling (Hydrus-1D, to estimate groundwater recharge at three representative sites of the NCP: Zhengding (ZD, Luancheng (LC and Hengshui (HS. The chloride concentration of the soil profile in the ZD site showed that the mean recharge was 3.84 mm/year with the residence time of 105 years for soil water transferring through the vadose area of 45.0 m in depth in the preferential flow model mainly. Considering the influence of preferential flow on the soil water movement in the field scale, the traditional methods (e.g., peak method of bromide and tritium tracers based on piston flow described in the literature could be unsuitable to estimate groundwater recharge in the LC and HS sites, especially in areas with low recharge rates. Therefore, multi-region and mass balance methods were applied in this study. The results of this investigation showed that the mean values of recharge were 124.3 and 18.0 mm/year in the LC and HS sites, respectively, in 2010. Owing to complexity and uncertainty on the surface resulting from the measuring of evapotranspiration, the upper boundary of 1.4 m (under the ground where most of the plant roots did not reach was chosen for the numerical modeling of Hydrus-1D, and the result showed that the mean recharge was 225 mm/year from 2003 to 2007, consistent with the result of tracers in the previous literature. The result also showed that the positive relation of groundwater recharge and the sum of irrigation and rainfall was presented in the spatial and temporal scale. Additionally, human activities promoted the recharge rate, and recharge rates increased with greater

  14. A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California)

    Science.gov (United States)

    Grismer, Mark E.; Bachman, S.; Powers, T.

    2000-10-01

    We assess the relative merits of application of the most commonly used field methods (soil-water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro-irrigated and non-irrigated areas of a semi-arid coastal orchard located in a relatively complex geological environment.Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil-water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non-irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non-irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year.The SWB method, constructed for a 15-year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 - 98 and 1996 - 98 periods, respectively. Assuming similar soil-water holding capacity, these recharge rates applied to both irrigated and non-irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil-water holding capacity and estimation of rainfall interception - runoff losses.Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 - 1998 period in both the orchards and non-irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed

  15. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  16. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    Directory of Open Access Journals (Sweden)

    P. Ala-aho

    2014-07-01

    Full Text Available Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D soil profile spatially to estimate transient recharge in an unconfined esker aquifer. The modeling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover and timing (depth of the unsaturated zone of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI using forestry inventory data. Uncertainty in the parameters controlling soil hydraulic properties and evapotranspiration was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount, and the modeling approach successfully reduced model uncertainty by allocating the LAI parameter spatially in the model. Soil evaporation compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated depth and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  17. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0

  18. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  19. Improving behaviour in self-testing (IBIS: Study on frequency of use, consequences, information needs and use, and quality of currently available consumer information (protocol

    Directory of Open Access Journals (Sweden)

    de Vries Nanne K

    2010-08-01

    Full Text Available Abstract Background Self-tests are available to consumers for more than 25 conditions, ranging from infectious diseases to cardiovascular risk factors. Self-tests are defined as in-vitro tests on body materials such as blood, urine, faeces, or saliva that are initiated by consumers to diagnose a particular disorder or risk factor without involving a medical professional. In 2006, 16% of a sample of Dutch Internet users had ever used at least one self-test and 17% intended to use a self-test in the future. The objectives of this study are to determine (1 the frequency of self-test use, (2 the consumers' reasons for using or not using a self-test, (3 the information that is used by self-testers in the different self-test stages and the consumers' interpretation of the quality of this information, (4 the consumers' response to self-test results in terms of their confidence in the result, reassurance by the test result, and follow-up behaviour, (5 the information consumers report to need in the decision making process of using or not using a self-test, and in further management on the basis of the self-test result, and (6 the quality of the currently available consumer information on a selected set of self-tests. Methods Mixed methods study with (1 a cross-sectional study consisting of a two-phase Internet-questionnaire, (2 semi-structured interviews with self-testers and consumers who intend to use a self-test, and (3 the assessment of the quality of consumer information of self-tests. The Health Belief Model and the Theory of Planned Behaviour will serve as the theoretical basis for the questionnaires and the interview topic guides. Conclusions The self-testing area is still in a state of flux and therefore it is expected that self-test use will increase in the future. To the best of our knowledge, this is the first study which combines quantitative and qualitative research to identify consumers' information needs and use concerning self

  20. Improving behaviour in self-testing (IBIS): Study on frequency of use, consequences, information needs and use, and quality of currently available consumer information (protocol).

    Science.gov (United States)

    Grispen, Janaica E J; Ickenroth, Martine H P; de Vries, Nanne K; Dinant, Geert-Jan; Ronda, Gaby; van der Weijden, Trudy

    2010-08-03

    Self-tests are available to consumers for more than 25 conditions, ranging from infectious diseases to cardiovascular risk factors. Self-tests are defined as in-vitro tests on body materials such as blood, urine, faeces, or saliva that are initiated by consumers to diagnose a particular disorder or risk factor without involving a medical professional. In 2006, 16% of a sample of Dutch Internet users had ever used at least one self-test and 17% intended to use a self-test in the future. The objectives of this study are to determine (1) the frequency of self-test use, (2) the consumers' reasons for using or not using a self-test, (3) the information that is used by self-testers in the different self-test stages and the consumers' interpretation of the quality of this information, (4) the consumers' response to self-test results in terms of their confidence in the result, reassurance by the test result, and follow-up behaviour, (5) the information consumers report to need in the decision making process of using or not using a self-test, and in further management on the basis of the self-test result, and (6) the quality of the currently available consumer information on a selected set of self-tests. Mixed methods study with (1) a cross-sectional study consisting of a two-phase Internet-questionnaire, (2) semi-structured interviews with self-testers and consumers who intend to use a self-test, and (3) the assessment of the quality of consumer information of self-tests. The Health Belief Model and the Theory of Planned Behaviour will serve as the theoretical basis for the questionnaires and the interview topic guides. The self-testing area is still in a state of flux and therefore it is expected that self-test use will increase in the future. To the best of our knowledge, this is the first study which combines quantitative and qualitative research to identify consumers' information needs and use concerning self-testing, and the consumers' actual follow-up behaviour based

  1. Artificial recharge of groundwater: hydrogeology and engineering

    Science.gov (United States)

    Bouwer, Herman

    2002-02-01

    Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4.

  2. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  3. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  4. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    Science.gov (United States)

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.

  5. Enhanced recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity

    Science.gov (United States)

    Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten

    2017-04-01

    Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly

  6. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  7. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    Science.gov (United States)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m

  8. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers

    Science.gov (United States)

    Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W.

    2008-01-01

    Tritium and bromide were used as applied tracers to determine groundwater recharge in Hebei Plain, North China, to evaluate the impacts of different soil types, land use, irrigation, and crop cultivation practice on recharge. Additional objectives were to evaluate temporal variability of recharge and the effect on results of the particular tracer used. Thirty-nine profiles at representative locations were chosen for investigation. Average recharge rates and recharge coefficient determined by tritium and bromide tracing for different sites were 0.00-1.05 mm/d and 0.0-42.5%, respectively. The results showed relative recharge rates for the following paired influences (items within each pair are listed with the influence producing greater recharge first): flood-irrigated cropland and non-irrigated non-cultivation land, flood irrigation (0.42-0.58 mm/d) and sprinkling irrigation (0.17-0.23 mm/d), no stalk mulch (0.56-0.80 mm/d) and stalk mulch (0.44-0.60 mm/d), vegetable (e.g. Chinese cabbage and garlic, 0.70 mm/d) and wheat-maize (0.38 mm/d), peanut (0.51 mm/d) and peach (0.43 mm/d). The results also showed greater recharge for the first year of tracer travel than for the second. Because total precipitation and irrigation were greater in the first year than in the second, this may reflect temporal variability of recharge. The method may not be applicable where the water table is shallow (less than 3 m). A comparison of the near-ideal tritium tracer with the more common but less ideal bromide showed that bromide moved approximately 23% faster than tritiated water, perhaps because of anion exclusion. ?? 2008 Elsevier B.V.

  9. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers

    Science.gov (United States)

    Wang, Bingguo; Jin, Menggui; Nimmo, John R.; Yang, Lei; Wang, Wenfeng

    2008-07-01

    SummaryTritium and bromide were used as applied tracers to determine groundwater recharge in Hebei Plain, North China, to evaluate the impacts of different soil types, land use, irrigation, and crop cultivation practice on recharge. Additional objectives were to evaluate temporal variability of recharge and the effect on results of the particular tracer used. Thirty-nine profiles at representative locations were chosen for investigation. Average recharge rates and recharge coefficient determined by tritium and bromide tracing for different sites were 0.00-1.05 mm/d and 0.0-42.5%, respectively. The results showed relative recharge rates for the following paired influences (items within each pair are listed with the influence producing greater recharge first): flood-irrigated cropland and non-irrigated non-cultivation land, flood irrigation (0.42-0.58 mm/d) and sprinkling irrigation (0.17-0.23 mm/d), no stalk mulch (0.56-0.80 mm/d) and stalk mulch (0.44-0.60 mm/d), vegetable (e.g. Chinese cabbage and garlic, 0.70 mm/d) and wheat-maize (0.38 mm/d), peanut (0.51 mm/d) and peach (0.43 mm/d). The results also showed greater recharge for the first year of tracer travel than for the second. Because total precipitation and irrigation were greater in the first year than in the second, this may reflect temporal variability of recharge. The method may not be applicable where the water table is shallow (less than 3 m). A comparison of the near-ideal tritium tracer with the more common but less ideal bromide showed that bromide moved approximately 23% faster than tritiated water, perhaps because of anion exclusion.

  10. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  11. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  12. The recharge process in alluvial strip aquifers in arid Namibia and implication for artificial recharge

    Science.gov (United States)

    Sarma, Diganta; Xu, Yongxin

    2016-10-01

    Alluvial strip aquifers associated with ephemeral rivers are important groundwater supply sources that sustain numerous settlements and ecological systems in arid Namibia. More than 70 % of the population in the nation's western and southern regions depend on alluvial aquifers associated with ephemeral rivers. Under natural conditions, recharge occurs through infiltration during flood events. Due to the characteristic spatial and temporal variability of rainfall in arid regions, recharge is irregular making the aquifers challenging to manage sustainably and they are often overexploited. This condition is likely to become more acute with increasing water demand and climate change, and artificial recharge has been projected as the apparent means of increasing reliability of supply. The article explores, through a case study and numerical simulation, the processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options. It is concluded that recharge processes in arid alluvial aquifers differ significantly from those processes in subhumid systems and viability of artificial recharge requires assessment through an understanding of the natural recharge process and losses from the aquifer. It is also established that in arid-region catchments, infiltration through the streambed occurs at rates dependent on factors such as antecedent conditions, flow rate, flow duration, channel morphology, and sediment texture and composition. The study provides an important reference for sustainable management of alluvial aquifer systems in similar regions.

  13. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  14. Solar recharging system for hearing aid cells.

    Science.gov (United States)

    Gòmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muñiz, L; Aristimuño, D; Unanue, J M; Torca, J; Urruticoechea, A

    1994-09-01

    We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity.

  15. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  16. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  19. Characteristics of groundwater recharge on the North China Plain.

    Science.gov (United States)

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge.

  20. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Science.gov (United States)

    2012-01-18

    ...; Rechargeable Lithium Batteries and Rechargeable Lithium- Battery Systems AGENCY: Federal Aviation... have a novel or unusual design feature associated with the installation of rechargeable lithium batteries and rechargeable lithium-battery systems. The applicable airworthiness regulations do not...

  1. Geochemical quantification of semiarid mountain recharge.

    Science.gov (United States)

    Wahi, Arun K; Hogan, James F; Ekwurzel, Brenda; Baillie, Matthew N; Eastoe, Christopher J

    2008-01-01

    Analysis of a typical semiarid mountain system recharge (MSR) setting demonstrates that geochemical tracers help resolve the location, rate, and seasonality of recharge as well as ground water flowpaths and residence times. MSR is defined as the recharge at the mountain front that dominates many semiarid basins plus the often-overlooked recharge through the mountain block that may be a significant ground water resource; thus, geochemical measurements that integrate signals from all flowpaths are advantageous. Ground water fluxes determined from carbon-14 ((14)C) age gradients imply MSR rates between 2 x 10(6) and 9 x 10(6) m(3)/year in the Upper San Pedro Basin, Arizona, USA. This estimated range is within an order of magnitude of, but lower than, prior independent estimates. Stable isotopic signatures indicate that MSR has a 65% +/- 25% contribution from winter precipitation and a 35% +/- 25% contribution from summer precipitation. Chloride and stable isotope results confirm that transpiration is the dominant component of evapotranspiration (ET) in the basin with typical loss of more than 90% of precipitation-less runoff to ET. Such geochemical constraints can be used to further refine hydrogeologic models in similar high-elevation relief basins and can provide practical first estimates of MSR rates for basins lacking extensive prior hydrogeologic measurements.

  2. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  3. Recharging Our Sense of Idealism: Concluding Thoughts

    Science.gov (United States)

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  4. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  5. Recharging Our Sense of Idealism: Concluding Thoughts

    Science.gov (United States)

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  6. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  7. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2013-02-01

    Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  8. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  9. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-04-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  10. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Liu, Jilai; Ma, Jinzhu; Gates, John

    2017-05-01

    Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55-71 mm yr-1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160-400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July-September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.

  11. Understanding, comprehensibility and acceptance of an evidence-based consumer information brochure on fall prevention in old age: a focus group study

    Directory of Open Access Journals (Sweden)

    Meyer Gabriele

    2011-05-01

    Full Text Available Abstract Background Evidence-based patient and consumer information (EBPI is an indispensable component of the patients' decision making process in health care. Prevention of accidental falls in the elderly has gained a lot of public interest during preceding years. Several consumer information brochures on fall prevention have been published; however, none fulfilled the criteria of an EBPI. Little is known about the reception of EBPI by seniors. Therefore we aimed to evaluate a recently developed EBPI brochure on fall prevention with regard to seniors' acceptance and comprehensibility in focus groups and to explore whether the participants' judgements differed depending on the educational background of the study participants. Methods Seven focus groups were conducted with 40 seniors, aged 60 years or older living independently in a community. Participants were recruited by two gatekeepers. A discussion guide was used and seniors were asked to judge the EBPI brochure on fall prevention using a Likert scale 1-6. The focus group discussions were tape recorded, transcribed verbatim, and analysed using content analysis. Results The participants generally accepted the EBPI brochure on fall prevention. Several participants expressed a need for more practical advice. The comprehensibility of the brochure was influenced positively by brief chapter summaries. Participants dismissed the statistical illustrations such as confidence intervals or a Fagan nomogram and only half of them agreed with the meta-information presented in the first chapter. The detailed information about fall prevalence was criticised by some seniors. The use of a case story was well tolerated by the majority of participants. Conclusion Our findings indicate that the recently developed EBPI brochure on fall prevention in old age was generally well accepted by seniors, but some statistical descriptions were difficult for them to understand. The brochure has to be updated. However, not

  12. Understanding, comprehensibility and acceptance of an evidence-based consumer information brochure on fall prevention in old age: a focus group study.

    Science.gov (United States)

    Lins, Sabine; Icks, Andrea; Meyer, Gabriele

    2011-05-20

    Evidence-based patient and consumer information (EBPI) is an indispensable component of the patients' decision making process in health care. Prevention of accidental falls in the elderly has gained a lot of public interest during preceding years. Several consumer information brochures on fall prevention have been published; however, none fulfilled the criteria of an EBPI. Little is known about the reception of EBPI by seniors. Therefore we aimed to evaluate a recently developed EBPI brochure on fall prevention with regard to seniors' acceptance and comprehensibility in focus groups and to explore whether the participants' judgements differed depending on the educational background of the study participants. Seven focus groups were conducted with 40 seniors, aged 60 years or older living independently in a community. Participants were recruited by two gatekeepers. A discussion guide was used and seniors were asked to judge the EBPI brochure on fall prevention using a Likert scale 1-6. The focus group discussions were tape recorded, transcribed verbatim, and analysed using content analysis. The participants generally accepted the EBPI brochure on fall prevention. Several participants expressed a need for more practical advice. The comprehensibility of the brochure was influenced positively by brief chapter summaries. Participants dismissed the statistical illustrations such as confidence intervals or a Fagan nomogram and only half of them agreed with the meta-information presented in the first chapter. The detailed information about fall prevalence was criticised by some seniors. The use of a case story was well tolerated by the majority of participants. Our findings indicate that the recently developed EBPI brochure on fall prevention in old age was generally well accepted by seniors, but some statistical descriptions were difficult for them to understand. The brochure has to be updated. However, not all issues raised by the participants will be taken into account

  13. Quantifying macropore recharge: Examples from a semi-arid area

    Science.gov (United States)

    Wood, W.W.; Rainwater, K.A.; Thompson, D.B.

    1997-01-01

    The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered to be the difference between total recharge through floors of topographically dosed basins and interstitial recharge through the same area. On the regional scale, macropore recharge was considered to be the difference between regional average annual recharge and interstitial recharge measured in the unsaturated zone. Stable isotopic composition of ground water and precipitation was used us an independent estimate of macropore recharge on the regional scale. Results of this analysis suggest that in the Southern High Plains recharge flux through macropores is between 60 and 80 percent of the total 11 mm/y. Between 15 and 35 percent of the recharge occurs by interstitial recharge through the basin floors. Approximately 5 percent of the total recharge occurs as either interstitial or matrix recharge between the basin floors, representing approximately 95 percent of the area. The approach is applicable to other arid and semi-arid areas that focus rainfall into depressions or valleys.The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in arid and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered

  14. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Science.gov (United States)

    Dawes, W.; Ali, R.; Varma, S.; Emelyanova, I.; Hodgson, G.; McFarlane, D.

    2012-05-01

    recharge and rising water levels into the future despite a drying climate signal. To the south of Perth city there are large areas where groundwater levels are close to the land surface and not expected to change more than 1m upward or downward over the next two decades; it is beyond the accuracy of the model to conclude any definite trend. In the south western part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sandy Swan (northern boundary) and Scott Coastal Plains (southern boundary) there is little response to future climates, because groundwater levels are shallow and much rainfall is rejected recharge. The profile dries out more in summer but this allows more rainfall to infiltrate in winter. Until winter recharge is insufficient to refill the aquifers these areas will not experience significant falls in groundwater levels. On the Blackwood Plateau however, the combination of native vegetation and clayey surface soils that restrict possible infiltration and recharge mean the area is very sensitive to climate change. With low capacity for recharge and low storage in the aquifers, small reductions in recharge can lead to large reductions in groundwater levels. In the northern part of the study area both climate and land cover strongly influence recharge rates. Recharge under native vegetation is minimal and is relatively higher where grazing and pasture systems have been introduced after clearing of native vegetation. In some areas the low recharge values can be reduced to almost zero, even under dryland agriculture, if the future climate becomes very dry. In the Albany Area the groundwater resource is already over allocated, and the combination of existing permanent native vegetation with decreasing annual rainfall indicate reduced recharge. The area requires a reduction in groundwater abstraction to maintain the sustainability of the existing resource.

  15. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Directory of Open Access Journals (Sweden)

    W. Dawes

    2012-05-01

    results in areas of increasing recharge and rising water levels into the future despite a drying climate signal. To the south of Perth city there are large areas where groundwater levels are close to the land surface and not expected to change more than 1m upward or downward over the next two decades; it is beyond the accuracy of the model to conclude any definite trend.

    In the south western part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sandy Swan (northern boundary and Scott Coastal Plains (southern boundary there is little response to future climates, because groundwater levels are shallow and much rainfall is rejected recharge. The profile dries out more in summer but this allows more rainfall to infiltrate in winter. Until winter recharge is insufficient to refill the aquifers these areas will not experience significant falls in groundwater levels. On the Blackwood Plateau however, the combination of native vegetation and clayey surface soils that restrict possible infiltration and recharge mean the area is very sensitive to climate change. With low capacity for recharge and low storage in the aquifers, small reductions in recharge can lead to large reductions in groundwater levels.

    In the northern part of the study area both climate and land cover strongly influence recharge rates. Recharge under native vegetation is minimal and is relatively higher where grazing and pasture systems have been introduced after clearing of native vegetation. In some areas the low recharge values can be reduced to almost zero, even under dryland agriculture, if the future climate becomes very dry. In the Albany Area the groundwater resource is already over allocated, and the combination of existing permanent native vegetation with decreasing annual rainfall indicate reduced recharge. The area requires a reduction in groundwater abstraction to maintain the sustainability of the existing

  16. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  17. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  18. Anode-Free Rechargeable Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jiangfeng [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Adams, Brian D. [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zheng, Jianming [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Henderson, Wesley A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Wang, Jun [A123 Systems Research and Development, Waltham MA 02451 USA; Bowden, Mark E. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Suochang [Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hu, Jianzhi [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-08-18

    Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols which minimize the corrosion of the in-situ formed Li metal anode.

  19. The rechargeable aluminum-ion battery.

    Science.gov (United States)

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour.

  20. The rechargeable aluminum-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  1. Recharge pattern of contemporary glass ionomer restoratives

    Directory of Open Access Journals (Sweden)

    Farahnaz Arbabzadeh-Zavareh

    2012-01-01

    Full Text Available Background: As glass ionomers have the ability to reload fluoride from outside sources, the aim was to compare the recharge pattern of six glass ionomer cements after exposure to fluoride. Materials and Methods: Fuji VII, Fuji IX, Riva Pink, Riva Bleach, Ketac Fil and Fuji IX Extra were investigated. The fluoride-containing materials used were tooth paste and mouth wash (Colgate. Specimens of each material (n=15 were immersed separately in deionized water for 59 days. Then the samples of each material were divided into three groups of five each. Two groups were recharged for 2, 20 and 60 min daily during three consecutive weekly intervals and then no treatment for one week. The third group was used as control. Fluoride release measurements (μg/cm 2 /day were made in every 24 h. One-way and repeated measures analysis of variance tests were used. Results: Tooth paste recharged materials showed higher level of recharge. On day 1, the difference of fluoride release from different treatment groups of different materials except for Fuji IX Extra were not significant (P>0.05. On days 7 and 14, the differences observed were significant (P<0.05 for all materials except for Fuji VII (tooth paste versus mouth wash and Trial Fuji IX (mouth wash versus control and on day 14 for Rvia Pink (mouth wash versus control. On days 21 and 28, the differences observed were significant for all the materials (P<0.05 except for Riva Pink (toothpaste versus mouth wash, Riva Bleach, Ketac Fil and Trial FujiI X (mouth wash versus control on day 28. Conclusion: A time tabled schedule of application of fluoride-containing materials could help to achieve high fluoride release.

  2. Solid-state rechargeable magnesium battery

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  3. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  4. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  5. A regression model to estimate regional ground water recharge.

    Science.gov (United States)

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  6. Basin-scale recharge in the Southwestern United States

    Science.gov (United States)

    Hogan, J. F.; Duffy, C.; Eastoe, C.; Ferre, T. P. A.; Goodrich, D.; Hendrickx, J.; Hibbs, B.; Phillips, F.; Small, E.; Wilson, J.

    2003-04-01

    The major domestic water source in the arid southwestern United States is groundwater from alluvial basin aquifers. Accurate estimates of basin-scale groundwater recharge rates are a critical need for developing sustainable or "safe yield" groundwater pumping. Basin-scale recharge rates are typically estimated using inverse hydrologic modeling or geochemical tracers (e.g. chloride mass balance). These methods, while useful, have a high level of uncertainty and provide no information about the mechanisms of groundwater recharge. SAHRA - an NSF Science and Technology Center focused on the Sustainability of semi-Arid Hydrology and Riparian Areas - has developed an integrated research plan to address this problem. Our approach is two-fold. First we are investigating the "input" components that comprise basin-scale recharge: basin floor recharge, alluvial channel recharge, mountain front recharge, and mountain block recharge. Each component has unique spatial and temporal scales and thus requires distinct methods. Our research is aimed at understanding the factors (e.g. vegetation type, bedrock lithology, soil structure) that control recharge rates in each of these locations. With such an understanding one could then scale from point measurements to the basin-scale using remote sensing data. Our second approach is to employ isotopic tracers to determine water sources, groundwater ages and residence times of the groundwater and surface water "outputs"; these values can then be used to better calibrate recharge rates in groundwater models. By focusing our studies on two basins, the San Pedro River Basin in Arizona and the Rio Grande in New Mexico, we hope to develop a better understanding of the importance of different recharge pathways for basin-scale recharge and which methods are best suited for estimating basin-scale recharge.

  7. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    Science.gov (United States)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  8. Rechargeable battery which combats shape change of the zinc anode. [By proper fabrication of separator

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, E.M.

    1976-08-03

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes so that ion flow is greatest at the edges of the electrodes and least at the centers thereof, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed, wherein the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile. 5 figures.

  9. Regional estimation of total recharge to ground water in Nebraska.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive recharge a year.

  10. Simulating Groundwater Recharge Across the Southern High Plains

    Science.gov (United States)

    Smidt, S. J.; Haacker, E. M.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Quantifying recharge and water availability across the Southern High Plains is a difficult, but necessary, challenge for future groundwater and agricultural projections. Overland flow is not common due to limited precipitation, dry soils, and high evapotranspiration. The majority of runoff is temporarily stored in playa lakes, leading to the bulk of recharge across the region occurring in localized infiltration zones beneath these lakes. Despite the importance of regional recharge estimates, limited information exists that integrates complex characteristics of the land, climate, and hydrology in order to quantify recharge across the entire Southern High Plains aquifer. This study applies the Landscape Hydrology Model (LHM) to capture these characteristics and simulate surface water flow and groundwater recharge. This model simulates the complete water cycle across large regions, including irrigation estimates, establishing a framework to estimate recharge and groundwater availability in the Southern High Plains region. Results from this study can be used to predict the likely impacts of climate change and improve water management strategies.

  11. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  12. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-05-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modeling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types the total annual rainfall had a weaker correlation with recharge than the rainfall parameters reflecting rainfall intensity. In regions with winter-dominated rainfall, annual recharge under the same annual rainfall, soils and vegetation conditions is greater than in regions with summer-dominated rainfall. The relative importance of climate parameters other than rainfall is higher for recharge under annual vegetation, but overall is highest in the tropical climate type. Solar radiation and vapour pressure deficit show a greater relative importance than mean annual daily mean temperature. Climate parameters have lowest relative importance in the arid climate type (with cold winters and the temperate climate type. For 75% of all considered cases of soil, vegetation and climate types recharge elasticity varies between 2 and 4, indicating a 20% to 40% change in recharge for a 10% change in annual rainfall Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  13. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  14. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    Science.gov (United States)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  15. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  16. Cycle life sensor for rechargeable lithium batteries

    Science.gov (United States)

    Nanjundiah, C.; Koch, V. R.

    The problem of characterizing the state of a rechargeable Li battery as a function of cycle life history was addressed. A 50-micron dia Pt microelectrode embedded in the cell package was used as a sensing electrode. Good correlations between Li stripping currents and cycle life were achieved in Li/Li half cells. However, no systematic trends were observed in Li/TiS2 ful cells. Additionally, Li-electrolyte degradation products were found to be either insoluble or electroinactive over the available electrochemical window.

  17. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  18. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  19. Lithium Metal Anodes for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jiulin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shanghai Jiao Tong Univ. (China); Ding, Fei [Tianjin Inst. of Power Sources (China); Chen, Xilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nasybulin, Eduard N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yaohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harbin Inst. of Technology (China); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  20. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  1. Urban Network Implications On Groundwater Recharge

    Science.gov (United States)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  2. Improved Recharge Estimation from Portable, Low-Cost Weather Stations.

    Science.gov (United States)

    Holländer, Hartmut M; Wang, Zijian; Assefa, Kibreab A; Woodbury, Allan D

    2016-03-01

    Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical-based modeling procedures, and data from a low-cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards-based vadose zone hydrological model, HYDRUS-1D. The required meteorological data were recorded with a HOBO(TM) weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBO(TM) weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge-precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil.

  3. Scale-up of lithium rechargeable batteries

    Science.gov (United States)

    Ritchie, A. G.; Giwa, C. O.; Lee, J. C.; Bowles, P.; Gilmour, A.; Allan, J.

    Small-size lithium rechargeable cells in an envelope format were reported at the 20th International Power Sources Symposium [1,2]. This design offers the possibility of making cells using much lighter packing than cells with metal cans. The prismatic format allows good packing in rectangular boxes. Hence they offer the potential for high gravimetric and volumetric energy densities. The cells have now been developed to a size sufficient to form components of a large battery, built to power Army man-portable equipment. Lithium-ion cells have been manufactured using lithium cobalt oxide cathodes and other cathode materials are under investigation. Individual cells up to the 3 A h size have been successfully cycled, with further development possible. A 24 V battery has been constructed and its performance and prospects are described.

  4. Polymer Energy Rechargeable System Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  5. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  6. Rechargeable galvanic cell. Wiederaufladbare galvanische Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, R.; Mennicke, S.

    1982-11-11

    Rechargeable galvanic batteries using liquid sodium as negative electro-chemical material and liquid sulphur absorbed in graphite as the positive one as well as sodium-ion-conducting solid electrolytes which, in the battery housing, are designed as containers open to one side and filled with either sulphur or sodium and which have one collector each, are developed further by using the advantages of 'normal cells' and 'inverted cells' while reducing their disadvantages at the same time. This is obtained by designing the battery to consist in at least two parallelly arranged single cells connected in series via the housing and showing an inverted arrangement of sodium and sulphur relative to each other.

  7. Anthropogenic-Induced Changes in the Mechanism of Drylands Ephemeral Stream Recharge, Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Khan Z. Jadoon

    2016-04-01

    Full Text Available Wadi aquifers in Saudi Arabia historically have been recharged primarily by channel loss (infiltration during floods. Historically, seasonal groundwater levels fluctuated from land surface to about 3 m below the surface. Agricultural irrigation pumping has lowered the water table up to 35 m below the surface. The geology surrounding the fluvial system at Wadi Qidayd consists of pelitic Precambrian rocks that contribute sediments ranging in size from mud to boulders to the alluvium. Sediments within the wadi channel consist of fining upward, downstream-dipping beds, causing channel floodwaters to pass through several sediment sequences, including several mud layers, before it can reach the water table. Investigation of the wadi aquifer using field observation, geological characterization, water-level monitoring, geophysical profiles, and a hypothetical model suggests a critical water level has been reached that affects the recharge of the aquifer. The wetted front can no longer reach the water table due to the water uptake in the wetting process, downstream deflection by the clay layers, and re-emergence of water at the surface with subsequent direct and diffusive evaporative loss, and likely uptake by deep-rooted acacia trees. In many areas of the wadi system, recharge can now occur only along the channel perimeter via fractured rocks that are in direct horizontal hydraulic connection to the permeable beds above and below the water table.

  8. Anthropogenic-Induced Changes in the Mechanism of Drylands Ephemeral Stream Recharge, Western Saudi Arabia

    KAUST Repository

    Jadoon, Khan

    2016-04-07

    Wadi aquifers in Saudi Arabia historically have been recharged primarily by channel loss (infiltration) during floods. Historically, seasonal groundwater levels fluctuated from land surface to about 3 m below the surface. Agricultural irrigation pumping has lowered the water table up to 35 m below the surface. The geology surrounding the fluvial system at Wadi Qidayd consists of pelitic Precambrian rocks that contribute sediments ranging in size from mud to boulders to the alluvium. Sediments within the wadi channel consist of fining upward, downstream-dipping beds, causing channel floodwaters to pass through several sediment sequences, including several mud layers, before it can reach the water table. Investigation of the wadi aquifer using field observation, geological characterization, water-level monitoring, geophysical profiles, and a hypothetical model suggests a critical water level has been reached that affects the recharge of the aquifer. The wetted front can no longer reach the water table due to the water uptake in the wetting process, downstream deflection by the clay layers, and re-emergence of water at the surface with subsequent direct and diffusive evaporative loss, and likely uptake by deep-rooted acacia trees. In many areas of the wadi system, recharge can now occur only along the channel perimeter via fractured rocks that are in direct horizontal hydraulic connection to the permeable beds above and below the water table.

  9. Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert

    Institute of Scientific and Technical Information of China (English)

    MA Jinzhu; LI Ding; ZHANG Jiawu; W. M. Edmunds; C. Prudhomme

    2003-01-01

    The history of groundwater recharge and climatic changes during the last 1000 years has been estimated and reconstructed using environmental chloride from unsaturated zone profile in the southeast Badain Jaran Desert, NW China. Byusing a steady-state model for duplicate unsaturated zone chloride profiles, the long-term recharge at the site was estimated to be 1.3 mm yr?1. From one profile, which reached the water table, the climatic change events of 10-20 years duration were well preserved. There were 3 wet phases and 4 dry episodes during the recent 800 years according to the peaks and troughs of recharge rate calculated via chloride concentration and moisture content. There was a dry episode before 1290 AD. At ca. 1500-1530 AD, which is an important date, there was an abruptchange from drought to wet conditions. At the beginning of the 1800s, local climate changed from wet to dry occurred and subsequently deteriorated over the past 200 years. The unsaturated profile was compared with the Guliya ice core records. The agreement of wet and dry phases from 1200 to 1900 AD is quite good, whilst trends diverged during the last 100 years. It seems that the large-scale climate difference took place between mountain regions and the desert basin in NW China during the 20th century, which closely correspond to the water table reduction of some 1 metre.

  10. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

  11. Climate variability effects on urban recharge beneath low impact development

    Science.gov (United States)

    Newcomer, M. E.; Gurdak, J. J.

    2012-12-01

    Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Niño year, recharge calculated by a water budget does not increase compared with current El Niño recharge rates. In comparison, simulated recharge rates were

  12. Echo Meadows Project Winter Artificial Recharge.

    Energy Technology Data Exchange (ETDEWEB)

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  13. Echo Meadows Project Winter Artificial Recharge.

    Energy Technology Data Exchange (ETDEWEB)

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  14. Using atmospheric tracers to reduce uncertainty in groundwater recharge areas.

    Science.gov (United States)

    Starn, J Jeffrey; Bagtzoglou, Amvrossios C; Robbins, Gary A

    2010-01-01

    A Monte Carlo-based approach to assess uncertainty in recharge areas shows that incorporation of atmospheric tracer observations (in this case, tritium concentration) and prior information on model parameters leads to more precise predictions of recharge areas. Variance-covariance matrices, from model calibration and calculation of sensitivities, were used to generate parameter sets that account for parameter correlation and uncertainty. Constraining parameter sets to those that met acceptance criteria, which included a standard error criterion, did not appear to bias model results. Although the addition of atmospheric tracer observations and prior information produced similar changes in the extent of predicted recharge areas, prior information had the effect of increasing probabilities within the recharge area to a greater extent than atmospheric tracer observations. Uncertainty in the recharge area propagates into predictions that directly affect water quality, such as land cover in the recharge area associated with a well and the residence time associated with the well. Assessments of well vulnerability that depend on these factors should include an assessment of model parameter uncertainty. A formal simulation of parameter uncertainty can be used to delineate probabilistic recharge areas, and the results can be expressed in ways that can be useful to water-resource managers. Although no one model is the correct model, the results of multiple models can be evaluated in terms of the decision being made and the probability of a given outcome from each model.

  15. [Effects of reclaimed water recharge on groundwater quality: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  16. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Østrup Jensen, Peter; Kühl, Michael

    2016-01-01

    . Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...... and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light...

  17. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    OpenAIRE

    Hongyun Ma; Baoguo Wang; Yongsheng Fan; Weichen Hong

    2014-01-01

    An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO 2 and LaNiO 3 severed as the catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D) current densities indicating a uniform voltage profile for each single cell. One hu...

  18. A VISUAL BASIC PPREADSHEET MACRO FOR ESTIMATING GROUNDWATER RECHARGE

    Directory of Open Access Journals (Sweden)

    Kristijan Posavec

    2009-12-01

    Full Text Available A Visual Basic spreadsheet macro was written to automate the estimation of groundwater recharge from stream or spring hydrographs using the adapted Meyboom’s method. The program fits exponential regression model available in widely accessible platform (i.e. MS Excel to baseflow recessions that precede and follow groundwater recharge, and uses regression equations to calculate recharge volume that occur between these recessions. An example of field data from Croatia (Bulaž spring is given to illustrate its application.

  19. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    Science.gov (United States)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on

  20. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement.

    Science.gov (United States)

    Xie, Xian-Ju; Xing, Dan; Wang, Lin; Zhou, Han; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin Hk

    2016-11-04

    White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.International Journal of Oral Science advance online publication,4 November 2016; doi:10.1038/ijos.2016.40.

  1. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    Science.gov (United States)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick

  2. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  3. Biodegradability of grounded cell phone recharge cards in two Niger ...

    African Journals Online (AJOL)

    The biodegradability of four commonly used Global System for Mobile Telecommunication (GSM) ... Negative control consisted of recharge card and sterile soil. ... 0 to day 28 in the biodegradation test systems in rain forest and mangrove soils.

  4. Aquifer characteristics and groundwater recharge pattern in a typical ...

    African Journals Online (AJOL)

    EJIRO

    IFO JUNCTION ... precipitation and secondarily through lateral flow from rivers and .... recharge and groundwater through flow (Wright, 1992). ..... T. IT. U. D. E. Scale(m). 0. 50 100 150 200. LONGITUDE. Figure 4a. Contour maps showing ...

  5. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  6. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  7. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  8. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  9. Transient Rechargeable Batteries Triggered by Cascade Reactions.

    Science.gov (United States)

    Fu, Kun; Liu, Zhen; Yao, Yonggang; Wang, Zhengyang; Zhao, Bin; Luo, Wei; Dai, Jiaqi; Lacey, Steven D; Zhou, Lihui; Shen, Fei; Kim, Myeongseob; Swafford, Laura; Sengupta, Louise; Hu, Liangbing

    2015-07-08

    Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics.

  10. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  11. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  12. Rechargeable wireless EMG sensor for prosthetic control.

    Science.gov (United States)

    Lichter, P A; Lange, E H; Riehle, T H; Anderson, S M; Hedin, D S

    2010-01-01

    Surface electrodes in modern myoelectric prosthetics are often embedded in the prosthesis socket and make contact with the skin. These electrodes detect and amplify muscle action potentials from voluntary contractions of the muscle in the residual limb and are used to control the prosthetic's movement and function. There are a number of performance-related deficiencies associated with external electrodes including the maintenance of sufficient electromyogram (EMG) signal amplitude, extraneous noise acquisition, and proper electrode interface maintenance that are expected to be improved or eliminated using the proposed implanted sensors. This research seeks to investigate the design components for replacing external electrodes with fully-implantable myoelectric sensors that include a wireless interface to the prosthetic limbs. This implanted technology will allow prosthetic limb manufacturers to provide products with increased performance, capability, and patient-comfort. The EMG signals from the intramuscular recording electrode are amplified and wirelessly transmitted to a receiver in the prosthetic limb. Power to the implant is maintained using a rechargeable battery and an inductive energy transfer link from the prosthetic. A full experimental system was developed to demonstrate that a wireless biopotential sensor can be designed that meets the requirements of size, power, and performance for implantation.

  13. Seasonal variation in natural recharge of coastal aquifers

    Science.gov (United States)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  14. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  15. Application limits of the interpretation of near-surface temperature time series to assess groundwater recharge

    Science.gov (United States)

    Gosselin, J. S.; Rivard, C.; Martel, R.; Lefebvre, R.

    2016-07-01

    The main objective of this study was to test the application limits of a groundwater recharge assessment technique based on the inversion of a vertical one-dimensional numerical model of advective-conductive heat transport, using temperature time series at three different depths (1, 3, 5 m) in the unsaturated zone. For this purpose, several synthetic hourly datasets of subsurface temperatures, representing various weather, ground cover, and soil texture conditions, thus covering a wide range of groundwater recharge values, were produced with the vertical one-dimensional coupled heat and moisture transport simulator SHAW (Simultaneous Heat and Water model). Estimates of the vertical flux of water in the soil were then retrieved from these realistic temperature profiles using a simple one-dimensional numerical simulator of advective and conductive heat transport in the unsaturated zone that was developed as part of this study. The water flux was assumed constant on a weekly, monthly, semiannual, and annual basis. From these vertical water flux estimates, annual (potential) groundwater recharge rates were then computed and results were compared to those calculated previously with SHAW to assess the accuracy of the method. Results showed that, under ideal conditions, it would be possible to estimate annual recharge rates that are above 200 mm/y, with an acceptable error of less than 20%. These "ideal" conditions include the resolution of the water flux on a weekly basis, error-free temperature measurements below the soil freezing zone, and model parameter values (thermal conductivity and heat capacity of the soil) known a priori with no uncertainty. However, this work demonstrates that the accuracy of the method is highly sensitive to the uncertainty of the input model parameters of the numerical model used to carry out the inversion and to measurement errors of temperature time series. For the conditions represented in this study, these findings suggest that, despite

  16. Comparing potential recharge estimates from three Land Surface Models across the western US

    Science.gov (United States)

    Niraula, Rewati; Meixner, Thomas; Ajami, Hoori; Rodell, Matthew; Gochis, David; Castro, Christopher L.

    2017-02-01

    Groundwater is a major source of water in the western US. However, there are limited recharge estimates in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01% to 15% for Mosaic, 3.2% to 42% for Noah, and 6.7% to 31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge in data limited regions.

  17. An Efficient Wireless Recharging Mechanism for Achieving Perpetual Lifetime of Wireless Sensor Networks.

    Science.gov (United States)

    Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting

    2016-12-23

    Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes "recharging while moving" into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle.

  18. Streamflow, Infiltration, and Recharge in Arroyo Hondo, New Mexico

    Science.gov (United States)

    Moore, Stephanie J.

    2007-01-01

    Infiltration events in channels that flow only sporadically produce focused recharge to the Tesuque aquifer in the Espa?ola Basin. The current study examined the quantity and timing of streamflow and associated infiltration in Arroyo Hondo, an unregulated mountain-front stream that enters the basin from the western slope of the Sangre de Cristo Mountains. Traditional methods of stream gaging were combined with environmental-tracer based methods to provide the estimates. The study was conducted during a three-year period, October 1999?October 2002. The period was characterized by generally low precipitation and runoff. Summer monsoonal rains produced four brief periods of streamflow in water year 2000, only three of which extended beyond the mountain front, and negligible runoff in subsequent years. The largest peak flow during summer monsoon events was 0.59 cubic meters per second. Snowmelt was the main contributor to annual streamflow. Snowmelt produced more cumulative flow downstream from the mountain front during the study period than summer monsoonal rains. The presence or absence of streamflow downstream of the mountain front was determined by interpretation of streambed thermographs. Infiltration rates were estimated by numerical modeling of transient vertical streambed temperature profiles. Snowmelt extended throughout the instrumented reach during the spring of 2001. Flow was recorded at a station two kilometers downstream from the mountain front for six consecutive days in March. Inverse modeling of this event indicated an average infiltration rate of 1.4 meters per day at this location. For the entire study reach, the estimated total annual volume of infiltration ranged from 17,100 to 246,000 m3 during water years 2000 and 2001. During water year 2002, due to severe drought, streamflow and streambed infiltration in the study reach were both zero.

  19. Groundwater recharge variation under climatic variability in Ajlun area and the recharge zone of Wadi Arab well field - Jordan

    Science.gov (United States)

    Raggad, Marwan Al; Alqadi, Mohammad; Magri, Fabien; Disse, Markus; Chiogna, Gabriele

    2017-04-01

    Pumping of 75 MCM/yr from Ajlun area and Wadi Arab well field has led to diminished groundwater levels in North Jordan and dramatically affects ecosystem services. Climate change compounds these issues by reducing recharge and increasing the ecosystem's hydrological demand. This paper investigates groundwater recharge response to climatic changes in North Jordan by modeling climatic parameters for the time frame 2015 - 2050. Water budget components were modeled through the J2000 hydrological model considering a groundwater recharge of 47 MCM/yr. Statistical downscaling of global circulation models indicated a decline in precipitation of around 30% by the year 2050 with 2.5 and 2 °C increases in maximum and minimum temperature, respectively. Recharge for the year 2050 was recalculated based on the downscaling results to be 27% less than current recharge. Continuous over-pumping with recharge reduction will cause a 30-70% reduction in saturated thickness by the same year. Modeling groundwater resilience under the new conditions showed a severe impact on the study area especially in the central parts which are expected to comprise a semi dry aquifer by 2050.

  20. Studies of rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Cui, Yi

    The studies of rechargeable lithium-sulfur (Li-S) batteries are included in this thesis. In the first part of this thesis, a linear sweep voltammetry method to study polysulfide transport through separators is presented. Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable Li-S batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We have developed a linear sweep voltammetry method to measure the anodic (oxidization) current of polysulfides crossed separators, which can be used as a quantitative measurement of the polysulfide transport through separators. The electrochemical oxidation of polysulfide is diffusion controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤ 0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for Li-S batteries. The second part includes a study on improving cycling performance of Li/polysulfide batteries by applying a functional polymer on carbon current collector. Significant capacity decay over cycling in Li-S batteries is a major impediment for their practical applications. Polysulfides Li2S x (3 life. We have examined a polyvinylpyrrolidone-modified carbon paper (CP-PVP) current collector in Li/polysulfide cells. PVP is soluble in the electrolyte solvent, but shows strong affinity with lithium polysulfides. The retention of polysulfides in the CP-PVP current collector is improved

  1. Design and simulation of lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  2. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  3. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  4. Oxygen electrodes for rechargeable alkaline fuel cells

    Science.gov (United States)

    Swette, L.; Kackley, N.

    1989-12-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  5. On the interpretation of recharge estimates from steady-state model calibrations.

    Science.gov (United States)

    Anderson, William P; Evans, David G

    2007-01-01

    Ground water recharge is often estimated through the calibration of ground water flow models. We examine the nature of calibration errors by considering some simple mathematical and numerical calculations. From these calculations, we conclude that calibrating a steady-state ground water flow model to water level extremes yields estimates of recharge that have the same value as the time-varying recharge at the time the water levels are measured. These recharge values, however, are a subdued version of the actual transient recharge signal. In addition, calibrating a steady-state ground water flow model to data collected during periods of rising water levels will produce recharge values that underestimate the actual transient recharge. Similarly, calibrating during periods of falling water levels will overestimate the actual transient recharge. We also demonstrate that average water levels can be used to estimate the actual average recharge rate provided that water level data have been collected for a sufficient amount of time.

  6. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  7. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  8. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  9. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  10. Recharge from a subsidence crater at the Nevada test site

    Science.gov (United States)

    Wilson, G. V.; Ely, D.M.; Hokett, S. L.; Gillespie, D. R.

    2000-01-01

    Current recharge through the alluvial fans of the Nevada Test Site (NTS) is considered to be negligible, but the impact of more than 400 nuclear subsidence craters on recharge is uncertain. Many of the craters contain a playa region, but the impact of these playas has not been addressed. It was hypothesized that a crater playa would focus infiltration through the surrounding coarser-grained material, thereby increasing recharge. Crater U5a was selected because it represented a worst case for runoff into craters. A borehole was instrumented for neutron logging beneath the playa center and immediately outside the crater. Physical and hydraulic properties were measured along a transect in the crater and outside the crater. Particle-size analysis of the 14.6 m of sediment in the crater and morphological features of the crater suggest that a large ponding event of ≈63000 m3 had occurred since crater formation. Water flow simulations with HYDRUS-2D, which were corroborated by the measured water contents, suggest that the wetting front advanced initially by as much as 30 m yr−1 with a recharge rate 32 yr after the event of 2.5 m yr−1Simulations based on the measured properties of the sediments suggest that infiltration will occur preferentially around the playa perimeter. However, these sediments were shown to effectively restrict future recharge by storing water until removal by evapotranspiration (ET). This work demonstrated that subsidence craters may be self-healing.

  11. A new approach to model the variability of karstic recharge

    Directory of Open Access Journals (Sweden)

    A. Hartmann

    2012-02-01

    Full Text Available In karst systems, surface near dissolution carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. In this study, we developed a recharge model that is based on a perceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the variability is not included.

  12. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  13. Power sources and electrical recharging strategies for implantable medical devices

    Institute of Scientific and Technical Information of China (English)

    Xiaojuan WEI; Jing LIU

    2008-01-01

    Implantable medical devices (IMDs) are crit-ically requested for the survival of patients subject to certain serious diseases such as bradycardia, fibrillation, diabetes, and disability, etc. Appropriate working of an active implantable medical device (IMD) heavily relies on the continuous supply of electricity. In this sense, long-term powering and recharging of an IMD via a highly safe, efficient and convenient way is, therefore, extremely important in clinics. Several conventional batteries, such as lithium cell, nuclear cell and bio-fuel cell, etc., have been developed to power IMDs. Meanwhile, the recharge of IMD from outside of the human body is also under investigation. In this paper, some of the most typical IMD batteries are reviewed. Their advantages and disadvantages are compared. In addition, several emer-ging innovations to recharge or directly drive the implanted batteries, including electromagnetic energy transmission, piezoelectric power generation, thermoelec-tric devices, ultrasonic power motors, radio frequency recharging and optical recharging methods, etc., are also discussed. Some fundamental and practical issues thus involved are summarized, and future prospects in this area are made.

  14. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    Science.gov (United States)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  15. Rechargeable Room-Temperature Na-CO2 Batteries.

    Science.gov (United States)

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage CO2 .

  16. Karst Aquifer Recharge: Comments on Somaratne, N. Characteristics of Point Recharge in Karst Aquifers. Water 2014, 6, 2782–2807

    Directory of Open Access Journals (Sweden)

    Adrian D. Werner

    2014-11-01

    Full Text Available The article “Characteristics of Point Recharge in Karst Aquifers, Water 6: 2782–2807” by N. Somaratne evaluates various recharge estimation techniques applied to four limestone aquifers in South Australia. Somaratne [1] concludes that methods based on watertable fluctuations, groundwater modelling and water budgets are independent of recharge processes, and are therefore superior to the chloride mass balance (CMB approach for karst aquifers. The current comment offers alternative interpretations from existing field measurements and previous literature, in particular for the Uley South aquifer, which is the focus of much of the article by Somaratne [1]. Conclusions regarding this system are revised, partly to account for the misrepresentation of previous studies. The aeolianite sediments of Uley South are mostly unconsolidated or poorly consolidated, and dissolution features in the calcrete capping provide point infiltration into a predominantly unconsolidated vadose zone, whereas Somaratne’s [1] findings require that the system comprises well-developed conduits in otherwise low-conductivity limestone. Somaratne’s [1] assertion that the basic premise of CMB is violated in Uley South is disputable, given strong evidence of relatively well-mixed groundwater arising from mostly diffuse recharge. The characterization of karst aquifer recharge should continue to rely on multiple techniques, including environmental tracers such as chloride.

  17. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2014-09-01

    Full Text Available In this study, the stable isotope values of oxygen and hydrogen were used to identify the seasonal contribution ratios of precipitation to groundwater recharge in the Hualien River basin of eastern Taiwan. The differences and correlations of isotopes in various water bodies were examined to evaluate the groundwater recharge sources for the Hualian River basin and the interrelations between groundwater and surface water. Proportions of recharge sources were calculated based on the results of the mass balance analysis of the isotope composition of hydrogen and oxygen in the basin. Mountain river water accounted for 83% and plain rainfall accounted for 17% of the groundwater recharge in the Huanlian River basin. Using the mean d-values, a comparison of d-values of precipitation and groundwater indicates the groundwater consists of 75.5% wet seasonal sources and 24.5% dry seasonal sources, representing a distinct seasonal variation of groundwater recharge in the study area. Comparisons between hydrogen and oxygen isotopes in rainwater showed that differences in the amount of rainfall resulted in depleted oxygen and hydrogen isotopes for precipitation in wet seasons as compared to dry seasons. The river water contained more depleted hydrogen and oxygen isotopes than was the case for precipitation, implying that the river water mainly came from the upstream catchment. In addition, the hydrogen and oxygen isotopes in the groundwater slightly deviated from the hydrogen and oxygen isotopic meteoric water line in Huanlian. Therefore, the groundwater in this basin might be a mixture of river water and precipitation, resulting in the effect of the river water recharge being greater than that of rainfall infiltration.

  18. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  19. Fast recharging of electric road vehicles; Elektrostrassenfahrzeuge schnell laden

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, J. [GL Stromrichtertechnik GmbH, Offenbach (Germany)

    1997-11-01

    Electric vehicles are still not generally accepted, owing to their short mileage and long charging procedure. This may change with the development of fast recharging stations. Since mid-1995, a fast recharging station has been installed in a normal fuel station at Bergen on the island of Ruegen. (orig./GL) [Deutsch] Das Elektrofahrzeug hat immer noch grosse Akzeptanzprobleme. Die Gruende hierfuer sind einerseits die geringe Reichweite und andererseits die langwierige Ladeprozedur. Die daraus entstandenen Aktivitaeten fuehrten zur ersten Schnelladestation mit Zapfsaeuleneigenschaften. Seit Mitte 1995 ist der Nachfolger dieser Station in einer normalen Marken-Tankstelle in Bergen auf Ruegen integriert und von einer Mineraloel-Zapfsaeule nicht zu unterscheiden. (orig./GL)

  20. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table.

    Science.gov (United States)

    Schütz, Kirsten; Nagel, Peter; Vetter, Walter; Kandeler, Ellen; Ruess, Liliane

    2009-01-01

    Subsurface microorganisms are crucial for contaminant degradation and maintenance of groundwater quality. This study investigates the microbial biomass and community composition [by phospholipid fatty acids (PLFAs)], as well as physical and chemical soil characteristics at woodland flooding sites of an artificial groundwater recharge system used for drinking water production. Vertical soil profiles to c. 4 m at two watered and one nonwatered site were analyzed. The microbial biomass was equal in watered and nonwatered sites, and considerable fractions (25-42%) were located in 40-340 cm depth. The microbial community structure differed significantly between watered and nonwatered sites, predominantly below 100 cm depth. Proportions of the bacterial PLFAs 16:1omega5, 16:1omega7, cy17:0 and 18:1omega9t, and the long-chained PLFAs 22:1omega9 and 24:1omega9 were more prominent at the watered sites, whereas branched, saturated PLFAs (iso/anteiso) dominated at the nonwatered site. PLFA community indices indicated stress response (trans/cis ratio), higher nutrient availability (unsaturation index) and changes in membrane fluidity (iso/anteiso ratio) due to flooding. In conclusion, water recharge processes led to nutrient input and altered environmental conditions, which resulted in a highly active and adapted microbial community residing in the vadose zone that effectively degraded organic compounds.

  1. 78 FR 76772 - Special Conditions: Airbus Model A350-900 Airplanes; Permanently Installed Rechargeable Lithium...

    Science.gov (United States)

    2013-12-19

    ...; Permanently Installed Rechargeable Lithium-Ion Batteries and Battery Systems AGENCY: Federal Aviation... feature associated with permanently installed rechargeable lithium-ion batteries and battery systems... maximum diversion time. Existing airworthiness regulations did not anticipate the use of...

  2. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  3. Rechargeable lithium batteries in the Navy -- Policy and protocol

    Energy Technology Data Exchange (ETDEWEB)

    Banner, J.A.; Winchester, C.S. [Naval Surface Warfare Center, Silver Spring, MD (United States). Carderock Div.

    1996-12-31

    Rechargeable lithium batteries are an emerging technology that is finding widespread use in myriad applications. These batteries are supplanting many others because of superior performance characteristics, including high energy density and improved cycle life. The newest model laptop computers, camcorders and cellular phones are using these systems to provide lighter products with longer battery life. Potential military-use scenarios for this technology range from propulsion power for autonomous unmanned vehicles to power sources for exercise mines. Current battery chemistries that might eventually be replaced by rechargeable lithium batteries include silver-zinc batteries, lithium-thionyl chloride batteries, and possibly lithium thermal batteries. The Navy is developing and implementing a universal test protocol for evaluating the safety characteristics of rechargeable lithium power sources, as discussed by Winchester et al (1995). Test plans based on this protocol are currently being used to evaluate both commercially available and developmental products. In this paper the authors will review the testing protocol that has been developed for evaluating the safety of rechargeable lithium batteries. Relevant data from current test programs will be presented.

  4. Ceophysical Surveys over Karst Recharge Features,Illinois,USA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Karst aquifers supply a significant fraction of the world's drinking water. These types of aquifers are also highly susceptible to pollution from the surface with recharge usually occurring through fractures and solution openings at the bedrock surface. Thickness of the protective soil cover, macropores and openings within the soil cover, and the nature of the weathered bedrock surface all influence infiltration. Recharge openings at the bedrock surface, however, are often covered by unconsolidated sediments, resulting in the inadvertent placement of landfills, unregulated dump sites, tailing piles, waste lagoons and septic systems over recharge zones. In these settings surface geophysical surveys, calibrated by a few soil cores, could be employed to identify these recharge openings, and qualitatively assess the protection afforded by the soil cover. In a test of this hypothesis, geophysical measurements accurately predicted the thickness of unconsolidated deposits overlying karstic dolomite at a site about 100 km south of Chicago, Illinois. Zones of elevated electrical conductivity and high ground-penetrating radar (GPR) attenuation within the sediments coincided with subcropping solutionally-enlarged hydraulically active bedrock fractures. These fractures extend to over 12-m depth, as shown by 2-D inverted resistivity sections and soil coring. Anomalous electromagnetic (EM) conductivity and GPR response may be due to higher soil moisture above these enlarged fractures. An epikarstal conduit at 2.5-m depth was directly identified through a GPR survey. These results suggest that surface geophysical surveys are a viable tool for assessing the susceptibility of shallow karst aquifers to contamination.``

  5. Managed Aquifer Recharge in Italy: present and prospects.

    Science.gov (United States)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  6. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    2012-04-13

    Apr 13, 2012 ... resulted in a highly increased (278%) predicted mean groundwater recharge. Simulated .... on land cover, soil type, slope, rainfall intensity, and antecedent moisture .... from two meteorological stations, with daily measurements of precipitation and ... South African Department of Land Affairs (DWAF, 2006).

  7. Effects of recharge wells and flow barriers on seawater intrusion.

    Science.gov (United States)

    Luyun, Roger; Momii, Kazuro; Nakagawa, Kei

    2011-01-01

    The installation of recharge wells and subsurface flow barriers are among several strategies proposed to control seawater intrusion on coastal groundwater systems. In this study, we performed laboratory-scale experiments and numerical simulations to determine the effects of the location and application of recharge wells, and of the location and penetration depth of flow barriers, on controlling seawater intrusion in unconfined coastal aquifers. We also compared the experimental results with existing analytical solutions. Our results showed that more effective saltwater repulsion is achieved when the recharge water is injected at the toe of the saltwater wedge. Point injection yields about the same repulsion compared with line injection from a screened well for the same recharge rate. Results for flow barriers showed that more effective saltwater repulsion is achieved with deeper barrier penetration and with barriers located closer to the coast. When the flow barrier is installed inland from the original toe position however, saltwater intrusion increases with deeper barrier penetration. Saltwater repulsion due to flow barrier installation was found to be linearly related to horizontal barrier location and a polynomial function of the barrier penetration depth. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  8. Groundwater recharge estimation and water resources assessment in a tropical crystalline basement aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    Groundwater recharge estimation in crystalline basement aquifers in semi-arid tropical areas is best estimated at monthly time scales as this best captures the dynamics of recharge processes in these areas. Whilst it is standard practice to use at least two methods to estimate the recharge it may be

  9. Groundwater recharge estimation and water resources assessment in a tropical crystalline basement aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    Groundwater recharge estimation in crystalline basement aquifers in semi-arid tropical areas is best estimated at monthly time scales as this best captures the dynamics of recharge processes in these areas. Whilst it is standard practice to use at least two methods to estimate the recharge it may be

  10. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  11. Effect of soil disturbance on recharging fluxes: case study on the Snake River Plain, Idaho National Laboratory, USA

    Science.gov (United States)

    Nimmo, John R.; Perkins, Kim S.

    2008-08-01

    Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards’ equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts.

  12. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.

    Science.gov (United States)

    Meredith, Karina; Cendón, Dioni I; Pigois, Jon-Philippe; Hollins, Suzanne; Jacobsen, Geraldine

    2012-01-01

    The Gnangara Mound and the underlying Perth Basin aquifers are the largest source of groundwater for the southwest of Australia, supplying between 35 and 50% of Perth's potable water (2009-2010). However, declining health of wetlands on the Mound coupled with the reduction in groundwater levels from increased irrigation demands and drier climatic conditions means this resource is experiencing increased pressures. The northern Gnangara is an area where the Yarragadee aquifer occurs at shallow depths (~50 m) and is in direct contact with the superficial aquifer, suggesting the possibility of direct recharge into a generally confined aquifer. Environmental isotopes ((14)C and (3)H) and hydrochemical modelling were used to assess the presence of a recharge 'window' as well as understand the groundwater residence time within different aquifers. Forty-nine groundwater samples were collected from depths ranging from 11 to 311 m below ground surface. The isotopic variation observed in the superficial aquifer was found to be controlled by the different lithologies present, i.e. quartz-rich Bassendean Sand and carbonate-rich sediments of the Ascot Formation. Rainfall recharge into the Bassendean Sand inherits its dissolved inorganic carbon from the soil CO(2). Organic matter throughout the soil profile is degraded by oxidation leading to anoxic/acidic groundwater, which if in contact with the Ascot Formation leads to enhanced dissolution of carbonates. Hydrochemical mass balance modelling showed that carbonate dissolution could contribute 1-2 mmol kg(-1) of carbon to groundwaters recharged through the Ascot Formation. The corrected groundwater residence times of the Yarragadee aquifer in the northern part of the study area ranged from 23 to 35 ka, while waters in the southeastern corner ranged from sub-modern to 2 ka. Groundwater ages increase with distance radiating from the recharge 'window'. This study delineates a recharge 'window' into the commonly presumed confined

  13. Groundwater recharge measurements in gravel sandy sediments with monolith lysimeter

    Science.gov (United States)

    Bracic Zeleznik, Branka; Souvent, Petra; Cencur Curk, Barbara; Zupanc, Vesna

    2013-04-01

    Ljubljana field aquifer is recharging through precipitation and the river Sava, which has the snow-rain flow regime. The sediments of the aquifer have high permeability and create fast flow as well as high regeneration of the dynamic reserves of the Ljubljana field groundwater resource. Groundwater recharge is vulnerable to climate change and it is very important for drinking water supply management. Water stored in the soil and less permeable layers is important for water availability under extreme weather conditions. Measurements of water percolation through the vadose zone provide important input for groundwater recharge assessment and estimation of contaminant migration from land surface to the groundwater. Knowledge of the processes governing groundwater recharge in the vadose zone is critical to understanding the overall hydrological cycle and quantifying the links between land uses and groundwater quantity and quality. To improve the knowledge on water balance for Ljubljana field aquifer we establish a lysimeter for measurements of processes in unsaturated zone in well field Kleče. The type of lysimeter is a scientific lysimeter designed to solve the water balance equation by measuring the mass of the lysimeter monolith as well as that of outflow tank with high accuracy and high temporal resolution. We evaluated short period data, however the chosen month demonstrates weather extremes of the local climate - relatively dry periods, followed by high precipitation amount. In time of high water usage of vegetation only subsequent substantial precipitation events directly results in water flow towards lower layers. At the same time, gravely layers of the deeper parts of the unsaturated zone have little or no capacity for water retention, and in the event that water line leaves top soil, water flow moves downwards fairly quickly. On one hand this confirms high recharge capacity of Ljubljana field aquifer from precipitation on green areas; on the other hand it

  14. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  15. Groundwater suitability recharge zones modelling - A GIS application

    Science.gov (United States)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  16. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Science.gov (United States)

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  17. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. O. Cuthbert

    2013-03-01

    Full Text Available Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010 is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  18. An overview of experiences of basin artificial recharge of ground water in Japan

    Science.gov (United States)

    Hida, Noboru

    In this paper, the author reviews the present situation of basin artificial recharge of ground water (MAR: managed aquifer recharge) as of 2007 in Japan. Most of the artificial recharge of basin method is carried out using alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustainability for the groundwater environment, especially in the distal fan. As a general judgment, the basin artificial recharge contributes to sustainable aquifer management in alluvium. As a result of this review, the basin artificial recharge will be utilized more in the future, not only in Japan, but in monsoon Asian countries as well.

  19. Monitoring induced denitrification in an artificial aquifer recharge system.

    Science.gov (United States)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  20. Transient,spatially-varied recharge for groundwater modeling

    Science.gov (United States)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  1. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers.

    Science.gov (United States)

    Li, Zhi; Chen, Xi; Liu, Wenzhao; Si, Bingcheng

    2017-05-15

    Studying the groundwater recharge mechanism in regions with thick unsaturated zone can greatly improve our understanding of hydrological processes since these regions have complex groundwater processes. This study attempted to discuss the groundwater recharge in a region covered by loess over 130m deep in China's Loess Plateau. The water stable isotope, tritium and chloride in precipitation, groundwater and soil water were determined and used as inputs of mass balance methods. The tracer technique is found to be applicable and effective this region with thick unsaturated zone. The groundwater originates from rapid precipitation infiltration through some fast flow paths. The total recharge is likely to be 107±55mmyr(-1) accounting for 19±10% of average annual precipitation, while the recharge from preferential flow accounts for 87±4% of the total recharge. The identified recharge mechanism has important implication to groundwater management and recharge modeling for regions covered by thick loess.

  2. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  3. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  4. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.

    Science.gov (United States)

    Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2017-02-01

    Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.

  5. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  6. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  7. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  8. Electric Vehicle Green Routing with Possible En-Route Recharging

    OpenAIRE

    BAOUCHE, Fouad; BILLOT, Romain; Trigui, Rochdi; EL FAOUZI, Nour Eddin

    2014-01-01

    The deployment of Electric Vehicles (EVs) is constrained mainly by the restricted autonomy, the lack of charging stations, the battery recharge time and recuperation capability (e.g. braking phases or downhill). In this study we aim to develop a green routing tool to encourage the use of EV. To overcome the autonomy limitation we propose a methodology for the EV that includes a charging stations location model, an energy graph construction for EV routing and a resolution scheme for the routin...

  9. Preparation and Electrode Performance of Ferrihydrites For Rechargeable Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; LAI Xiao-yong; XIA Wei; YU Ran-bo; MAO Dan; XING Chao-jian; YAO Jian-xi; WANG Dan; LI Xiao-tian

    2008-01-01

    @@ Now LiCoO2 is the most widely used electrode material in commercial rechargeable lithium-based batteries; however, the toxicity of cobalt and the scarcity of cobalt sources, as well as the limited charge/discharge capacity(130-140 mA·h·g-1) of LiCoO2 electrode drive many efforts to develop various alternative electrode materials, including diverse transition metal oxides and their lithiated counterparts[1-3].

  10. Water Conservation and Artificial Recharge of Aquifers in India

    Energy Technology Data Exchange (ETDEWEB)

    Chandha, D. K.

    2014-10-01

    India has proud traditions and wisdom which have evolved over thousands of years for developing technologies for water conservation and groundwater recharge using surplus monsoon precipitation runoff. This is imperative as the average rainfall/precipitation period is about 27 days/year and with uneven distribution across the country. Groundwater development is now the mainstay for sustaining agricultural production and rural water supplies. As such, groundwater development is increasing at an exponential rate and the estimated draft is now 231 000 hm{sup 3} with the result that almost 15% of the groundwater development areas are showing a continuous decline of water levels. There is an anomalous situation whereby water levels are declining in 831 blocks (assessment units) out of a total of 5 723 blocks across the country, and availability of excessive 864 000 hm{sup 3} runoff in different river basins brings floods and creates water logging in some parts of the country. This non-utilizable water can be planned for creating small surface water storage and to create additional sub-surface storage through groundwater recharge. At present, total water available is estimated at 660 000 hm{sup 3} and the minimum estimated water demand will be 843 000 hm{sup 3} in 2025 and 973 000 hm{sup 3} in 2050. Therefore, if India wants sustainable food supplies and to meet domestic/industrial water requirements, there is no other option than to implement projects for water conservation/groundwater recharge. Although a number of forward looking steps have been planned by the government and other institutions, many lacunae have been observed which need to be addressed for the successful implementation of water conservation and recharge programmes. This paper discusses various practices from the pre-historic to the present day, with case studies showing technological intervention. (Author)

  11. Evaluation of Recharge Potential at Crater U5a (WISHBONE)

    Energy Technology Data Exchange (ETDEWEB)

    Richard H. French; Samuel L. Hokett

    1998-11-01

    Radionuclides are present both below and above the water table at the Nevada Test Site (NTS), as the result of underground nuclear testing. Mobilization and transport of radionuclides from the vadose zone is a complex process that is influenced by the solubility and sorption characteristics of the individual radionuclides, as well as the soil water flux. On the NTS, subsidence craters resulting from testing underground nuclear weapons are numerous, and many intercept surface water flows. Because craters collect surface water above the sub-surface point of device detonation, these craters may provide a mechanism for surface water to recharge the groundwater aquifer system underlying the NTS. Given this situation, there is a potential for the captured water to introduce contaminants into the groundwater system. Crater U5a (WISHBONE), located in Frenchman Flat, was selected for study because of its potentially large drainage area, and significant erosional features, which suggested that it has captured more runoff than other craters in the Frenchman Flat area. Recharge conditions were studied in subsidence crater U5a by first drilling boreholes and analyzing the collected soil cores to determine the soil properties and moisture conditions. This information, coupled with a 32-year precipitation record, was used to conduct surface and vaodse zone modeling. Surface water modeling predicted that approximately 13 ponding events had occurred during the life of the crater. Vadose zone modeling indicated that since the crater's formation approximately 5,900 m3 of water were captured by the crater. Of this total, approximately 5,200 m3 of potential recahrge may have occurred, and the best estimates of annual average potential recharge rates lie between 36 and 188 cm of water per year. The term potential is used here to indicate that the water is not technically recharged because it has not yet reached the water table.

  12. 12-Crown-4 Ether Improves Rechargeable Lithium Cells

    Science.gov (United States)

    Nagasubramanian, Ganesan; Attia, Alan I.

    1992-01-01

    Experiments show addition of 12-crown-4 ether (12Cr4) to thin film of polyethylene oxide (PEO) and LiBF4 reduces charge-transfer resistance of film and enhances performance of electrochemical cell in which film is electrolyte, anode is lithium, and cathode is LixCoO2. By increasing conductivity of the electrolyte, 12Cr4 reduces polarization loss; enabling cell to sustain higher current. Result is new type of rechargeable lithium cell.

  13. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    Science.gov (United States)

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff.

  14. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    Science.gov (United States)

    Gurdak, Jason

    2017-04-01

    variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.

  15. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  16. Uncertainties in the simulation of groundwater recharge at different scales

    Directory of Open Access Journals (Sweden)

    H. Bogena

    2005-01-01

    Full Text Available Digital spatial data always imply some kind of uncertainty. The source of this uncertainty can be found in their compilation as well as the conceptual design that causes a more or less exact abstraction of the real world, depending on the scale under consideration. Within the framework of hydrological modelling, in which numerous data sets from diverse sources of uneven quality are combined, the various uncertainties are accumulated. In this study, the GROWA model is taken as an example to examine the effects of different types of uncertainties on the calculated groundwater recharge. Distributed input errors are determined for the parameters' slope and aspect using a Monte Carlo approach. Landcover classification uncertainties are analysed by using the conditional probabilities of a remote sensing classification procedure. The uncertainties of data ensembles at different scales and study areas are discussed. The present uncertainty analysis showed that the Gaussian error propagation method is a useful technique for analysing the influence of input data on the simulated groundwater recharge. The uncertainties involved in the land use classification procedure and the digital elevation model can be significant in some parts of the study area. However, for the specific model used in this study it was shown that the precipitation uncertainties have the greatest impact on the total groundwater recharge error.

  17. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.

  18. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  19. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    Science.gov (United States)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  20. Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China

    Institute of Scientific and Technical Information of China (English)

    Bingguo Wang; Menggui Jin; Xing Liang

    2015-01-01

    Accurate estimation of groundwater recharge is essential for efficient and sustainable groundwater management in many semi-arid regions. In this paper, a lumped parameter model (EARTH) was established to simulate the recharge rate and recharge process in typical areas by the ob-servation datum of weather, soil water and groundwater synthetically, and the spatial and temporal variation law of groundwater recharge in the Hebei Plain was revealed. The mean annual recharge rates at LQ, LC, HS, DZ and CZ representative zones are 220.1, 196.7, 34.1, 141.0 and 188.0 mm/a and the recharge coefficients are 26.5%, 22.3%, 7.2%, 20.4%, and 22.0%, respectively. Recharge rate and re-charge coefficient are gradually reduced from piedmont plain to coastal plain. Groundwater recharge appears as only yearly waves, with higher frequency components of the input series filtered by the deep complicated unsaturated zone (such as LC). While at other zones, groundwater recharge series strongly dependent on the daily rainfall and irrigation because of the shallow water table or coarse lithology.

  1. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.

    Science.gov (United States)

    Doble, Rebecca C; Simmons, Craig T; Walker, Glen R

    2009-01-01

    In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.

  2. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events 14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Groundwater recharge in different physiognomies of the Brazilian Cerrado

    Science.gov (United States)

    Oliveira, P. T. S.; Leite, M.; Mattos, T.; Wendland, E.; Nearing, M. A.

    2015-12-01

    Since 2014, several cities of southeastern Brazil have grappled with their worst drought in nearly 80 years. To improve water availability in this region, the Brazilian government has studied the possibility of increasing groundwater use, mainly in the Guarani Aquifer System (GAS), the largest (~1.2 million km2) transnational boundary groundwater reservoir in South America. Approximately one half of the outcrop areas of the GAS are located in the Cerrado biome, the main agricultural expansion region in Brazil. Large areas of Cerrado vegetation have been converted into farmland in recent years; however, little attention has been paid to the consequences of this land cover and land use change on groundwater recharge. In this study we assessed groundwater recharge in different physiognomies of the Cerrado located in an outcrop area of the GAS. Water table fluctuations were measured from October 2011 through August 2013, by 64 monitoring wells distributed on five physiognomies of the undisturbed Cerrado. We used 20 (2.2±0.3 m), 20 (4.3±1.4 m), 14 (4.7±1.9 m), 9 (6.2±0.7 m), and 1 (42 m) monitoring wells (and average depth of wells) for "campo limpo" (cerrado grassland), "campo sujo" (shrub cerrado), "campo cerrado" (shrub cerrado), "cerrado sensu stricto" (wooded cerrado), and "cerrado sensu stricto denso" (cerrado woodland), respectively. Recharge was computed for each well using the Water Table Fluctuation method. The measured precipitation for hydrological years 2011-12 and 2012-13 were 1247 mm and 1194 mm, respectively. We found values of average annual recharge of 363 mm, 354 mm, 324 mm, and 315 mm for "campo limpo", "campo sujo","campo cerrado", and "cerrado sensu stricto", respectively. We did not find changes in the water table level in the one well located in the "cerrado sensu stricto denso". The water table in this well was 35 m deep; therefore, the amount of water that eventually reached the saturated zone was not enough to cause a rapid change in the

  4. 7 CFR 1219.4 - Consumer information.

    Science.gov (United States)

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.4 Consumer... regarding the purchase, preparation, and use of Hass avocados....

  5. Improving Consumer Information for Higher Education Planning

    Science.gov (United States)

    Herndon, M. Craig

    2012-01-01

    It is a historically held principle of microeconomics that in the presence of better information, consumers make better decisions. This chapter focuses on information to guide consumers in making decisions about higher education. It examines the development and implementation of a one-stop career and college planning tool that leverages existing…

  6. 47 CFR 64.703 - Consumer information.

    Science.gov (United States)

    2010-10-01

    ... RULES RELATING TO COMMON CARRIERS Furnishing of Enhanced Services and Customer-Premises Equipment by... as a hotel surcharge billed by a hotel. Such charges are addressed in paragraph (b) of this section... location, but no later than 30 days following such change. This requirement may be satisfied by applying...

  7. Microbial community analysis and bioclogging identification in a Managed Artificial Recharge system.

    Science.gov (United States)

    Barba, Carme; Folch, Albert; Gaju, Núria; Martínez-Alonso, Maira; Grau, Alba; Sanchez-Vila, Xavier

    2015-04-01

    Managed Artificial Recharge (MAR) is a well-known technique that aims at increasing the aquifer resources while managing its quality. In order to increase water resources in the Barcelona conurbation, an area with significant quantitative and qualitative groundwater disturbances, a MAR facility was built in Sant Vicenç dels Horts, Catalonia, Spain. The system, constructed in 2009 consists of a sedimentation pond that pre-treats the water that is then diverted to the final recharge pond. The facility was originally aimed at increasing the availability of supply water during scarcity periods. Later, it was considered as a good test site to study best infiltration practices regarding water quality evolution. For this purpose, a reactive layer was installed in 2011 at the bottom of the pond. This was composed by organic compost and autochthonous material. Small proportions of iron oxides and clay were added to promote ionic adsorption and exchange. The objective of the layer was to boost microbial activity that would be structured in depth according to the presence of a marked redox profile, thus enhancing the reduction of all organic matter, including a number of recalcitrant compounds. In the last 3 years, site studies were focused on the layer's efficiency (i.e., percentage of organic pollutants degradation). It was found that degradation is occurring despite the infiltration rate has been significantly reduced. In our most recent work, we took a step further in the study of the processes occurring in the facility, and specifically with those related to the presence of the reactive layer. We focused on characterizing microbial communities in the system by combining the sampling of soil in the recharge pond bottom, water of the vadose zone, and groundwater in the aquifer zone from a series of nearby piezometers. Molecular techniques, such as Denaturing Gradient of Gel Electrophoresis (DGGE), were applied to the water and soil samples. This information was matched

  8. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States

    Directory of Open Access Journals (Sweden)

    Brian F. Thomas

    2016-03-01

    Full Text Available Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.

  11. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  12. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  13. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    Science.gov (United States)

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-10-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  14. Groundwater recharge at five representative sites in the Hebei Plain, China.

    Science.gov (United States)

    Lu, Xiaohui; Jin, Menggui; van Genuchten, Martinus Th; Wang, Bingguo

    2011-01-01

    Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one-dimensional unsaturated flow model (Hydrus-1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine-textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time-lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time-lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge.

  15. Rechargeable silver-modified mercuric oxide-zinc cell for cardiac pacemakers.

    Science.gov (United States)

    Tyers, G F; Hughes, H C; Brownlee, R R; Manley, N J; Gorman, I N

    1976-11-04

    Tests were conducted on rechargeable mercury-zinc pacemaker batteries under simulated and actual biologic conditions, using a variety of discharge rates and charging schedules. In tests on 96 cells at a 6.4 milliampere (ma) discharge, recharging once every 15 months of simulated pacing at a 25 microampere (mua) drain, the earliest cell failure occurred after an equivalent of 50 years of pacing. The mean pacing equivalent for all 96 cells was more than 140 years. In 6.4 ma discharge tests on 24 cells, recharging once every 8 days of simulated pacing, only 1 cell in 24 failed after an equivalent of more than 500 years of pacing (actual time 2 years). In tests on 13 cells pacing at a 200 mua drain without recharging, the simulated mean duration of pacing before total discharge was 4.8 years. Seven other cells at a 200 mua drain with periodic recharging continue to function normally after more than 7 years of actual time, simulating 56 years of pacing at a 25 mua drain. Cardiac pacemakers using the rechargeable mercury-zinc cell have been implanted in animals for more than 2 1/2 years and in patients for more than 1 year with all units continuing to function satisfactorily. It has been demonstrated unequivocally that a rechargeable mercury-zinc pacemaker will function continuously for more than 4 years without recharging and that periodic recharging will extend pacing life far beyond that predicted for lithium and nuclear primary power sources.

  16. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    Science.gov (United States)

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  17. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  18. Groundwater and climate change in Africa : review of recharge studies

    OpenAIRE

    Bonsor, H. C.; MacDonald, A. M.

    2010-01-01

    The review of recharge studies was conducted as part of a one year DFID-funded research programme, aimed at improving understanding of the impacts of climate change on groundwater resources and local livelihoods – see http://www.bgs.ac.uk/GWResilience/. The review is one of a series of components within the project. The overall outputs of the project are: Two hydrogeological case studies in West and East Africa – which assess the storage and availability of groundwater in different aquifers a...

  19. Lithium-Air Battery: Study of Rechargeability and Scalability

    Science.gov (United States)

    2012-07-01

    current collector. Active layer consisting of the China carbon and α-MnO2 catalyst was applied on one side and diffusion layer consisting of only carbon...was applied on the other side. The sandwich was compacted under hydraulic press Li foil of 40 mm diameter was sectioned out of Li ribbon and Li...cells. It gave high capacity 4701 mAh/g but there was no rechargeability (Figure 17). (14) TiO2 nanotube: TiO2 nanotubes were studied as a catalyst

  20. Methodology for rapid assessment of aquifer recharge areas

    Directory of Open Access Journals (Sweden)

    Vitor Vieira Vasconcelos

    2013-06-01

    Full Text Available The environmental tools of local appliance, such as surveillance and permits of deforestations and water use, environmentalimpact assessments of local scale, and delimitation of preservation areas, demand customized methodologies to deal withhydrogeological issues. In this study, a structured one for rapid environmental assessment aiming at recharge of aquiferssafety was presented. This comprises qualitative and quantitative evaluations by means of textual and cartographicaldescriptions, complemented by weighted spreadsheets for rapid assessment. Applications in case studies took place in sitesselected in the Paracatu River Basin. The results showed a positive potential for knowledge and protection of aquifers inmicro-watersheds.

  1. Evaluation of chloride mass balance of pore water as an indicator of groundwater recharge to the Monterrey Metropolitan Area, Mexico

    Science.gov (United States)

    Rosales-Lagarde, Laura; Pasten, Ernesto; Mora, Abrahan; Mahlknecht, Jürgen

    2016-04-01

    Monterrey Metropolitan Area in Nuevo Leon, Mexico, is the third largest metropolitan area and one of the most important industrial sites of Mexico. Groundwater constitutes 40% of the water supply to this urban area. This supply is under constant stress due to the population increase. The unsaturated zone at six sites along two cross-sections was characterized to evaluate the potential of chloride concentration as an indicator of recharge. The selected sites include the range of topographic elevations, vegetation, and annual precipitation of the study area. In each site, boreholes up to 5 m deep were drilled and soil was sampled every 0.5 m. The grain size of each soil sample was determined and pore water extracted to determine the water content percentage, and the chloride, sulfate and nitrate concentration of the pore water. The undersaturated zone consists of alluvial deposits with an average gravel and sand content greater than 60% for all but one of the sampling sites. The pore water content varies from 0.4 to 25% by weight with a decreasing trend as depth increases in areas with agriculture. Sulfate has the highest anion concentration in the pore waters, ranging from 42 to 45,000 mg/L and no apparent distribution pattern along the soil profile columns. Chloride concentration ranges from 8 to 3600 mg/L with an increase in concentration below 1.5 m depth in all the profiles. Chloride and sulfate concentrations with depth are directly correlated suggesting a common input, possibly dissolution-precipitation of evaporite minerals from nearby outcrops or an anthropogenic input. Hence, it is unlikely that chloride behaves as a conservative ion. As a result, its concentration is not likely to be a good indicator of groundwater recharge. Finally; the nitrate concentration ranges from 2 to 96 mg/L nitrate, without a clear pattern along the soil profiles. Low concentration of nitrate in the soil profiles below agricultural areas may suggest denitrification as suggested

  2. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    Science.gov (United States)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  3. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    Science.gov (United States)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  4. Numerical assessment of ASR recharge using small-diameter wells and surface basins

    Science.gov (United States)

    Händel, Falk; Liu, Gaisheng; Dietrich, Peter; Liedl, Rudolf; Butler, James J.

    2014-09-01

    Aquifer storage and recovery (ASR) methods are increasingly used to overcome the temporal imbalance between water demand and availability. Common ASR recharge methods utilize large-diameter injection wells or surface infiltration basins and trenches, and can be costly to implement. A new low-cost ASR recharge method is currently being developed. This approach is based on recharge via gravity in small-diameter wells installed with direct-push (DP) technology. Numerical modeling is used here to assess the potential of this new approach under conditions commonly faced in field settings. The primary objective is to investigate if a battery of small-diameter DP wells can serve as a viable alternative to a surface basin under typical field conditions, while the secondary objective is to assess which subsurface parameters have the greatest control on DP well performance. Simulation results indicate that gravity recharge via small-diameter wells appears to have a distinct advantage over recharge via surface infiltration basins. For example, two 0.05-m shallow vadose-zone wells with 9-m screens can recharge water at a greater rate than a 60 m2 basin. Also, results reveal that, contrary to an infiltration basin, the recharge rate in a DP well has a much stronger dependence on the horizontal component of hydraulic conductivity than on the vertical component. Moreover, near-surface layers of low hydraulic conductivity, which can significantly reduce the recharge capacity of a surface basin, have a relatively small impact on the recharge capacity of a well as long as a significant portion of the well screen is installed below those layers. Given that installation and operation costs can be low in comparison to common ASR recharge methods, this new approach appears to have great potential for recharging good quality water in shallow unconsolidated aquifers. A field investigation has recently been initiated to follow up the findings of this simulation assessment.

  5. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  6. Natural water purification and water management by artificial groundwater recharge.

    Science.gov (United States)

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  7. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  8. Understanding electrode materials of rechargeable lithium batteries via DFT calculations

    Institute of Scientific and Technical Information of China (English)

    Tianran Zhang; Daixin Li; Zhanliang Tao; Jun Chenn

    2013-01-01

    Rechargeable lithium batteries have achieved a rapid advancement and commercialization in the past decade owing to their high capacity and high power density. Different functional materials have been put forward progressively, and each possesses distinguishing structural features and electrochemical properties. In virtue of density functional theory (DFT) calculations, we can start from a specific structure to get a deep comprehension and accurate prediction of material properties and reaction mechanisms. In this paper, we review the main progresses obtained by DFT calculations in the electrode materials of rechargeable lithium batteries, aiming at a better understanding of the common electrode materials and gaining insights into the battery performance. The applications of DFT calculations involve in the following points of crystal structure modeling and stability investigations of delithiated and lithiated phases, average lithium intercalation voltage, prediction of charge distributions and band structures, and kinetic studies of lithium ion diffusion processes, which can provide atomic understanding of the capacity, reaction mechanism, rate capacity, and cycling ability. The results obtained from DFT are valuable to reveal the relationship between the structure and the properties, promoting the design of new electrode materials.

  9. Assessment of Managed Aquifer Recharge through Modeling—A Review

    Directory of Open Access Journals (Sweden)

    Jana Ringleb

    2016-12-01

    Full Text Available Managed aquifer recharge (MAR is the purposeful recharge of an aquifer for later recovery or environmental benefits and represents a valuable method for sustainable water resources management. Models can be helpful tools for the assessment of MAR systems. This review encompasses a survey and an analysis of case studies which apply flow and transport models to evaluate MAR. The observed modeling objectives include the planning or optimization of MAR schemes as well as the identification and quantification of geochemical processes during injection, storage and recovery. The water recovery efficiency and the impact of the injected water on the ambient groundwater are further objectives investigated in the reviewed studies. These objectives are mainly solved by using groundwater flow models. Unsaturated flow models, solute transport models, reactive geochemical models as well as water balance models are also frequently applied and often coupled. As each planning step to setup a new MAR facility requires cost and time investment, modeling is used to minimize hazard risks and assess possible constraints of the system such as low recovery efficiency, clogging and geochemical processes.

  10. New aqueous rechargeable power sources based on intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; Liu, L.L.; Qu, Q.T.; Wu, Y.P. [Fudan Univ., New Energy and Materials Laboratory, Shanghai (China). Dept. of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials

    2010-07-01

    Lithium ion batteries have gained global attention because of their intercalation mechanism. However, when the capacity is very large for large-scale energy storage of electricity, the safety of lithium ion batteries is a challenge. The safest energy storage for large-scale energy storage is based on aqueous solutions. This paper reported on the latest developments related to the results of aqueous rechargeable power sources based on intercalation compounds, notably aqueous rechargeable lithium batteries (ARLBs) and hybrid supercapacitors. The paper provided background information on ARLBs and discussed the use of polypyrrole as anode materials. It was found that this polymer could be doped and un-doped during cycling, which demonstrated excellent cycling behaviour. The paper also discussed the enhancement of the reversible capacity of lithium manganese oxide (LiMn{sub 2}O{sub 4}) and lithium cobalt dioxide (LiCoO{sub 2}) in ARLBs by adopting novel preparation technologies. It was concluded that ARLBs and the new hybrid supercapacitors show significant potential for practical applications in large-scale energy storage that are needed to make advances in sustainable development. 7 refs.

  11. Impact of Large-scale Geological Architectures On Recharge

    Science.gov (United States)

    Troldborg, L.; Refsgaard, J. C.; Engesgaard, P.; Jensen, K. H.

    Geological and hydrogeological data constitutes the basis for assessment of ground- water flow pattern and recharge zones. The accessibility and applicability of hard ge- ological data is often a major obstacle in deriving plausible conceptual models. Nev- ertheless focus is often on parameter uncertainty caused by the effect of geological heterogeneity due to lack of hard geological data, thus neglecting the possibility of alternative conceptualizations of the large-scale geological architecture. For a catchment in the eastern part of Denmark we have constructed different geologi- cal models based on different conceptualization of the major geological trends and fa- cies architecture. The geological models are equally plausible in a conceptually sense and they are all calibrated to well head and river flow measurements. Comparison of differences in recharge zones and subsequently well protection zones emphasize the importance of assessing large-scale geological architecture in hydrological modeling on regional scale in a non-deterministic way. Geostatistical modeling carried out in a transitional probability framework shows the possibility of assessing multiple re- alizations of large-scale geological architecture from a combination of soft and hard geological information.

  12. Recharge and flow processes in a till aquitard

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Høgh Jensen, Karsten; Dahl, Mette

    1999-01-01

    Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide a framew......Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide...... a framework for assessing the individual flow components and forestablishing the overall water balance. Traditionally such models are calibrated against measurements of stream flow, head in the aquiferand perhaps drainage flow. The head in the near surface clay till deposits have generally not been measured...... the shallow wells and one in the valley adjacent to the stream. Precipitation and stream flow gauging along with potential evaporation estimates from a nearby weather station provide the basic data for the overall water balance assessment. The geological composition was determined from geoelectrical surveys...

  13. Treatment of Organic Compounds in Reclaimed Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    皮运正; 胡俊; 云桂春

    2004-01-01

    To study water quality problems associated with groundwater recharge,a tertiary treatment process,consisting of coagulation,sand filtration,and granular activated carbon (GAC) adsorption,was used in combination with a simulated soil aquifer treatment.The process significantly improved secondary effluent quality.GAC adsorption reduced organic substances expressed by UV-254,dissolved organic carbon as well as partially adsorbable organic halogens.The results of the Ames test show that the secondary effluent contains a high concentration of mutagens.GAC filtration removed adsorbable organic bromine slightly whereas GAC adsorption removed mutagens effectively.The simulated soil aquifer treatment was able to further reduce UV-254,dissolved organic carbon,and adsorbable organic halogens through biodegradation.Adsorbable organic bromine levels were also reduced by the soil aquifer treatment process.The given reclamation technology used for groundwater recharge is of benefit to the removal of dissolved organic carbon,UV-254,adsorbable organic halogens,and mutagenicity.

  14. Natural water purification and water management by artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    Klaus-Dieter BALKE; Yan ZHU

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and fiver water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant puri- fication and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quanti-tative advantages. The contamination of infiltrated fiver water will be reduced by natural attenuation. Clay minerals, iron hy-droxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing fiver discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the fiver discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  15. The Li-ion rechargeable battery: a perspective.

    Science.gov (United States)

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  16. Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Russell; Tim Minor

    2002-08-31

    Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations

  17. A preliminary analysis of the groundwater recharge to the Karoo formations, mid-Zambesi basin, Zimbabwe

    DEFF Research Database (Denmark)

    Larsen, Flemming; Owen, R.; Dahlin, T.

    2002-01-01

    A multi-disciplinary study is being carried out on recharge to the Karoo sandstone aquifer in the western part of Zimbabwe, where recharge is controlled by the presence of a thick, confining basalt layer. The aquifer is geographically extensive, and has been identified throughout the southern part...

  18. Groundwater Recharge Estimation And Water Resources Assessment In A Tropical Crystalline Basement Aquifer

    NARCIS (Netherlands)

    Nyagwambo, N.L.

    2006-01-01

    While most groundwater recharge estimation methods give reasonable long-term annual average estimates very few if any methods offer guidance on monthly recharge. In crystalline basement aquifers (CBAs) the problem is compounded by the high seasonal, intra-annual and inter-annual variability. The chl

  19. Quantifying ground water recharge at multiple scales using PRMS and GIS.

    Science.gov (United States)

    Cherkauer, Douglas S

    2004-01-01

    Management of ground water resources requires a method to calculate demonstrably accurate recharge rates at local to regional scales using readily available information bases. Many methods are available to calculate recharge, but most are unable to satisfy all these conditions. A distributed parameter model is shown to meet the stated needs. Such models are input intensive, however, so a procedure to define most inputs from GIS and hydrogeological sources is presented. It simplifies the PRMS calibration observed streamflow hydrographs by reducing degrees of freedom from dozens to four. For seven watersheds (60 to 500 km2), the GIS-aided calibrations have average errors of 5% on recharge and 2% on total streamflow, verifying the accuracy of the process. Recharge is also calculated for 63 local-scale subwatersheds (average size 37 km2). For the study area, calculated recharges average 11 cm/yr. Soil and rock conductivity, porosity, and depth to the water table are shown to be the physical properties which dominate the spatial variability of recharge. The model has been extended to uncalibrated watersheds where GIS and climatic information are known. It reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds. It has not been tested outside the study area, however.

  20. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia

    Science.gov (United States)

    Melki, Achraf; Abdollahi, Khodayar; Fatahi, Rouhallah; Abida, Habib

    2017-08-01

    Natural groundwater recharge under semi arid climate, like rainfall, is subjected to large variations in both time and space and is therefore very difficult to predict. Nevertheless, in order to set up any strategy for water resources management in such regions, understanding the groundwater recharge variability is essential. This work is interested in examining the impact of rainfall on the aquifer system recharge in the Northern Gafsa Plain in Tunisia. The study is composed of two main parts. The first is interested in the analysis of rainfall spatial and temporal variability in the study basin while the second is devoted to the simulation of groundwater recharge. Rainfall analysis was performed based on annual precipitation data recorded in 6 rainfall stations over a period of 56 years (1960-2015). Potential evapotranspiration data were also collected from 1960 to 2011 (52 years). The hydrologic distributed model WetSpass was used for the estimation of groundwater recharge. Model calibration was performed based on an assessment of the agreement between the sum of recharge and runoff values estimated by the WetSpass hydrological model and those obtained by the climatic method. This latter is based on the difference calculated between rainfall and potential evapotranspiration recorded at each rainy day. Groundwater recharge estimation, on monthly scale, showed that average annual precipitation (183.3 mm/year) was partitioned to 5, 15.3, 36.8, and 42.8% for interception, runoff, actual evapotranspiration and recharge respectively.

  1. High-performance rechargeable batteries with fast solid-state ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2017-06-27

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  2. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    Science.gov (United States)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  3. Atlantis Water Supply Scheme (AWSS) artificial recharge scientific and operational support

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2012-10-01

    Full Text Available , Stellenbosch, South Africa 2City of Cape Town, South Africa CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: njovanovic@csir.co.za ? www.csir.co.za WHAT IS MANAGED AQUIFER RECHARGE? Managed Aquifer Recharge (MAR) is defined by the transfer of surface...

  4. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2009-01-01

    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  5. Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells

    KAUST Repository

    Missimer, Thomas M. M.

    2014-06-25

    Wadi channel recharge to the underlying alluvial aquifer is naturally limited by the flashy nature of flood events, evapotranspiration losses of water from the vadose zone, and aquifer heterogeneity, particularly low vertical hydraulic conductivity. Anthropogenic lowering of the water table in many wadi aquifers has also reduced the potential recharge by increasing the thickness of the vadose zone, causing interflow water loss from surface emergence and evaporation. A method to enhance recharge is to slow the flow within wadi channels by placement of dam structures, thereby ponding water and increasing the vertical head gradient to create a more rapid rate of infiltration and percolation. Effectiveness of wadi dams to enhance aquifer recharge reduces over time due to mud deposition within the reservoir caused by storm events. Up to 80 % of the water in old wadi reservoirs is lost to free-surface evaporation before infiltration and recharge can occur. One method to maintain or increase the rate of recharge is to convey clean water by gravity flow from the reservoir down-gradient to artificially recharge the aquifer using existing wells. This type of system is a low-cost and low-energy recharge method which could greatly enhance groundwater storage in wadi aquifers. Modeling results show that existing wells could store up to 1,000 m3/day under gravity-feed conditions and up to 3,900 m3/day with the shut-in of the well to produce a pressurized system. © 2014 Springer-Verlag Berlin Heidelberg.

  6. High Temperature Sensing Systems--Characteristics of Rechargeable Batteries at High Temperature--

    OpenAIRE

    2001-01-01

     High temperature discharge characteristics were measured at 100℃ for commercial available Nickel Cadmium and Nickel Metal Hydride rechargeable batteries. A Nickel Cadmium battery has superior dis­charge characteristics than a Nickel Metal Hydride battery. A life cycle of rechargeable battery can be esti­mated by measuring an internal resistance of the battery during charge at room temperature.

  7. Portrayal of fuzzy recharge areas for water balance modelling - a case study in northern Oman

    Science.gov (United States)

    Gerner, A.; Schütze, N.; Schmitz, G. H.

    2012-06-01

    The research project IWAS Oman aims at implementing integrated water resources management (IWRM) to a pilot area in Al Batinah, Oman. This requires - amongst others - a realistic assessment of groundwater recharge to the alluvial aquifer which obviously has to be based upon the extension of recharge areas. In this context, the subsequent investigation focuses on the role of vagueness as regards the portrayal of the areas that provide water for particular aquifers. For that purpose, concepts of fuzziness in spatial analysis are applied to describe possible extents of recharge areas. In general, any water assessment is based on clearly delineated boundaries. However, in many cases, aquifer recharge areas are not clearly defined due to the nature of the study area. Hence, surfaces indicating a gradual membership to the recharge area of a particular aquifer are used in this investigation. These surfaces, which are based on available qualitative information, visualise a potential range of spatial extension. With regard to water balance calculations, functional relationships in tabular form are derived as well. Based on a regionalisation approach providing spatially distributed recharge rates, the corresponding recharge volume is calculated. Hence, this methodology provides fuzzy input data for water balance calculations. Beyond the portrayal of one singular aquifer recharge area, this approach also supports the complementary consideration of adjacent areas.

  8. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.

    2015-12-01

    For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.

  9. A metahillslope model based on an analytical solution to a linearized Boussinesq equation for temporally variable recharge rates

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Verhoest, Niko E. C.; de Troch, FrançOis P.

    2002-12-01

    In hydrology the slow, subsurface component of the discharge is usually referred to as base flow. One method to model base flow is the conceptual approach, in which the complex physical reality is simplified using hypotheses and assumptions, and the various physical processes are described mathematically. The purpose of this paper is to develop and validate a conceptual method, based on hydraulic theory, to calculate the base flow of a catchment, under observed precipitation rates. The governing groundwater equation, the Boussinesq equation, valid for a unit width sloping aquifer, is linearized and solved for a temporally variable recharge rate. The solution allows the calculation of the transient water table profile in and the outflow from an aquifer under temporally variable recharge rates. When a catchment is considered a metahillslope, the solution can be used, when coupled to a routing model, to calculate the catchment base flow. The model is applied to the Zwalm catchment and four subcatchments in Belgium. The results suggest that it is possible to model base flow at the catchment scale, using a Boussinesq-based metahillslope model. The results further indicate that it is sufficient to use a relatively simple formulation of the infiltration, overland flow, and base flow processes to obtain reasonable estimates of the total catchment discharge.

  10. Comparative review and synthesis of ground-water recharge estimates for the Great Bend Prairie aquifer of Kansas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this report I briefly outline the importance of and difficulties involved in estimating aquifer recharge and compare reported recharge estimates for the Great...

  11. 1:750,000-scale hydrographic areas and basin-wide pumpage, recharge and interbasin flow estimates of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of the administrative hydrographic area (HA) boundaries for Nevada at 1:750,000-scale and estimates of natural recharge, artificial recharge,...

  12. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Directory of Open Access Journals (Sweden)

    A. P. Atkinson

    2014-06-01

    14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  13. Geochemical Signature of Natural Water Recharge in the Jungar Basin and Its Response to Climate.

    Science.gov (United States)

    Zhu, Bingqi; Yu, Jingjie; Rioual, Patrick

    2016-01-01

    This paper analyzed the physico-chemical characteristics of natural waters in a drainage system of the Jungar Basin, northwestern China to identify chemical evolution and recharge mechanisms of natural waters in an arid environment. The waters studied are different in mineralization, but are typically carbonate rivers and alkaline in nature. No Cl-dominated water type occurs, indicating an early stage of water evolution. Regolith and geomorphological parameters controlling ground-surface temperature may play a large role in the geological evolution of the water. Three main morphological and hydrological units are reflected in water physico-chemistry. Climate influences the salinization of natural waters substantially. Direct recharge from seasonal snow and ice-melt water and infiltration of rain to the ground are significant recharge processes for natural waters, but recharge from potential deep groundwater may be less important. The enrichment of ions in lakes has been mainly caused by evaporation rather than through the quality change of the recharged water.

  14. Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic

    Science.gov (United States)

    Zaidi, Faisal K.; Nazzal, Yousef; Ahmed, Izrar; Naeem, Muhammad; Jafri, Muhammad Kamran

    2015-11-01

    Identifying potential groundwater recharge zones is a pre-requisite for any artificial recharge project. The present study focuses on identifying the potential zones of Artificial Groundwater Recharge (AGR) in Northwestern Saudi Arabia. Parameters including slope, soil texture, vadose zone thickness, groundwater quality (TDS) and type of water bearing formation were integrated in a GIS environment using Boolean logic. The results showed that 17.90% of the total studied area is suitable for AGR. The identified zones were integrated with the land use/land cover map to avoid agricultural and inhabited lands which reduced the total potential area to 14.24%. Geomorphologically the wadi beds are the most suitable sites for recharge. On the basis of the potential AGR zones closeness to the available recharge water supply (rain water, desalinated sea water and treated waste water) the potential zones were classified as Category A (high priority) and Category B (low priority).

  15. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region

    Science.gov (United States)

    Sánchez-Murillo, Ricardo; Birkel, Christian

    2016-05-01

    Stable isotope variations and groundwater recharge mechanisms remain poorly understood across the tropics, particularly in Central America. Here stable isotopes (δ18O and δ2H) in groundwater, surface water, and rainfall are used to produce high-resolution (100 m2 grid) isoscapes for Costa Rica, from which an isotope ratio of precipitation to groundwater (P/GW) is estimated to elucidate the dominant groundwater recharge processes. Spatially, groundwater and surface water isotope ratios depict the strong orographic separation into the Caribbean and Pacific slopes induced by moisture transport directly from the Caribbean Sea and the eastern tropical Pacific Ocean. P/GW isotope ratios reveal that groundwater recharge is biased toward intensive and more depleted monthly rainfall across the Pacific slope with clear evidence of secondary evaporation indicating slower soil matrix recharge processes. On the other hand, P/GW isotope ratios indicate a weak influence of secondary evaporation across the Caribbean slope suggesting rapid recharge via preferential flow paths.

  16. 3H and 14C as tracers of ground-water recharge

    Science.gov (United States)

    Izbicki, John A.; Michel, Robert L.; Martin, Peter

    1992-01-01

    Surface spreading of water from the Santa Clara River is used to recharge aquifers underlying the Oxnard Plain. These aquifers are divided into an upper system about 400 feet thick, and a lower system more than 1,000 feet thick. In previous studies, it has been reported that surface spreading recharged aquifers in both the upper and lower systems. Water from most wells perforated in the upper system has tritium levels consistent with decay-corrected concentrations found in water recharged after 1952 when tritium levels increased as a result of atmospheric testing of nuclear weapons. Water from most wells in the lower system does not contain measurable tritium and must have been recharged prior to 1952. Carbon-14 ages estimated for water from wells in the lower system range from recent to about 25,000 years before present. These data show that the lower system is not effectively recharged by surface spreading.

  17. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach.

    Science.gov (United States)

    Harrington, Glenn A; Cook, Peter G; Herczeg, Andrew L

    2002-01-01

    Two environmental tracer methods are applied to the Ti-Tree Basin in central Australia to shed light on the importance of recharge from floodouts of ephemeral rivers in this arid environment. Ground water carbon-14 concentrations from boreholes are used to estimate the average recharge rate over the interval between where the ground water sample first entered the saturated zone and the bore. Environmental chloride concentrations in ground water samples provide estimates of the recharge rate at the exact point in the landscape where the sample entered the saturated zone. The results of the two tracer approaches indicate that recharge rates around one of the rivers and an extensive floodplain are generally higher than rates of diffuse recharge that occurs in areas of lower topographic relief. Ground water 2H/1H and 18O/16O compositions are all depleted in the heavier isotopes (delta2H = -67 per thousand to -50 per thousand; delta18O = -9.2 per thousand to -5.7%o) compared with the long-term, amount-weighted mean isotopic composition of rainfall in the area (delta2H = -33.8 per thousand; delta18O = -6.3 per thousand). This indicates that recharge throughout the basin occurs only after intense rainfall events of at least 150 to 200 mm/month. Finally, a recharge map is developed to highlight the spatial extent of the two recharge mechanisms. Floodout recharge to the freshest ground water (TDS recharge rate of approximately 0.2 mm/year to the remainder of the basin. These findings have important implications for management of the ground water resource.

  18. Chloride-mass-balance for predicting increased recharge after land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Zhang, Z.F.; Tyler, S.W.; Albright, W.H.; Singleton, M.J.

    2004-02-23

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6-m-deep lysimeter at a simulated waste-burial ground, located on the Department of Energy s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20 percent of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  19. Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain

    Science.gov (United States)

    Cao, Guoliang; Scanlon, Bridget R.; Han, Dongmei; Zheng, Chunmiao

    2016-06-01

    Unsustainable groundwater development shown by rapid groundwater depletion in the North China Plain (NCP) underscores the need to quantify spatiotemporal variability in groundwater recharge for improved management of the resource. The objective of this study was to assess spatiotemporal variability in recharge in response to thickening of the unsaturated zone in the NCP. Recharge was estimated by linking a soil water balance (SWB) model, on the basis of monthly meteorological data, irrigation applications, and soil moisture monitoring data (1993-2008), to the water table using a deep unsaturated zone flow model. The dynamic bottom boundary (water table) position was provided by the saturated zone flow component, which simulates regional pumping. The model results clearly indicate the effects of unsaturated zone thickening on both temporal distribution and magnitude of recharge: smoothing temporal variability in recharge, and increasing unsaturated storage and lag time between percolation and recharge. The thickening unsaturated zone can result in average recharge reduction of up to ∼70% in loam soils with water table declines ⩾30 m. Declining groundwater levels with irrigation sourced by groundwater converts percolation to unsaturated zone storage, averaging 14 mm equivalent water depth per year in mostly loam soil over the study period, accounting for ∼30% of the saturated groundwater storage depletion. This study demonstrates that, in thickening unsaturated zones, modeling approaches that directly equate deep drainage with recharge will overestimate the amount and underestimate the time lag between percolation and recharge, emphasizing the importance of more realistic simulation of the continuity of unsaturated and saturated storage to provide more reliable estimates of spatiotemporal variability in recharge.

  20. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea

    Science.gov (United States)

    Mair, Alan; Hagedorn, Benjamin; Tillery, Suzanne; El-Kadi, Aly I.; Westenbroek, Stephen; Ha, Kyoochul; Koh, Gi-Won

    2013-09-01

    Estimates of groundwater recharge spatial and temporal variability are essential inputs to groundwater flow models that are used to test groundwater availability under different management and climate conditions. In this study, a soil water balance analysis was conducted to estimate groundwater recharge on the island of Jeju, Korea, for baseline, drought, and climate-land use change scenarios. The Soil Water Balance (SWB) computer code was used to compute groundwater recharge and other water balance components at a daily time step using a 100 m grid cell size for an 18-year baseline scenario (1992-2009). A 10-year drought scenario was selected from historical precipitation trends (1961-2009), while the climate-land use change scenario was developed using late 21st century climate projections and a change in urban land use. Mean annual recharge under the baseline, drought, and climate-land use scenarios was estimated at 884, 591, and 788 mm, respectively. Under the baseline scenario, mean annual recharge was within the range of previous estimates (825-959 mm) and only slightly lower than the mean of 902 mm. As a fraction of mean annual rainfall, mean annual recharge was computed as only 42% and less than previous estimates of 44-48%. The maximum historical reported annual pumping rate of 241 × 106 m3 equates to 15% of baseline recharge, which is within the range of 14-16% computed from earlier studies. The model does not include a mechanism to account for additional sources of groundwater recharge, such as fog drip, irrigation, and artificial recharge, and may also overestimate evapotranspiration losses. Consequently, the results presented in this study represent a conservative estimate of total recharge.

  1. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  2. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application.

    Science.gov (United States)

    Koren, Klaus; Jensen, Peter Ø; Kühl, Michael

    2016-07-21

    Hydrogen peroxide (H2O2) is an important member of the reactive oxygen species (ROS) family. Among ROS, H2O2 is considered the most long-lived and can accumulate inside and outside of cells, where it is involved in both vital (signaling) and deadly (toxic) reactions depending on its concentration. Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light stress reaching H2O2 concentrations as high as 15 μM, and (ii) the quantification of the transient increase of the extracellular concentration of H2O2 during stimulation of neutrophils.

  3. Sustainable Antibiofouling Properties of Thin Film Composite Forward Osmosis Membrane with Rechargeable Silver Nanoparticles Loading.

    Science.gov (United States)

    Liu, Zhongyun; Hu, Yunxia

    2016-08-24

    Microbial attachment and biofilm formation on filtration membrane can greatly compromise its flux and separation efficiency. Here, a simple and facile approach has been developed to in situ generate silver nanoparticles (Ag NPs) on the thin film composite forward osmosis (TFC FO) membrane for sustainable antibiofouling performances. Mussel-inspired dopamine chemistry was applied to grow polydopamine coating on both surfaces of FO membranes, followed by the generation of Ag NPs upon a simple dip coating in silver nitrate aqueous solution. Furthermore, the Ag NPs deposited membranes had a long-term silver release profile with rechargability for multiple times upon their depletion, and exhibited strong sustainable bactericidal efficacy against Gram-negative bacteria and Gram-positive bacteria. The Ag NPs had a controllable effect on the membrane performances including the water flux and reverse salt flux in the FO test mode. Our practicable antibacterial strategy may apply to other types of filtration membranes with diverse material surfaces and may pave a new way to achieve the sustainable membrane antibiofouling performance on a large scale.

  4. Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile

    Science.gov (United States)

    Kikuchi, C. P.; Ferré, T. P. A.

    2016-09-01

    Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.

  5. A rechargeable hydrogen battery based on Ru catalysis.

    Science.gov (United States)

    Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp; Muller, Keven; Klemm, Elias; Thiel, Werner R; Plietker, Bernd

    2014-07-01

    Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru-catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru-catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure-free conditions (discharging process). Up to five charging-discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel-cell technology.

  6. Conceptualisation of groundwater recharge from the Wairau River, New Zealand

    Science.gov (United States)

    Wilson, Scott; Wöhling, Thomas; Davidson, Peter

    2016-04-01

    The braided Wairau River is the main source of recharge to the Wairau gravel aquifer in Marlborough, New Zealand. Flow measurements indicate a 6 to 15 m3/s loss as the river traverses the Wairau alluvial fan, a distance of 15 km. The hydrological processes regulating this flow loss are not well understood. Theoretically, the relationship between a river and groundwater can be considered as being hydraulically connected (gaining or losing), disconnected, or transitional (Brunner et al. 2011). A disconnected river is distinguished from a hydraulically connected river by a partially saturated zone between the river bed and the aquifer. The aim of this study is to improve our conceptual understanding of how flow losses occur, and to test a new hypothesis that much of the river is hydraulic disconnected from the aquifer. It is practically difficult to make direct observations of the saturation status beneath a river bed. However, indirect observations can be employed to characterize the nature of the river-aquifer exchange, and we have used a variety of data sources (stratigraphy, piezometric surfaces including LiDAR, temperature and radon tracers). Several lines of evidence from these data sources indicate that the dominant recharge reach of the river is hydraulically disconnected, or at least transitional in nature. This simplifies the prediction of transient flow losses, which only requires knowledge of near-surface Kz and wetted river area values. The hydraulic mechanism for a disconnected river condition is the anisotropy of the sandy gravel sequence. The braided river depositional process has formed a finely layered sequence of silt, sand and gravel lenses. This stratification, combined with clast and particle imbrication, has formed a highly anisotropic hydrogeology. Results from aquifer tests analyzed for leakage have typical Kx values of 500 m/d and Kz values of around 0.5 m/d. The large Kx/Kz ratio enables the aquifer to potentially discharge more rapidly in a

  7. Using isotopes for design and monitoring of artificial recharge systems

    Science.gov (United States)

    Contributors: Hendriksson, N.; Kulongoski, J.T.; Massmann, G.; Newman, B.

    2013-01-01

    Over the past years, the IAEA has provided support to a number of Member States engaged in the implementation of hydrological projects dealing with the design and monitoring of artificial recharge ( A R ) systems, primarily situated in arid and semiarid regions. AR is defined as any engineered system designed to introduce water to, and store water in, underlying aquifers. Aquifer storage and recovery (ASR) is a specific type of AR used with the purpose of increasing groundwater resources. Different water management strategies have been tested under various geographical, hydrological and climatic regimes. However, the success of such schemes cannot easily be predicted, since many variables need to be taken into account in the early stages of every AR project.

  8. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  9. Downstream of downtown: urban wastewater as groundwater recharge

    Science.gov (United States)

    Foster, S. S. D.; Chilton, P. J.

    Wastewater infiltration is often a major component of overall recharge to aquifers around urban areas, especially in more arid climates. Despite this, such recharge still represents only an incidental (or even accidental) byproduct of various current practices of sewage effluent handling and wastewater reuse. This topic is reviewed through reference to certain areas of detailed field research, with pragmatic approaches being identified to reduce the groundwater pollution hazard of these practices whilst attempting to retain their groundwater resource benefit. Since urban sewage effluent is probably the only `natural resource' whose global availability is steadily increasing, the socioeconomic importance of this topic for rapidly developing urban centres in the more arid parts of Asia, Africa, Latin America and the Middle East will be apparent. L'infiltration des eaux usées est souvent la composante essentielle de toute la recharge des aquifères des zones urbaines, particulièrement sous les climats les plus arides. Malgré cela, une telle recharge ne constitue encore qu'un sous-produit incident, ou même accidentel, de pratiques courantes variées du traitement de rejets d'égouts et de réutilisation d'eaux usées. Ce sujet est passé en revue en se référant à certaines régions étudiées en détail, par des approches pragmatiques reconnues pour permettre de réduire les risques de pollution des nappes dues à ces pratiques tout en permettant d'en tirer profit pour leur ressource en eau souterraine. Puisque les effluents d'égouts urbains sont probablement la seule « ressource naturelle » dont la disponibilité globale va croissant constamment, l'importance socio-économique de ce sujet est évidente pour les centres urbains à développement rapide de l'Asie, de l'Afrique, de l'Amérique latine et du Moyen-Orient. La infiltración de aguas residuales es a menudo un componente principal de la recarga total en acuíferos ubicados en torno a zonas urbanas

  10. Layered cathode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  11. State of charge estimation in Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Milocco, R.H. [Grupo Control Automatico y Sistemas (GCAyS), Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Castro, B.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Suc 4, CC16 (1900), La Plata (Argentina)

    2009-10-20

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance. (author)

  12. An Interactive Auto-recharging System for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Kuo-Lan Su

    2014-02-01

    Full Text Available The article describes a new auto-charging system designed to enhance successful docking rates for mobile robots while at the same time monitoring the status of the charging current between the mobile robot and the docking station. The communication interface of the mobile robot and the docking station uses a wireless RF interface. The docking station is designed with one active degree of freedom and two passive degrees of freedom. Users tune the location of the charging pins on the docking station to make it possible for the mobile robot to execute an auto-recharging process. The auto-recharging process uses multiple sensors and a laser range finder located on the mobile robot. The laser range finder searches for a landmark to guide the mobile robot towards the docking station. In the experiment, the power of the mobile robot is under its threshold value. The mobile robot transmits a charging command to the docking station via a wireless RF interface. The docking station transmits a location command back to the mobile robot via this wireless RF interface. The mobile robot uses its laser range finder to search for the landmark of the assigned docking station and programs a motion trajectory to move forward to the docking station. The docking station supplies a charging current to the mobile robot by means of a charger. The power detection module simultaneously detects the charging current and the voltage values of the charging process in both the docking station and the mobile robot. The system can monitor the status of the charging process between the docking station and the mobile robot at any time. The power of the mobile robot is enough to be detected by the power detection module. When the charging process is complete, the docking station turns off the charging current and triggers the mobile robot to leave the docking station via the wireless RF interface.

  13. Understanding electrochemical potentials of cathode materials in rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Chaofeng Liu

    2016-03-01

    Full Text Available Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.

  14. Bubble plumes generated during recharge of basaltic magma reservoirs

    Science.gov (United States)

    Phillips, Jeremy C.; Woods, Andrew W.

    2001-03-01

    CO 2 is relatively insoluble in basaltic magma at low crustal pressures. It therefore exists as a gas phase in the form of bubbles in shallow crustal reservoirs. Over time these bubbles may separate gravitationally from the magma in the chamber. As a result, any new magma which recharges the chamber from deeper in the crust may be more bubble-rich and hence of lower density than the magma in the chamber. Using scaling arguments, we show that for typical recharge fluxes, such a source of low-viscosity, bubble-rich basalt may generate a turbulent bubble plume within the chamber. We also show that the bubbles are typically sufficiently small to have a low Reynolds number and to remain in the flow. We then present a series of analogue laboratory experiments which identify that the motion of such a turbulent bubble-driven line plume is well described by the classical theory of buoyant plumes. Using the classical plume theory we then examine the effect of the return flow associated with such bubble plumes on the mixing and redistribution of bubbles within the chamber. Using this model, we show that a relatively deep bubbly layer of magma may form below a thin foam layer at the roof. If, as an eruption proceeds, there is a continuing influx at the base of the chamber, then our model suggests that the bubble content of the bubbly layer may gradually increase. This may lead to a transition from lava flow activity to more explosive fire-fountaining activity. The foam layer at the top of the chamber may provide a flux for the continual outgassing from the flanks of the volcano [Ryan, Am. Geophys. Union Geophys. Monogr. 91 (1990)] and if it deepens sufficiently it may contribute to the eruptive activity [Vergniolle and Jaupart, J. Geophys. Res. 95 (1990) 2793-3001].

  15. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-10-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  16. Response to recharge variation of thin lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-01-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalized lens volume and the main lens and recharge characteristics, enabling an analytical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase, and increase of recharge frequency causes decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the center of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  17. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, J.B. [Geological Survey, Denver, CO (United States); Kroitoru, L. [Roy F. Weston, Inc., Washington, DC (United States); Ronen, D. [Weizmann Inst. of Science, Rehovot (Israel)]|[Hydrological Service, Jerusalem (Israel); Magaritz, M. [Weizmann Inst. of Science, Rehovot (Israel)

    1992-10-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient ({minus}0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient ({minus}0.10) and a 0. 83{minus}meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone.

  18. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992-93

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Ground-water recharge occurred after five separate streamflow event periods in the Pah Canyon area of Fortymile Wash approximately 10 kilometers from Yucca Mountain, Nevada during 1992-93. Ground-water levels rose in two wells, UE-29 a No.1 and UE-29 a No.2, and one neutron-access borehole, UE-29 UZN-91, after each streamflow event period. A maximum rise of 2.9 meters occurred at UE-29 a No.1 thirteen days after the largest streamflow event where depth to water changed from 27.3 to 24.4 meters. Water levels fluctuated 3.89 meters in UE-29 a No.1, 2.92 meters in UE-29 a No.2, and 2.10 meters in UE-29 UZN-91 during the period January, 1992 to September, 1993. During two of the streamflow event periods, one in 1992 and one in 1993, there was flow around the neutron-access borehole located in the Fortymile Wash channel. Three other streamflow event periods were documented in Pah Canyon Wash but the streamflow infiltrated prior to reaching the neutron-access borehole location. Volumetric-water-content profiles were measured periodically in the neutron-access borehole. After the 1992 streamflow event period, water content increased in the upper six meters of the unsaturated zone. After the 1993 streamflow event period, water content increased in the entire unsaturated section, approximately 16 meters thick at the neutron-access borehole. Water levels in the neutron-access borehole rose even when there was no apparent water movement through the unsaturated zone as inferred by changes in the volumetric-water contents. This rise is attributed to ground-water recharge from nearby infiltration of Pah Canyon Wash streamflow. A groundwater mound probably formed beneath Pah Canyon Wash and spread laterally as evidence by larger rises in water levels in UE-29 a No.1 and UE-29 a No.2, which are closer to Pah Canyon Wash than UE-29 UZN-91.

  19. Managed aquifer recharge with low impact development under a changing climate (Invited)

    Science.gov (United States)

    Gurdak, J. J.; Newcomer, M. E.; Sklar, L. S.; Nanus, L.

    2013-12-01

    Groundwater resources in urban environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) planning and best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMPs to reduce stormwater runoff and improve surface-water quality. Some BMPs may also enhance recharge, which has often been considered a secondary management benefit. Enhancing the capacity for managed aquifer recharge with stormwater beneath LID is an important step toward the sustainable and conjunctive use of surface and groundwater resources in urban environments. This field and modeling study quantifies urban recharge rates, volumes, and efficiency beneath a BMP infiltration trench and irrigated lawn considering historical El Niño/Southern Oscillation (ENSO) variability and future climate change using simulated precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Using results from a suite of methods to measure and model recharge beneath a recently installed (2009) BMP infiltration trench, this study addresses three main questions: (1) What are the benefits of measuring recharge using in-situ methods compared to model-based and other simple estimates of recharge beneath a LID BMP? (2) What are recharge rates and volumes beneath the infiltration trench, how do they compare to an irrigated lawn that represents a non-LID source of urban recharge, and what are the important factors controlling recharge beneath the two sites? (3) How effective is the LID BMP in capturing and recharging urban stormwater considering historical ENSO variability and future climate change? We find that in-situ and modeling methods are complementary, particularly for simulating historical and future recharge scenarios, and the in-situ data are critical for

  20. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  1. A digital procedure for ground water recharge and discharge pattern recognition and rate estimation.

    Science.gov (United States)

    Lin, Yu-Feng; Anderson, Mary P

    2003-01-01

    A digital procedure to estimate recharge/discharge rates that requires relatively short preparation time and uses readily available data was applied to a setting in central Wisconsin. The method requires only measurements of the water table, fluxes such as stream baseflows, bottom of the system, and hydraulic conductivity to delineate approximate recharge/discharge zones and to estimate rates. The method uses interpolation of the water table surface, recharge/discharge mapping, pattern recognition, and a parameter estimation model. The surface interpolator used is based on the theory of radial basis functions with thin-plate splines. The recharge/discharge mapping is based on a mass-balance calculation performed using MODFLOW. The results of the recharge/discharge mapping are critically dependent on the accuracy of the water table interpolation and the accuracy and number of water table measurements. The recharge pattern recognition is performed with the help of a graphical user interface (GUI) program based on several algorithms used in image processing. Pattern recognition is needed to identify the recharge/discharge zonations and zone the results of the mapping method. The parameter estimation program UCODE calculates the parameter values that provide a best fit between simulated heads and flows and calibration head-and-flow targets. A model of the Buena Vista Ground Water Basin in the Central Sand Plains of Wisconsin is used to demonstrate the procedure.

  2. Effects of Soil and Water Conservation Measures on Groundwater Levels and Recharge

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2014-12-01

    Full Text Available Measures of soil and water conservation (SWC could affect the hydrological process. The impacts of typical measures on groundwater recharge, levels and flow were analyzed based on simulated rainfall experiments and a groundwater model. The three-dimensional finite-difference groundwater flow model (MODFLOW was calibrated and verified for bare slope, grassland and straw mulching scenarios based on the experiments. The results of the verification in groundwater balance, levels, runoff and flow field all showed that MODFLOW could be applied to study the impact of SWC measures on groundwater. Meanwhile, the results showed the recharge rate (α and specific yield of the three soil layers (Sy1, Sy2 and Sy3 were the most sensitive parameters to the change in the underlying surface. Then, the impacts of the SWC measures’ construction and destruction on the groundwater regime were studied. The results indicated the measures could strengthen groundwater recharge. The amounts of groundwater recharge, runoff and level were on the order of straw mulching > grassland > bare slope. When the underlying surface was converted from grass and mulching to bare slope, the recharge decreased by 42.2% and 39.1%. It was concluded that SWC measure construction would increase groundwater recharge and the measure destruction would decrease recharge.

  3. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  4. Impact of artificial recharge on dissolved noble gases in groundwater in California.

    Science.gov (United States)

    Cey, Bradley D; Hudson, G Bryant; Moran, Jean E; Scanlon, Bridget R

    2008-02-15

    Dissolved noble gas concentrations in groundwater can provide valuable information on recharge temperatures and enable 3H-3He age-dating with the use of physically based interpretive models. This study presents a large (905 samples) data set of dissolved noble gas concentrations from drinking water supply wells throughout California, representing a range of physiographic, climatic, and water management conditions. Three common interpretive models (unfractionated air, UA; partial re-equilibration, PR; and closed system equilibrium, CE) produce systematically different recharge temperatures or ages; however, the ability of the different models to fit measured data within measurement uncertainty indicates that goodness-of-fit is not a robust indicator for model appropriateness. Therefore caution is necessary when interpreting model results. Samples from multiple locations contained significantly higher Ne and excess air concentrations than reported in the literature, with maximum excess air tending toward 0.05 cm3 STP g(-1) (deltaNe approximately 400%). Artificial recharge is the most plausible cause of the high excess air concentrations. The ability of artificial recharge to dissolve greater amounts of atmospheric gases has important implications for oxidation-reduction dependent chemical reactions. Measured gas concentration ratios suggest that diffusive degassing may have occurred. Understanding the physical processes controlling gas dissolution during groundwater recharge is critical for optimal management of artificial recharge and for predicting changes in water quality that can occur following artificial recharge.

  5. Comparison of recharge estimates at a small watershed in east-central Pennsylvania, USA

    Science.gov (United States)

    Risser, D.W.; Gburek, W.J.; Folmar, G.J.

    2009-01-01

    The common recommendation that recharge should be estimated from multiple methods is sound, but the inherent differences of the methods make it difficult to assess the accuracy of differing results. In this study, four methods for estimating groundwater recharge and two methods for estimating base flow (as a proxy for recharge) are compared at two hydrologic research sites in east-central Pennsylvania, USA. Results from the multiple methods all provided reasonable estimates of groundwater recharge that differed considerably. The estimates of mean annual recharge for the period 1994-2001 ranged from 22.9 to 35.7 cm - about 45% of the mean of all estimates. For individual years, recharge estimates from the multiple methods ranged from 30 to 42% of the mean value during the dry years and 64 to 76% of the mean value during wet years. Comparison of multiple methods was found to be useful for determining the range of plausible recharge rates and highlighting the uncertainty of the estimates. ?? US Government 2008.

  6. Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA

    Science.gov (United States)

    Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W.

    2007-01-01

    Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium. ?? Springer-Verlag 2007.

  7. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  8. Land cover controls on depression-focused recharge: an example from southern Ontario

    Science.gov (United States)

    Buttle, J. M.; Greenwood, W. J.

    2015-12-01

    The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.

  9. Multi-scale experimental programs for estimating groundwater recharge in hydrologically changing basins

    Science.gov (United States)

    McIntyre, Neil; Larsen, Josh; Reading, Lucy; Bulovic, Nevenka; Jarihani, Abdollah; Finch, Warren

    2015-04-01

    Groundwater recharge estimates are required to evaluate sustainable groundwater abstractions and to support groundwater impacts assessments associated with minerals and energy extraction. Increasingly, recharge estimates are also needed for regional and global scale water cycle modelling. This is especially the case in the great arid and semi-arid basins of the world due to increased water scarcity and dependence of ecosystems and livelihoods on their water supplies, and the considerable potential influence of groundwater on the hydrological cycle. Groundwater resources in the semi-arid Surat Basin of south-east Queensland, Australia, support extensive groundwater-dependent ecosystems and have historically been utilised for regional agriculture and urban water-use. Large volumes of water are currently being produced and will continue to do so as a part of coal seam gas extraction. There is considerable uncertainty about the impacts of gas extraction on water resources and the hydrological cycle, and much of this uncertainty stems from our limited knowledge about recharge processes and how to upscale them. Particular questions are about the role of storm events in controlling annual recharge, the relative contributions of local 'recharge zones' versus diffuse recharge and the translation of (relatively easily quantified) shallow drainage estimates to groundwater recharge. A multi-scale recharge research program is addressing these questions, using multiple approaches in estimating groundwater recharge, including plot and catchment scale monitoring, use of remote sensed data and simulation models. Results during the first year of the program have resulted in development of process hypotheses and experimental designs at three field sites representing key gaps in knowledge. The presentation will overview the process of designing the experimental program; how the results from these sites will be integrated with existing knowledge; and how results will be used to advance

  10. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

    Science.gov (United States)

    Beigi, Ehsan; Tsai, Frank T.-C.

    2015-02-01

    A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research's Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab's (GFDL) model. The PCM model projects recharge change ranging from -33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from -58.1 to +7.1 %. Potential recharge is likely to increase in 2010-2039, but likely to decrease in 2070-2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

  11. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  12. High efficiency iron electrode and additives for use in rechargeable iron-based batteries

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo

    2017-02-21

    An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.

  13. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  14. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc

    Science.gov (United States)

    Lu, Ke; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-07-01

    Rechargeable aqueous batteries are very attractive as a promising alternative energy storage system, although their reversible capacity is typically limited. A new rechargeable Na-Zn hybrid aqueous battery with nickel hexacyanoferrate (NiHCF) cathode and the nanostructured zinc anode is fabricated. The rational combination of two materials with mild aqueous electrolyte renders the devices with an average operating voltage close to 1.5 V, higher specific capacity of 76.2 mAh g-1, and a good cycling stability with 81% capacity retention for 1000 cycles. These remarkable features can provide guidance for the development of rechargeable batteries from the naturally abundant electrode materials with neutral aqueous electrolytes.

  15. Removal of Organic Pollutants in Municipal Wastewater for Artificial Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to construct a demonstration artificial groundwater recharge system for wastewater reuse in China, three years of laboratory work has been conducted on advanced treatment technologies in combination with soil aquifer treatment of secondary effluent from sewage treatment plants. An effective and inexpensive process was selected, which uses DGB adsorption, PAC coagulation, sedimentation, sand filtration, ozone disinfection, and soil aquifer treatment. The effluent meets the recommended water quality criteria for groundwater recharge. Ozonation is effective for disinfection as well as for water quality improvement. Results showed that the total N in the SAT system remained constant thus the secondary effluent must have a low NH3-N concentration for groundwater recharge.

  16. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  17. Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    Qichen Hao; Jingli Shao; Yali Cui; Zhenhua Xie

    2014-01-01

    A groundwater transient flow model was developed to evaluate the applicability and ef-fectiveness of artificial recharge scenarios in the middle-upper part of the Yongding River alluvial fan in Beijing. These scenarios were designed by taking into account different types of recharge facilities and their infiltration rate with the Middle Route Project for South-to-North Water Transfer (MRP) as the recharge water source. The simulation results suggest that: (1) the maximum amount of artificial recharge water, for scenario I, would be 127.42×106 m3 with surface infiltration facilities;and would be 243.48×106 m3 for scenario II with surface infiltration and recharge wells under the constraint of the upper limit of groundwater;(2) with preferred pattern of recharge facilities, groundwater levels in both optimized recharge scenarios would not exceed the upper limit within the given recharge period;and (3) implementation of the recharge scenarios would efficiently increase the aquifer replenishment and the groundwater budget will change from-54.11×106 to 70.89×104 and 183.36×104 m3, respectively. In addi-tion, under these two scenarios groundwater level would rise up to 30 and 34 m, respectively, without increasing the amount of evaporation. The simulation results indicate that the proposed recharge sce-narios are practically feasible, and artificial recharge can also contribute to an efficient recovery of groundwater storage in Beijing.

  18. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well

    Science.gov (United States)

    Wang, Jianxiu; Wu, Yuanbin; Zhang, Xingsheng; Liu, Yan; Yang, Tianliang; Feng, Bo

    2012-09-01

    SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

  19. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  20. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    Science.gov (United States)

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-03-16

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  1. Removal of organic micropollutants in an artificial recharge system

    Science.gov (United States)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer

  2. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”

    Science.gov (United States)

    Krishnaswamy, Jagdish; Bonell, Michael; Venkatesh, Basappa; Purandara, Bekal K.; Rakesh, K. N.; Lele, Sharachchandra; Kiran, M. C.; Reddy, Veerabasawant; Badiger, Shrinivas

    2013-08-01

    demonstrated a higher frequency and longer duration of low flows under NF when compared to the other more disturbed land covers in both the Coastal and Malnaad basins. Groundwater recharge estimated using water balance during the wet-season in the Coastal basins under NF, AC and DF was estimated to be 50%, 46% and 35% respectively and in the Malnaad it was 61%, 55% and 36% respectively. Soil Water Infiltration and Movement (SWIM) based recharge estimates also support the pattern (46% in NF; 39% in AC and 14% in DF). Furey-Gupta filter based estimates associated with the Coastal basins also suggest similar groundwater recharge values and trends across the respective land-covers: 69% in NF, 49% in AC, and 42% in DF. Soil water potential profiles using zero flux plane methods suggest that during the dry-season, natural forests depend on deep soil moisture and groundwater. Catchments with higher proportion of forest cover upstream were observed to sustain flow longer into the dry-season. These hydrologic responses provide some support towards the “infiltration-evapotranspiration trade-off” hypothesis in which differences in infiltration between land-cover rather than evapotranspiration determines the differences in groundwater recharge, low flows and dry-season flow. Groundwater recharge is the most temporally stable under natural forest, although substantial recharge occurs under all three ecosystems, which helps to sustain dry-season flow downstream in higher order streams that sustain local communities and agro-ecosystems. In addition to spatial scale effects, greater attention also needs to be given to the role of hydrogeology within the context of the above hypothesis and its implications for hydrologic services.

  3. Identifying hydrological pathways in the north basin of Lake Kivu using stable isotope ratios of meteoric recharge and surface water

    Science.gov (United States)

    Balagizi, Charles M.; Kasereka, Marcellin M.; Terzerand, Stefan; Cuoco, Emilio; Liotta, Marcello

    2016-04-01

    A rain-gauge network of 12 stations was installed at different altitudes at Nyiragongo volcano (DR Congo) and surroundings and sampled on monthly basis between December 2013 and June 2015 to evaluate the isotopic signature of the meteoric recharge. Additional samples were collected on monthly basis from 5 rivers, 7 springs, 3 profiles in Kabuno bay and 2 others in the Main Basin of Lake Kivu to determine their water isotope compositions (δ18O and δ2H). The precipitation, surface and groundwater δ18O and δ2H values were thereafter used to estimate the groundwater recharge area, surface and groundwater inflow level to Lake Kivu, and for modeling water circulation in the north basin of Lake Kivu. The monthly precipitation isotope composition varied in a large range, whereas mean precipitation-weighed values ranged between -12.39‰ and 6.52‰ for δ2H, and from -4.02‰ to -0.91‰ for δ18O. Monthly values allowed to define a Local Meteoric Water Line of equation δ2H=7.96δ18O + 16.96. Our dataset, the first time series in the Virunga, implies that the δ18O and δ2H of precipitation are predominantly determined by the recycled moisture source area, while their clearly defined seasonality is driven by wind direction and precipitation amount changes. The δ18O, δ2H and deuterium-excess values revealed a convergence zone around Nyiragongo where the N-NE and S-SW trade winds come together. Moisture from the Nile River basin brought by the N-NE originating winds yielded depleted precipitation at local highlands, while that from the Congo River basin brought by the S-SW wind yielded enriched precipitation at lowlands. Rivers and springs monthly are included in the range of monthly precipitation values, and are thus indicative of lack of significant evaporation during aquifer recharge. The mean rivers and springs δ2H and δ18O, and the mean precipitation-weighed values revealed the presence of shallow groundwater recharged between 2100 and 2700m a.s.l., and deep

  4. Estimated mean annual natural ground-water recharge in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 1-kilometer resolution raster (grid) dataset is an index of mean annual natural ground-water recharge. The dataset was created by multiplying a grid of...

  5. Hydrogeology, Kennedy-Jenks groundwater recharge report, Published in 2004, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Hydrogeology dataset, was produced all or in part from Published Reports/Deeds information as of 2004. It is described as 'Kennedy-Jenks groundwater recharge...

  6. Valuing quality of vegetation in recharge area of Seruk Spring, Pesanggrahan Valley, Batu City, East Java

    Directory of Open Access Journals (Sweden)

    SITI SOFIAH

    2011-10-01

    Full Text Available Yulistyarini T, Sofiah S (2011 Valuing quality of vegetation in recharge area of Seruk Spring, Pesanggrahan Valley, Batu City, East Java. Biodiversitas 12: 229-234. A Seruk spring is one of the springs in Batu city which has water debit less than 1 liter per second. Land use changes of Seruk spring recharge area was occured in 2001. Recharge area of Seruk Spring consists of anthropogenic forest, eucalypts plantation, bamboo forest, pines plantation, horticulture and housing. The aim of this research was to valuing the quality of vegetation which supported ground water recharge in Seruk spring. Quality of vegetation were determined by vegetation structure, diversity, the thickness of litter and C-stock of each land use systems. Forests, eucalypts plantation and bamboo forests had almost same quality of vegetation.

  7. Ground-Water Recharge in the Arid and Semiarid Southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferre, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Ni?o and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Ni?o and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area?the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east?provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas

  8. Novel Anodes for Rapid Recharge High Energy Density Lithium-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TIAX proposes to develop as a novel negative electrode active material for rechargeable lithium-ion batteries. This material will fill the gap between the...

  9. A water-budget model and estimates of groundwater recharge for Guam

    Science.gov (United States)

    Johnson, Adam G.

    2012-01-01

    On Guam, demand for groundwater tripled from the early 1970s to 2010. The demand for groundwater is anticipated to further increase in the near future because of population growth and a proposed military relocation to Guam. Uncertainty regarding the availability of groundwater resources to support the increased demand has prompted an investigation of groundwater recharge on Guam using the most current data and accepted methods. For this investigation, a daily water-budget model was developed and used to estimate mean recharge for various land-cover and rainfall conditions. Recharge was also estimated for part of the island using the chloride mass-balance method. Using the daily water-budget model, estimated mean annual recharge on Guam is 394.1 million gallons per day, which is 39 percent of mean annual rainfall (999.0 million gallons per day). Although minor in comparison to rainfall on the island, water inflows from water-main leakage, septic-system leachate, and stormwater runoff may be several times greater than rainfall at areas that receive these inflows. Recharge is highest in areas that are underlain by limestone, where recharge is typically between 40 and 60 percent of total water inflow. Recharge is relatively high in areas that receive stormwater runoff from storm-drain systems, but is relatively low in urbanized areas where stormwater runoff is routed to the ocean or to other areas. In most of the volcanic uplands in southern Guam where runoff is substantial, recharge is less than 30 percent of total water inflow. The water-budget model in this study differs from all previous water-budget investigations on Guam by directly accounting for canopy evaporation in forested areas, quantifying the evapotranspiration rate of each land-cover type, and accounting for evaporation from impervious areas. For the northern groundwater subbasins defined in Camp, Dresser & McKee Inc. (1982), mean annual baseline recharge computed in this study is 159.1 million gallons

  10. Simulation of the Recharging Method of Implantable Biosensors Based on a Wearable Incoherent Light Source

    Directory of Open Access Journals (Sweden)

    Yong Song

    2014-11-01

    Full Text Available Recharging implantable electronics from the outside of the human body is very important for applications such as implantable biosensors and other implantable electronics. In this paper, a recharging method for implantable biosensors based on a wearable incoherent light source has been proposed and simulated. Firstly, we develop a model of the incoherent light source and a multi-layer model of skin tissue. Secondly, the recharging processes of the proposed method have been simulated and tested experimentally, whereby some important conclusions have been reached. Our results indicate that the proposed method will offer a convenient, safe and low-cost recharging method for implantable biosensors, which should promote the application of implantable electronics.

  11. Superfund GIS - Physiographic Provinces, Aquifer Outcrops and Recharge Rates in Tennessee

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a coverage of the physiographic provinces, aquifer outcrops and recharge rates for Tennessee. Each polygon is attributed with its associated...

  12. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  13. Arsenic mobilization and attenuation by mineral–water interactions: implications for managed aquifer recharge

    Science.gov (United States)

    Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...

  14. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  15. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    Science.gov (United States)

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles.

  16. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    Science.gov (United States)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  17. Macroscopic Thermal Energy Balance on Montane Valley Aquifers and Groundwater Recharge Source Identification

    Science.gov (United States)

    Trask, J. C.; Fogg, G. E.

    2010-12-01

    Several recent publications have highlighted the need to improve definition of groundwater flow patterns in montane regions, presenting case studies with several field investigative approaches. Determination of the depth of upland bedrock groundwater circulation and identification of valley aquifer recharge sources in montane areas is needed for improved characterization of montane groundwater flow patterns and for aquifer source protection planning. In most upland bedrock regions, wells and boreholes are scarce, adding to the challenges inherent to investigating groundwater flow in fractured rock systems. Approaches using natural environmental tracers have previously been shown to be effective in quantifying subsurface recharge into valley aquifers from groundwater flow within adjoining mountain-front and mountain-block areas. Thermal tracing of montane groundwater flow is easy and inexpensive relative to other environmental tracer and geophysical techniques, and can complement other approaches (e.g. Manning and Solomon, 2005). We present a heat flow tracer approach to identification of montane valley aquifer recharge sources. A novel application of a macroscopic thermal energy balance is introduced and used in recharge source analysis for two mountain-front bounding basin-fill aquifers located in the Sierra Nevada, USA. We show that robust upper and lower bounds on total heat flow and sources of recharge into montane valley aquifers may be determined without numerical modeling by using a macroscopic thermal energy balance. Several factors tend to enhance focusing of geothermal conductive heat flow from depth toward montane valley margins. Analytic bracketing techniques, applicable to domains with irregular boundary geometry and non-uniform thermal boundary conditions, are used together with thermal data to obtain quantitative bounds on conductive heat flow across aquifer domain boundaries. Thermal data required include: (i) a rough estimate of regional geothermal

  18. Assessing recharge using remotely sensed data in the Guarani Aquifer System outcrop zone

    Science.gov (United States)

    Lucas, M. C.; Oliveira, P. T. S.; Melo, D. D.; Wendland, E.

    2014-12-01

    Groundwater recharge is an essential hydrology component for sustainable water withdrawal from an aquifer. The Guarani Aquifer System (GAS) is the largest (~1.2 million km2) transboundary groundwater reservoir in South America, supplying freshwater to four countries: Brazil, Argentina, Paraguay and Uruguay. However, recharge in the GAS outcrop zones is one of the least known hydrological variables, in part because studies from hydrological data are scarce or nonexistent. We assess recharge using the water-budget as the difference of precipitation (P) and evapotranspiration (ET). Data is derived from remotely sensed estimates of P (TRMM 3B42 V7) and ET (MOD16) in the Onça Creek watershed over the 2004­-12 period. This is an upland-flat watershed (slope steepness < 1%) dominated by sand soils and representative of the GAS outcrop zones. We compared the remote sensing approach against Water Table Fluctuation (WTF) method and another water-budget using ground-based measurements. Uncertainty propagation analysis were also performed. On monthly basis, TRMM P exhibited a great agreement with ground-based P data (R2 = 0.86 and RMSE = 41 mm). Historical (2004-12) mean(±sd) satellite-based recharge (Rsat) was 537(±224) mm y-1, while ground-based recharge using water-budget (Rgr) and WTF (Rwtf) method was 469 mm y-1 and 311(±150) mm y-1, respectively. We found that ~440 mm y-1 is a reasonable historical mean (between Rsat, Rgr and Rwtf) recharge for the study area over 2004-2012 period. The latter mean recharge estimate is about 29% of the mean historical P (1,514 mm y-1). Our results provide the first insight about an intercomparison of water budget from remote sensing and measured data to estimate recharge in the GAS outcrop zone. These results should be useful for future studies on assessing recharge in the GAS outcrop zones. Since accurate and precise recharge estimation still is a gap, our recharge satellite-based is considered acceptable for the Onça Creek

  19. Quantifying depression-focused recharge in a seasonally frozen, semi-arid landscape

    Science.gov (United States)

    Cey, Edwin; Noorduijn, Saskia; Mohammed, Aaron; Pavlovskii, Igor; Bentley, Laurence; Hayashi, Masaki

    2016-04-01

    Groundwater recharge in the northern prairie region is influenced by seasonal accumulation of snowmelt runoff in numerous closed topographic depressions (tens to 100's of meters in size) that dot the landscape. Estimating recharge is difficult due to the number and complexity of processes at play, including snow redistribution, runoff, infiltration, evapotranspiration, lateral water redistribution, and recharge, which take place on clay-rich, macroporous sediments that are seasonally frozen. A multi-faceted study, referred to as the Groundwater Recharge in the Prairies (GRIP) project, was undertaken on the Canadian prairies in order to better understand the key hydrologic processes and to generate reliable basin-scale estimates of groundwater recharge that are necessary for sustainable groundwater management. Detailed monitoring of hydrological fluxes across individual depression-midslope-upland complexes was undertaken at three field sites located in different ecoregions, yielding valuable insights into the hydrologic processes and feedbacks within these individual micro-catchments. This process understanding was incorporated into a relatively simple one-dimensional (1D) water budget model, to which a new upscaling scheme was applied to estimate recharge over a watershed or multiple watersheds. The 1D model links upland and depression processes for an individual micro-catchment, and then upscales to a larger model grid cell based on a categorization of depressions based on their surface area and density within the grid cell. This approach enables explicit incorporation of relevant recharge processes, thus producing realistic recharge estimates, while limiting computational demand. The model has been calibrated and tested against a long-term data set from one of the field sites. Results demonstrate complex relationships between upland-depression water transfers and catchment geometry, resulting in maximal groundwater recharge in catchments with intermediate ratios

  20. Groundwater Recharge Evaluation in Semi-Arid Northeast Mexico in Response to Projected Climate Change

    Science.gov (United States)

    Wolaver, B. D.

    2007-12-01

    This research evaluates the effects of projected climate change on mountain recharge in the semi-arid Cuatrocinegas Basin (CCB) of northeast Mexico. The CCB UNESCO Biosphere Reserve is located in Coahuila, Mexico (~27° N, ~102° W) and includes > 500 springs that discharge from a regional flow system to wetlands with > 70 endemic species and to an irrigation network. This study tests the hypothesis that projected climate changes will reduce CCB recharge. In CCB, ~75% of annual precipitation (~220 mm at 700 m, ~400 mm at 2350 m) falls between May and October and ~40% falls during the North American Monsoon in June, July, and August. Environmental isotopes indicate aquifer residence times of > 50 years. Stable isotopes (O and H) show that mountain precipitation (at an elevation of ~1170 to 2350 m) dominates groundwater recharge. Recharge is insignificant at lower- elevation valleys that cover the majority of the study area due to high evapotranspiration rates. A Cl--balance water-budget recharge analysis estimates a spatially distributed recharge rate of ~1 to 3% of precipitation to provide at least 35x106 m3/year spring discharge (as measured in canals that drain dozens of springs). IPCC AR4 climate projections predict an annual temperature increase of 3.0 to 3.5°C and an annual precipitation decrease of 5 to 10% for Subregion CNA (located adjacent to CCB) by 2099. During June to August, models project a temperature increase of 3.5 to 4.0°C and a precipitation increase of 0 to 5%. Although global and regional circulation models evaluate mountain regions poorly, a first-order evaluation of climate projections on CCB recharge is needed input to develop effective long-term groundwater management policies. Climate projections suggest that the minimum elevation at which recharge occurs in CCB may increase by ~615 m to 1785 m, which would limit recharge to the highest mountain elevations. If annual precipitation is reduced by 5 to 10% and temperatures increase as

  1. Urban recharge beneath low impact development and effects of climate variability and change

    Science.gov (United States)

    Newcomer, Michelle E.; Gurdak, Jason J.; Sklar, Leonard S.; Nanus, Leora

    2014-02-01

    low impact development (LID) planning and best management practices (BMPs) effects on recharge is important because of the increasing use of LID BMPs to reduce storm water runoff and improve surface-water quality. LID BMPs are microscale, decentralized management techniques such as vegetated systems, pervious pavement, and infiltration trenches to capture, reduce, filter, and slow storm water runoff. Some BMPs may enhance recharge, which has often been considered a secondary management benefit. Here we report results of a field and HYDRUS-2D modeling study in San Francisco, California, USA to quantify urban recharge rates, volumes, and efficiency beneath a LID BMP infiltration trench and irrigated lawn considering historical El Niño/Southern Oscillation (ENSO) variability and future climate change using simulated precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. We find that in situ and modeling methods are complementary, particularly for simulating historical and future recharge scenarios, and the in situ data are critical for accurately estimating recharge under current conditions. Observed (2011-2012) and future (2099-2100) recharge rates beneath the infiltration trench (1750-3710 mm yr-1) were an order of magnitude greater than beneath the irrigated lawn (130-730 mm yr-1). Beneath the infiltration trench, recharge rates ranged from 1390 to 5840 mm yr-1 and averaged 3410 mm yr-1 for El Niño years (1954-2012) and from 1540 to 3330 mm yr-1 and averaged 2430 mm yr-1 for La Niña years. We demonstrate a clear benefit for recharge and local groundwater resources using LID BMPs.

  2. A computer program for predicting recharge with a master recession curve

    Science.gov (United States)

    Heppner, Christopher S.; Nimmo, John R.

    2005-01-01

    Water-table fluctuations occur in unconfined aquifers owing to ground-water recharge following precipitation and infiltration, and ground-water discharge to streams between storm events. Ground-water recharge can be estimated from well hydrograph data using the water-table fluctuation (WTF) principle, which states that recharge is equal to the product of the water-table rise and the specific yield of the subsurface porous medium. The water-table rise, however, must be expressed relative to the water level that would have occurred in the absence of recharge. This requires a means for estimating the recession pattern of the water-table at the site. For a given site there is often a characteristic relation between the water-table elevation and the water-table decline rate following a recharge event. A computer program was written which extracts the relation between decline rate and water-table elevation from well hydrograph data and uses it to construct a master recession curve (MRC). The MRC is a characteristic water-table recession hydrograph, representing the average behavior for a declining water-table at that site. The program then calculates recharge using the WTF method by comparing the measured well hydrograph with the hydrograph predicted by the MRC and multiplying the difference at each time step by the specific yield. This approach can be used to estimate recharge in a continuous fashion from long-term well records. Presented here is a description of the code including the WTF theory and instructions for running it to estimate recharge with continuous well hydrograph data.

  3. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  4. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  5. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  6. Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array.

    Science.gov (United States)

    Fu, Jing; Hassan, Fathy Mohamed; Li, Jingde; Lee, Dong Un; Ghannoum, Abdul Rahman; Lui, Gregory; Hoque, Md Ariful; Chen, Zhongwei

    2016-08-01

    An electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.

  7. Survey of human virus occurrence in wastewater-recharged groundwater on Long Island

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.; Baranosky, L.J.; Beckwith, C.A.; Dahl, M.C.; Delihas, N.C.

    1978-07-01

    Treated wastewater effluents and groundwater observation wells from three sewage recharge installations located on Long Island were assayed on a monthly basis for indigenous human enteroviruses and coliform bacteria for a period of 1 year. Viruses were detected in groundwater at sites where recharge basins were located less than 35 feet (ca. 10.6 m) above the aquifer. Results from one of the sites indicated the horizontal transfer of viable viruses through the groundwater aquifer.

  8. Policy Preferences about Managed Aquifer Recharge for Securing Sustainable Water Supply to Chennai City, India

    OpenAIRE

    Norbert Brunner; Markus Starkl; Ponnusamy Sakthivel; Lakshmanan Elango; Subbaiah Amirthalingam; Chinniyampalayam E. Pratap; Munuswamy Thirunavukkarasu; Sundaram Parimalarenganayaki

    2014-01-01

    The objective of this study is to bring out the policy changes with respect to managed aquifer recharge (focusing on infiltration ponds), which in the view of relevant stakeholders may ease the problem of groundwater depletion in the context of Chennai City; Tamil Nadu; India. Groundwater is needed for the drinking water security of Chennai and overexploitation has resulted in depletion and seawater intrusion. Current policies at the municipal; state and national level all support recharge of...

  9. Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis

    CSIR Research Space (South Africa)

    Le Corre, K

    2012-06-01

    Full Text Available Reclamation Technologies for Safe Managed Aquifer Recharge Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis Le Corre, Kristell, Aharoni, Avi, Cauwenberghs, Johan, Chavez, Alma, Cikurel, Haim,Ayuso Gabella..., Tredoux, Gideon, Wintgens, Thomas, Cheng Xuzhou, Yu, Liang and Zhao, Xuan Abstract: Water scarcity combined with the quality deterioration of freshwater due to the rapid augmentation of population and industrial development is a major concern...

  10. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA

    Science.gov (United States)

    Sophocleous, M.

    2005-01-01

    Sustainable use of groundwater must ensure not only that the future resource is not threatened by overuse, but also that natural environments that depend on the resource, such as stream baseflows, riparian vegetation, aquatic ecosystems, and wetlands are protected. To properly manage groundwater resources, accurate information about the inputs (recharge) and outputs (pumpage and natural discharge) within each groundwater basin is needed so that the long-term behavior of the aquifer and its sustainable yield can be estimated or reassessed. As a first step towards this effort, this work highlights some key groundwater recharge studies in the Kansas High Plains at different scales, such as regional soil-water budget and groundwater modeling studies, county-scale groundwater recharge studies, as well as field-experimental local studies, including some original new findings, with an emphasis on assumptions and limitations as well as on environmental factors affecting recharge processes. The general impact of irrigation and cultivation on recharge is to appreciably increase the amount of recharge, and in many cases to exceed precipitation as the predominant source of recharge. The imbalance between the water input (recharge) to the High Plains aquifer and the output (pumpage and stream baseflows primarily) is shown to be severe, and responses to stabilize the system by reducing water use, increasing irrigation efficiency, adopting water-saving land-use practices, and other measures are outlined. Finally, the basic steps necessary to move towards sustainable use of groundwater in the High Plains are delineated, such as improving the knowledge base, reporting and providing access to information, furthering public education, as well as promoting better understanding of the public's attitudinal motivations; adopting the ecosystem and adaptive management approaches to managing groundwater; further improving water efficiency; exploiting the full potential of dryland and

  11. Groundwater Recharge and Hydrogeochemical Evolution in Leizhou Peninsula, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available An analysis of the stable isotopes and the major ions in the surface water and groundwater in the Leizhou Peninsula was performed to identify the sources and recharge mechanisms of the groundwater. In this study, 70 water samples were collected from rivers, a lake, and pumping wells. The surface water was considered to have a lower salinity than the groundwater in the region of study. The regression equations for δD and δ18O for the surface water and the groundwater are similar to those for precipitation, indicating meteoric origins. The δD and δ18O levels in the groundwater ranged from −60‰; to −25‰; and −8.6‰; to −2.5‰, respectively, and were lower than the stable isotope levels from the winter and spring precipitation. The groundwater in the southern area was classified as the Ca2+-Mg2+-HCO3--type, whereas the groundwater in the northern area included three types (Na+-Cl−-type, Ca2+-Mg2+-HCO3--type, and Ca2+-Mg2+-Cl−-type, indicating rapid and frequent water-rock exchange in the region. A reasonable conclusion is that the groundwater chemistry is dominated by rock weathering and rainwater of local origin, which are influenced by seawater carried by the Asian monsoon.

  12. Efficient Wireless Charger Deployment for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jehn-Ruey Jiang

    2016-08-01

    Full Text Available A wireless rechargeable sensor network (WRSN consists of sensor nodes that can harvest energy emitted from wireless chargers for refilling their batteries so that the WRSN can operate sustainably. This paper assumes wireless chargers are equipped with directional antennas, and are deployed on grid points of a fixed height to propose two heuristic algorithms solving the following wireless charger deployment optimization (WCDO problem: how to deploy as few as possible chargers to make the WRSN sustainable. Both algorithms model the charging space of chargers as a cone and calculate charging efficiency according power regression expressions complying with the Friis transmission equation. The two algorithms are the greedy cone covering (GCC algorithm and the adaptive cone covering (ACC algorithm. The GCC (respectively, ACC algorithm greedily (respectively, adaptively generates candidate cones to cover as many as possible sensor nodes. Both algorithms then greedily select the fewest number of candidate cones, each of which corresponds to the deployment of a charger, to have approximate solutions to the WCDO problem. We perform experiments, conduct simulations and do analyses for the algorithms to compare them in terms of the time complexity, the number of chargers deployed, and the execution time.

  13. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    Directory of Open Access Journals (Sweden)

    Najeeb W. Najeeb

    2017-07-01

    Full Text Available When extending the life of Wireless Rechargeable Sensor Networks (WRSN, one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  14. Universal quinone electrodes for long cycle life aqueous rechargeable batteries

    Science.gov (United States)

    Liang, Yanliang; Jing, Yan; Gheytani, Saman; Lee, Kuan-Yi; Liu, Ping; Facchetti, Antonio; Yao, Yan

    2017-08-01

    Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (>=20C), high anode specific capacity (up to 200-395 mAh g-1), and several examples of state-of-the-art specific energy/energy density (up to 76-92 Wh kg-1/ 161-208 Wh l-1) for several operational pH values (-1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (-35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

  15. Policy and Economics of Managed Aquifer Recharge and Water Banking

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2015-02-01

    Full Text Available Managed Aquifer Recharge (MAR and water banking are of increasing importance to water resources management. MAR can be used to buffer against drought and changing or variable climate, as well as provide water to meet demand growth, by making use of excess surface water supplies and recycled waters. Along with hydrologic and geologic considerations, economic and policy analyses are essential to a complete analysis of MAR and water banking opportunities. The papers included in this Special Issue fill a gap in the literature by revealing the range of economic and policy considerations relevant to the development and implementation of MAR programs. They illustrate novel techniques that can be used to select MAR locations and the importance and economic viability of MAR in semi-arid to arid environments. The studies explain how MAR can be utilized to meet municipal and agricultural water demands in water-scarce regions, as well as assist in the reuse of wastewater. Some papers demonstrate how stakeholder engagement, ranging from consideration of alternatives to monitoring, and multi-disciplinary analyses to support decision-making are of high value to development and implementation of MAR programs. The approaches discussed in this collection of papers, along with the complementary and necessary hydrologic and geologic analyses, provide important inputs to water resource managers.

  16. Pre-eruption recharge of the Bishop magma system

    Science.gov (United States)

    Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.

    2007-01-01

    The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.

  17. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  18. Modeling soil moisture processes and recharge under a melting snowpack

    Science.gov (United States)

    Flint, A.L.; Flint, L.E.; Dettinger, M.D.

    2008-01-01

    Recharge into granitic bedrock under a melting snowpack is being investigated as part of a study designed to understand hydrologic processes involving snow at Yosemite National Park in the Sierra Nevada Mountains of California. Snowpack measurements, accompanied by water content and matric potential measurements of the soil under the snowpack, allowed for estimates of infiltration into the soil during snowmelt and percolation into the bedrock. During portions of the snowmelt period, infiltration rates into the soil exceeded the permeability of the bedrock and caused ponding to be sustained at the soil-bedrock interface. During a 5-d period with little measured snowmelt, drainage of the ponded water into the underlying fractured granitic bedrock was estimated to be 1.6 cm d?1, which is used as an estimate of bedrock permeability. The numerical simulator TOUGH2 was used to reproduce the field data and evaluate the potential for vertical flow into the fractured bedrock or lateral flow at the bedrock-soil interface. During most of the snowmelt season, the snowmelt rates were near or below the bedrock permeability. The field data and model results support the notion that snowmelt on the shallow soil overlying low permeability bedrock becomes direct infiltration unless the snowmelt rate greatly exceeds the bedrock permeability. Late in the season, melt rates are double that of the bedrock permeability (although only for a few days) and may tend to move laterally at the soil-bedrock interface downgradient and contribute directly to streamflow. ?? Soil Science Society of America.

  19. A high-voltage rechargeable magnesium-sodium hybrid battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yifei; An, Qinyou; Cheng, Yingwen; Liang, Yanliang; Ren, Yang; Sun, Cheng-Jun; Dong, Hui; Tang, Zhongjia; Li, Guosheng; Yao, Yan

    2017-04-01

    Growing global demand of safe and low-cost energy storage technology triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. Here we report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edge structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. This work represents a significant step forward for practical safe and low-cost hybrid batteries.

  20. High rechargeable sodium metal-conducting polymer batteries

    Science.gov (United States)

    Guerfi, A.; Trottier, J.; Gagnon, C.; Barray, F.; Zaghib, K.

    2016-12-01

    Rechargeable lithium batteries accelerated the wireless revolution over the last two decades, and they are now a mature technology for transportation applications in electric vehicles (EV). However, numerous studies have concluded that the proven lithium reserves can hardly absorb the growth in demand. Therefore, sustainable sodium batteries are being considered to overcome the lithium resource shortages that may arise from large-scale application in EVs and stationary energy storage. It is difficult to find a suitable host material for reversible Na-ion storage due to the size of the Na+ ion (0.102 nm) compared to the Li+ ion (0.076 nm). Here we report a low cost and simple sodium technology that is based on a metal-free cathode material. Sodium metal was used as the anode with a conducting polymer cathode and electrochemically tested in a liquid electrolyte. With this technology, a host material for Na intercalation is not required, and because a polymer conductor is used, the size of the Na ion is not an issue.

  1. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain

    Directory of Open Access Journals (Sweden)

    J. R. Raposo

    2012-06-01

    Full Text Available Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity. Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presents a net of well-developed fractures. The current European Water Framework Directive requires an efficient management of all groundwater resources; this begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, dominated by granitic and metasedimentary rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials. These results were cross-validated with an independent technique, i.e. the chloride mass balance (CMB. A relation among groundwater recharge and annual precipitation according to two different logistic curves was found for both granites and metasedimentary rocks, thus allowing the parameterization of recharge by means of only a few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated to be 4427 hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.

  2. Recharge variability and sensitivity to climate: The example of Gidabo River Basin, Main Ethiopian Rift

    Directory of Open Access Journals (Sweden)

    Abraham Mechal

    2015-09-01

    New hydrological insights for the region: The average annual recharge for 1998–2010 reveals a remarkable decrease from the highland (410 mm/year towards the rift floor (25 mm/year. Both the spatial and temporal recharge variability is mainly controlled by the climate. In the rift floor, recharge is found to occur only when annual precipitation exceeds a threshold of approximately 800 mm. A sensitivity analysis reveals that annual recharge is very sensitive to variations in precipitation and moderately sensitive to temperature changes. The relative sensitivity increases from the highland to the rift floor across the watershed. Increases in both precipitation and temperature, as suggested by climate change projections for Ethiopia, appear to have an overall positive impact on recharge in the majority of the catchment. These findings have implications also for other catchments where recharge is spatially nonuniform and provide a basis for further investigations into the assessment of groundwater resources and their vulnerability to climate change at the watershed and sub-watershed scale.

  3. Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride

    Science.gov (United States)

    Niazi, Amir; Bentley, Laurence R.; Hayashi, Masaki

    2017-03-01

    In this study groundwater chloride concentration and baseflow are used to estimate the spatial variability of recharge. Total recharge over the entire watershed is estimated using the baseflow method, and then the spatial variability of recharge is approximated using groundwater chloride concentration. The efficacy of the method is demonstrated using data from a rural watershed in Alberta, Canada. By using the combination of two well established methods of estimating recharge, baseflow and chloride mass balance, there is no need to estimate wet and dry deposition rate of chloride. The presented method is tested by using a steady-state groundwater flow model. The groundwater model showed higher agreement between modeled vs observed heads when spatially variable recharge forced the upper boundary of the model (root mean square error reduced from 13.5 m to 8 m). In addition, we demonstrate a unique method for parameterizing hydraulic conductivity of a fluvial aquifer using a sand fraction transfer function. This new method reduces the dimensionality of the parameter estimation problem and provides a consistency check on the spatially varying recharge estimates.

  4. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-08-01

    The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from -42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from -69% to -14% compared to the present-day climate.

  5. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    Science.gov (United States)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  6. Nocturnal sap flow characteristics and stem water recharge of Acacia mangium

    Institute of Scientific and Technical Information of China (English)

    Hua WANG; Ping ZHAO; Quan WANG; Xian CAI; Ling MA; Xingquan RAO; Xiaoping ZENG

    2008-01-01

    In this paper,we studied the nocturnal stem water recharge of Acacia mangium. It is helpful to improve the precision of canopy transpiration estimation and canopy stomatal conductance, and to further understand the lag time of canopy transpiration to stem sap flow.In this study,the whole-tree sap flow in an A.mangium forest was measured by using Granier's thermal dissipation probe for over two years in the hilly land of South China. The environmental factors, including relative humidity (RH), precipitation, vapor pressure deficit (VPD), photo-synthetically active radiation (PAR),and air temperature (Ta) were recorded simultaneously. The stem water recharge of A. Mangium was analyzed on both daily and monthly scales. Sap flux density was lower at night than during the day. The time range of nighttime sap flux density was longer in the dry season than in the wet season. The water recharging mainly occurred from sunset to midnight.No significant differences were observed among inter-annual nighttime water recharges. Nighttime water recharge had no significant correlation with environmen-tal factors, but was welt correlated with the diameter at breast height, tree height, and crown size. In the dry season the contribution of nighttime water recharge to total transpiration had significant correlations with daytime transpiration, total transpiration, VPD, PAR and Ta, while in the wet season it was significantly correlated with daily transpiration and total transpiration.

  7. Can basin-scale recharge be estimated reasonably with water-balance models?

    Science.gov (United States)

    Faust, A.E.; Ferre, T. P. A.; Schaap, M.G.; Hinnell, A.C.; Brown, Gordon E.

    2006-01-01

    We examine in-place recharge as an example of the complex, basin-scale hydrologic processes that are being represented with simplified numerical models. The rate and distribution of recharge depend on local meteorological conditions and hydrogeologic properties. The pattern of recharge is defined predominantly by the distribution of net precipitation (precipitation less evapotranspiration), but different pedotransfer functions (PTFs) predict different fractions of precipitation that become in-place recharge at a given location. At any single location, these differences can often be explained on the basis of the PTF characteristics, but because of the complex averaging that occurs across a basin, the combined effects of meteorological variation and soil textural variation on the basin-wide recharge rates cannot be predicted on the basis of the characteristics of different PTFs. In fact, we show that the same basin-scale numerical model, using identical inputs and modeling options, can produce almost an order of magnitude variation in predicted basin total recharge depending on the choice of PTF. This suggests that sensitivity analyses should be performed on the choice of constitutive relationship (e.g., PTF) when assessing the predictive capability of basin-scale hydrologic models. ?? Soil Science Society of America.

  8. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    Science.gov (United States)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  9. Sensitivity of quantitative groundwater recharge estimates to volumetric and distribution uncertainty in rainfall forcing products

    Science.gov (United States)

    Werner, Micha; Westerhoff, Rogier; Moore, Catherine

    2017-04-01

    Quantitative estimates of recharge due to precipitation excess are an important input to determining sustainable abstraction of groundwater resources, as well providing one of the boundary conditions required for numerical groundwater modelling. Simple water balance models are widely applied for calculating recharge. In these models, precipitation is partitioned between different processes and stores; including surface runoff and infiltration, storage in the unsaturated zone, evaporation, capillary processes, and recharge to groundwater. Clearly the estimation of recharge amounts will depend on the estimation of precipitation volumes, which may vary, depending on the source of precipitation data used. However, the partitioning between the different processes is in many cases governed by (variable) intensity thresholds. This means that the estimates of recharge will not only be sensitive to input parameters such as soil type, texture, land use, potential evaporation; but mainly to the precipitation volume and intensity distribution. In this paper we explore the sensitivity of recharge estimates due to difference in precipitation volumes and intensity distribution in the rainfall forcing over the Canterbury region in New Zealand. We compare recharge rates and volumes using a simple water balance model that is forced using rainfall and evaporation data from; the NIWA Virtual Climate Station Network (VCSN) data (which is considered as the reference dataset); the ERA-Interim/WATCH dataset at 0.25 degrees and 0.5 degrees resolution; the TRMM-3B42 dataset; the CHIRPS dataset; and the recently releases MSWEP dataset. Recharge rates are calculated at a daily time step over the 14 year period from the 2000 to 2013 for the full Canterbury region, as well as at eight selected points distributed over the region. Lysimeter data with observed estimates of recharge are available at four of these points, as well as recharge estimates from the NGRM model, an independent model

  10. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  11. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    Science.gov (United States)

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p0.1), but increased CaP release and re-release (p0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond strength. Increasing NACP filler level increased the ion recharge and re-release capability. The new CaP recharge method and PMGDM-EBPAGMA-NACP composition may have wide application in adhesives, composites and cements, to combat caries and remineralize lesions. PMID:26144190

  12. Impact of climate variations on Managed Aquifer Recharge infiltration basins.

    Science.gov (United States)

    Barquero, Felix; Stefan, Catalin

    2017-04-01

    KEYWORDS: Managed Aquifer Recharge, field scale infiltration unit, climatic conditions, numerical model Managed Aquifer Recharge (MAR) is a technique that is gaining more attention as a sustainable alternative for areas where water scarcity is increasing. Main concept relies on facilitating the vertical infiltration of a source of fresh water (river water, rainwater, reclaimed water, etc). The groundwater acts as storage of water for further use in the future, for example in times of water scarcity. In some MAR types the soil itself can be used even as a filter for the removal of specific organic and inorganic compounds. In order to promote the benefits of MAR in different zones of the globe with variable climate conditions, including the effects of climate change, a numerical model (HYDRUS 2D/3D) is being set up. Coupled with the model a field-scale rapid infiltration unit (4m x 5m x 1.5m) was constructed with the capacity to log different MAR key parameters in the soil (tension, water content, temperature and electrical conductivity) in space and time. These data will feed the model for its calibration using specific hydrogeological characteristics of the packing material and hydraulic characteristics of the infiltrated fluid. The unit is located in the city of Pirna (German), 200 m north from the Elbe River where the groundwater level varies seasonally between 6 and 9 m below the ground surface. Together with the field scale rapid infiltration unit, a set of multi-parametric sensors (measuring in time: water stage, electrical conductivity, dissolved oxygen and temperature) in six monitoring wells, located on the basin surroundings, were installed. The purpose of these sensors is to estimate, via tracer experiments, the time that the infiltrated water needed to reach the groundwater and the flow speed in which it travelled once it reached the saturated zone. Once calibrated, the model will be able to estimate the flow behaviour under variable climate conditions

  13. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  14. The impact of nanomaterials on Li-ion rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.K.; Wang, G.X.; Guo, Z.P.; Wang, J.Z.; Konstantinov, K. [Wollongong Univ., Wollongong, NSW (Australia). Inst. for Superconducting and Electronic Materials, ARC Centre of Excellence for Electromaterials Science

    2006-07-01

    Nanotechnology is now being considered for use in lithium (Li) secondary batteries. This study investigated the impact of various nanomaterials on Li rechargeable battery performance. The study included an evaluation of carbon nanotubes (CNTs); NiO and WS{sub 2} nanotubes; Sn, si, Cu{sub 6}Sn{sub 5}, Si-C, Si mesocarbon microbeads; Si-TiC, Si-PPY and multiwalled nanotubes and Sn/SnNi nano-composites. Nanoparticles dispersed in polymer electrolytes in the Li secondary batteries were also investigated. Phase-pure compounds were prepared using sol-gel synthesis. A layer of carbon was coated on the surface of the Li crystals. Nanoparticles were dispersed in polymer electrolytes of polyethylene oxide (PEO). When NiSi was used in the Li cells, it provided a high lithium storage capacity in the initial discharge, during which Si acted as an active element to combine with Li to form Li{sub x}Si. Nano-Si-MCMB anodes showed superior performance. MCMB graphite was almost dimensionally invariable during Li insertion and extraction. The phase-pure Li compounds prepared by sol-gel fabrication methods significantly enhanced the electronic conductivity, and the Ti-doped and undoped Li iron phosphates demonstrated a stable discharge capacity. Results of the study showed that nanoparticle-dispersed polymer electrolytes that were smaller in size influenced the crystallization kinetics of the PEO polymer chains. High-energy ball milling lowered the glass transition temperature of the composite polymers, and increased the ionic conductivity by more than an order of magnitude when compared with the unmilled samples. It was concluded that the highest ionic conductivity was achieved when using LiPF{sub 6} as an added Li salt, and Al{sub 2}O{sub 3} as a dispersed particle. 8 refs., 2 figs.

  15. Modeling analysis of ground water recharge potential on alluvial fans using limited data.

    Science.gov (United States)

    Munévar, A; Mariño, M A

    1999-01-01

    A modeling approach is developed to evaluate the potential for artificial recharge on alluvial fans in the Salinas Valley, California, using limited data of soil texture, soil hydraulic properties, and interwell stratigraphy. Promising areas for surface recharge are identified and mapped on a broad-scale using soil surveys, geologic investigations, permeability tests, and seasonal ground water response to rainfall and runoff. Two-dimensional representations of the vadose zone at selected sites are then constructed from drillers'logs and soil material types are estimated. Next, hydraulic properties are assigned to each soil material type by comparing them to laboratory-tested cores of similar soils taken from one site. Finally, water flow through the vadose zone is modeled in two dimensions at seven sites using a transient, finite-difference, variably saturated flow model. Average infiltration rates range from 0.84 to 1.54 cm/hr and recharge efficiency, the percentage of infiltrated water that reaches the water table, varies from 51% to 79%. Infiltration rates and recharge efficiency are found to be relatively insensitive to recharge basin ponding depth due to the thickness of the vadose zones modeled (31 to 84 m). The impact of artificial recharge on the Salinas Valley ground water basin is investigated by simulating the regional ground water response to surface spreading and streamflow augmentation with a recently calibrated, finite-element, ground water-surface water model for the basin. It was determined that a combined approach of surface recharge and streamflow augmentation significantly reduces the state of ground water overdraft and, to a lesser extent, reduces the rate of sea water intrusion.

  16. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    Science.gov (United States)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-12-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  17. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    Science.gov (United States)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-08-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  18. Dug Well Recharge Method for Insitu Mitigation of Fluoride Contamination in Groundwater

    Science.gov (United States)

    Ganesan, G.; Lakshmanan, E.; Gunalan, J.

    2016-12-01

    Groundwater with fluoride concentration exceeding 1.5 mg/l is not suitable for drinking water supply as it may cause health issues such as dental and skeletal fluorosis to humans. Several million people around the world has been affected by fluorosis. The objective of the study is to mitigate the problem of fluoride contamination in groundwater by increasing groundwater recharge through a dug well recharge system. The study was carried out in a part of Vaniyar river basin, northwest Tamil Nadu, India where fluorosis is prevalent. A cylindrical pit of 1m diameter and 1.5 m height was constructed during May 2014 at a distance of about 4 m from a dug well existing in this area. This cylindrical pit was divided into 3 compartments and one of them was filled with gravel and one with sand. The third compartment was kept empty for inspection and maintenance. The rainfall collected in a funnel shaped depression was allowed to pass through these compartments to discharge in the nearby dug well through a pipe. The concentration of the fluoride in groundwater from this well was had been monitoring on bi-monthly basis from the year 2012 to 2014. After construction of dug well recharge system, the groundwater level has raised by about 5 m and the fluoride concentration has decreased from 3.1 mg/l to 1.44 mg/l due to recharge. The concentration of fluoride and groundwater level is being monitored on daily basis from June 2014. It is evident that the recharge system constructed is working well and the concentration of fluoride in groundwater is within the permissible limit. The advantage of this dug well recharge system is its low cost and the ease of implementation. Thus this pilot study on dug well recharge system demonstrated it's potential in reducing the concentration of fluoride in groundwater which is more beneficial to the society as they cannot afford the well proven water treatment methods.

  19. The character of organic carbon in recharge water and arsenic mobilization in Bangladesh aquifers

    Science.gov (United States)

    Pracht, L. E.; Fussell, A. H.; Polizzotto, M.; Badruzzaman, A. M.; Ali, M. A.; Neumann, R. B.

    2012-12-01

    In Bangladesh, arsenic-contaminated groundwater, used for both drinking and irrigation supplies, negatively affects the health of millions of people. Past work at our site in Munshiganj suggests that current patterns of arsenic concentration in the aquifer are related to groundwater flow and recharge chemistry. Constructed ponds and groundwater-irrigated rice fields serve as the primary aquifer recharge sources, with pond recharge evolving into high-arsenic groundwater and rice field recharge evolving into low-arsenic groundwater. The composition of these water types vary in concentrations and character of dissolved organic carbon, a presumed key component in the mechanism of arsenic release from sediments. Here we present results from an experiment-based laboratory study that directly tests the role of organic carbon character and bioavailability on arsenic mobilization. Incubation experiments using sediment samples collected from Bangladesh and waters with different carbon sources (e.g., pond and rice field recharge water and artificial water with model carbon compounds) were conducted to show the phase transformations carbon undergoes during arsenic mobilization processes, to isolate the carbon components and characteristics most responsible for mobilization reactions, and to investigate the importance of secondary chemical constituents for completion of these physiochemical reactions. Water, gas, and sediment samples collected from the incubations were analyzed for nutrient, metal, anion, and carbon concentrations, as well as carbon character. The results clarify the chemical components most critical in arsenic mobilization and provide insight into the in situ chemical reactions occurring in the aquifer. Moreover, this better chemical understanding helps elucidate the potential impact of altered recharge patterns and recharge chemistry on arsenic concentrations of Bangladeshi groundwater supplies.

  20. Towards sustainable regions: the spatial distribution of electric vehicles’ recharging stations from a socio-economic perspective

    DEFF Research Database (Denmark)

    Christensen, Linda; Kaplan, Sigal; Jensen, Thomas Christian

    -free, low-emission vehicles due to the rising oil prices and global warming. Adequate on-road EV recharging infrastructure is essential in the transformation of EV into a practical transport option and the wide-scale market penetration of EV. Nevertheless, the efficient spatial distribution of EV recharging...... as well as environmental externalities, namely pollutant emissions, carbon footprint, and noise exposure. The results demonstrate the applicability and feasibility of the proposed method for planning an EV recharging network in sustainable regions....

  1. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    Science.gov (United States)

    McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  2. Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer

    Science.gov (United States)

    Zhang, Yang-Qing; Wang, Jian-Hua; Chen, Jin-Jian; Li, Ming-Guang

    2017-05-01

    Groundwater drawdown and strata settlements induced by dewatering in confined aquifers can be relieved by artificial recharge. In this study, numerical simulations of a field multi-well pumping-recharge test in a deep confined aquifer are conducted to analyze the responses of groundwater and strata to pumping and recharge. A three-dimensional numerical model is developed in a finite-difference software, which considers the fluid-mechanical interaction using the Biot consolidation theory. The predicted groundwater drawdown and ground settlements are compared to the measured data to confirm the validation of the numerical analysis of the pumping and recharge. Both numerical results and measured data indicate that the effect of recharge on controlling the groundwater drawdown and strata settlements correlates with the injection rate and well arrangements. Since the groundwater drawdown induced by pumping can be controlled by artificial recharge, soil compression can be relieved by reducing the changes of effective stress of the soils. Consequently, strata settlement induced by pumping can be relieved by artificial recharge and ground settlements can be eliminated if an appropriate injection rate and well arrangement are being determined. Moreover, the changes of the pore pressure and seepage force induced by pumping and recharge will also result in significant horizontal deformations in the strata near the recharge wells.

  3. Compendium of Data for the Hanford Site (Fiscal Years 2004 to 2008) Applicable to Estimation of Recharge Rates

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, William E.; Rockhold, Mark L.; Downs, Janelle L.

    2008-09-24

    This report is a compendium of recharge data collected in Fiscal Years 2004 through 2008 at various soil and surface covers found and planned in the 200 West and 200 East Areas of the U.S. Department of Energy’s Hanford Site in southeast Washington State. The addition of these new data to previously published recharge data will support improved estimates of recharge with respect to location and soil cover helpful to evaluations and risk assessments of radioactive and chemical wastes at this site. Also presented are evaluations of the associated uncertainties, limitations, and data gaps in the existing knowledge base for recharge at the Hanford Site.

  4. A rigorous method for quantifying recharge using simple and complex models

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2012-04-01

    One of the fundamental challenges for quantifying the timing and magnitude of groundwater recharge is that there remains no direct, non-destructive method for measuring this flux. As a result, recharge is indirectly inferred, requiring a conceptual model (that is a set of assumptions about the system processes), a mathematical model (providing quantitative estimates) and some indirect observations. For physical approaches, observations will typically include rainfall, potential evaporation and either soil/unsaturated moisture status, or water table fluctuations. Some limitations with conventional modelling approaches include: inadequate representation of the deep unsaturated zone; inadequate representation of unsaturated zone-saturated zone interactions (for example, changing unsaturated zone thickness in areas where water table fluctuations are significant); inadequate representation of lateral flows within the saturated zone which influence water table fluctuations (an example being the erroneous assumption that a sustained failing water table is indicative of an absence of recharge). In groundwater models, errors in recharge estimates may be masked by calibration of the saturated zone parameters (specific yield and hydraulic conductivity). Validation of the modelled recharge is therefore not rigorous. This paper presents a detailed physically based model for unsaturated-saturated zone flow processes applied to a dual permeability Chalk hillslope transect. This is a fairly well constrained natural field site in a highly studied catchment. The Chalk is a complex fractured porous medium. A detailed model based on Richards' equation explicitly simulates the (observable) water table response to recharge, with none of the limitations listed above. This model is able to reproduce observed field behaviour. This provides us with a benchmark with which to test conventional recharge models in a more rigorous manner than has been done previously. In particular we focus on

  5. Groundwater Recharge Estimation using Low-Cost Observation Techniques and Potential Applications

    Science.gov (United States)

    Holländer, Hartmut; Wang, Zijian; Assefa, Kibreab; Woodbury, Allan

    2016-04-01

    Sustainable groundwater management requests groundwater recharge estimation as a critical quantity. We used physical-based modelling using data from a low-cost weather station and tested the feasibility and robustness of recharge estimation. The method was tested on two locations in British Columbia (B.C.), Canada. The main study was conducted in Southern Abbotsford, B.C. and applications related to water management in future climates and to water usage optimization were conducted in Okanagan Valley, B.C. Recharge was determined using HYDRUS-1D. The meteorological data were recorded by a HOBO weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). The derived soil hydraulic parameters of two undisturbed soil cores were used to characterize the soil. Model performance was evaluated by using observed soil moisture and soil temperature data. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 mm and 816 mm. The mean annual recharge was estimated at 848 mm/year, and 859 mm/year based on a time series of 27 years. 80% of precipitation contributed to recharge in hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Being able to predict transient recharge estimates, this method can provide a tool for estimates on nutrient leaching which is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil. Modeling supports that recharge estimates at high temporal resolution also increase the prediction quality of nitrate leaching. The application for water resources related problems in the Okanagan Valley showed that linking groundwater and surface water using regional groundwater estimates improved calibration of existing groundwater model strongly and that our method is capable to use

  6. Impact of climate on groundwater recharge in the crystalline basement rocks aquifer of Northern Ghana

    Science.gov (United States)

    Koffi, K. V.

    2015-12-01

    Water is the cornerstone of human life and for all economic developments. West Africa and specifically Ghana are no exception to this reality.Northern Ghana is characterized by a semi-arid climate, with prolonged dry season (7 months of very few rainfall) leading to the drying up of many rivers and streams. In addition, rainfall is highly variable in space and time. Therefore, surface water is unreliable and insufficient to meet the water demands for socio-economic development in this area. As a result, the area is heavily dependent on groundwater for domestic water supply as well as for dry season irrigation of vegetables (cash crops).However, aquifers in northern Ghana are dominantly the hard rock type (Crystalline basement rock). This aquifer has no primary porosity and may not be able to sustain the increasing demand on the resource. Further, climate change may worsen the situation as recharge is dependent on rainfall in northern Ghana. Therefore, it is important to understand exactly how climate change will impact on recharge to the groundwater for sustainable development and management of the resource.Previous groundwater studies in Northern Ghana barely analyzed the combined impacts of Climate change on the recharge to the groundwater. This research is aimed at determining the current relationship between groundwater recharge and rainfall and to use the relationships to determine the impacts of changes in climate on the groundwater recharge. The results will inform plans and strategies for sustainably managing groundwater resources in Ghana and the Volta basin.

  7. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge

    Institute of Scientific and Technical Information of China (English)

    Zijia Wang; Xinqiang Du; Yuesuo Yang; Xueyan Ye

    2012-01-01

    Aquifer recharge,which uses urban stormwater,is an effective technique to control the negative effects of groundwater overexploitation,while clogging problems in infiltration systems remain the key restricting factor in broadening its practice.Quantitative understanding of the clogging process is still very poor.A laboratory study was conducted to understand surface physical clogging processes,with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start.The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns.The results showed that the smaller the suspended particles in recharge water,the farther the distance of movement and the larger the scope of clogging in porous media.Clogging extents in fine sand were 1 cm,for suspended particle size ranging from 0.075 to 0.0385 mm,and 2 cm,for particles less than 0.0385 mm.In addition,clogging development occurred more rapidly for smaller suspended solid particles.It took 48,42,and 36 hr respectively,for large-,medium-,and small-sized particles to reach pre-determined clogging standards.An empirical formula and iteration model for the surface clogging evolution process were derived.The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.

  8. Estimation of future groundwater recharge using climatic analogues and Hydrus-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-01-01

    The impact of climate change on groundwater recharge is simulated using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimating groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richard's based soil water balance model Hydrus-1D and meteorological time series from analogue stations. Water balance calculations showed that transition from a temperate oceanic to a warmer subtropical climate without rainfall seasonality is expected to yield a decrease in groundwater recharge (-12% for the chosen representative analogue station of Gijon, Northern Spain). Based on a time series of 24 yr of daily climate data, the long-term average annual recharge decreased from 314 to 276 mm, although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). This is due to a higher soil evaporation (233 mm versus 206 mm) and higher plant transpiration (350 versus 285 mm) under the warmer climate.

  9. Policy Preferences about Managed Aquifer Recharge for Securing Sustainable Water Supply to Chennai City, India

    Directory of Open Access Journals (Sweden)

    Norbert Brunner

    2014-12-01

    Full Text Available The objective of this study is to bring out the policy changes with respect to managed aquifer recharge (focusing on infiltration ponds, which in the view of relevant stakeholders may ease the problem of groundwater depletion in the context of Chennai City; Tamil Nadu; India. Groundwater is needed for the drinking water security of Chennai and overexploitation has resulted in depletion and seawater intrusion. Current policies at the municipal; state and national level all support recharge of groundwater and rainwater harvesting to counter groundwater depletion. However, despite such favorable policies, the legal framework and the administrative praxis do not support systematic approaches towards managed aquifer recharge in the periphery of Chennai. The present study confirms this, considering the mandates of governmental key-actors and a survey of the preferences and motives of stakeholder representatives. There are about 25 stakeholder groups with interests in groundwater issues, but they lack a common vision. For example, conflicting interest of stakeholders may hinder implementation of certain types of managed aquifer recharge methods. To overcome this problem, most stakeholders support the idea to establish an authority in the state for licensing groundwater extraction and overseeing managed aquifer recharge.

  10. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  11. Identifying long-term empirical relationships between storm characteristics and episodic groundwater recharge

    Science.gov (United States)

    Tashie, Arik M.; Mirus, Benjamin B.; Pavelsky, Tamlin M.

    2016-01-01

    Shallow aquifers are an important source of water resources and provide base flow to streams; yet actual rates of groundwater recharge are difficult to estimate. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on groundwater recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land use types across North Carolina. We extract storm duration, magnitude, average rate, and hourly weighted intensity from long-term precipitation records over periods of 12-35 years at 10 locations. Using time series of water table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. Increased RPR correlates with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity of precipitation. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land use change for water resources in subtropical climates. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas of the American Southeast could further limit groundwater availability.

  12. Identifying long term empirical relationships between storm characteristics and episodic groundwater recharge

    Science.gov (United States)

    Tashie, Arik; Mirus, Benjamin B.; Pavelsky, Tamlin

    2016-01-01

    Shallow aquifers are an important source of water resources and provide base flow to streams; yet actual rates of groundwater recharge are difficult to estimate. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on groundwater recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land use types across North Carolina. We extract storm duration, magnitude, average rate, and hourly weighted intensity from long-term precipitation records over periods of 12–35 years at 10 locations. Using time series of water table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. Increased RPR correlates with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity of precipitation. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land use change for water resources in subtropical climates. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas of the American Southeast could further limit groundwater availability.

  13. Lipid Profile

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...

  14. Data Profiling

    OpenAIRE

    Hladíková, Radka

    2010-01-01

    Title: Data Profiling Author: Radka Hladíková Department: Department of Software Engineering Supervisor: Ing. Vladimír Kyjonka Supervisor's e-mail address: Abstract: This thesis puts mind on problems with data quality and data profiling. This Work analyses and summarizes problems of data quality, data defects, process of data quality, data quality assessment and data profiling. The main topic is data profiling as a process of researching data available in existing...

  15. Groundwater recharge in a semi-arid environment under high climatic variability and over-pumping: Ajlun Highlands example, Jordan.

    Science.gov (United States)

    Raggad, Marwan; Salameh, Elias; Magri, Fabien; Siebert, Christian; Roediger, Tino; Moller, Peter

    2016-04-01

    Jordan's ground water resources are being exploited up to 190% of the safe yield while rainfall rates are decreasing and highly variable, thereby affecting recharge volumes of the aquifers. The Ajlun highlands, forming the northwestern edge of Jordan are characterized by annual rainfall rates exceeding 500 mm, the highest in the country, which leads to accordingly high replenishment of almost the entire groundwater system in northern Jordan. The high recharge and the NW-wards dipping strata lead to a groundwater flow towards the north and northwest, areas which host the vital aquifers of the region. Limited and degraded groundwater recharge combined with growing over-pumping are the main issues that regard the northern groundwater basins, such as Wadi Arab, Yarmouk and the Jordan Valley side basins. To evaluate the groundwater potential under high recharge variability, groundwater recharge was modeled and compared to different Global Circulation Models (GCMs). Groundwater recharge was calculated based on climatic data covering the time period from 1965 to 2014. Recharge modeling was conducted by applying the J2000 water budget model. The simulation of hydrologic processes uses independent parameters that are calculated prior to simulate the recharge flow. The simulations estimate recharge of 47.6 MCM, which is 12% less than the values given by the Jordanian authorities. The low calculated recharge is likely due to an overestimation of the evapotranspiration in areas with high topographic slopes. To examine the variability of groundwater recharge under current climatic conditions, statistical downscaling of global circulation models was conducted for the time period 1965 - 2000. Data for the time period 2001 - 2014 was used for the model validation. Results indicated a decline of 18.7% in precipitation by the year 2050 with an increase of 1.7 and 2.2 degrees in maximum and minimum temperatures respectively. Accordingly recharge for the year 2050 is 27% less than

  16. Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example

    Science.gov (United States)

    Knowling, Matthew J.; Werner, Adrian D.

    2016-09-01

    The ability of groundwater models to inform recharge through calibration is hampered by the correlation between recharge and aquifer parameters such as hydraulic conductivity (K), and the insufficient information content of observation datasets. These factors collectively result in non-uniqueness of parameter estimates. Previous studies that jointly estimate spatially distributed recharge and hydraulic parameters are limited to synthetic test cases and/or do not evaluate the effect of non-uniqueness. The extent to which recharge can be informed by calibration is largely unknown for practical situations, in which complexities such as parameter heterogeneities are inherent. In this study, a systematic investigation of recharge, inferred through model calibration, is undertaken using a series of numerical experiments that include varying degrees of hydraulic parameter information. The analysis involves the use of a synthetic reality, based on a regional-scale, highly parameterised, steady-state groundwater model of Uley South Basin, South Australia. Parameter identifiability is assessed to evaluate the ability of parameters to be estimated uniquely. Results show that a reasonable inference of recharge (average recharge error 100 K values across the 129 km2 study area). The introduction of pumping data into the calibration reduces error in both the average recharge and its spatial variability, whereas submarine groundwater discharge (as a calibration target) reduces average recharge error only. Nonetheless, the estimation of steady-state recharge through inverse modelling may be impractical for real-world settings, limited by the need for unrealistic amounts of hydraulic parameter and groundwater level data. This study provides a useful benchmark for evaluating the extent to which field-scale groundwater models can be used to inform recharge subject to practical data-availability limitations.

  17. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2016-01-01

    Full Text Available The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.

  18. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    -FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer......Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes...... detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E...

  19. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Institute of Scientific and Technical Information of China (English)

    I.P. Senanayake; D.M.D.O.K. Dissanayake; B.B. Mayadunna; W.L. Weerasekera

    2016-01-01

    The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water re-quirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Ham-bantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, li-thology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49%of Ambalantota area.

  20. Study of Performance on Recharging the Borehole by Means of Exhaust-air Energy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-su; FAHL(E)N Per

    2009-01-01

    In this paper, the performance analysis of recharging the borehole by means of exhaust-air energy is carried out. The results show that a vertical borehole used as heat source for a Ground Source Heat Pump (GSHP) can be recharged in high efficiency. With equal heat transfer capabilities of exhaust-air coil and borehole collector, the system provides a maximum overall efficiency. However, due to ground infinite capacity, the optimum brine flow rate is different from conventional twoexchanger system. The recharging system provides two peak overall efficiencies when the capacity ratio Cr = 5 for laminar flow and Cr = 15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature. In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency.

  1. Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes

    Science.gov (United States)

    Lewis, Harlan; Jackson, Patricia; Salkind, Alvin; Danko, Thomas; Bell, Roger

    Several advanced cellulosic and radiation grafted polypropylene membrane materials are currently under evaluation in the laboratories at Navsea Crane and Rutgers University, for application to alkaline primary and rechargeable cell chemistries which employ zinc as the anode material. A portion of these tests involve model cell evaluations of cellulosic membranes for silver migration rates through the membranes as a function of separation layers and changes in the degree of polymerisation (DP), wet tensile strength (WTS) and voltage changes at both electrodes as a function of model rechargeable cell life cycle. Other testing on the actual membranes is generating data for both cellulosic and polypropylene materials on impedance, swelling properties, and silver and zinc penetration rates. The overall goal of these investigations is to obtain candidate separation membranes which will reduce zinc anode shape change and shedding and resist alkaline oxidative degradation to extend the active wet life in primary cells and both wet and life cycle in rechargeable cells.

  2. Consumer Behavior towards Scheduling and Pricing of Electric Cars Recharging: Theoretical and Experimental Analysis

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie

    electric cars. The last chapter deals with analysis of energy consumption rate and its determinants of electric cars under the hands of customers. A variety of techniques are used including analysis of field data, economics laboratory experiments and theoretical modeling with simulation. Chapter one...... and Pricing of Electric Vehicle Recharging’, proposes, and tests at laboratory, contracts about recharging BEVs combining the ultimatum game framework and the myopic loss aversion (MLA) behavioral hypothesis. The model represents the behavior of EV-owners trading-off between the amount of the discount on fee...... price as long-term contracts may curtail MLA behavior and help BEV owners to choose cost minimizing recharging time and, simultaneously, may help to reduce BEVs impact on the electricity grid system. The fourth chapter, ‘Using the Peer Effect in Scheduling and Pricing Electric Vehicles Recharging...

  3. Environmental isotopes as indicators for ground water recharge to fractured granite.

    Science.gov (United States)

    Ofterdinger, U S; Balderer, W; Loew, S; Renard, P

    2004-01-01

    To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.

  4. Using environmental tracers and transient hydraulic heads to estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2017-04-01

    Regional groundwater flow strongly depends on groundwater recharge and hydraulic conductivity. While conductivity is a spatially variable field, recharge can vary in both space and time. None of the two fields can be reliably observed on larger scales, and their estimation from other sparse data sets is an open topic. Further, common hydraulic-head observations may not suffice to constrain both fields simultaneously. In the current work we use the Ensemble Kalman filter to estimate spatially variable conductivity, spatiotemporally variable recharge and porosity for a synthetic phreatic aquifer. We use transient hydraulic-head and one spatially distributed set of environmental tracer observations to constrain the estimation. As environmental tracers generally reside for a long time in an aquifer, they require long simulation times and carries a long memory that makes them highly unsuitable for use in a sequential framework. Therefore, in this work we use the environmental tracer information to precondition the initial ensemble of recharge and conductivities, before starting the sequential filter. Thereby, we aim at improving the performance of the sequential filter by limiting the range of the recharge to values similar to the long-term annual recharge means and by creating an initial ensemble of conductivities that show similar pattern and values to the true field. The sequential filter is then used to further improve the parameters and to estimate the short term temporal behavior as well as the temporally evolving head field needed for short term predictions within the aquifer. For a virtual reality covering a subsection of the river Neckar it is shown that the use of environmental tracers can improve the performance of the filter. Results using the EnKF with and without this preconditioned initial ensemble are evaluated and discussed.

  5. Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer

    Science.gov (United States)

    Séraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-11-01

    This study reports an assessment of the water budget of the Crau aquifer (Southern France), which is poorly referenced in the literature. Anthropogenically controlled by a traditional irrigation practice, this alluvial type aquifer requires a robust quantification of the groundwater mass balance in order to establish sustainable water management in the region. In view of the high isotopic contrast between exogenous irrigation waters and local precipitations, stable isotopes of water can be used as conservative tracers to deduce their contributions to the surface recharge. Extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with an updated aquifer geometry, the isotopic data were implemented in a geostatistical approach to produce a conceptual equivalent homogeneous reservoir. This makes it possible to implement a parsimonious water and isotope mass-balance mixing model. The isotopic compositions of the two end-members were assessed, and the quantification of groundwater flows was then used to calculate the two recharge fluxes (natural and irrigation). Nearly at steady-state, the set of isotopic data treated by geostatistics gave a recharge by irrigation of 4.92 ± 0.89 m3 s-1, i.e. 1109 ± 202 mm yr-1, and a natural recharge of 2.19 ± 0.85 m3 s-1, i.e. 128 ± 50 mm yr-1. Thus, 69 ± 9% of the surface recharge is caused by irrigation return flow. This study constitutes a straightforward and independent approach to assess groundwater surface recharges including uncertainties and will help to constrain future transient groundwater models of the Crau aquifer.

  6. Factors influencing ground-water recharge in the eastern United States

    Science.gov (United States)

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  7. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K.; Meixner, T.; De La Cruz, L.

    2014-12-01

    Groundwater recharge is the primary source of aquifer replenishment, an important source of freshwater for human consumption and riparian area sustainability in semi-arid regions. It is critical to understand the current groundwater recharge regimes in groundwater basins throughout the Western U.S. and how those regimes might shift in the face of climate change, land use change and management manipulations that impact the availability and composition of groundwater resources. Watersheds in the Basin and Range Province are characterized by a variable precipitation regime of wet winters, and variable summer precipitation. The horst-graben structure of these basins lends itself to orographic and continental precipitation effects that make mountain block and mountain front recharge critical components of annual recharge. The current assumption is that the relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation dominating in the northern parts of the region, and summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon extends its influence. To test this hypothesis, stable water isotope data of groundwater and precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to characterize and compare groundwater recharge regimes throughout the region. Preliminary stable water isotope results from the southernmost Rio San Miguel Basin in Sonora, Mexico indicate that groundwater is composed of 64%±14% summer monsoon precipitation, in contrast to more northern basins where winter precipitation is the source of 79-90% of basin groundwater.

  8. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  9. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal

    Science.gov (United States)

    Prada, Susana; Cruz, J. Virgílio; Figueira, Celso

    2016-05-01

    The hydrogeology of volcanic islands remains poorly understood, despite the fact that populations that live on them rely on groundwater as a primary water source. This situation is exacerbated by their complex structure, geological heterogeneity, and sometimes active volcanic processes that hamper easy analysis of their hydrogeological dynamics. Stable isotope analysis is a powerful tool that has been used to assess groundwater dynamics in complex terrains. In this work, stable isotopes are used to better understand the hydrogeology of Madeira Island and provide a case-study that can serve as a basis for groundwater studies in other similar settings. The stable isotopic composition (δ18O and δ2H) of rain at the main recharge areas of the island is determined, as well as the sources and altitudes of recharge of several springs, groundwater in tunnels and wells. The water in tunnels was found to be recharged almost exclusively by rain in the deforested high plateaus, whilst several springs associated with shallow perched aquifers are recharged from rain and cloud water interception by the vegetated slopes. Nevertheless some springs thought to be sourced from deep perched aquifers, recharge in the central plateaus, and their isotopic composition is similar to the water in the tunnels. Recharge occurs primarily during autumn and winter, as evidenced by the springs and tunnels Water Lines (WL). The groundwater in wells appears to originate from runoff from rain that falls along the slopes that infiltrates near the streams' mouths, where the wells are located. This is evident by the evaporation line along which the wells plot. Irrigation water is also a possible source of recharge. The data is compatible with the hydrogeological conceptual model of Madeira. This work also shows the importance of cloud water interception as a net contributor to groundwater recharge, at least in the perched aquifers that feed numerous springs. As the amount of rainfall is expected to

  10. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China

    Science.gov (United States)

    Zhu, G. F.; Li, Z. Z.; Su, Y. H.; Ma, J. Z.; Zhang, Y. Y.

    2007-02-01

    SummaryA hydrochemical investigation was conducted in the Minqin Basin to identify the groundwater evolution and recharge in the aquifer. The mBr/Cl ratio is strongly depleted (average 0.000451) compared with sea water (0.0035), indicating an evaporite origin. The ionic ration plot, saturation index (SI), and chloro alkaline indices (CAI) suggest that the dissolution of halite, the glauberite, gypsum, dolomite and calcite determine Na +, Cl -, Ca 2+, Mg 2+, SO42-, and HCO3- chemistry, but other processes, such as Na + exchange for Ca 2+ and Mg 2+, and calcite precipitation also contribute to the water composition. The δ18O and δ2H in precipitation near the study area are linearly correlated, similar to that for the world meteoric water line (WMWL), with an equation of δ2H = 7.49 δ18O + 5.11 ( r2 = 0.97). According to radiocarbon residence time estimates, the deep groundwater is approximately 40 ka old, and was recharged during a period when the climate was wetter and colder. The radiocarbon content of shallow groundwater shows a clear evolution along the groundwater flow path. From the beginning of the groundwater flow path to ˜31 km the radiocarbon values are >73.6 pmc, whereas beyond this point the values are <42.9 pmc. Based on radiocarbon content, the shallow groundwater is older than 1 ka, and represents palaeowaters mixed with a limited quality of modern recharge. The rain-fed groundwater direct recharge was estimated by chloride mass balance (CMB) method to range from 1.55 to 1.64 mm yr -1, with a mean value of 1.6 mm yr -1. This value represents about 1.5% of local rainfall. The direct recharge volumes is about 0.666 × 10 8 m 3 yr -1. Indirect recharge volumes by the surface water is about 0.945 × 10 8 m 3 yr -1. The total natural recharge in the Minqin Basin is 1.6 × 10 8 m 3 yr -1, whereas the groundwater abstraction has reached 11.6 × 10 8 m 3 yr -1, far exceeding the groundwater natural recharge.

  11. Recharge studies on the High Plains in northern Lea County, New Mexico

    Science.gov (United States)

    Havens, John S.

    1966-01-01

    The area described in this report is that part of the southern High Plains principally within northern Lea County, N. Mex. ; it comprises about 1,400,000 acres. Hydrologic boundaries isolate the main aquifer of the area, the Ogallala Formation, from outside sources of natural recharge other than precipitation on the area. Natural recharge to this aquifer from the 15-inch average annual precipitation for the period 1949-60 is estimated to be about 95,000 acre-ft (acre-feet) which is between the 59,000 and 118,000 acre-ft a year obtained from the This estimate (1934) of ? to 1 inch a year. About one-sixth of the water pumped for irrigation, or an average of about 23,000 acre-ft a year in the period 1949-60, returns to the aquifer. The estimated long-term (1939-60) average annual recharge to the aquifer is about 77,000 acre-ft. Discharge from the aquifer is by pumping and underflow from the area. Gross pumpage averaged about 151,000 acre-ft a year in the period 1949-60. Underflow from the area is estimated to have been about 36,000 acre-ft a year. Thus, the estimated average annual discharge from the aquifer was about 187,000 acre-ft a year, and this exceeded recharge by about 69,000 acre-ft a year. This overdraft is reflected in a general net decline of the water table of 10 ft in the period 1950-60 and net declines of as much as 30 feet in local areas. Data obtained during this study indicate that about 100,000 acre-ft of water collects in closed depressions on the surface of the High Plains in years when precipitation is normal. Studies of water losses from ponds in selected depressions indicate that between 20 and 80 percent of this loss recharges the groundwater body and the balance is lost to evapotranspiration, principally evaporation. Artificial recharge facilities constructed in the depressions could put at least 50,000 acre-ft of water underground annually that otherwise would be lost to evaporation. Recharging through pits or spreading ponds would cost less

  12. Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries

    Directory of Open Access Journals (Sweden)

    Yanna NuLi

    2014-01-01

    Full Text Available We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g−1 at 3.9 mA g−1. These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved.

  13. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  14. An evaluation of the BD-100R rechargeable neutron bubble dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Millett, M.; Munno, F.; Ebert, D.; Nelson, M. (Univ. of Maryland, College Park (USA))

    1991-03-01

    The purpose of this paper is to present data gathered in the evaluation of the BD-100R neutron bubble dosimeter done at the University of Maryland and the Naval Research Lab. The performance of 12 dosimeters has been followed over 15 exposure-recharge cycles under a wide range of exposure conditions. Included in this paper are the results from tests on dose rate dependence, neutron energy dependence, beta and gamma exposure, and recharge cycle performance. A statistical analysis of the reusability performance of the dosimeter as a function of dose equivalent is also presented.

  15. Pilot Test of Advanced Treatments Combination of Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    成徐洲; 杨磊; 吴天宝; 甘一苹; 胡俊

    2002-01-01

    To solve the water shortage problem, an artificial groundwater recharge system will be constructed in Beijing for wastewater reuse as a demonstration and training center. Design and operating experience for the demonstration plant was gained through pilot tests of advanced treatment technologies with soil infiltration of well treated secondary effluent. The test results showed that the selected treatment technology meets the recommended water quality criteria for groundwater recharge and the gas chromatography-mass spectrometer (GC/MS) analysis results showed significantly improved water quality.

  16. A validation of the 3H/3He method for determining groundwater recharge

    Science.gov (United States)

    Solomon, D. K.; Schiff, S. L.; Poreda, R. J.; Clarke, W. B.

    1993-09-01

    Tritium and He isotopes have been measured at a site where groundwater flow is nearly vertical for a travel time of 100 years and where recharge rates are spatially variable. Because the mid-1960s 3H peak (arising from aboveground testing of thermonuclear devices) is well-defined, the vertical groundwater velocity is known with unusual accuracy at this site. Utilizing 3H and its stable daughter 3He to determine groundwater ages, we compute a recharge rate of 0.16 m/yr, which agrees to within about 5% of the value based on the depth of the 3H peak (measured both in 1986 and 1991) and two-dimensional modeling in an area of high recharge. Zero 3H/3He age occurs at a depth that is approximately equal to the average depth of the annual low water table, even though the capillary fringe extends to land surface during most of the year at the study site. In an area of low recharge (0.05 m/yr) where the 3H peak (and hence the vertical velocity) is also well-defined, the 3H/3He results could not be used to compute recharge because samples were not collected sufficiently far above the 3H peak; however, modeling indicates that the 3H/3He age gradient near the water table is an accurate measure of vertical velocities in the low-recharge area. Because 3H and 3He have different diffusion coefficients, and because the amount of mechanical mixing is different in the area of high recharge than in the low-recharge area, we have separated the dispersive effects of mechanical mixing from molecular diffusion. We estimate a longitudinal dispersivity of 0.07 m and effective diffusion coefficients for 3H (3HHO) and 3He of 2.4×10-5 and 1.3×10-4 m2/day, respectively. Although the 3H/3He age gradient is an excellent indicator of vertical groundwater velocities above the mid-1960s 3H peak, dispersive mixing and diffusive loss of 3He perturb the age gradient near and below the 3H peak.

  17. Uncertainty of Coupled Soil-Vegetation-Atmosphere Modelling Methods for Estimating Groundwater Recharge

    Science.gov (United States)

    Xie, Y.; Cook, P. G.; Simmons, C. T.; Partington, D.; Crosbie, R.; Batelaan, O.

    2016-12-01

    Coupled soil-vegetation-atmosphere models have become increasingly popular for estimating groundwater recharge, because of the integration of carbon, energy and water balances. The carbon and energy balances act to constrain the water balance and as a result should reduce the uncertainty of groundwater recharge estimates. However, the addition of carbon and energy balances also introduces a large number of plant physiological parameters which complicates the estimation of groundwater recharge. Moreover, this method often relies on existing pedotransfer functions to derive soil water retention curve parameters and saturated hydraulic conductivity from soil attribute data. The choice of a pedotransfer function is usually subjective and several pedotransfer functions may be fit for the purpose. These different pedotransfer functions (and thus the uncertainty of soil water retention curve parameters and saturated hydraulic conductivity) are likely to increase the prediction uncertainty of recharge estimates. In this study, we aim to assess the potential uncertainty of groundwater recharge when using a coupled soil-vegetation-atmosphere modelling method. The widely used WAter Vegetation Energy and Solute (WAVES) modelling code was used to perform simulations of different water balances in order to estimate groundwater recharge in the Campaspe catchment in southeast Australia. We carefully determined the ranges of the vegetation parameters based upon a literature review. We also assessed a number of existing pedotransfer functions and selected the four most appropriate. Then the Monte Carlo analysis approach was employed to examine potential uncertainties introduced by different types of errors. Preliminary results suggest that for a mean rainfall of about 500 mm/y and annual pasture vegetation, the estimated recharge may range from 10 to 150 mm/y due to the uncertainty in vegetation parameters. This upper bound of the recharge range may double to 300 mm/y if different

  18. Karolinske psychodynamic profile (KAPP)

    DEFF Research Database (Denmark)

    Mathiesen, Birgit Bork; Søgaard, Ulf

    2006-01-01

    psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil......psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil...

  19. Profils nutritionnels et santé publique*

    Directory of Open Access Journals (Sweden)

    Nafziger Sabine

    2008-01-01

    Full Text Available This article aims to present the position of the European food and drink industry in relation to the setting up and use of nutrient profiles to limiting the communication of health benefits of specific foods to the consumer based on the belief that such claims could ″mask the overall nutritional composition of a food and thus lead the consumer to make inappropriate choices for his diet″. The argumentation is based on the following principles: – claims are part of consumer information and information in itself is worthless without consumer education to enable them to understand the information; – consumer understanding is critical to lead them to change their behaviour which is our ultime goal. This goal cannot be reached if tools such as profiles are used in the legislative framework leading to less information being provided to consumer – in setting the profiling scheme, it is critical to take into account the level of feasibility to meet the profiles through innovation. Only under such condition will the application of profiles be ultimtely of benefit to the consumer. To achieve this, it is essential that food business operators are involved in the seting up of the profiling scheme. The EU food and drink industry is an important pillar of the European economy, serving approximately 500 million consumers with a vast variety of safe and high quality products. It is the largest manufacturing sector in Europe, with a turnover of Euro 870 billion in 2006, and provides direct employment to over 4 million people.

  20. Application Of Water Table Fluctuation Method To Quantify Spatial Groundwater Recharge Witidn The Southern Slope Of Merapi Volcano, Indonesia

    Directory of Open Access Journals (Sweden)

    Tjahyo Nugroho Adji

    2013-07-01

    that results in groundwater recharge characteristic. The volcanic slope unit (above 600 m as! has the lowest water table fluctuation indicates the resistant comportment to the annual rainfall. Ihis unit is characterized by the relatively high magnitude of recharge of approximately 4270 mm/year.

  1. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    Science.gov (United States)

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m(3) and 1500-5600 Bq/m(3), respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Towards sustainable regions: the spatial distribution of electric vehicles’ recharging stations from a socio-economic perspective

    DEFF Research Database (Denmark)

    Christensen, Linda; Kaplan, Sigal; Jensen, Thomas Christian

    -free, low-emission vehicles due to the rising oil prices and global warming. Adequate on-road EV recharging infrastructure is essential in the transformation of EV into a practical transport option and the wide-scale market penetration of EV. Nevertheless, the efficient spatial distribution of EV recharging...

  3. High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2017-04-04

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  4. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for Electric Vehicles

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Mathews, John A.; Rask, Morten

    2009-01-01

    A new business model for accelerating the introduction of Electric Vehicles into private transport systems involves the provision by an Electric Recharge Grid Operator (ERGO) of an intelligent rechargeable network in advance of the vehicles themselves. The ERGO business model creates a market...

  5. Water Chemistry Impacts on Arsenic Mobilization from Arsenopyrite Dissolution and Secondary Mineral Precipitation: Implications for Managed Aquifer Recharge

    Science.gov (United States)

    Managed Aquifer Recharge (MAR) is one water reuse technique with the potential to meet growing water demands. However, MAR sites have encountered arsenic remobilization resulting from recharge operations. To combat this challenge, it is important to identify the mechanism of arse...

  6. 78 FR 76731 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Rechargeable Lithium...

    Science.gov (United States)

    2013-12-19

    ... Series Airplanes; Rechargeable Lithium Ion Batteries and Battery Systems AGENCY: Federal Aviation... lithium ion batteries and battery system that will be used on an International Communications Group (ICG... uses rechargeable lithium ion batteries and battery systems in the Boeing Model 777-200, -300,...

  7. Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa

    Science.gov (United States)

    Izuka, Scot K.; Perreault, Jeff A.; Presley, Todd K.

    2007-01-01

    To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple

  8. Assessment of future impacts of potential climate change scenarios on aquifer recharge in continental Spain

    Science.gov (United States)

    Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.

    2017-04-01

    This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial

  9. Distinguishing sources of ground water recharge by using delta2H and delta18O.

    Science.gov (United States)

    Blasch, Kyle W; Bryson, Jeannie R

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  10. Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea

    Indian Academy of Sciences (India)

    E A Combalicer; S H Lee; S Ahn; D Y Kim; S Im

    2008-10-01

    Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea.The WHAT system, PART,RORA,PULSE,BFI,and RAP software are used to estimate groundwater recharge or base flow and base flow index from the measured stream flow.Results show that about 15 –31 per cent of annual rainfall might be contributed for base flow.The watershed groundwater recharge proportions are computed to about 10 –21 per cent during the wet period and 23 –32 per cent for the remainder periods.Mean annual base flow indices vary from 0.25 to 0.76 estimated using different methods. However,the study found out that all methods were significantly correlated with each other.The similarity of various methods is expressed as a weighted relationship provided by the matrix product from the principal component analysis.Overall,the BFI and WHAT software appeared consistent in estimating recharge or base flow,and base flow index under Korea ’s conditions.The case study recommends the application of different models to other watersheds as well as in low-lying areas where most observation groundwater wells are located with available stream flow data.

  11. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark

    2014-06-01

    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  12. Polymer/Transitonal Metal Oxides Nanocomposites as Cathode Materials for Rechargeable Lithium/Lithium lon Batteries

    Institute of Scientific and Technical Information of China (English)

    Hui Kang Wu

    2000-01-01

    The synthesis and properties of polymer/transition metal oxides nanocomposite material were reviewed.The new nanocomposite material(PPY)0.5/MoO3 prepared by a new method is described.The application of the nanocomposite materials as cathode material in rechargeable lithium/lithium ion batteries was explored.

  13. A screening tool for delineating subregions of steady recharge within groundwater models

    Science.gov (United States)

    Dickinson, Jesse E.; Ferré, T. P. A.; Bakker, Mark; Crompton, Becky

    2014-01-01

    We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.

  14. Hydrometeorology of the Dhofar cloud forest and its implications for groundwater recharge

    Science.gov (United States)

    Friesen, J.; Mueller, T. H.; Zink, M.; Bawain, A. M., Sr.; Hildebrandt, A.

    2015-12-01

    Cloud forests have the ability to harvest cloud water or horizontal precipitation in addition to rainfall and, through rainfall re-distribution, provide markedly different infiltration and therefore recharge behavior. Forest interception studies required to formulate interception processes and to quantify the recharge relevant net precipitation are, however, often only possible at point or experimental plot scale and limited to the studied tree species. Groundwater recharge, in contrast, is often linked to groundwater aquifer boundaries and thus is located at the other end of the spatial scale. To be able to utilize findings from ecohydrological site studies for regional groundwater studies we regionalize field site studies through cloud forest distribution and rainfall interpolation in a semi-arid, data scarce region heavily dependent on groundwater resources. Through different rainfall scenarios, based on regular precipitation and on cloud forest modified precipitation, for two mountainous groundwater recharge catchments we can show that even moderately forested catchments provide up to 1/3 more precipitation through cloud water.

  15. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  16. Uncertainty in Climatology-Based Estimates of Shallow Ground Water Recharge

    Science.gov (United States)

    The groundwater recharge (GR) estimates for flow and transport projections are often evaluated as a fixed percentage of average annual precipitation. The chemical transport in variably saturated heterogeneous porous media is not linearly related to the average velocity. The objective of this study w...

  17. Estimating ground water recharge using flow models of perched karstic aquifers.

    Science.gov (United States)

    Weiss, Menachem; Gvirtzman, Haim

    2007-01-01

    The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.

  18. Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012

    Science.gov (United States)

    Hevesi, Joseph A.; Christensen, Allen H.

    2015-12-21

    A daily precipitation-runoff model was developed to estimate spatially and temporally distributed recharge for groundwater basins in the San Gorgonio Pass area, southern California. The recharge estimates are needed to define transient boundary conditions for a groundwater-flow model being developed to evaluate the effects of pumping and climate on the long-term availability of groundwater. The area defined for estimating recharge is referred to as the San Gorgonio Pass watershed model (SGPWM) and includes three watersheds: San Timoteo Creek, Potrero Creek, and San Gorgonio River. The SGPWM was developed by using the U.S. Geological Survey INFILtration version 3.0 (INFILv3) model code used in previous studies of recharge in the southern California region, including the San Gorgonio Pass area. The SGPWM uses a 150-meter gridded discretization of the area of interest in order to account for spatial variability in climate and watershed characteristics. The high degree of spatial variability in climate and watershed characteristics in the San Gorgonio Pass area is caused, in part, by the high relief and rugged topography of the area.

  19. Modeling the groundwater recharge in karst aquifers by using a reservoir model.

    Science.gov (United States)

    Ke, Tingting; Shu, Longcang; Chen, Xunhong

    2013-01-01

    The estimation of the groundwater recharge in a karstic system becomes an important challenge due to the great hydrodynamic variability in both time and space. This paper proposes a two reservoir conceptual model to simulate inflow into both the conduit system and the fissure network system based on the analysis of the spring hydrograph. The structure of the model and the governing equations are proposed on the basis of the physical considerations, with the assumption that flow at the outlet of the reservoirs obeys a linear threshold function. The model is applied on the Houzhai karstic underground river basin where it successfully reflects the temporal recharge distribution. The simulated accumulation recharge is 34.29 mm, which is reasonable in relation to the actual rainfall of 92.8 mm. The variations of water volume in two reservoirs represent the storage and transform characteristics of the karst aquifer system. However, this model is particularly well suited to simulate the recharge event after intensive rainfall.

  20. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    Science.gov (United States)

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  1. GIS based site and structure selection model for groundwater recharge: a hydrogeomorphic approach.

    Science.gov (United States)

    Vijay, Ritesh; Sohony, R A

    2009-10-01

    The groundwater in India is facing a critical situation due to over exploitation, reduction in recharge potential by change in land use and land cover and improper planning and management. A groundwater development plan needs a large volume of multidisciplinary data from various sources. A geographic information system (GIS) based hydrogeomorphic approach can provide the appropriate platform for spatial analysis of diverse data sets for decision making in groundwater recharge. The paper presents development of GIS based model to provide more accuracy in identification and suitability analysis for finding out zones and locating suitable sites with suggested structures for artificial recharge. Satellite images were used to prepare the geomorphological and land use maps. For site selection, the items such as slope, surface infiltration, and order of drainage were generated and integrated in GIS using Weighted Index Overlay Analysis and Boolean logics. Similarly for identification of suitable structures, complex matrix was programmed based on local climatic, topographic, hydrogeologic and landuse conditions as per artificial recharge manual of Central Ground Water Board, India. The GIS based algorithm is implemented in a user-friendly way using arc macro language on Arc/Info platform.

  2. Improved capacity retention in rechargeable 4 V lithium/lithium manganese oxide (spinel) cells.

    CSIR Research Space (South Africa)

    Gummow, RJ

    1994-04-01

    Full Text Available , it is probable that they will nat be used as the initial elec- trodes in rechargeable lithium cells. R.J. Gummow et al. /SolidState Ionics 69 (1994) 59-67 ?no8 600 - B 4 400- ZOO- II 10 20 30 40 50 50 70 80 T...

  3. Magmatic recharge buffers the isotopic compositions against crustal contamination in formation of continental flood basalts

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2017-07-01

    Isotopic compositions of continental flood basalts are essential to understand their genesis and to constrain the character of their mantle sources. Because of potential crustal contamination, it needs to be evaluated if and to which degree these basalts record original isotopic signals of their mantle sources and/or crustal signatures. This study examines the Sr, Nd, Hf, and Pb isotopic compositions of the late Cenozoic Xinchang-Shengzhou (XS) flood basalts, a small-scale continental flood basalt field in eastern China. The basalts show positive correlations between 87Sr/86Sr and 143Nd/144Nd, and negative correlations between 143Nd/144Nd and 176Hf/177Hf, which deviate from compositional arrays of crustal contamination and instead highlight variations in magmatic recharge intensity and mantle source compositions. The lava samples formed by high-volume magmatic recharge recorded signals of recycled sediments in the mantle source, which are characterized by moderate Ba/Th (91.9-106.5), excess 208Pb/204Pb relative to 206Pb/204Pb, and excess 176Hf/177Hf relative to 143Nd/144Nd. Thus, we propose that magmatic recharge buffers the original isotopic compositions of magmas against crustal contamination. Identifying and utilizing the isotope systematics of continental flood basalts generated by high volumes of magmatic recharge are thus crucial to trace their mantle sources.

  4. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  5. Water Supply Source Evaluation in Unmanaged Aquifer Recharge Zones: The Mezquital Valley (Mexico Case Study

    Directory of Open Access Journals (Sweden)

    Antonio Hernández-Espriú

    2016-12-01

    Full Text Available The Mezquital Valley (MV hosts the largest unmanaged aquifer recharge scheme in the world. The metropolitan area of Mexico City discharges ~60 m3/s of raw wastewater into the valley, a substantial share of which infiltrates into the regional aquifer. In this work, we aim to develop a comprehensive approach, adapted from oil and gas reservoir modeling frameworks, to assess water supply sources located downgradient from unmanaged aquifer recharge zones. The methodology is demonstrated through its application to the Mezquital Valley region. Geological, geoelectrical, petrophysical and hydraulic information is combined into a 3D subsurface model and used to evaluate downgradient supply sources. Although hydrogeochemical variables are yet to be assessed, outcomes suggest that the newly-found groundwater sources may provide a long-term solution for water supply. Piezometric analyses based on 25-year records suggest that the MV is close to steady-state conditions. Thus, unmanaged recharge seems to have been regulating the groundwater balance for the last decades. The transition from unmanaged to managed recharge is expected to provide benefits to the MV inhabitants. It will also be likely to generate new uncertainties in relation to aquifer dynamics and downgradient systems.

  6. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  7. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery...

  8. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    NARCIS (Netherlands)

    Eeman, S.; Zee, van der S.E.A.T.M.; Leijnse, A.; Louw, de P.G.B.; Maas, C.

    2012-01-01

    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not co

  9. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    Science.gov (United States)

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-02-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.

  10. Analysis of managed aquifer recharge for retiming streamflow in an alluvial river

    Science.gov (United States)

    Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.

    2017-01-01

    Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.

  11. Random number datasets generated from statistical analysis of randomly sampled GSM recharge cards.

    Science.gov (United States)

    Okagbue, Hilary I; Opanuga, Abiodun A; Oguntunde, Pelumi E; Ugwoke, Paulinus O

    2017-02-01

    In this article, a random number of datasets was generated from random samples of used GSM (Global Systems for Mobile Communications) recharge cards. Statistical analyses were performed to refine the raw data to random number datasets arranged in table. A detailed description of the method and relevant tests of randomness were also discussed.

  12. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Gunawardhana, Nanda; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Nakashima, Kenichi

    2012-03-28

    An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides.

  13. Resource Documentation and Recharge Area Delineation of a Large Fluvial Karst System: Carroll Cave, Missouri

    Science.gov (United States)

    Located along Wet Glaize Creek in the central Missouri Ozarks, Toronto Spring is a distributary spring system where surface stream flow mixes with flow from the Carroll Cave system. Following recharge area delineations for Thunder River and Confusion Creek in Carroll Cave, flow from these rivers wa...

  14. Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, F.; Croce, F.; Panero, S. (Dept. of Chemistry, Univ. of Rome ' La Sapienza' , Rome (Italy))

    1994-06-01

    Preliminary applications of low molecular weight polymer electrolyte (PEG) and lithium salt in lithium rechargeable batteries have been reported. The electrochemical characteristics of these electrolytes have been tested by cyclic voltammetry, charge-discharge cycles and ac impedance methods. Surface layers appear to be present on both electrodes, but they develop upon time with different extension

  15. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  16. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  17. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  18. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  19. Groundwater Recharge Modeling in Azraq Basin (Jordan) Considering the Unsaturated Flow Components

    Science.gov (United States)

    Sharif, M. Al; Jazzar, T. Al

    2009-04-01

    Water resources in Azraq basin at the northeastern part of Jordan are at critical juncture, due to the continual and excessive abstraction of groundwater accompanied with small amounts of groundwater recharge by precipitation, and high rates of evaporation losses over the entire basin. Groundwater recharge from precipitation over the basin was estimated using soil water balance. It was found that only about 2% to 3 % of annual average rainfall infiltrates ground surface to reach the shallow aquifer. The three dimensional finite difference groundwater flow model MODFLOW (Processing Modflow Pro, version7) was utilized in order to simulate groundwater flow in the basin. Steady state was calibrated using hydraulic conductivity and flows. The calibrated hydraulic conductivity ranged between 0.1 m/day to 7.0 m/day, the system water balance for the steady state showed that spring discharge from the basin was about 15.0 MCM/yr, groundwater recharge by precipitation was about 9.5 MCM/yr, and the trans-boundaries inflow was 5.5 MCM/yr. Transient state was also calibrated using the specific yield ranged between 0.02 to 0.4. Water balance for the year 2002 showed that there are about 40 MCM/yr as water deficit and a maximum drawdown of about 22 m occur in the well field area. Groundwater recharge at five earth dams have been simulated starting from 1995, it was shown that water deficit that occur in 2002 will decreases by about 15 MCM/yr, drawdown has been slightly affected by these recharge dams. This was attributed to the high abstraction rate at the well field area; the second reason is that the locations of these earth dams are far from the well field area. The calibrated model was used to predict the aquifer future subjected to different scenarios, four scenarios were tested to verify the model ability to be a prediction tool. These scenarios showed that continuing with the current abstraction rate which is 57 MCM/yr until year 2025 will lead to an increase of the

  20. Numerical modelling study of gully recharge and debris flows in Haida Gwaii, British Columbia

    Science.gov (United States)

    Martin, Yvonne; Johnson, Edward; Chaikina, Olga

    2015-04-01

    In high mountains, debris flows are a major process responsible for transferring sediment to more downstream fluvial reaches. This sediment transfer begins on mountain hillslopes where various mass wasting processes move sediment from hillslopes to uppermost reaches of the channel system (these reaches are herein referred to as gullies and only experience water flow during high intensity precipitation events). Sediment recharge into gullies, which has received minimal attention in the scientific literature, refers to the transfer of sediment and other debris from surrounding hillslopes into gullies (Jakob and Oden, 2005). Debris flow occurrence and debris flow volumes depend on some precipitation threshold as well as volumes of material contained in the particular gully. For example, if one debris flow has removed all of the accumulated material from the gully, then any subsequent debris flow will be smaller if enough time has not yet passed for notable sediment recharge. Herein, we utilize the numerical model of landscape development, LandMod (Martin, 1998; Dadson and Church, 2005; Martin, 2007), to explore connections between hillslope processes, gully recharge rates, and transfer of sediment to downstream channel reaches in the Haida Gwaii, British Columbia. Hillslope processes in the model include shallow landsliding, bedrock failures and weathering. The updated debris flow algorithm is based on extensive field data available for debris flows in Haida Gwaii (e.g., Rood, 1984; Oden, 1994; Jakob and Oden, 2005), as well as theoretical considerations based on debris flow studies. The most significant model extension is the calculation of gully recharge rates; for each gully, the total accumulated sediment in gullies at each time step is determined using a power-law relation for area-normalized recharge rate versus elapsed time since the last debris flow. Thus, when the stochastic driver for debris flow occurrence triggers an event, the amount of stored material is

  1. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China

    Science.gov (United States)

    Zhu, Bingqi; Wang, Xunming; Rioual, Patrick

    2017-06-01

    A paucity of studies on the interaction between environment and ground water recharge severely restricts the ability of people to assess future water resources under changing environment. In this study, an effort to explore the relationship between the arid environment and ground water recharge was carried out using multivariate statistical techniques in a sedimentary drainage basin (the Jungar) in northwestern China. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were performed based on hydrogeochemical data to assess the ground water recharge and its governing factors. Observation of the HCA and PCA analytical results revealed a division of seven clusters (C1 to C7) and three principal components (PC1 to PC3), which explained 59.6%, 16.6% and 10.9% of the variance, respectively, and thus, accounted for the majority of the total variance in the original dataset. Based on these Q-mode HCA clusters and R-mode PAC scores, dominant environmental processes influencing recharge regimes were identified, i.e., geogenic, geomorphoclimatic, and anthropogenic, which separated the recharge regimes into four zones (Zone I to Zone IV). Zones I and II (C4 + C1) were associated to ;elevated hydroclimate degree; coupled to ;low salinity;. Zone III (C2 + C3) was associated to ;moderately elevated salinity; and evidently ;elevated contamination; but coupled to ;low hydroclimate degree;. Zone IV (C5 + C6 + C7) was associated mainly to ;elevated salinity; coupled to ;low or inverse hydroclimate degree;. It revealed that the geogenic processes are more significant (60%) than the geomorphoclimatic (17%) and anthropogenic (11%) processes. As a result, the overall recharge process is rather heterogeneous and is strongly environment dominated in the Jungar drainage system. Compared with other watersheds in arid environment, a distinctive feature of the Jungar waters is that they are affected by a combination of natural and non-natural events, rather than

  2. Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data

    Science.gov (United States)

    Coelho, Victor Hugo R.; Montenegro, Suzana; Almeida, Cristiano N.; Silva, Bernardo B.; Oliveira, Leidjane M.; Gusmão, Ana Cláudia V.; Freitas, Emerson S.; Montenegro, Abelardo A. A.

    2017-05-01

    Data limitations on groundwater (GW) recharge over large areas are still a challenge for efficient water resource management, especially in semi-arid regions. Thus, this study seeks to integrate hydrological cycle variables from satellite imagery to estimate the spatial distribution of GW recharge in the Ipanema river basin (IRB), which is located in the State of Pernambuco in Northeast Brazil. Remote sensing data, including monthly maps (2011-2012) of rainfall, runoff and evapotranspiration, are used as input for the water balance method within Geographic Information Systems (GIS). Rainfall data are derived from the TRMM Multi-satellite Precipitation Analysis (TMPA) Version 7 (3B43V7) product and present the same monthly average temporal distributions from 15 rain gauges that are distributed over the study area (r = 0.93 and MAE = 12.7 mm), with annual average estimates of 894.3 (2011) and 300.7 mm (2012). The runoff from the Natural Resources Conservation Service (NRCS) method, which is based on regional soil information and Thematic Mapper (TM) sensor image, represents 29% of the TMPA rainfall that was observed across two years of study. Actual evapotranspiration data, which were provided by the SEBAL application of MODIS images, present annual averages of 1213 (2011) and 1067 (2012) mm. The water balance results reveal a large inter-annual difference in the IRB GW recharge, which is characterized by different rainfall regimes, with averages of 30.4 (2011) and 4.7 (2012) mm year-1. These recharges were mainly observed between January and July in regions with alluvial sediments and highly permeable soils. The GW recharge approach with remote sensing is compared to the WTF (Water Table Fluctuation) method, which is used in an area of alluvium in the IRB. The estimates from these two methods exhibit reliable annual agreement, with average values of 154.6 (WTF) and 124.6 (water balance) mm in 2011. These values correspond to 14.89 and 13.53% of the rainfall that was

  3. Partitioning groundwater recharge between rainfall infiltration and irrigation return flows using stable isotopes: the Crau aquifer.

    Science.gov (United States)

    Seraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-04-01

    Traditional flood irrigation is used since the 16th century in the Crau plain (Southern France) for hay production. To supply this high consuming irrigation practice, water is diverted from the Durance River, originating from the Alps, and the large amount of irrigation return flows constitutes the main recharge of the Crau aquifer, which is in turn largely exploited for domestic, industrial and agricultural water use. A possible reduction of irrigation fluxes due to a need of water saving or to a future land-use change could endanger the groundwater resource. A robust quantification of the groundwater mass balance is thus required to assess a sustainable water management in the region. The high isotopic contrast between these exogenous irrigation waters and local precipitations allows the use of stable isotopes of water as conservative tracers to deduce their contributions to the surface recharge. An extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with a reestimate of the aquifer geometry, the isotopic data are implemented in a geostatistical approach to produce a conceptual equivalent-homogeneous reservoir, in order to apply a simple water and isotope mass balance mixing model. The isotopic composition of the two end-members is assessed, and the quantification of groundwater flows is then used to calculate the two recharge fluxes. Near to steady-state condition, the set of isotopic data treated by geostatistics leads to a recharge by irrigation of 5.20 ± 0.93 m3 s-1 i.e. 1173 ± 210 mm yr-1, and a natural recharge of 2.26 ± 0.91 m3 s-1 i.e. 132 ± 53 mm yr-1. Thus, 70 ± 9% of the effective surface recharge comes from the irrigation return flow, consistent with the literature (between 67% and 78%). This study constitutes a straightforward and independent approach to assess groundwater surface recharges with uncertainties and will help to constrain a future transient

  4. Mitigating agricultural impacts on groundwater using distributed managed aquifer recharge ponds

    Science.gov (United States)

    Schmidt, C. M.; Russo, T. A.; Fisher, A. T.; Racz, A. J.; Wheat, C. G.; Los Huertos, M.; Lockwood, B. S.

    2010-12-01

    Groundwater is likely to become increasingly important for irrigated agriculture due to anticipated changes to the hydrologic cycle associated with climate change. Protecting the quantity and quality of subsurface water supplies will require flexible management strategies that can enhance groundwater recharge. We present results from a study of managed aquifer recharge (MAR) in central coastal California, and propose the use of distributed, small-scale (1-5 ha) MAR systems to improve the quantity and quality of recharge in agricultural basins. Our field site is located in a basin where the primary use of groundwater is irrigation for agriculture, and groundwater resources are increasingly threatened by seawater intrusion and nutrient contamination from fertilizer application. The MAR system we are monitoring is supplied by stormwater and irrigation runoff of variable quality, which is diverted from a wetland during periods of high flow. This MAR system delivers approximately 1x106 m3 of recharge annually to the underlying aquifer, a portion of which is recovered and distributed to growers during the dry season. Our sampling and measurements (at high spatial and temporal resolution) show that a significant percentage of the nitrogen load added during MAR operation is eliminated from recharge during shallow infiltration (~30% to 60%, ~40 kg NO3-N/d). Isotopic analyses of the residual nitrate indicate that a significant fraction of the nitrate load reduction is attributable to denitrification. When normalized to infiltration pond area, this system achieves a mean load reduction of 7 kg NO3-N/d/ha, which compares favorably with the nitrogen load reduction efficiency achieved by treatment wetlands receiving agricultural runoff. Much of the reduction in nitrogen load occurs during periods of rapid infiltration (0.2 to 2.0 m/day), as demonstrated with point measurements of infiltration rate collocated with fluid samples. These results suggest that developing a network of

  5. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  6. Artificial groundwater recharge as integral part of a water resources system in a humid environment

    Science.gov (United States)

    Kupfersberger, Hans; Stadler, Hermann

    2010-05-01

    In Graz, Austria, artificial groundwater recharge has been operated as an integral part of the drinking water supply system for more than thirty years. About 180 l/s of high quality water from pristine creeks (i.e. no pre-treatment necessary) are infiltrated via sand and lawn basins and infiltration trenches into two phreatic aquifers to sustain the extraction of approximately 400 l/s. The remaining third of drinking water for roughly 300.000 people is provided by a remote supply line from the East alpine karst region Hochschwab. By this threefold model the water supply system is less vulnerable to external conditions. In the early 1980's the infiltration devices were also designed as a hydraulic barrier against riverbank infiltration from the river Mur, which at that time showed seriously impaired water quality due to upstream paper mills. This resulted into high iron and manganese groundwater concentrations which lead to clogging of the pumping wells. These problems have been eliminated in the meantime due to the onsite purification of paper mill effluents and the construction of many waste water treatment plants. The recharge system has recently been thoroughly examined to optimize the operation of groundwater recharge and to provide a basis for further extension. The investigations included (i) field experiments and laboratory analyses to improve the trade off between infiltration rate and elimination capacities of the sand filter basins' top layer, (ii) numerical groundwater modelling to compute the recovery rate of the recharged water, the composition of the origin of the pumped water, emergency scenarios due to the failure of system parts, the transient capture zones of the withdrawal wells and the coordination of recharge and withdrawal and (iii) development of an online monitoring setup combined with a decision support system to guarantee reliable functioning of the entire structure. Additionally, the depreciation, maintenance and operation costs of the

  7. Availability of streamflow for recharge of the basal aquifer in the Pearl Harbor area, Hawaii

    Science.gov (United States)

    Hirashima, George Tokusuke

    1971-01-01

    The Pearl Harbor area is underlain by an extensive basal aquifer that contains large supplies of fresh water. Because of the presence of a cap rock composed of sedimentary material that is less permeable than the basaltic lava of the basal aquifer, seaward movement of ground water is retarded. The cap rock causes the basal water to stand at a high level; thus, the lens of fresh water that floats on sea water is thick. Discharge from the basal ground-water body, which includes pumpage from wells and shafts, averaged 250 million gallons per day during 1931-65. Because the water level in the basal aquifer did not decline progressively, recharge to the ground-water body must have been approximately equal to discharge. Although pumping for agricultural use has decreased since 1931, net ground-water discharge has increased because of a large increase in pumping for urban use. Substitution of ground water for surface water in the irrigation of sugarcane has also contributed to a net increase in ground-water discharge. The development of Mililani Town will further increase discharge. The increase in ground-water discharge may cause an increase in chloride content of the water pumped from wells near the shore of Pearl Harbor unless the increased discharge is balanced by increased recharge to the local aquifer. The aquifer is recharged by direct infiltration and deep percolation of rain, principally in the high forested area, by infiltration and percolation of irrigation water applied in excess of plant requirements, by seepage of water through streambeds, and possibly by ground-water inflow from outside the area. Recharge is greatest in the uplands, where rainfall is heavy and where much infiltration takes place before rainwater collects in the middle and lower reaches of stream channels. Once water collects in and saturates the alluvium of stream channels, additional inflow to the streams will flow out to sea, only slightly decreased by seepage. Average annual direct

  8. Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-12-01

    Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65-82 m3/day, while a minimum increase in yield of 15-30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.

  9. Geophysical Monitoring of Active Infiltration Experiments for Recharge Estimation: Gains and Pains

    Science.gov (United States)

    Noell, U.; Lamparter, A.; Houben, G.; Koeniger, P.; Stoeckl, L.; Guenther, T.

    2014-12-01

    Drinking water supply on the island of Langeoog, North Sea, solely depends on groundwater from a freshwater lens. The correct estimation of the recharge rate is critical for a sustainable use of the resource. Extensive hydrogeological and geophysical studies have revealed differences in groundwater recharge by a factor of two and more between the top of the dunes and the dune valleys. The most convincing proof of these differences in recharge is based on isotope analysis (age dating) but boreholes are scarce and a direct proof of recharge is desired. For this purpose active infiltration experiments are performed and geophysically monitored. Former applications of this method in sand and loess soil gave evidence for the applicability of the geophysical observation when combined with tensiometers installed in situ at depth. These results showed firstly that in sandy soil the water reaches the groundwater table quicker than anticipated due to the water repellent characteristic of the dry sand, inhibiting the lateral spreading of the water. The studies also revealed that in loess preferential flow is initiated by ponding and that sprinkling caused very slow movement of water within the unsaturated zone and the water remained near the surface. On the island of Langeoog field experiments underlined the importance of water repellency on the dune surface, indicating that the rain water runs off superficially into the dune valleys where higher recharge is found. The active infiltration zone of the experiment covers an area of some 7m² and includes steeper parts of the dune. The infiltration will vary depending on rainfall intensity and duration, original water content and vegetation cover. What results can we reliably expect from the active experiment and what additional measurements are required to back up the findings? Results are ambiguous with regard to the quantitative assessment but the processes can be visualized by geophysical monitoring in situ.

  10. Groundwater recharge in the tropics: a pan-African analysis of observations

    Science.gov (United States)

    Taylor, R. G.

    2015-12-01

    Groundwater is a vital source of freshwater in sub-Saharan Africa where rainfall and river discharge are unreliable and per-capita reservoir storage is among the lowest in the world. Groundwater is widely considered a distributed, low-cost and climate-resilient option to meet rapidly growing freshwater demand and alleviate endemic poverty by expanding access to safe water and improving food security through irrigation. Recent research indicates that groundwater storage in Africa is about 100 times greater than annual river discharge yet major uncertainties remain in the magnitude and nature of replenishment through recharge as well as the impacts of land-use and climate change. Here, we present newly compiled, multi-decadal observations of groundwater levels from 5 countries (Benin, Burkina Faso, Niger, Tanzania, Uganda) and paired measurements of stable isotope ratios of O and H in precipitation and groundwater at 11 locations. These data reveal both a distinct bias in groundwater recharge to intensive rainfall and rapid recharge pathways (e.g. focused, macropore flow) that are inconsistent with conventional recharge models assuming pore-matrix flow defined by the Darcy-Richards equation. Further the records highlight the substantial influence of land-use change (e.g. conversion of natural, perennial cover to croplands) on groundwater recharge. The compiled observations also provide, for the first time, a pan-African baseline to evaluate the performance of large-scale hydrological models and Land-Surface Models incorporating groundwater in this region. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in sub-Saharan Africa. As such, groundwater may prove to be a climate-resilient source of freshwater in the tropics, enabling adaptive strategies such as groundwater-fed irrigation and sustaining domestic and industrial water supplies.

  11. Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2017-05-01

    Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65-82 m3/day, while a minimum increase in yield of 15-30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.

  12. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  13. GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan

    Indian Academy of Sciences (India)

    Hsin-Fu Yeh; Hung-I Lin; Shing-Tsz Lee; Min-Hsiang Chang; Kuo-Chin Hsu; Cheng-Haw Lee

    2014-04-01

    The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.

  14. Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia

    Science.gov (United States)

    Wallner, Markus; Houben, Georg; Lohe, Christoph; Quinger, Martin; Himmelsbach, Thomas

    2017-07-01

    The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.

  15. Analysis of vadose zone inhomogeneity toward distinguishing recharge rates: Solving the nonlinear interface problem with Newton method

    Science.gov (United States)

    Steward, David R.

    2016-11-01

    Recharge from surface to groundwater is an important component of the hydrological cycle, yet its rate is difficult to quantify. Percolation through two-dimensional circular inhomogeneities in the vadose zone is studied where one soil type is embedded within a uniform background, and nonlinear interface conditions in the quasilinear formulation are solved using Newton's method with the Analytic Element Method. This numerical laboratory identifies detectable variations in pathline and pressure head distributions that manifest due to a shift in recharge rate through in a heterogeneous media. Pathlines either diverge about or converge through coarser and finer grained materials with inverse patterns forming across lower and upper elevations; however, pathline geometry is not significantly altered by recharge. Analysis of pressure head in lower regions near groundwater identifies a new phenomenon: its distribution is not significantly impacted by an inhomogeneity soil type, nor by its placement nor by recharge rate. Another revelation is that pressure head for coarser grained inhomogeneities in upper regions is completely controlled by geometry and conductivity contrasts; a shift in recharge generates a difference Δp that becomes an additive constant with the same value throughout this region. In contrast, shifts in recharge for finer grained inhomogeneities reveal patterns with abrupt variations across their interfaces. Consequently, measurements aimed at detecting shifts in recharge in a heterogeneous vadose zone by deciphering the corresponding patterns of change in pressure head should focus on finer grained inclusions well above a groundwater table.

  16. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    Science.gov (United States)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  17. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    Science.gov (United States)

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, J. R.

    2015-10-01

    Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems. In this study, groundwater recharge was estimated at local and episodic scales in a representative perched karst aquifer in a region of southern Italy with a Mediterranean climate. The research utilized measurements of precipitation, air temperature, soil water content, and water-table depth, obtained in 2008 at the Acqua della Madonna test area (Terminio Mount karst aquifer, Campania region). At this location the aquifer is overlain by ash-fall pyroclastic soils. The Episodic Master Recession (EMR) method, an improved version of the Water Table Fluctuation (WTF) method, was applied to estimate the amount of recharge generated episodically by individual rainfall events. The method also quantifies the amount of precipitation generating each recharge episode, thus permitting calculation of the Recharge to the Precipitation Ratio (RPR) on a storm-by-storm basis. Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climate-dependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology

  18. Effects of experimental passive artificial recharge of treated surface water on water quality in the Equus Beds Aquifer, 2009-2010

    Science.gov (United States)

    Garinger, Linda Pickett; King, Aaron S.; Ziegler, Andrew C.

    2011-01-01

    Declining water levels and concerns about the migration of a known saltwater plume upgradient from public supply wells prompted the City of Wichita to investigate the feasibility of using artificial recharge to replenish the water supply in the Equus Beds aquifer. After preliminary testing, the City of Wichita began Phase I of the Equus Beds Aquifer Storage and Recovery Project in 2006. In 2009, the City of Wichita installed an experimental passive gravity recharge well and trench system to increase artificial recharge at Recharge Basin 1, one of the six Phase ? recharge sites.

  19. Water quality of the Little Arkansas River and Equus Beds Aquifer before and concurrent with large-scale artificial recharge, south-central Kansas, 1995-2012

    Science.gov (United States)

    Tappa, Daniel J.; Lanning-Rush, Jennifer L.; Klager, Brian J.; Hansen, Cristi V.; Ziegler, Andrew C.

    2015-01-01

    The city of Wichita artificially recharged about 1 billion gallons of water into the Equus Beds aquifer during 2007–2012 as part of Phase I recharge of the Artificial Storage and Recovery project. This report, prepared in cooperation by the U.S. Geological Survey and the city of Wichita, Kansas, summarizes Little Arkansas River (source-water for artificial recharge) andEquus Beds aquifer water quality before (1995–2006) and during (2007–2012) Artificial Storage and Recovery Phase I recharge. Additionally, aquifer water-quality distribution maps are presented and water-quality changes associated with Phase I recharge timing are described.

  20. Coupling of Groundwater Recharge and Biodegradation of Subsurface Crude-Oil Contamination (Invited)

    Science.gov (United States)

    Bekins, B. A.; Hostettler, F. D.; Delin, G. N.; Herkelrath, W. N.; Warren, E.; Campbell, P.; Rosenbauer, R. J.; Cozzarelli, I.

    2010-12-01

    Surface hydrologic properties controlling groundwater recharge can have a large effect on biodegradation rates in the subsurface. Two studies of crude oil contamination show that degradation rates are dramatically increased where recharge rates are enhanced. The first site, located near Bemidji, Minnesota, was contaminated in August, 1979 when oil from a pipeline rupture infiltrated into a surficial glacial outwash aquifer. Discrete oil phases form three separate pools at the water table, the largest of which is 25x75 m at a depth of 6-8 m. Gas and water concentrations and microbial community data show that methanogenic conditions prevail in this oil pool. There is extreme spatial dependence in the degradation rates such that most of the n-alkanes have been degraded in the upgradient end, but in the downgradient end n-alkane concentrations are nearly unaltered from the original spill. Recharge rates through the two ends of the oil body were estimated using a water table fluctuation method. In 2002, the more degraded end received 15.2 cm of recharge contrasted to 10.7 cm at the less degraded end. The enhanced recharge is caused by topographic focusing of runoff toward a local depression. Microbial data using the Most Probable Number method show that the methanogen concentrations are 10-100 times greater in the more degraded end of the oil body suggesting that a growth nutrient is supplied by recharge. A decrease in partial pressure of N2 compared to Ar in the soil gas indicates nitrogen fixation probably meets N requirements (Amos et al., 2005, WRR, doi:10.1029/2004WR003433). Organic phosphorus is the main form of P in infiltrating pore water and concentration decreases with depth. The second site is located 40 km southeast of the Bemidji site at an oil pipeline pumping station near Cass Lake, Minnesota. This site was contaminated by oil leaking from a pipe coupling for an unknown duration of time between 1971 and 2002. The oil body at this site lies under a fenced

  1. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    Science.gov (United States)

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    An investigation of recharge basins on Long Island was made by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, Nassau County Department of Public Works, Suffolk County Department of Environmental Control, and Suffolk County Water Authority. The major objectives of the study were to (1) catalog basic physical data on the recharge basins in use on Long Island, (2) measure quality and quantity of precipitation and inflow, (3) measure infiltration rates at selected recharge basins, and (4) evaluate regional effects of recharge basins on the hydrologic system of Long Island. The area of study consists of Nassau and Suffolk Counties -- about 1,370 square miles -- in eastern Long Island, N.Y. Recharge basins, numbering more than 2,100 on Long Island in 1969, are open pits in moderately to highly permeable sand and gravel deposits. These pits are used to dispose of storm runoff from residential, industrial, and commercial areas, and from highways, by infiltration of the water through the bottom and sides of the basins. The hydrology of three recharge basins on Long Island -- Westbury, Syosset, and Deer Park basins -- was studied. The precipitation-inflow relation showed that the average percentages of precipitation flowing into each basin were roughly equivalent to the average percentages of impervious areas in the total drainage areas of the basins. Average percentages of precipitation flowing into the basins as direct runoff were 12 percent at the Westbury basin, 10 percent at the Syosset basin, and 7 percent at the Deer Park basin. Numerous open-bottomed storm-water catch basins at Syosset and Deer Park reduced the proportion of inflow to those basins, as compared with the Westbury basin, which has only a few open-bottomed catch basins. Inflow hydrographs for each basin typify the usual urban runoff hydrograph -- steeply rising and falling limbs, sharp peaks, and short time bases. Unit hydrographs for the

  2. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    Science.gov (United States)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  3. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    Science.gov (United States)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre