WorldWideScience

Sample records for constructing rna dynamical

  1. ConStruct: Improved construction of RNA consensus structures

    Directory of Open Access Journals (Sweden)

    Steger Gerhard

    2008-04-01

    Full Text Available Abstract Background Aligning homologous non-coding RNAs (ncRNAs correctly in terms of sequence and structure is an unresolved problem, due to both mathematical complexity and imperfect scoring functions. High quality alignments, however, are a prerequisite for most consensus structure prediction approaches, homology searches, and tools for phylogeny inference. Automatically created ncRNA alignments often need manual corrections, yet this manual refinement is tedious and error-prone. Results We present an extended version of CONSTRUCT, a semi-automatic, graphical tool suitable for creating RNA alignments correct in terms of both consensus sequence and consensus structure. To this purpose CONSTRUCT combines sequence alignment, thermodynamic data and various measures of covariation. One important feature is that the user is guided during the alignment correction step by a consensus dotplot, which displays all thermodynamically optimal base pairs and the corresponding covariation. Once the initial alignment is corrected, optimal and suboptimal secondary structures as well as tertiary interaction can be predicted. We demonstrate CONSTRUCT's ability to guide the user in correcting an initial alignment, and show an example for optimal secondary consensus structure prediction on very hard to align SECIS elements. Moreover we use CONSTRUCT to predict tertiary interactions from sequences of the internal ribosome entry site of CrP-like viruses. In addition we show that alignments specifically designed for benchmarking can be easily be optimized using CONSTRUCT, although they share very little sequence identity. Conclusion CONSTRUCT's graphical interface allows for an easy alignment correction based on and guided by predicted and known structural constraints. It combines several algorithms for prediction of secondary consensus structure and even tertiary interactions. The CONSTRUCT package can be downloaded from the URL listed in the Availability and

  2. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  3. Transposase mediated construction of RNA-seq libraries.

    Science.gov (United States)

    Gertz, Jason; Varley, Katherine E; Davis, Nicholas S; Baas, Bradley J; Goryshin, Igor Y; Vaidyanathan, Ramesh; Kuersten, Scott; Myers, Richard M

    2012-01-01

    RNA-seq has been widely adopted as a gene-expression measurement tool due to the detail, resolution, and sensitivity of transcript characterization that the technique provides. Here we present two transposon-based methods that efficiently construct high-quality RNA-seq libraries. We first describe a method that creates RNA-seq libraries for Illumina sequencing from double-stranded cDNA with only two enzymatic reactions. We generated high-quality RNA-seq libraries from as little as 10 pg of mRNA (∼1 ng of total RNA) with this approach. We also present a strand-specific RNA-seq library construction protocol that combines transposon-based library construction with uracil DNA glycosylase and endonuclease VIII to specifically degrade the second strand constructed during cDNA synthesis. The directional RNA-seq libraries maintain the same quality as the nondirectional libraries, while showing a high degree of strand specificity, such that 99.5% of reads map to the expected genomic strand. Each transposon-based library construction method performed well when compared with standard RNA-seq library construction methods with regard to complexity of the libraries, correlation between biological replicates, and the percentage of reads that align to the genome as well as exons. Our results show that high-quality RNA-seq libraries can be constructed efficiently and in an automatable fashion using transposition technology.

  4. Construction of lentiviral shRNA expression vector targeting ...

    African Journals Online (AJOL)

    DNA oligo was cloned into lentiviral expression vector, and then polymerase chain reaction (PCR) and sequencing analyses were conducted to verify the constructs. The verified vectors were co-transfected into 293FT cells that could produce lentiviral. shRNA lentiviruses from the selected constructs were propagated and ...

  5. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    Science.gov (United States)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  6. Molecular dynamics simulations of RNA motifs

    Czech Academy of Sciences Publication Activity Database

    Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.

    2002-01-01

    Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics

  7. Long-term RNA interference from optimized siRNA expression constructs in adult mice.

    Science.gov (United States)

    Wooddell, Christine I; Van Hout, Cristopher V; Reppen, Thomas; Lewis, David L; Herweijer, Hans

    2005-08-19

    DNA constructs for small interfering RNA (siRNA) expression in mammalian cells have the potential for longer-term target gene knockdown than synthetic siRNAs. We compared in adult mice the efficacy and longevity of target gene knockdown from siRNA expression cassettes contained in plasmids, PCR-generated linear constructs or PCR constructs containing "dumbbell" ends using the hydrodynamic delivery method. Plasmid siRNA expression constructs were more effective than PCR constructs for target gene knockdown. The efficacy of the PCR constructs was improved by addition of short extensions beyond the transcription termination signal and greatly improved by addition of dumbbell ends. Constructs containing the H1 promoter were significantly less effective in mice than those containing the U6 promoter, whereas both promoters functioned equally well in cultured cells. Target gene knockdown perdured for at least 20 weeks in mice after delivery of either PCR or plasmid siRNA expression cassettes. These results will help guide RNAi vector design.

  8. Thermodynamic matchers for the construction of the cuckoo RNA family.

    Science.gov (United States)

    Reinkensmeier, Jan; Giegerich, Robert

    2015-01-01

    RNA family models describe classes of functionally related, non-coding RNAs based on sequence and structure conservation. The most important method for modeling RNA families is the use of covariance models, which are stochastic models that serve in the discovery of yet unknown, homologous RNAs. However, the performance of covariance models in finding remote homologs is poor for RNA families with high sequence conservation, while for families with high structure but low sequence conservation, these models are difficult to built in the first place. A complementary approach to RNA family modeling involves the use of thermodynamic matchers. Thermodynamic matchers are RNA folding programs, based on the established thermodynamic model, but tailored to a specific structural motif. As thermodynamic matchers focus on structure and folding energy, they unfold their potential in discovering homologs, when high structure conservation is paired with low sequence conservation. In contrast to covariance models, construction of thermodynamic matchers does not require an input alignment, but requires human design decisions and experimentation, and hence, model construction is more laborious. Here we report a case study on an RNA family that was constructed by means of thermodynamic matchers. It starts from a set of known but structurally different members of the same RNA family. The consensus secondary structure of this family consists of 2 to 4 adjacent hairpins. Each hairpin loop carries the same motif, CCUCCUCCC, while the stems show high variability in their nucleotide content. The present study describes (1) a novel approach for the integration of the structurally varying family into a single RNA family model by means of the thermodynamic matcher methodology, and (2) provides the results of homology searches that were conducted with this model in a wide spectrum of bacterial species.

  9. Constructal theory of social dynamics

    CERN Document Server

    Bejan, Adrian

    2007-01-01

    Combines for the first time theories of general physics and applies them to social sciencesOffers a new way to look at social phenomena as part of natural phenomenaA new domain of application of engineering such as thermodynamic optimization, thermoeconomics and "design as science"Discusses how the "flow architectures" of natural sciences are also found in social situationsBoth classes are covered by the same principle (the constructal law)First work to show that the concept of "efficiency" of engineering has a home in physics and social sciencesThe constructal law theory puts a scientific principle behind the major challenges of today and the future: sustainable development, energy sufficiency, equilibria between human settlements and environmental ecosystems, optimal allocation, optimal distribution of finite resources, etc.

  10. The role of RNA editing in dynamic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L. M. (Luis Mateus); Huang, C. F. (Chien-Feng)

    2004-01-01

    This paper presents a computational methodology based on Genetic Algorithms with Genotype Editing (GAE) for investigating the role of RNA editing in dynamic environments. This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have previously expanded the traditional Genetic Algorithm (GA) with artificial editing mechanisms (Rocha, 1995, 1997), and studied the benefits of including straightforward Genotype Editing in GA for several machine learning problems (Huang and Rocha, 2003, 2004). We show that the incorporation of genotype editing provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity. Artificial agents use genotype edition to their advantage by linking it to environmental context. The ability to link changes in the environment with editing parameters gives organisms an adaptive advantage as genotype expression can become contextually regulated. The study of this RNA editing model in changing environments has shed some light into the evolutionary implications of RNA editing. We expect that our methodology will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation and Artificial Life.

  11. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1.

    Science.gov (United States)

    Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D

    2017-07-11

    RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.

  12. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available MicroRNAs are endogenous 23-25 nt RNAs that play important gene-regulatory roles in animals and plants. Recently, miR369-3 was found to upregulate translation of TNFα mRNA in quiescent (G0 mammalian cell lines. Knock down and immunofluorescence experiments suggest that microRNA-protein complexes (with FXR1 and AGO2 are necessary for the translation upregulation. However the molecular mechanism of microRNA translation activation is poorly understood. In this study we constructed the microRNA-mRNA-AGO2-FXR1 quadruple complex by bioinformatics and molecular modeling, followed with all atom molecular dynamics simulations in explicit solvent to investigate the interaction mechanisms for the complex. A combined analysis of experimental and computational data suggests that AGO2-FXR1 complex relocalize microRNA:mRNA duplex to polysomes in G0. The two strands of dsRNA are then separated upon binding of AGO2 and FXR1. Finally, polysomes may improve the translation efficiency of mRNA. The mutation research confirms the stability of microRNA-mRNA-FXR1 and illustrates importance of key residue of Ile304. This possible mechanism can shed more light on the microRNA-dependent upregulation of translation.

  13. Thiol-linked alkylation of RNA to assess expression dynamics.

    Science.gov (United States)

    Herzog, Veronika A; Reichholf, Brian; Neumann, Tobias; Rescheneder, Philipp; Bhat, Pooja; Burkard, Thomas R; Wlotzka, Wiebke; von Haeseler, Arndt; Zuber, Johannes; Ameres, Stefan L

    2017-12-01

    Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (s 4 U) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA. We validated the method in mouse embryonic stem cells by showing that the RNA-polymerase-II-dependent transcriptional output scaled with Oct4/Sox2/Nanog-defined enhancer activity, and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N 6 -methyladenosine. SLAM seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective and scalable manner.

  14. Improving the portability and performance of jViz.RNA, a dynamic RNA visualization software

    OpenAIRE

    Shabash, Boris

    2011-01-01

    jViz.RNA is a Java based software that focuses on the visualization of RNA and its structural elements. It has been employed by many research groups around the world and has prompted excellent and constructive feedback from those groups, along with several suggestions for improvements. In this thesis, two major areas of jViz.RNA have been explored for the purpose of improvement; First, RNAML and FASTA file format support was added to jViz.RNA’s repertoire. This allows jViz.RNA users to utilize...

  15. High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs

    NARCIS (Netherlands)

    Chen, Y.K.; Lohuis, H.; Goldbach, R.W.; Prins, M.W.

    2004-01-01

    The application of RNA-mediated resistance against Cucumber mosaic virus (CMV) by using single transgene constructs generally results in only a small portion of resistant individuals. Inverted repeat constructs encoding self-complementary double-stranded RNA have been demonstrated a potential way to

  16. Constructing Dynamic Event Trees from Markov Models

    International Nuclear Information System (INIS)

    Paolo Bucci; Jason Kirschenbaum; Tunc Aldemir; Curtis Smith; Ted Wood

    2006-01-01

    In the probabilistic risk assessment (PRA) of process plants, Markov models can be used to model accurately the complex dynamic interactions between plant physical process variables (e.g., temperature, pressure, etc.) and the instrumentation and control system that monitors and manages the process. One limitation of this approach that has prevented its use in nuclear power plant PRAs is the difficulty of integrating the results of a Markov analysis into an existing PRA. In this paper, we explore a new approach to the generation of failure scenarios and their compilation into dynamic event trees from a Markov model of the system. These event trees can be integrated into an existing PRA using software tools such as SAPHIRE. To implement our approach, we first construct a discrete-time Markov chain modeling the system of interest by: (a) partitioning the process variable state space into magnitude intervals (cells), (b) using analytical equations or a system simulator to determine the transition probabilities between the cells through the cell-to-cell mapping technique, and, (c) using given failure/repair data for all the components of interest. The Markov transition matrix thus generated can be thought of as a process model describing the stochastic dynamic behavior of the finite-state system. We can therefore search the state space starting from a set of initial states to explore all possible paths to failure (scenarios) with associated probabilities. We can also construct event trees of arbitrary depth by tracing paths from a chosen initiating event and recording the following events while keeping track of the probabilities associated with each branch in the tree. As an example of our approach, we use the simple level control system often used as benchmark in the literature with one process variable (liquid level in a tank), and three control units: a drain unit and two supply units. Each unit includes a separate level sensor to observe the liquid level in the tank

  17. Methods of high integrity RNA extraction from cell/agarose construct.

    Science.gov (United States)

    Ogura, Takahiro; Tsuchiya, Akihiro; Minas, Tom; Mizuno, Shuichi

    2015-11-04

    Agarose hydrogels are widely used for three-dimensional cell scaffolding in tissue engineering and cell biology. Recently, molecular profiles have been obtained with extraction of a minimal volume of RNA using fluorescent-tagged quantitative polymerase chain reaction (qPCR), which requires high integrity RNA. However, the agarose interferes considerably with the quantity and quality of the extracted RNA. Moreover, little is known about RNA integrity when the RNA is extracted from cell/agarose construct. Thus, in order to obtain RNA of sufficient integrity, we examined various extraction methods and addressed reproducible methodologies for RNA extraction from cell/agarose constructs using spectrophotometry and microfluidic capillary electrophoresis. With various extraction methods using a mono-phasic solution of phenol and guanidine isothiocyanate, we evaluated quantity and quality of total RNA from cell/agarose construct. Extraction with solution of phenol and guanidine isothiocyanate followed by a silica based membrane filter column gave sufficient RNA integrity number, which allowed us to proceed to fluorescent-tagged qPCR for evaluating various cellular activities. The RNA extraction methods using phenol and guanidine isothiocyanate solution and a silica membrane column can be useful for obtaining high integrity RNA from cell/agarose constructs rich in polysaccharide and extracellular matrix. Our study contributes to further investigation using agarose hydrogels and other materials rich in polysaccharide in the field of cellular and tissue engineering.

  18. Transcriptome dynamics of the microRNA inhibition response

    DEFF Research Database (Denmark)

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto

    2015-01-01

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show...... miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at ∼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major...... role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We...

  19. A construct with fluorescent indicators for conditional expression of miRNA

    Directory of Open Access Journals (Sweden)

    Xia Xugang

    2008-10-01

    Full Text Available Abstract Background Transgenic RNAi holds promise as a simple, low-cost, and fast method for reverse genetics in mammals. It may be particularly useful for producing animal models for hypomorphic gene function. Inducible RNAi that permits spatially and temporally controllable gene silencing in vivo will enhance the power of transgenic RNAi approach. Furthermore, because microRNA (miRNA targeting specific genes can be expressed simultaneously with protein coding genes, incorporation of fluorescent marker proteins can simplify the screening and analysis of transgenic RNAi animals. Results We sought to optimally express a miRNA simultaneously with a fluorescent marker. We compared two construct designs. One expressed a red fluorescent protein (RFP and a miRNA placed in its 3' untranslated region (UTR. The other expressed the same RFP and miRNA, but the precursor miRNA (pre-miRNA coding sequence was placed in an intron that was inserted into the 3'-UTR. We found that the two constructs expressed comparable levels of miRNA. However, the intron-containing construct expressed a significantly higher level of RFP than the intron-less construct. Further experiments indicate that the 3'-UTR intron enhances RFP expression by its intrinsic gene-expression-enhancing activity and by eliminating the inhibitory effect of the pre-miRNA on the expression of RFP. Based on these findings, we incorporated the intron-embedded pre-miRNA design into a conditional expression construct that employed the Cre-loxP system. This construct initially expressed EGFP gene, which was flanked by loxP sites. After exposure to Cre recombinase, the transgene stopped EGFP expression and began expression of RFP and a miRNA, which silenced the expression of specific cellular genes. Conclusion We have designed and tested a conditional miRNA-expression construct and showed that this construct expresses both the marker genes strongly and can silence the target gene efficiently upon Cre

  20. Design and cloning strategies for constructing shRNA expression vectors

    Directory of Open Access Journals (Sweden)

    McIntyre Glen J

    2006-01-01

    Full Text Available Abstract Background Short hairpin RNA (shRNA encoded within an expression vector has proven an effective means of harnessing the RNA interference (RNAi pathway in mammalian cells. A survey of the literature revealed that shRNA vector construction can be hindered by high mutation rates and the ensuing sequencing is often problematic. Current options for constructing shRNA vectors include the use of annealed complementary oligonucleotides (74 % of surveyed studies, a PCR approach using hairpin containing primers (22 % and primer extension of hairpin templates (4 %. Results We considered primer extension the most attractive method in terms of cost. However, in initial experiments we encountered a mutation frequency of 50 % compared to a reported 20 – 40 % for other strategies. By modifying the technique to be an isothermal reaction using the DNA polymerase Phi29, we reduced the error rate to 10 %, making primer extension the most efficient and cost-effective approach tested. We also found that inclusion of a restriction site in the loop could be exploited for confirming construct integrity by automated sequencing, while maintaining intended gene suppression. Conclusion In this study we detail simple improvements for constructing and sequencing shRNA that overcome current limitations. We also compare the advantages of our solutions against proposed alternatives. Our technical modifications will be of tangible benefit to researchers looking for a more efficient and reliable shRNA construction process.

  1. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory

    Science.gov (United States)

    Yeates, Jessica A. M.; Hilbe, Christian; Zwick, Martin; Nowak, Martin A.; Lehman, Niles

    2016-01-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock–paper–scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world. PMID:27091972

  2. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    Science.gov (United States)

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-03

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.

  3. Unraveling Mg2+-RNA binding with atomistic molecular dynamics.

    Science.gov (United States)

    Cunha, Richard A; Bussi, Giovanni

    2017-05-01

    Interaction with divalent cations is of paramount importance for RNA structural stability and function. We report here a detailed molecular dynamics study of all the possible binding sites for Mg 2+ on an RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics, which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg 2+ affinity due to ion competition and hybridization, respectively, and predict that RNA flexibility has a site-dependent effect. This suggests a nontrivial interplay between RNA conformational entropy and divalent cation binding. © 2017 Cunha and Bussi; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines

    Science.gov (United States)

    Cilek, Emine Ezel; Ozturk, Hakime

    2017-01-01

    Trastuzumab is a monoclonal antibody frequently used to prevent the progression of HER2+ breast cancers, which constitute approximately 20% of invasive breast cancers. microRNAs (miRNAs) are small, non-coding RNA molecules that are known to be involved in gene regulation. With their emerging roles in cancer, they are recently promoted as potential candidates to mediate therapeutic actions by targeting genes associated with drug response. In this study we explored miRNA-mediated regulation of trastuzumab mechanisms by identifying the important miRNAs responsible for the drug response via homogenous network analysis. Our network model enabled us to simplify the complexity of miRNA interactions by connecting them through their common pathways. We outlined the functionally relevant miRNAs by constructing pathway-based miRNA-miRNA networks in SKBR3 and BT474 cells, respectively. Identification of the most targeted genes revealed that trastuzumab responsive miRNAs favourably regulate the repression of targets with longer 3’UTR than average considered to be key elements, while the miRNA-miRNA networks highlighted central miRNAs such as hsa-miR-3976 and hsa-miR-3671 that showed strong interactions with the remaining members of the network. Furthermore, the clusters of the miRNA-miRNA networks showed that trastuzumab response was mostly established through cancer related and metabolic pathways. hsa-miR-216b was found to be the part of the most powerful interactions of metabolic pathways, which was defined in the largest clusters in both cell lines. The network based representation of miRNA-miRNA interactions through their shared pathways provided a better understanding of miRNA-mediated drug response and could be suggested for further characterization of miRNA functions. PMID:28981542

  5. Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Emine Ezel Cilek

    Full Text Available Trastuzumab is a monoclonal antibody frequently used to prevent the progression of HER2+ breast cancers, which constitute approximately 20% of invasive breast cancers. microRNAs (miRNAs are small, non-coding RNA molecules that are known to be involved in gene regulation. With their emerging roles in cancer, they are recently promoted as potential candidates to mediate therapeutic actions by targeting genes associated with drug response. In this study we explored miRNA-mediated regulation of trastuzumab mechanisms by identifying the important miRNAs responsible for the drug response via homogenous network analysis. Our network model enabled us to simplify the complexity of miRNA interactions by connecting them through their common pathways. We outlined the functionally relevant miRNAs by constructing pathway-based miRNA-miRNA networks in SKBR3 and BT474 cells, respectively. Identification of the most targeted genes revealed that trastuzumab responsive miRNAs favourably regulate the repression of targets with longer 3'UTR than average considered to be key elements, while the miRNA-miRNA networks highlighted central miRNAs such as hsa-miR-3976 and hsa-miR-3671 that showed strong interactions with the remaining members of the network. Furthermore, the clusters of the miRNA-miRNA networks showed that trastuzumab response was mostly established through cancer related and metabolic pathways. hsa-miR-216b was found to be the part of the most powerful interactions of metabolic pathways, which was defined in the largest clusters in both cell lines. The network based representation of miRNA-miRNA interactions through their shared pathways provided a better understanding of miRNA-mediated drug response and could be suggested for further characterization of miRNA functions.

  6. Construction Worker Fatigue Prediction Model Based on System Dynamic

    Directory of Open Access Journals (Sweden)

    Wahyu Adi Tri Joko

    2017-01-01

    Full Text Available Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD. System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate the model, 93 construction workers whom worked in a high rise building construction projects, were used as case study. The result shows that excessive workload, working elevation and age, are the main factors lead to construction worker fatigue. Simulation result also shows that these factors can increase worker fatigue level to 21.2% times compared to normal condition. Beside predicting worker fatigue level this model can also be used as early warning system to prevent construction worker accident

  7. Embending Sustainability Dynamics in the Lean Construction Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Sertyesilisik Begum

    2016-07-01

    Full Text Available The world’s habitat is being deteriorated despite of the precautions taken. Construction industry is among the industries which highly effect the environment adversely not only through its outputs but also through the construction process and its inputs. The main focus in dealing with the reduction of its footprint has been on sustainable building certificates which mainly analyse the output of the construction activies. There is need to analyse the construction supply chain as a whole and to embed sustainability dynamics in construction supply chain management. Lean construction project management contributes to the reduction of the environmental footprint of the construction industry, enabling reduction in waste, and increasing value added activities. For this reason, based on an in depth literature review, this paper analyses and establishes the principles of the integration of the sustainability dynamics into lean construction supply chain management.

  8. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yang, Shuang; Ning, Qianqian; Zhang, Guobin; Sun, Hong; Wang, Zhen; Li, Yixue

    2016-12-27

    Increasing evidence has indicated that lncRNAs acting as competing endogenous RNAs (ceRNAs) play crucial roles in tumorigenesis, metastasis and diagnosis of cancer. However, the function of lncRNAs as ceRNAs involved in esophageal squamous cell carcinoma (ESCC) is still largely unknown. In this study, clinical implications of two intrinsic subtypes of ESCC were identified based on expression profiles of lncRNA and mRNA. ESCC subtype-specific differential co-expression networks between mRNAs and lncRNAs were constructed to reveal dynamic changes of their crosstalks mediated by miRNAs during tumorigenesis. Several well-known cancer-associated lncRNAs as the hubs of the two networks were firstly proposed in ESCC. Based on the ceRNA mechanism, we illustrated that the"loss" of miR-186-mediated PVT1-mRNA and miR-26b-mediated LINC00240-mRNA crosstalks were related to the two ESCC subtypes respectively. In addition, crosstalks between LINC00152 and EGFR, LINC00240 and LOX gene family were identified, which were associated with the function of "response to wounding" and "extracellular matrix-receptor interaction". Furthermore, functional cooperation of multiple lncRNAs was discovered in the two differential mRNA-lncRNA crosstalk networks. These together systematically uncovered the roles of lncRNAs as ceRNAs implicated in ESCC.

  9. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure.

    Directory of Open Access Journals (Sweden)

    Ryan T Fuchs

    Full Text Available High-throughput sequencing (HTS has become a powerful tool for the detection of and sequence characterization of microRNAs (miRNA and other small RNAs (sRNA. Unfortunately, the use of HTS data to determine the relative quantity of different miRNAs in a sample has been shown to be inconsistent with quantitative PCR and Northern Blot results. Several recent studies have concluded that the major contributor to this inconsistency is bias introduced during the construction of sRNA libraries for HTS and that the bias is primarily derived from the adaptor ligation steps, specifically where single stranded adaptors are sequentially ligated to the 3' and 5'-end of sRNAs using T4 RNA ligases. In this study we investigated the effects of ligation bias by using a pool of randomized ligation substrates, defined mixtures of miRNA sequences and several combinations of adaptors in HTS library construction. We show that like the 3' adaptor ligation step, the 5' adaptor ligation is also biased, not because of primary sequence, but instead due to secondary structures of the two ligation substrates. We find that multiple secondary structural factors influence final representation in HTS results. Our results provide insight about the nature of ligation bias and allowed us to design adaptors that reduce ligation bias and produce HTS results that more accurately reflect the actual concentrations of miRNAs in the defined starting material.

  10. Thermodynamic examination of 1- to 5-nt purine bulge loops in RNA and DNA constructs.

    Science.gov (United States)

    Strom, Shane; Shiskova, Evgenia; Hahm, Yaeeun; Grover, Neena

    2015-07-01

    Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl(2) or 1 M KCl. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47-2.06 kcal/mol more favorable for the RNA bulge loops. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride. © 2015 Strom et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Simplified methods for the construction of RNA and DNA virus infectious clones.

    Science.gov (United States)

    Nagata, Tatsuya; Inoue-Nagata, Alice Kazuko

    2015-01-01

    Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone.

  12. Construction of a reconfigurable dynamic logic cell

    Indian Academy of Sciences (India)

    dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired ... basic logic gates with a single chaotic system. Consider a chaotic element (our chaotic chip or chaotic processor) ..... [9] J N Blakely et al, IEEE J. Quantum Electron. 40, 299 (2004). Pramana – J. Phys.

  13. Construction of microRNA functional families by a mixture model of position weight matrices

    Directory of Open Access Journals (Sweden)

    Je-Keun Rhee

    2013-10-01

    Full Text Available MicroRNAs (miRNAs are small regulatory molecules that repress the translational processes of their target genes by binding to their 3′ untranslated regions (3′ UTRs. Because the target genes are predominantly determined by their sequence complementarity to the miRNA seed regions (nucleotides 2–7 which are evolutionarily conserved, it is inferred that the target relationships and functions of the miRNA family members are conserved across many species. Therefore, detecting the relevant miRNA families with confidence would help to clarify the conserved miRNA functions, and elucidate miRNA-mediated biological processes. We present a mixture model of position weight matrices for constructing miRNA functional families. This model systematically finds not only evolutionarily conserved miRNA family members but also functionally related miRNAs, as it simultaneously generates position weight matrices representing the conserved sequences. Using mammalian miRNA sequences, in our experiments, we identified potential miRNA groups characterized by similar sequence patterns that have common functions. We validated our results using score measures and by the analysis of the conserved targets. Our method would provide a way to comprehensively identify conserved miRNA functions.

  14. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat...... replication. Thus, the guanidine-sensitive step in RNA synthesis is important throughout the virus life cycle in cells....... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  15. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases

    Directory of Open Access Journals (Sweden)

    Garwick-Coppens Sara E

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs. Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.

  16. Efficient dynamic graph construction for inductive semi-supervised learning.

    Science.gov (United States)

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  18. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  19. Architecture and dynamics of overlapped RNA regulatory networks.

    Science.gov (United States)

    Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin

    2017-11-01

    A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA

    OpenAIRE

    Yadav, Rajiv Kumar; Barbi, Florian; Ziller, Antoine; Luis, Patricia; Marmeisse, Roland; Reddy, M Sudhakara; Fraissinet-Tachet, Laurence

    2014-01-01

    Background: Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. Results: We report here a ...

  1. High-quality RNA preparation from Rhodosporidium toruloides and cDNA library construction therewith.

    Science.gov (United States)

    Yang, Fan; Tan, Haidong; Zhou, Yongjin; Lin, Xinping; Zhang, Sufang

    2011-02-01

    Oleaginous yeast Rhodosporidium toruloides is an excellent microbial lipid producer. Therefore, it is important to develop molecular biology tools to understand the basic mechanism for lipid accumulation and further manipulate the microorganism. High-quality RNA extraction from R. toruloides is particularly challenging due to high level of polysaccharides, lipids, and other secondary metabolites. To obtain an optimal protocol for RNA extraction from R. toruloides, four methods were evaluated. Large difference in RNA yield and quality among these protocols was found. The optimum method was modified RNAiso procedure, where RNA was isolated using liquid nitrogen-RNAiso method with salt precipitation and the addition of β-mercaptoethanol. This method consistently recovered RNA in good quality with high yield. Around 297 μg total RNA per gram of cells was obtained with an average purity measured as A₂₆₀/A₂₈₀ of 2.09. A titer of 10⁵ cfu/ml could be harvested to construct a full-length cDNA library with the RNA sample in this quality. Electrophoresis gel analysis indicated the fragments ranged from 200 bp to 4.0 kb, with the average size of 1000 bp. Randomly picked clones showed the recombination efficiency at 80%. These results showed that RNA of R. toruloides was successfully extracted for the first time using the modified RNAiso method, and the cDNA library was appropriate for screening the genes related to lipid accumulation.

  2. Quality of life: a dynamic construct.

    Science.gov (United States)

    Allison, P J; Locker, D; Feine, J S

    1997-07-01

    The principle of Einstein's theory of special relativity is that an observer of an apparently moving body cannot be sure if the body really has moved, if he/she has moved or if both events have occurred. Although Einstein was discussing physical events, a similar hypothesis may apply to quality of life. When using quality of life instruments, one presumes that the point of reference (the observer in Einstein's terms) does not move, i.e. that an individual's attitude towards a particular construct will remain stable. Otherwise, changes in response to particular variables cannot be interpreted. However, attitudes are not constant: they vary with time and experience and are modified by such psychological phenomena as adaptation, coping, expectancy, optimism, self-control and self-concept. For example, eating problems may be extremely important at one point in a person's life. However, when oral discomfort has been diagnosed as cancer and treated with surgery or radiation, the same individual may "objectively" demonstrate more problems when eating, but report them as less because they have now become relatively unimportant. Furthermore, paradoxical reports that some groups of ill individuals rate their quality of life higher than do "healthy" persons raise similar questions concerning between-group point of reference differences. Investigators in the fields of organisational management, education and psychology have developed techniques such as "then ratings", saliency indicators and individualised questionnaires in attempts to quantify within-subject variability and between-group differences pertaining to point of reference. We suggest that similar methods may help us to measure change in the impact of the different items of quality of life instruments. In this paper, we will describe the theories of change associated with quality of life measurement. In addition, we will present evidence suggesting that the point of reference does change, the reasons for this and

  3. Membrane Recognition and Dynamics of the RNA Degradosome

    Science.gov (United States)

    Strahl, Henrik; Turlan, Catherine; Khalid, Syma; Bond, Peter J.; Kebalo, Jean-Marie; Peyron, Pascale; Poljak, Leonora; Bouvier, Marie; Hamoen, Leendert; Luisi, Ben F.; Carpousis, Agamemnon J.

    2015-01-01

    RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence). Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy) shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies. PMID:25647427

  4. Membrane recognition and dynamics of the RNA degradosome.

    Directory of Open Access Journals (Sweden)

    Henrik Strahl

    2015-02-01

    Full Text Available RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence. Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies.

  5. Construction of equalized short hairpin RNA library from human brain cDNA.

    Science.gov (United States)

    Xu, Lei; Li, Jingqi; Liu, Li; Lu, Lixia; Gao, Jingxia; Li, Xueli

    2007-02-20

    Short hairpin RNA (shRNA) library is a powerful new tool for high-throughput loss-of-function genetic screens in mammalian cells. An shRNA library can be constructed from synthetic oligonucleotides or enzymatically cleaved natural cDNA. Here, we describe a new method for constructing equalized shRNA libraries from cDNA. First, enzymatically digested cDNA fragments are equalized by a suppression PCR-based method modified from suppression subtractive hybridization. The efficiency of equalization was confirmed by quantitative real-time PCR. The fragments are then converted into an shRNA library by a series of enzymatic treatments. With this new technology, we constructed a library from human brain cDNA. Sequence analysis showed that most of the randomly selected clones had inverted repeat sequences converted from different cDNA. After transfecting HEK 293T cells and detecting gene expression, three out of eight clones were demonstrated to significantly inhibit their target genes.

  6. Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms.

    Science.gov (United States)

    Huang, Xuhui; Yao, Yuan; Bowman, Gregory R; Sun, Jian; Guibas, Leonidas J; Carlsson, Gunnar; Pande, Vijay S

    2010-01-01

    Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long-lived, or metastable, states. This is equivalent to coarse graining time by integrating out fast motions within metastable states. By varying the degree of coarse graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level separately, and finally recombine this information into a single MSM. SHC is able to produce MSMs at different resolutions using different super density level sets. To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. We validate these MSMs by showing that they are able to reproduce the original simulation data. Furthermore, long time folding dynamics are extracted from these models. The results show that there are no metastable on-pathway intermediate states. Instead, the folded state serves as a hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.

  7. An automated method for efficient, accurate and reproducible construction of RNA-seq libraries.

    Science.gov (United States)

    Tsompana, Maria; Valiyaparambil, Sujith; Bard, Jonathan; Marzullo, Brandon; Nowak, Norma; Buck, Michael Joseph

    2015-04-03

    Integration of RNA-seq expression data with knowledge on chromatin accessibility, histone modifications, DNA methylation, and transcription factor binding has been instrumental for the unveiling of cell-specific local and long-range regulatory patterns, facilitating further investigation on the underlying rules of transcription regulation at an individual and allele-specific level. However, full genome transcriptome characterization has been partially limited by the complexity and increased time-requirements of available RNA-seq library construction protocols. Use of the SX-8G IP-Star® Compact System significantly reduces the hands-on time for RNA-seq library synthesis, adenylation, and adaptor ligation providing with high quality RNA-seq libraries tailored for Illumina high-throughput next-generation sequencing. Generated data exhibits high technical reproducibility compared to data from RNA-seq libraries synthesized manually for the same samples. Obtained results are consistent regardless the researcher, day of the experiment, and experimental run. Overall, the SX-8G IP-Star® Compact System proves an efficient, fast and reliable tool for the construction of next-generation RNA-seq libraries especially for trancriptome-based annotation of larger genomes.

  8. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    Science.gov (United States)

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  9. MicroRNA: Dynamic Regulators of Macrophage Polarization and Plasticity

    Directory of Open Access Journals (Sweden)

    Jezrom Bokcaerin Self-Fordham

    2017-08-01

    Full Text Available The ability of a healthy immune system to clear the plethora of antigens it encounters incessantly relies on the enormous plasticity displayed by the comprising cell types. Macrophages (MΦs are crucial member of the mononuclear phagocyte system (MPS that constantly patrol the peripheral tissues and are actively recruited to the sites of injury and infection. In tissues, infiltrating monocytes replenish MΦ. Under the guidance of the local micro-milieu, MΦ can be activated to acquire specialized functional phenotypes. Similar to T cells, functional polarization of macrophage phenotype viz., inflammatory (M1 and reparative (M2 is proposed. Equipped with diverse toll-like receptors (TLRs, these cells of the innate arm of immunity recognize and phagocytize antigens and secrete cytokines that activate the adaptive arm of the immune system and perform key roles in wound repair. Dysregulation of MΦ plasticity has been associated with various diseases and infection. MicroRNAs (miRNAs have emerged as critical regulators of transcriptome output. Their importance in maintaining health, and their contribution toward disease, encompasses virtually all aspects of human biology. Our understanding of miRNA-mediated regulation of MΦ plasticity and polarization can be utilized to modulate functional phenotypes to counter their role in the pathogenesis of numerous disease, including cancer, autoimmunity, periodontitis, etc. Here, we provide an overview of current knowledge regarding the role of miRNA in shaping MΦ polarization and plasticity through targeting of various pathways and genes. Identification of miRNA biomarkers of diagnostic/prognostic value and their therapeutic potential by delivery of miRNA mimics or inhibitors to dynamically alter gene expression profiles in vivo is highlighted.

  10. Queering Constructs: Proposing a Dynamic Gender and Sexuality Model

    Science.gov (United States)

    Jourian, T. J.

    2015-01-01

    Higher education educators commonly understand social identities, including gender, to be fluid and dynamic. Lev's (2004) model of four components of sexual identity is commonly used to demonstrate the fluidity of sex, gender, and sexuality for individuals, but it does little to address the fixedness of those constructs. Through a multipronged…

  11. Construction of exact complex dynamical invariant of a two ...

    Indian Academy of Sciences (India)

    physics pp. 999–1009. Construction of exact complex dynamical invariant of a two-dimensional classical system. FAKIR CHAND and S C MISHRA. Department ... namical invariants for both time-dependent and time-independent classical systems. [1–3]. .... where [·, ·] is the Poisson bracket, which in view of the definition eq.

  12. Construction of small RNA cDNA libraries for high-throughput sequencing.

    Science.gov (United States)

    Lu, Cheng; Shedge, Vikas

    2011-01-01

    Small RNAs (smRNAs) play an essential role in virtually every aspect of growth and development, by regulating gene expression at the post-transcriptional and/or transcriptional level. New high-throughput sequencing technology allows for a comprehensive coverage of smRNAs in any given biological sample, and has been widely used for profiling smRNA populations in various developmental stages, tissue and cell types, or normal and disease states. In this article, we describe the method used in our laboratory to construct smRNA cDNA libraries for high-throughput sequencing.

  13. miRCancer: a microRNA-cancer association database constructed by text mining on literature.

    Science.gov (United States)

    Xie, Boya; Ding, Qin; Han, Hongjin; Wu, Di

    2013-03-01

    Research interests in microRNAs have increased rapidly in the past decade. Many studies have showed that microRNAs have close relationships with various human cancers, and they potentially could be used as cancer indicators in diagnosis or as a suppressor for treatment purposes. There are several databases that contain microRNA-cancer associations predicted by computational methods but few from empirical results. Despite the fact that abundant experiments investigating microRNA expressions in cancer cells have been carried out, the results have remain scattered in the literature. We propose to extract microRNA-cancer associations by text mining and store them in a database called miRCancer. The text mining is based on 75 rules we have constructed, which represent the common sentence structures typically used to state microRNA expressions in cancers. The microRNA-cancer association database, miRCancer, is updated regularly by running the text mining algorithm against PubMed. All miRNA-cancer associations are confirmed manually after automatic extraction. miRCancer currently documents 878 relationships between 236 microRNAs and 79 human cancers through the processing of >26 000 published articles. miRCancer is freely available on the web at http://mircancer.ecu.edu/

  14. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers.

    Science.gov (United States)

    Ballouz, S; Verleyen, W; Gillis, J

    2015-07-01

    RNA-seq co-expression analysis is in its infancy and reasonable practices remain poorly defined. We assessed a variety of RNA-seq expression data to determine factors affecting functional connectivity and topology in co-expression networks. We examine RNA-seq co-expression data generated from 1970 RNA-seq samples using a Guilt-By-Association framework, in which genes are assessed for the tendency of co-expression to reflect shared function. Minimal experimental criteria to obtain performance on par with microarrays were >20 samples with read depth >10 M per sample. While the aggregate network constructed shows good performance (area under the receiver operator characteristic curve ∼0.71), the dependency on number of experiments used is nearly identical to that present in microarrays, suggesting thousands of samples are required to obtain 'gold-standard' co-expression. We find a major topological difference between RNA-seq and microarray co-expression in the form of low overlaps between hub-like genes from each network due to changes in the correlation of expression noise within each technology. jgillis@cshl.edu or sballouz@cshl.edu Networks are available at: http://gillislab.labsites.cshl.edu/supplements/rna-seq-networks/ and supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. DMPD: TLR ignores methylated RNA? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16111629 TLR ignores methylated RNA? Ishii KJ, Akira S. Immunity. 2005 Aug;23(2):11...1-3. (.png) (.svg) (.html) (.csml) Show TLR ignores methylated RNA? PubmedID 16111629 Title TLR ignores methylated RNA

  16. Genetic algorithm optimization for dynamic construction site layout planning

    Directory of Open Access Journals (Sweden)

    Farmakis Panagiotis M.

    2018-02-01

    Full Text Available The dynamic construction site layout planning (DCSLP problem refers to the efficient placement and relocation of temporary construction facilities within a dynamically changing construction site environment considering the characteristics of facilities and work interrelationships, the shape and topography of the construction site, and the time-varying project needs. A multi-objective dynamic optimization model is developed for this problem that considers construction and relocation costs of facilities, transportation costs of resources moving from one facility to another or to workplaces, as well as safety and environmental considerations resulting from facilities’ operations and interconnections. The latter considerations are taken into account in the form of preferences or constraints regarding the proximity or remoteness of particular facilities to other facilities or work areas. The analysis of multiple project phases and the dynamic facility relocation from phase to phase highly increases the problem size, which, even in its static form, falls within the NP (for Nondeterministic Polynomial time- hard class of combinatorial optimization problems. For this reason, a genetic algorithm has been implemented for the solution due to its capability to robustly search within a large solution space. Several case studies and operational scenarios have been implemented through the Palisade’s Evolver software for model testing and evaluation. The results indi­cate satisfactory model response to time-varying input data in terms of solution quality and computation time. The model can provide decision support to site managers, allowing them to examine alternative scenarios and fine-tune optimal solutions according to their experience by introducing desirable preferences or constraints in the decision process.

  17. Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA.

    Science.gov (United States)

    Yadav, Rajiv Kumar; Barbi, Florian; Ziller, Antoine; Luis, Patricia; Marmeisse, Roland; Reddy, M Sudhakara; Fraissinet-Tachet, Laurence

    2014-09-03

    Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. We report here a simple and cost effective technique for preparation of sized eukaryotic cDNA libraries from as low as three microgram of total soil RNA dominated by ribosomal and bacterial RNA. cDNAs synthesized by a template switching approach were size-fractionated by two dimensional agarose gel electrophoresis prior to PCR amplification and cloning. Effective size selection was demonstrated by PCR amplification of conserved gene families specific of each size class. Libraries of more than one million independent inserts whose sizes ranged between one and four kb were thus produced. Up to 80% of the insert sequences were homologous to eukaryotic gene sequences present in public databases. A simple and cost effective technique has been developed to construct sized eukaryotic cDNA libraries from environmental samples. This technique will facilitate expression cloning of environmental eukaryotic genes and contribute to a better understanding of basic biological and/or ecological processes carried out by eukaryotic microbial communities.

  18. System dynamic modeling on construction waste management in Shenzhen, China.

    Science.gov (United States)

    Tam, Vivian W Y; Li, Jingru; Cai, Hong

    2014-05-01

    This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.

  19. Dynamic Programming Approach for Construction of Association Rule Systems

    KAUST Repository

    Alsolami, Fawaz

    2016-11-18

    In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.

  20. Efficient inhibition of HIV-1 replication by an artificial polycistronic miRNA construct

    Directory of Open Access Journals (Sweden)

    Zhang Tao

    2012-06-01

    Full Text Available Abstract Background RNA interference (RNAi has been used as a promising approach to inhibit human immunodeficiency virus type 1 (HIV-1 replication for both in vitro and in vivo animal models. However, HIV-1 escape mutants after RNAi treatment have been reported. Expressing multiple small interfering RNAs (siRNAs against conserved viral sequences can serve as a genetic barrier for viral escape, and optimization of the efficiency of this process was the aim of this study. Results An artificial polycistronic transcript driven by a CMV promoter was designed to inhibit HIV-1 replication. The artificial polycistronic transcript contained two pre-miR-30a backbones and one pre-miR-155 backbone, which are linked by a sequence derived from antisense RNA sequence targeting the HIV-1 env gene. Our results demonstrated that this artificial polycistronic transcript simultaneously expresses three anti-HIV siRNAs and efficiently inhibits HIV-1 replication. In addition, the biosafety of MT-4 cells expressing this polycistronic miRNA transcript was evaluated, and no apparent impacts on cell proliferation rate, interferon response, and interruption of native miRNA processing were observed. Conclusions The strategy described here to generate an artificial polycistronic transcript to inhibit viral replication provided an opportunity to select and optimize many factors to yield highly efficient constructs expressing multiple siRNAs against viral infection.

  1. Exploring the RNA-bound and RNA-free human Argonaute-2 by molecular dynamics simulation method.

    Science.gov (United States)

    Kong, Ren; Xu, Lei; Piao, Lianhua; Zhang, Dawei; Hou, Ting-Jun; Chang, Shan

    2017-11-01

    Argonaute 2 (Ago2) protein is the major vehicle of microRNAs (miRNAs)-guided gene repression and silencing processes. Although the crystal structure of human Ago2 (hAgo2) has recently been disclosed, the information of dynamically structural character of protein-RNA recognition is still lacking. Molecular dynamics simulations were used to systematically explore hAgo2 in the presence and absence of RNA duplex. Stable direct and water-mediated hydrogen bonds were observed between guide RNA backbone atoms and hAgo2, especially for nucleotides 2-7. In addition, water-mediated hydrogen bonds are indicated to be critical in the specific recognition between hAgo2 and the conserved adenine in position 1 of target RNA. The core domains (N, PAZ, MID, and PIWI) possess rigid body movements during the simulations. The motions of N-PAZ and PIWI-MID are negatively correlated with or without RNA binding and PAZ domain is identified as the most mobile domain in both systems. The reorientation of PAZ domain not only influences the binding of helix-7 and RNA duplex, the initial pairing process, but also the shape of N-PAZ cleft, where the supplemental base pairing occurs. It is speculated that PAZ domain could be a key regulator in hAgo2-mediated miRNA-induced gene regulation. © 2017 John Wiley & Sons A/S.

  2. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.

    Science.gov (United States)

    Choi, Junhong; Ieong, Ka-Weng; Demirci, Hasan; Chen, Jin; Petrov, Alexey; Prabhakar, Arjun; O'Leary, Seán E; Dominissini, Dan; Rechavi, Gideon; Soltis, S Michael; Ehrenberg, Måns; Puglisi, Joseph D

    2016-02-01

    N(6)-methylation of adenosine (forming m(6)A) is the most abundant post-transcriptional modification within the coding region of mRNA, but its role during translation remains unknown. Here, we used bulk kinetic and single-molecule methods to probe the effect of m(6)A in mRNA decoding. Although m(6)A base-pairs with uridine during decoding, as shown by X-ray crystallographic analyses of Thermus thermophilus ribosomal complexes, our measurements in an Escherichia coli translation system revealed that m(6)A modification of mRNA acts as a barrier to tRNA accommodation and translation elongation. The interaction between an m(6)A-modified codon and cognate tRNA echoes the interaction between a near-cognate codon and tRNA, because delay in tRNA accommodation depends on the position and context of m(6)A within codons and on the accuracy level of translation. Overall, our results demonstrate that chemical modification of mRNA can change translational dynamics.

  3. Construction of small RNA cDNA libraries for deep sequencing.

    Science.gov (United States)

    Lu, Cheng; Meyers, Blake C; Green, Pamela J

    2007-10-01

    Small RNAs (21-24 nucleotides) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are potent regulators of gene expression in both plants and animals. Several hundred genes encoding miRNAs and thousands of siRNAs have been experimentally identified by cloning approaches. New sequencing technologies facilitate the identification of these molecules and provide global quantitative expression data in a given biological sample. Here, we describe the methods used in our laboratory to construct small RNA cDNA libraries for high-throughput sequencing using technologies such as MPSS, 454 or SBS.

  4. Achieving Coordination through Dynamic Construction of Open Workflows

    Science.gov (United States)

    Thomas, Louis; Wilson, Justin; Roman, Gruia-Catalin; Gill, Christopher

    Workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted static graph. Workflow management systems have proved effective for service-oriented business automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution called open workflow to support goal-directed coordination among physically mobile people and devices that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is dynamic construction of custom, context-specific workflows in response to unpredictable and evolving circumstances by exploiting the knowledge and services available within a given spatiotemporal context. This paper introduces the open workflow approach, surveys open research challenges in this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical realization of an open workflow management system.

  5. Geometric Modeling of Construction Communications with Specified Dynamic Properties

    Science.gov (United States)

    Korotkiy, V. A.; Usmanova, E. A.; Khmarova, L. I.

    2017-11-01

    Among many construction communications the pipelines designed for the organized supply or removal of liquid or loose working bodies are distinguished for their functional purpose. Such communications should have dynamic properties which allow one to reduce losses on friction and vortex formation. From the point of view of geometric modeling, the given dynamic properties of the projected communication mean the required degree of smoothness of its center line. To model the axial line (flat or spatial), it is proposed to use composite curve lines consisting of the curve arcs of the second order or from their quadratic images. The advantage of the proposed method is that the designer gets the model of a given curve not as a set of coordinates of its points but in the form of a matrix of coefficients of the canonical equations for each arc.

  6. RNA interference by feeding in vitro synthesized double-stranded RNA to planarians: methodology and dynamics

    Science.gov (United States)

    Rouhana, Labib; Weiss, Jennifer A.; Forsthoefel, David J.; Lee, Hayoung; King, Ryan S.; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A.

    2013-01-01

    Background The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced via injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. Results We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time, and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. Conclusions This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. PMID:23441014

  7. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    Science.gov (United States)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  8. An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L

    Directory of Open Access Journals (Sweden)

    Kaur Jatinder

    2010-05-01

    Full Text Available Abstract Background RNA quality and quantity is sometimes unsuitable for cDNA library construction, from plant seeds rich in oil, polysaccharides and other secondary metabolites. Seeds of jatropha (Jatropha curcas L. are rich in fatty acids/lipids, storage proteins, polysaccharides, and a number of other secondary metabolites that could either bind and/or co-precipitate with RNA, making it unsuitable for downstream applications. Existing RNA isolation methods and commercial kits often fail to deliver high-quality total RNA from immature jatropha seeds for poly(A+ RNA purification and cDNA synthesis. Findings A protocol has been developed for isolating good quality total RNA from immature jatropha seeds, whereby a combination of the CTAB based RNA extraction method and a silica column of a commercial plant RNA extraction kit is used. The extraction time was reduced from two days to about 3 hours and the RNA was suitable for poly(A+ RNA purification, cDNA synthesis, cDNA library construction, RT-PCR, and Northern hybridization. Based on sequence information from selected clones and amplified PCR product, the cDNA library seems to be a good source of full-length jatropha genes. The method was equally effective for isolating RNA from mustard and rice seeds. Conclusions This is a simple CTAB + silica column method to extract high quality RNA from oil rich immature jatropha seeds that is suitable for several downstream applications. This method takes less time for RNA extraction and is equally effective for other tissues where the quality and quantity of RNA is highly interfered by the presence of fatty acids, polysaccharides and polyphenols.

  9. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells.

    Science.gov (United States)

    Chen, Xiu-Cai; Chen, Shuo-Bin; Dai, Jing; Yuan, Jia-Hao; Ou, Tian-Miao; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-04-16

    Because of the absence of methods for tracking RNA G-quadruplex dynamics, especially the folding and unfolding of this attractive structure in live cells, understanding of the biological roles of RNA G-quadruplexes is so far limited. Herein, we report a new red-emitting fluorescent probe, QUMA-1, for the selective, continuous, and real-time visualization of RNA G-quadruplexes in live cells. The applications of QUMA-1 in several previously intractable applications, including live-cell imaging of the dynamic folding, unfolding, and movement of RNA G-quadruplexes and the visualization of the unwinding of RNA G-quadruplexes by RNA helicase have been demonstrated. Notably, our real-time results revealed the complexity of the dynamics of RNA G-quadruplexes in live cells. We anticipate that the further application of QUMA-1 in combination with appropriate biological and imaging methods to explore the dynamics of RNA G-quadruplexes will uncover more information about the biological roles of RNA G-quadruplexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy.

    Science.gov (United States)

    Song, Chao; Zhang, Jian; Liu, Yan; Pan, Hao; Qi, Han-Ping; Cao, Yong-Gang; Zhao, Jian-Mei; Li, Shang; Guo, Jing; Sun, Hong-Li; Li, Chun-Quan

    2016-03-08

    Cardiac hypertrophy (CH) could increase cardiac after-load and lead to heart failure. Recent studies have suggested that long non-coding RNA (lncRNA) played a crucial role in the process of the cardiac hypertrophy, such as Mhrt, TERMINATOR. Some studies have further found a new interacting mechanism, competitive endogenous RNA (ceRNA), of which lncRNA could interact with micro-RNAs (miRNA) and indirectly interact with mRNAs through competing interactions. However, the mechanism of ceRNA regulated by lncRNA in the CH remained unclear. In our study, we generated a global triple network containing mRNA, miRNA and lncRNA, and extracted a CH related lncRNA-mRNA network (CHLMN) through integrating the data from starbase, miRanda database and gene expression profile. Based on the ceRNA mechanism, we analyzed the characters of CHLMN and found that 3 lncRNAs (SLC26A4-AS1, RP11-344E13.3 and MAGI1-IT1) were high related to CH. We further performed cluster module analysis and random walk with restart for the CHLMN, finally 14 lncRNAs had been discovered as the potential CH related disease genes. Our results showed that lncRNA played an important role in the CH and could shed new light to the understanding underlying mechanisms of the CH.

  11. Platform for dynamic tests: preliminary studies, design and construction

    Directory of Open Access Journals (Sweden)

    J. E. Campuzano

    Full Text Available This paper is about the design and construction of a platform for dynamic tests especially with people jumping, walking, etc. Initially it was tried to find out projects already implemented in platforms and dynamic tests and to study the loads produced by movement of people on slabs and the structural response to these loads. The limits established by different standards have been also studied for these dynamic responses, taking into account the ultimate limit state, as well as the structure in service, since the human body is very sensitive to structural vibrations. Parametric studies were performed considering various configurations of slabs (different spans, thicknesses and conditions of support have been done, looking for a configuration that could have natural frequency close to the frequencies of the human loads. The slab should have dimensions compatible with the available physical space, fundamental frequency below 5 Hz and maximum immediate deflection compatible with the indications of the Brazilian standard NBR6118: 2007. Based on these criteria was chosen a rectangular structure consists of a solid reinforced concrete rectangular slab studded in two opposite edges of steel beams with shear connectors type U. The other two edges are free. The steel beams supporting the slab, in turn, are supported on eight metal profiles (two in each corner of the slab that are supported on two to two short columns of steel profile H. Profiles U in steel are welded to four columns, forming a horizontal frame. Numerical analysis of the dynamic test platform have been performed for free and forced vibration, for obtaining the natural frequencies and corresponding vibration modes, considering the self-weight of the structure and the load that simulates people's weight. After obtaining a structural configuration that fulfilled the stipulated requirements, the design of the slab taking into account the recommendations of the Brazilian standard NBR6118: 2007

  12. The Dynamics and Facilitation of a Living Lab Construct

    DEFF Research Database (Denmark)

    Brønnum, Louise; Nielsen, Louise Møller

    2013-01-01

    During the last decade Living Labs have established itself as an attractive innovation approach. Living Labs are an interesting construction because it offers a collaboration platform for dynamic interaction with users in all the project phases. Living Labs frame knowledge about actors in their own...... settings, in which new opportunities for innovation can be discovered. However, the practical management of a Living Lab is often a great challenge. It involves managing several actors, who are working with different agendas and within very different development traditions. The managing of a Living Lab...... and the different actors, processes and methods are therefore interesting to put into perspective as it contains opportunities for staging a well‐functioning Living Lab. This paper contributes to unfolding and discussing some of the main challenges in managing a Living Lab while keeping the different actors engaged...

  13. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    Science.gov (United States)

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  14. Architectural Large Constructed Environment. Modeling and Interaction Using Dynamic Simulations

    Science.gov (United States)

    Fiamma, P.

    2011-09-01

    How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.

  15. ARCHITECTURAL LARGE CONSTRUCTED ENVIRONMENT. MODELING AND INTERACTION USING DYNAMIC SIMULATIONS

    Directory of Open Access Journals (Sweden)

    P. Fiamma

    2012-09-01

    Full Text Available How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.

  16. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  17. Construction of an miRNA-Regulated Pathway Network Reveals Candidate Biomarkers for Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Min Shao

    2017-01-01

    Full Text Available We aimed to identify risk pathways for postmenopausal osteoporosis (PMOP via establishing an microRNAs- (miRNA- regulated pathway network (MRPN. Firstly, we identified differential pathways through calculating gene- and pathway-level statistics based on the accumulated normal samples using the individual pathway aberrance score (iPAS. Significant pathways based on differentially expressed genes (DEGs using DAVID were extracted, followed by identifying the common pathways between iPAS and DAVID methods. Next, miRNAs prediction was implemented via calculating TargetScore values with precomputed input (log fold change (FC, TargetScan context score (TSCS, and probabilities of conserved targeting (PCT. An MRPN construction was constructed using the common genes in the common pathways and the predicted miRNAs. Using false discovery rate (FDR < 0.05, 279 differential pathways were identified. Using the criteria of FDR < 0.05 and log⁡FC≥2, 39 DEGs were retrieved, and these DEGs were enriched in 64 significant pathways identified by DAVID. Overall, 27 pathways were the common ones between two methods. Importantly, MAPK signaling pathway and PI3K-Akt signaling pathway were the first and second significantly enriched ones, respectively. These 27 common pathways separated PMOP from controls with the accuracy of 0.912. MAPK signaling pathway and PI3K/Akt signaling pathway might play crucial roles in PMOP.

  18. Best practices for system dynamics model design and construction with powersim studio.

    Energy Technology Data Exchange (ETDEWEB)

    Malczynski, Leonard A.

    2011-06-01

    This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.

  19. NMR Structures and Dynamics in a Prohead RNA Loop that Binds Metal Ions.

    Science.gov (United States)

    Gu, Xiaobo; Park, Sun-Young; Tonelli, Marco; Cornilescu, Gabriel; Xia, Tianbing; Zhong, Dongping; Schroeder, Susan J

    2016-10-06

    Metal ions are critical for RNA structure and enzymatic activity. We present the structure of an asymmetric RNA loop that binds metal ions and has an essential function in a bacteriophage packaging motor. Prohead RNA is a noncoding RNA that is required for genome packaging activity in phi29-like bacteriophage. The loops in GA1 and phi29 bacteriophage share a conserved adenine that forms a base triple, although the structural context for the base triple differs. NMR relaxation studies and femtosecond time-resolved fluorescence spectroscopy reveal the dynamic behavior of the loop in the metal ion bound and unbound forms. The mechanism of metal ion binding appears to be an induced conformational change between two dynamic ensembles rather than a conformational capture mechanism. These results provide experimental benchmarks for computational models of RNA-metal ion interactions.

  20. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Science.gov (United States)

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  1. Dynamics of miRNA biogenesis and nuclear transport

    Directory of Open Access Journals (Sweden)

    Kotipalli Aneesh

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS or transcriptional gene activation (TGA. In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE solver in the Octave software.

  2. Dynamics of miRNA biogenesis and nuclear transport.

    Science.gov (United States)

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K

    2016-12-22

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC) regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE) solver in the Octave software.

  3. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  4. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  5. Dynamic environmental control mechanisms for pneumatic foil constructions

    Science.gov (United States)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  6. Real time imaging of mRNA expression dynamics in live cells using protein complementation methods

    Science.gov (United States)

    Meller, Amit

    2009-03-01

    Traditional methods for mRNA quantification in cells, such as northern blots, quantitative PCR or microarrays assays, require cell lysis and therefore do not preserve its dynamics. These methods cannot be used to probe the spatio-temporal localization of mRNA in cells, which provide useful information for a wide range biomolecular process, including RNA metabolizim, expression kinetics and RNA interference. To probe mRNA dynamics in live prokaryotic and eukaryotic cells, we develop a method, which exploit the strong affinity of the eukaryotic initiation factor 4A (eIF4A) to specific RNA aptamers. Two parts of the eIF4A are fused to a split Green Fluorescence Protein (GFP), and are expressed in the cells at high abundance. However, only when the RNA apatmer is also present, the two protein parts complement and become fluorescent. Thus, the fluorescent background remains low, allowing us to directly image the expression of mRNA molecules in live e-coli cells from its early onset, over hours. We find that the expression kinetics can be classified in one out of at least three forms, which also display distinct spatial distributions. I will discuss the possible biological origin for these distributions and their time evolution.

  7. Dynamic Recognition of the mRNA Cap by Saccharomyces cerevisiae eIF4E

    Science.gov (United States)

    O’Leary, Seán E.; Petrov, Alexey; Chen, Jin; Puglisi, Joseph D.

    2013-01-01

    Summary Recognition of the mRNA 5′ m7GTP cap is key to translation initiation for most eukaryotic mRNAs. The cap is bound by the eIF4F complex, consisting of a cap binding protein (eIF4E), a “scaffold” protein (eIF4G), and an RNA helicase (eIF4A). As a central early step in initiation, regulation of eIF4F is crucial for cellular viability. Although the structure and function of eIF4E have been defined, a dynamic mechanistic picture of its activity at the molecular level in the eIF4F•mRNA complex is still unavailable. Here, using single-molecule fluorescence, we measured the effects of Saccharomyces cerevisiae eIF4F factors, mRNA secondary structure, and the poly(A)-binding protein Pab1p on eIF4E-mRNA binding dynamics. Our data provide an integrated picture of how eIF4G and mRNA structure modulate eIF4E-mRNA interaction, and uncover an eIF4G- and poly(A)-independent activity of poly(A)-binding protein that prolongs the eIFE•mRNA complex lifetime. PMID:24183571

  8. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  9. Dissection of functional lncRNAs in Alzheimer's disease by construction and analysis of lncRNA-mRNA networks based on competitive endogenous RNAs.

    Science.gov (United States)

    Wang, Lian-Kun; Chen, Xiao-Feng; He, Dan-Dan; Li, You; Fu, Jin

    2017-04-08

    Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly, and intracellular neurofibrillary tangles (NFTs) are one of the pathological features of AD. Recent studies have suggested long noncoding RNAs (lncRNAs) play important roles in AD. Competing endogenous RNAs (ceRNAs) is a mechanism that has recently been proposed, in which lncRNAs compete for common miRNA-binding sites with mRNAs. However, the roles of lncRNAs and ceRNA in AD NFTs is limited. In this study, we constructed a global triple network based on ceRNA theory, then an AD NFT lncRNA-mRNA network (NFTLMN) was generated. By analyzing the NFTLMN, three lncRNAs (AP000265.1, KB-1460A1.5 and RP11-145M9.4), which are highly related with AD NFTs were identified. To further explore the cross-talk between mRNAs and lncRNAs, a clustering module analysis was performed on the NFTLMN and two AD NFT related modules were identified. Our study provides a better understanding of the molecular basis of AD NFTs and may offer novel treatment strategies for AD. Copyright © 2016. Published by Elsevier Inc.

  10. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  11. Dynamics of miRNA biogenesis and nuclear transport

    OpenAIRE

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K.

    2016-01-01

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cyto...

  12. Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics.

    Science.gov (United States)

    Grammel, Markus; Hang, Howard; Conrad, Nicholas K

    2012-05-29

    A versatile "clickable" nucleoside: Metabolic labeling of cells is useful in studying the dynamics of biological molecules. N(6) pA can be utilized by all three mammalian RNA polymerases, as well as poly(A) polymerase. Because of its alkyne modification, RNA labeled with N(6) pA can be visualized and purified by using click chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of conformational dynamics of bistable RNA by equilibrium and non-equilibrium NMR.

    Science.gov (United States)

    Fürtig, Boris; Reining, Anke; Sochor, Florian; Oberhauser, Eva Marie; Heckel, Alexander; Schwalbe, Harald

    2014-12-19

    Unlike proteins, a given RNA sequence can adopt more than a single conformation. The two (or more) conformations are long-lived and have similar stabilities, but interconvert only slowly. Such bi- or multistability is often linked to the biological functions of the RNA. This unit describes how nuclear magnetic resonance (NMR) spectroscopy can be used to characterize the conformational dynamics of bistable RNAs. Copyright © 2014 John Wiley & Sons, Inc.

  14. NMR-study of dynamic structural transtions in RNA-molecules

    OpenAIRE

    Fürtig, Boris

    2007-01-01

    The following thesis is concerned with the elucidation of structural changes of RNA molecules during the time course of dynamic processes that are commonly denoted as folding reactions. In contrast to the field of protein folding, the concept of RNA folding comprises not only folding reactions itself but also refolding- or conformational switching- and assembly processes (see chapter III). The method in this thesis to monitor these diverse processes is high resolution liquid-state NMR spectro...

  15. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  16. Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.

    Science.gov (United States)

    Gómez-Navarro, Natalia; Peiró-Chova, Lorena; Estruch, Francisco

    2017-07-01

    Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair machinery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Recent patents in RNA silencing in plants: constructs, methods and applications in plant biotechnology.

    Science.gov (United States)

    López-Gomollón, Sara; Dalmay, Tamas

    2010-11-01

    RNA silencing is a recently discovered mechanism to regulate gene expression at transcriptional and posttranscriptional levels. It is based on the recognition and methylation of target genes or cleavage of target mRNAs by small RNA molecules, with length varying from 21 to 24 nucleotides. RNA silencing plays an important role modulating most of the important cell processes, such as growth, development or stress response. During the past few years, diverse strategies have been applied to exploit RNA silencing as a tool to create plants with enhanced economical properties or able to cope with pathogens or abiotic stress. This review describes the most important patents related to RNA silencing in plants, which disclose vectors designed to induce RNA silencing by hairpin RNAs, amplicons or virus-based plasmids, methods for detection and quantification of silencing as well as general uses in plant biotechnology.

  18. The impact of RNA sequence library construction protocols on transcriptomic profiling of leukemia.

    Science.gov (United States)

    Kumar, Ashwini; Kankainen, Matti; Parsons, Alun; Kallioniemi, Olli; Mattila, Pirkko; Heckman, Caroline A

    2017-08-17

    RNA sequencing (RNA-seq) has become an indispensable tool to identify disease associated transcriptional profiles and determine the molecular underpinnings of diseases. However, the broad adaptation of the methodology into the clinic is still hampered by inconsistent results from different RNA-seq protocols and involves further evaluation of its analytical reliability using patient samples. Here, we applied two commonly used RNA-seq library preparation protocols to samples from acute leukemia patients to understand how poly-A-tailed mRNA selection (PA) and ribo-depletion (RD) based RNA-seq library preparation protocols affect gene fusion detection, variant calling, and gene expression profiling. Overall, the protocols produced similar results with consistent outcomes. Nevertheless, the PA protocol was more efficient in quantifying expression of leukemia marker genes and showed better performance in the expression-based classification of leukemia. Independent qRT-PCR experiments verified that the PA protocol better represented total RNA compared to the RD protocol. In contrast, the RD protocol detected a higher number of non-coding RNA features and had better alignment efficiency. The RD protocol also recovered more known fusion-gene events, although variability was seen in fusion gene predictions. The overall findings provide a framework for the use of RNA-seq in a precision medicine setting with limited number of samples and suggest that selection of the library preparation protocol should be based on the objectives of the analysis.

  19. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription.

    Science.gov (United States)

    Dargemont, Catherine; Babour, Anna

    2017-09-03

    The first step of gene expression results in the production of mRNA ribonucleoparticles (mRNPs) that are exported to the cytoplasm via the NPC for translation into the cytoplasm. During this process, the mRNA molecule synthesized by RNA polymerase II (Pol II) undergoes extensive maturation, folding and packaging events that are intimately coupled to its synthesis. All these events take place in a chromatin context and it is therefore not surprising that a growing number of studies recently reported specific contributions of chromatin dynamics to various steps of mRNP biogenesis. In this extra view, we replace our recent findings highlighting the contribution of the yeast chromatin remodeling complex ISW1 to nuclear mRNA quality control in the context of the recent literature.

  20. Molecular dynamics simulations and quantum chemistry as useful complements to RNA structural bioinformatics

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří

    2009-01-01

    Roč. 26, č. 6 (2009), s. 824-825 ISSN 0739-1102. [The 17th Conversation. 16.06.2009-20.06.2009, Albany] Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * RNA Subject RIV: BO - Biophysics

  1. Construction of exact complex dynamical invariant of a two ...

    Indian Academy of Sciences (India)

    dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.

  2. Numerical integration methods and layout improvements in the context of dynamic RNA visualization.

    Science.gov (United States)

    Shabash, Boris; Wiese, Kay C

    2017-05-30

    RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward

  3. Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server

    Directory of Open Access Journals (Sweden)

    Unrau Peter J

    2006-04-01

    interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN9 comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects231011.

  4. Construction of a host-independent T7 expression system with small RNA regulation.

    Science.gov (United States)

    Wang, Gang; Li, Qiang; Xu, Dikai; Cui, Mingxin; Sun, Xiao; Xu, Yanyan; Wang, Wenya

    2014-11-10

    It is desirable to build a universal and efficient protein expression system for wild-type prokaryotic strains in biotechnology industry and the outstanding T7 expression system could be a good candidate. However, the current utilization of T7 system depends on the specific DE3 lysogenic hosts, which severely limits its application in wild-type strains. In this study, a host-independent T7 expression system without relying on DE3 lysogenic hosts to provide T7 RNA Polymerase was developed. T7 RNA Polymerase gene (Gene1) and T7 Promoter were successfully integrated into a single plasmid with the regulation of proper antisense RNA to limit T7 RNA Polymerase expression at a non-lethal level. This host-independent T7 expression system realized efficient protein expression in 4 non-DE3 Escherichia coli strains and a wild-type Sinorhizobium strain TH572. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  6. A method for the construction of equalized directional cDNA libraries from hydrolyzed total RNA.

    Science.gov (United States)

    Davis, Claytus; Barvish, Zeev; Gitelman, Inna

    2007-10-09

    The transcribed sequences of a cell, the transcriptome, represent the trans-acting fraction of the genetic information, yet eukaryotic cDNA libraries are typically made from only the poly-adenylated fraction. The non-coding or translated but non-polyadenylated RNAs are therefore not represented. The goal of this study was to develop a method that would more completely represent the transcriptome in a useful format, avoiding over-representation of some of the abundant, but low-complexity non-translated transcripts. We developed a combination of self-subtraction and directional cloning procedures for this purpose. Libraries were prepared from partially degraded (hydrolyzed) total RNA from three different species. A restriction endonuclease site was added to the 3' end during first-strand synthesis using a directional random-priming technique. The abundant non-polyadenylated rRNA and tRNA sequences were largely removed by using self-subtraction to equalize the representation of the various RNA species. Sequencing random clones from the libraries showed that 87% of clones were in the forward orientation with respect to known or predicted transcripts. 70% matched identified or predicted translated RNAs in the sequence databases. Abundant mRNAs were less frequent in the self-subtracted libraries compared to a non-subtracted mRNA library. 3% of the sequences were from known or hypothesized ncRNA loci, including five matches to miRNA loci. We describe a simple method for making high-quality, directional, random-primed, cDNA libraries from small amounts of degraded total RNA. This technique is advantageous in situations where a cDNA library with complete but equalized representation of transcribed sequences, whether polyadenylated or not, is desired.

  7. A method for the construction of equalized directional cDNA libraries from hydrolyzed total RNA

    Directory of Open Access Journals (Sweden)

    Gitelman Inna

    2007-10-01

    Full Text Available Abstract Background The transcribed sequences of a cell, the transcriptome, represent the trans-acting fraction of the genetic information, yet eukaryotic cDNA libraries are typically made from only the poly-adenylated fraction. The non-coding or translated but non-polyadenylated RNAs are therefore not represented. The goal of this study was to develop a method that would more completely represent the transcriptome in a useful format, avoiding over-representation of some of the abundant, but low-complexity non-translated transcripts. Results We developed a combination of self-subtraction and directional cloning procedures for this purpose. Libraries were prepared from partially degraded (hydrolyzed total RNA from three different species. A restriction endonuclease site was added to the 3' end during first-strand synthesis using a directional random-priming technique. The abundant non-polyadenylated rRNA and tRNA sequences were largely removed by using self-subtraction to equalize the representation of the various RNA species. Sequencing random clones from the libraries showed that 87% of clones were in the forward orientation with respect to known or predicted transcripts. 70% matched identified or predicted translated RNAs in the sequence databases. Abundant mRNAs were less frequent in the self-subtracted libraries compared to a non-subtracted mRNA library. 3% of the sequences were from known or hypothesized ncRNA loci, including five matches to miRNA loci. Conclusion We describe a simple method for making high-quality, directional, random-primed, cDNA libraries from small amounts of degraded total RNA. This technique is advantageous in situations where a cDNA library with complete but equalized representation of transcribed sequences, whether polyadenylated or not, is desired.

  8. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  9. Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface.

    Science.gov (United States)

    Sajja, Sameer; Chandler, Morgan; Federov, Dmitry; Kasprzak, Wojciech K; Lushnikov, Alexander Y; Viard, Mathias; Shah, Ankit; Dang, Dylan; Dahl, Jared; Worku, Beamlak; Dobrovolskaia, Marina A; Krasnoslobodtsev, Alexey; Shapiro, Bruce A; Afonin, Kirill A

    2018-04-18

    RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as non-denaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.

  10. Construction of exact dynamical invariants of two-dimensional ...

    Indian Academy of Sciences (India)

    A general method is used for the construction of second constant of motion of fourth order in momenta using the complex coordinates ( z , z ¯ ) . A fourth-order potential equation is obtained whose solutions directly provide a large class of integrable systems. The potential equation is tested with an interesting example which ...

  11. Constructive Technology Assessmentand Technology Dynamics. The Case of Clean Technologies

    NARCIS (Netherlands)

    Schot, Johan

    1992-01-01

    A synthesis of neo-Schumpeterian evolutionary, sociological, and historical coevolution ary models could be used for constructive technology assessment, aimed at the active management of the process of technological change. This article proposes a synthetic quasi-evolutionary model, in which

  12. Force-dynamic cultural models in a scalar adjectival construction

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    Consider the following instances of the scalar adjectival [too ADJ to V]-construction: (1) The tatty furniture betrayed elegant lines, and the windows, too grimy to see through, stretched up ten feet. (COCA 2011 FIC Bk:NeverGentleman) (2) They're too slow to catch a seal in open water. (COCA 2011...

  13. RNA

    African Journals Online (AJOL)

    SARAH

    30 nov. 2013 ... RÉSUMÉ. Objectif : La présente étude est conduite dans les régions de Maradi et Zinder situées dans le Centre-Sud du. Niger où la pratique de la régénération naturelle assistée des ligneux dans les champs (RNA) a permis de reverdir plus de 5 millions d'hectares. Le but de ce travail est d'évaluer ...

  14. Optimizing Technology-Oriented Constructional Paramour's of complex dynamic systems

    International Nuclear Information System (INIS)

    Novak, S.M.

    1998-01-01

    Creating optimal vibro systems requires sequential solving of a few problems: selecting the basic pattern of dynamic actions, synthesizing the dynamic active systems, optimizing technological, technical, economic and design parameters. This approach is illustrated by an example of a high-efficiency vibro system synthesized for forming building structure components. When using only one single source to excite oscillations, resonance oscillations are imparted to the product to be formed in the horizontal and vertical planes. In order to obtain versatile and dynamically optimized parameters, a factor is introduced into the differential equations of the motion, accounting for the relationship between the parameters, which determine the frequency characteristics of the system and the parameter variation range. This results in obtaining non-sophisticated mathematical models of the system under investigation, convenient for optimization and for engineering design and calculations as well

  15. Dynamics of breast milk HIV-1 RNA with unilateral mastitis or abscess.

    Science.gov (United States)

    Semrau, Katherine; Kuhn, Louise; Brooks, Daniel R; Cabral, Howard; Sinkala, Moses; Kankasa, Chipepo; Thea, Donald M; Aldrovandi, Grace M

    2013-03-01

    Mastitis and abscess in HIV-infected women increase the risk of breastfeeding transmission of HIV. Guidelines encourage women to stop breastfeeding on the affected breast and feed on the contralateral breast. However, impact of breast pathology on breast milk HIV dynamics is unknown. HIV RNA was quantified in 211 breast milk samples collected before, during, and after a clinical mastitis or an abscess diagnosis from 38 HIV-infected women participating in a Zambian breastfeeding study. HIV RNA quantity was compared between affected and unaffected breasts over time using generalized estimating equation models. A sample of 115 women without breast pathology was selected as a control group. In the affected breast, breast milk HIV RNA quantity increased from the pre- to during-pathology period by log(10) 0.45 copies per milliliter [95% confidence interval (CI): 0.16 to 0.74], and after symptom resolution, HIV RNA levels were no different from prepathology levels (log10 -0.04 copies per milliliter 95% CI: -0.33 to 0.25). In the contralateral, unaffected breast, HIV RNA quantity did not significantly increase (log(10) 0.15 copies per milliliter, 95% CI: -0.41 to 0.10). Increase was more marked in women with abscess or with a greater number of mastitis symptoms. HIV RNA was not significantly different between affected and unaffected women, except at the time of diagnosis. Breast milk HIV RNA increased modestly in the affected breast with unilateral mastitis or abscess and returned to prepathology levels with symptom resolution. Contralateral HIV RNA was not affected. Results support guidelines encouraging feeding from the contralateral breast to minimize the risk of HIV transmission associated with unilateral breast pathology.

  16. Dynamics of breast milk HIV-1 RNA with unilateral mastitis or abscess

    Science.gov (United States)

    Semrau, Katherine; Kuhn, Louise; Brooks, Daniel R.; Cabral, Howard; Sinkala, Moses; Kankasa, Chipepo; Thea, Donald M.; Aldrovandi, Grace M.

    2013-01-01

    Background Mastitis and abscess in HIV-infected women increase risk of breastfeeding transmission of HIV. Guidelines encourage women to stop breastfeeding on the affected breast and feed on the contralateral breast. However, impact of breast pathology on breast milk HIV dynamics is unknown. Methods HIV RNA was quantified in 211 breast milk samples collected before, during and after a clinical mastitis or abscess diagnosis from 38 HIV-infected women participating in a Zambian breastfeeding study. HIV RNA quantity was compared between affected and unaffected breasts over time using generalized estimating equation models. A sample of 115 women without breast pathology was selected as a control group. Results In the affected breast, breast milk HIV RNA quantity increased from the pre- to during-pathology period by log10 0.45 copies/mL (95% CI: 0.16, 0.74) and after symptom resolution, HIV RNA levels were no different from pre-pathology levels (log10 -0.04 copies/mL 95%CI: -0.33, 0.25). In the contralateral unaffected breast, HIV RNA quantity did not significantly increase (log10 0.15 copies/mL, 95% CI: -0.41, 0.10). Increase was more marked in women with abscess or with a greater number of mastitis symptoms. HIV RNA was not significantly different between affected and unaffected women, except at the time of diagnosis. Conclusions Breast milk HIV RNA increased modestly in the affected breast with unilateral mastitis or abscess and returned to pre-pathology levels with symptom resolution. Contralateral HIV RNA was not affected. Results support guidelines encouraging feeding from the contralateral breast to minimize risk of HIV transmission associated with unilateral breast pathology. PMID:23202812

  17. Analysis of construction dynamic plan using fuzzy critical path method

    OpenAIRE

    Kurij Kazimir V.; Milajić Aleksandar V.; Beljaković Dejan D.

    2014-01-01

    Critical Path Method (CPM) technique has become widely recognized as valuable tool for the planning and scheduling large construction projects. The aim of this paper is to present an analytical method for finding the Critical Path in the precedence network diagram where the duration of each activity is represented by a trapezoidal fuzzy number. This Fuzzy Critical Path Method (FCPM) uses a defuzzification formula for trapezoidal fuzzy number and applies it on the total float (slack time) for ...

  18. A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics.

    Science.gov (United States)

    Smith, Glenna J; Lee, Kang Taek; Qu, Xiaohui; Xie, Zheng; Pesic, Jelena; Sosnick, Tobin R; Pan, Tao; Scherer, Norbert F

    2008-05-09

    The process of large RNA folding is believed to proceed from many collapsed structures to a unique functional structure requiring precise organization of nucleotides. The diversity of possible structures and stabilities of large RNAs could result in non-exponential folding kinetics (e.g. stretched exponential) under conditions where the molecules have not achieved their native state. We describe a single-molecule fluorescence resonance energy transfer (FRET) study of the collapsed-state region of the free energy landscape of the catalytic domain of RNase P RNA from Bacillus stearothermophilus (C(thermo)). Ensemble measurements have shown that this 260 residue RNA folds cooperatively to its native state at >or=1 mM Mg(2+), but little is known about the conformational dynamics at lower ionic strength. Our measurements of equilibrium conformational fluctuations reveal simple exponential kinetics that reflect a small number of discrete states instead of the expected inhomogeneous dynamics. The distribution of discrete dwell times, collected from an "ensemble" of 300 single molecules at each of a series of Mg(2+) concentrations, fit well to a double exponential, which indicates that the RNA conformational changes can be described as a four-state system. This finding is somewhat unexpected under [Mg(2+)] conditions in which this RNA does not achieve its native state. Observation of discrete well-defined conformations in this large RNA that are stable on the seconds timescale at low [Mg(2+)] (<0.1 mM) suggests that even at low ionic strength, with a tremendous number of possible (weak) interactions, a few critical interactions may produce deep energy wells that allow for rapid averaging of motions within each well, and yield kinetics that are relatively simple.

  19. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct.

  20. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Directory of Open Access Journals (Sweden)

    Vladimir Reinharz

    2017-10-01

    Full Text Available The multiscale model of hepatitis C virus (HCV dynamics, which includes intracellular viral RNA (vRNA replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

  1. Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soil.

    Science.gov (United States)

    Fang, Changxun; Xu, Tiecheng; Ye, Changliang; Huang, Likun; Wang, Qingshui; Lin, Wenxiong

    2014-02-01

    Techniques to analyze the transcriptome of the soil rhizosphere are essential to reveal the interactions and communications between plants and microorganisms in the soil ecosystem. In this study, different volumes of Al₂(SO₄)₃ were added to rhizosphere soil samples to precipitate humic substances, which interfere with most procedures of RNA and DNA analyses. After humic substances were precipitated, cells of soil microorganisms were broken by vortexing with glass beads, and then DNA and RNA were recovered using Tris-HCl buffer with LiCl, SDS, and EDTA. The crude extract was precipitated and dissolved in RNAse-free water, and then separated by agarose gel electrophoresis. We determined the optimum volume of Al₂(SO₄)₃ for treating rhizosphere soil of rice, tobacco, sugarcane, Rehmannia glutinosa, and Pseudostellaria heterophylla. The crude nucleic acids extract from rice soil was treated with DNase I and then RNA was purified using a gel filtration column. The purified RNA was reverse-transcribed into single-strand cDNA and then ligated with an adaptor at each end before amplifying ds cDNA. The ds cDNA was sub-cloned for subsequent gene sequence analysis. We conducted qPCR to amplify 16S ribosomal DNA and observed highly efficient amplification. These results show that the extraction method can be optimized to isolate and obtain high-quality nucleic acids from microbes in different rhizosphere soils, suitable for genomic and post-genomic analyses.

  2. Human Machine Interaction by Simulation of Dynamics of Construction Machinery

    DEFF Research Database (Denmark)

    Langer, Thomas Heegaard

    This industrial Ph.D. project concerns whole-body vibrations in human operated construction machinery. The emissions of these vibrations is closely related to the subjective experience of comfort and in some cases these vibrations can occur in a level which can cause the operator back disorders...... different kinds of machinery; an articulated backhoe loader and an articulated dump truck. In this work a standardized procedure containing a set of duty cycles for measuring and declaring whole-body vibrations has been proposed for both of these machines. The result of the measuring is important...

  3. Analysis of construction dynamic plan using fuzzy critical path method

    Directory of Open Access Journals (Sweden)

    Kurij Kazimir V.

    2014-01-01

    Full Text Available Critical Path Method (CPM technique has become widely recognized as valuable tool for the planning and scheduling large construction projects. The aim of this paper is to present an analytical method for finding the Critical Path in the precedence network diagram where the duration of each activity is represented by a trapezoidal fuzzy number. This Fuzzy Critical Path Method (FCPM uses a defuzzification formula for trapezoidal fuzzy number and applies it on the total float (slack time for each activity in the fuzzy precedence network to find the critical path. The method presented in this paper is very effective in determining the critical activities and finding the critical paths.

  4. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.

    Science.gov (United States)

    Rausin, Glwadys; Tillemans, Vinciane; Stankovic, Nancy; Hanikenne, Marc; Motte, Patrick

    2010-05-01

    Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.

  5. Generation of Constructs for DNA-Directed RNA Interference of Venezuelan Equine Encephalitis Virus Genes

    Science.gov (United States)

    2006-12-01

    the viral genome of the attenuated vaccine strain of VEE [14], TC-83, based on their suitability for siRNA design. Using the Silencer Express system...of an effective vaccine or therapeutic for VEE, a highly infectious virus, underscores the need for research in this area. In addition, the potential... poliovirus [5], influenza virus [6], Ebola virus [7], Coxsackievirus B3 [8], among others. RNAi involves sequence-specific gene silencing, or gene knockdown

  6. Structure, dynamics, and elasticity of free 16S rRNA helix 44 studied by molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Lankaš, F.; Rázga, Filip; Krasovská, Maryna V.; Koča, J.; Šponer, Jiří

    2006-01-01

    Roč. 82, č. 5 (2006), s. 504-520 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GD204/03/H016; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507 Keywords : molecular dynamics * helix 44 * 16S rRNA Subject RIV: BO - Biophysics Impact factor: 2.480, year: 2006

  7. Step-by-Step Construction of Gene Co-expression Networks from High-Throughput Arabidopsis RNA Sequencing Data.

    Science.gov (United States)

    Contreras-López, Orlando; Moyano, Tomás C; Soto, Daniela C; Gutiérrez, Rodrigo A

    2018-01-01

    The rapid increase in the availability of transcriptomics data generated by RNA sequencing represents both a challenge and an opportunity for biologists without bioinformatics training. The challenge is handling, integrating, and interpreting these data sets. The opportunity is to use this information to generate testable hypothesis to understand molecular mechanisms controlling gene expression and biological processes (Fig. 1). A successful strategy to generate tractable hypotheses from transcriptomics data has been to build undirected network graphs based on patterns of gene co-expression. Many examples of new hypothesis derived from network analyses can be found in the literature, spanning different organisms including plants and specific fields such as root developmental biology.In order to make the process of constructing a gene co-expression network more accessible to biologists, here we provide step-by-step instructions using published RNA-seq experimental data obtained from a public database. Similar strategies have been used in previous studies to advance root developmental biology. This guide includes basic instructions for the operation of widely used open source platforms such as Bio-Linux, R, and Cytoscape. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be easily adapted to work with RNA-seq data from any organism.

  8. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    Science.gov (United States)

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  9. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension.

    Science.gov (United States)

    Qi, Han; Liu, Zheng; Liu, Bin; Cao, Han; Sun, Weiping; Yan, Yuxiang; Zhang, Ling

    2017-04-01

    Commonly used tests for diagnosis of salt-sensitive hypertension (SSH) are complex and time-consuming, so new methods are required. Many studies have demonstrated roles for miRNAs in hypertension; however, the diagnostic value of miRNAs has yet to be determined for human SSH. In this study, we examined miRNA expression profiles by initial high-throughput miRNA sequencing of samples from patients with salt-sensitive and salt-resistant hypertension (SSH and SRH, respectively; n = 6, both groups), followed by validation by quantitative real-time polymerase chain reaction (qRT-PCR) in a larger cohort (n = 91). We also evaluated differences in baseline characteristics (e.g., age, sex, body mass index, consumption of specific foods) between the SSH and SRH groups. Of 36 miRNAs identified as differentially expressed between SSH and SRH groups by RNA-Seq, 8 were analyzed by qRT-PCR. There were significant differences in the expression levels of hsa-miR-361-5p and hsa-miR-362-5p between the 2 groups (P = .023 and.049, respectively). In addition, there were significant differences in sauce and poultry consumption between the 2 groups (P = .004 and.001, respectively). The areas under the curve (AUC) determined by receptor operating characteristic (ROC) analysis for hsa-miR-361-5p and all 8 miRNAs were 0.793 (95% CI, 0.698-0.888; sensitivity = 73.9%, specificity = 74.4%; P SSH.

  10. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems

    Directory of Open Access Journals (Sweden)

    András Szilágyi

    2017-11-01

    Full Text Available As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1 it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2 it must be ecologically stable and (3 it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system are promising candidates for development into coherent models that may become experimentally accessible in the future.

  11. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics.

    Science.gov (United States)

    Rouhana, Labib; Weiss, Jennifer A; Forsthoefel, David J; Lee, Hayoung; King, Ryan S; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A

    2013-06-01

    The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced by means of injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. Copyright © 2013 Wiley Periodicals, Inc.

  12. Biopolymers under large external forces and mean-field RNA virus evolutionary dynamics

    Science.gov (United States)

    Ahsan, Syed Amir

    The modeling of the mechanical response of single-molecules of DNA and RNA under large external forces through statistical mechanical methods is central to this thesis with a small portion devoted to modeling the evolutionary dynamics of positive-sense single-stranded RNA viruses. In order to develop and test models of biopolymer mechanics and illuminate the mechanisms underlying biological processes where biopolymers undergo changes in energy on the order of the thermal energy, , entails measuring forces and lengths on the scale of piconewtons (pN) and nanometers (nm), respectively. A capacity achieved in the past two decades at the single-molecule level through the development of micromanipulation techniques such as magnetic and optical tweezers, atomic force microscopy, coupled with advances in micro- and nanofabrication. The statistical mechanical models of biopolymers developed in this dissertation are dependent upon and the outcome of these advancements and resulting experiments. The dissertation begins in chapter 1 with an introduction to the structure and thermodynamics of DNA and RNA, highlighting the importance and effectiveness of simple, two-state models in their description as a prelude to the emergence of two-state models in the research manuscripts. In chapter 2 the standard models of the elasticity of polymers and of a polymer gel are reviewed, characterizing the continuum and mean-field models, including the scaling behavior of DNA in confined spaces. The research manuscript presented in the last section of chapter 2 (section 2.5), subsequent to a review of a Flory gel and in contrast to it, is a model of the elasticity of RNA as a gel, with viral RNA illustrating an instance of such a network, and shown to exhibit anomalous elastic behavior, a negative Poisson ratio, and capable of facilitating viral RNA encapsidation with further context provided in section 5.1. In chapter 3 the experimental methods and behavior of DNA and RNA under mechanical

  13. A novel ViewRNA in situ hybridization method for the detection of the dynamic distribution of Classical Swine Fever Virus RNA in PK15 cells.

    Science.gov (United States)

    Zhang, Qianyi; Xu, Lu; Zhang, Yujie; Wang, Tuanjie; Zou, Xingqi; Zhu, Yuanyuan; Zhao, Yan; Li, Cui; Chen, Kai; Sun, Yongfang; Sun, Junxiang; Zhao, Qizu; Wang, Qin

    2017-04-18

    Classical swine fever (CSF) is a highly contagious fatal infectious disease caused by classical swine fever virus (CSFV). A better understanding of CSFV replication is important for the study of pathogenic mechanism of CSF. With the development of novel RNA in situ Hybridization method, quantitatively localization and visualization of the virus RNA molecular in cultured cell or tissue section becomes very important tool to address these pivotal pathogenic questions. In this study, we established ViewRNA ISH method to reveal the dynamic distribution of CSFV RNA in PK15 cells. We designed several specific probes of CSFV RNA and reference gene β-actin for host PK15 cells to monitor the relative location of CSFV RNA and house-keeping gene in the infected cells. After determining the titer of reference strain CSFV (HeBHH1/95) with the 50% tissue culture infective dose (TCID50), we optimized the protease K concentration and formalin fixation time to analyze the hybridization efficiency, fluorescence intensity and repeatability. In order to measure the sensitivity of this assay, we compared it with the fluorescent antibody test (FAT) and immunohistochemical(IHC) method. Specificity of the ViewRNA ISH was tested by detecting several sub genotypes of CSFV (sub genotype 1.1, 2.1, 2.2 and 2.3) which are present in China and other normal pig infectious virus (bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), porcine pseudorabies virus (PRV) and porcine circovirusII(PCV-2). The lowest detection threshold of the ViewRNA ISH method was 10 -8 , while the sensitivity of FAT and IHC were 10 -5 and 10 -4 , respectively. The ViewRNA ISH was specific for CSFV RNA including 1.1, 2.1, 2.2 and 2.3 subtypes, meanwhile, there was no cross-reaction with negative control and other viruses including BVDV, PPV, PRV and PCV-2. Our results showed that after infection at 0.5 hpi (hours post inoculation, hpi), the CSFV RNA can be detected in nucleus and cytoplasm; during 3-9 hpi, RNA

  14. Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Karthik P Jayapal

    2008-05-01

    Full Text Available Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels. Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing. Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of isobaric stable isotope labeled peptides (iTRAQ enabled identification and rapid quantification of approximately 14% of the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms acting in a concerted fashion at a protein complex or sub-pathway level.

  15. The emergence of design in pedestrian dynamics: Locomotion, self-organization, walking paths and constructal law

    Science.gov (United States)

    Miguel, Antonio F.

    2013-06-01

    Gait is inherent to human life and hence its importance is often overlooked. But walking remains the most basic form of transportation and almost all journeys begin and end with a walk, regardless of the modes used in-between. Gaining a good understanding of pedestrian's dynamics is thus a crucial step in meeting the mobility and accessibility needs of people by providing safe and quick walking flows. This paper presents a critical and integrative review of research on pedestrian's dynamics and associated topics. The review focuses on comprehensive theories and models, with an emphasis on the advances made possible by the application of the constructal law. Constructal law points out that the emergence and evolution of design in pedestrian dynamics is analogous to that of animate flow systems. Most importantly, it also highlights that the basic features of pedestrian dynamics and supportive walking infrastructures can be optimally envisaged with the help of a few fundamental physics laws.

  16. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry

    Science.gov (United States)

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-01-01

    The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction. PMID:27801857

  17. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry.

    Science.gov (United States)

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-10-28

    The construction industry is a demanding work environment where employees' work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee's work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee's work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.

  18. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2016-10-01

    Full Text Available The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC levels which are significantly greater than the family interference with work conflict (FIWC levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.

  19. Use of measurement theory for operationalization and quantification of psychological constructs in systems dynamics modelling

    Science.gov (United States)

    Fitkov-Norris, Elena; Yeghiazarian, Ara

    2016-11-01

    The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.

  20. Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Fadrná, E.; Sarzynska, J.; Kulinski, T.; Kulhánek, P.; Ennifar, E.; Koča, J.; Šponer, Jiří

    2007-01-01

    Roč. 93, č. 11 (2007), s. 3932-3949 ISSN 0006-3495 R&D Projects: GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GA203/05/0388; GA AV ČR(CZ) 1QS500040581 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * RNA * virus Subject RIV: BO - Biophysics Impact factor: 4.627, year: 2007

  1. Molecular dynamics simulations of RNA: An in silico single molecule approach

    Czech Academy of Sciences Publication Activity Database

    McDowell, S.E.; Špačková, Naďa; Šponer, Jiří; Walter, N.G.

    2006-01-01

    Roč. 85, č. 2 (2006), s. 169-184 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GA203/05/0388; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z40550506 Keywords : hydration and cation binding * molecular dynamics * RNA Subject RIV: BO - Biophysics Impact factor: 2.480, year: 2006

  2. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  3. Research on Investment Risk Management of Chinese Prefabricated Construction Projects Based on a System Dynamics Model

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-09-01

    Full Text Available Prefabricated construction, a new direction for the future development of the Chinese construction industry, can maximize the requirements of “green”. As a new form of green building, prefabricated construction is of particular interest. On account of the immature development of the green building market in China, the investment risk for prefabricated construction is higher than for traditional architecture. Hence, it is especially important to improve its investment risk identification and management. This study adopts system dynamics and builds a risk identification feedback chart and risk flow chart, to comprehensively identify investment risks that projects in China may face and to process quantitative estimation of investment risk factors. Key factors influencing project investment risks are found, and corresponding measures are pointedly proposed. This paper may provide guidance and a reference for promoting the sound development of prefabricated construction in China.

  4. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  5. MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Arun K. Rooj

    2017-06-01

    Full Text Available Large-scale transcriptomic profiling of glioblastoma (GBM into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128 in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking.

  6. [Construction of RNA-containing virus-like nanoparticles expression vector with cysteine residues on surface and fluorescent decoration].

    Science.gov (United States)

    Cheng, Yang-Jian; Liang, Ji-Xuan; Li, Qing-Ge

    2005-08-01

    Site-directed mutagenesis was performed at the codon 15 of the MS2 bacteriophage coat protein gene,which had been cloned to the virus-like particles expression vector containing non-self RNA fragment. The produced expression vector,termed pARSC, was transformed to E. coli DH5alpha. The positive clones were selected and proliferated. The harvested cells were treated with sonication and the supernatant was then subjected to linear sucrose density gradients centrifugation (15% to 60%) at 32000 r/min for 4 h at 4 degrees C. The virus-like particles, VLP-Cy, were collected at 35% sucrose density. The particles were examined by transmission electron microscopy and the spherical viral particles of approximately 27 nm in diameter were found. The thiolated VLP-Cy was then chemically modified with fluorescein -5'-maleimide. The covalent fluorescent labeling was confirmed by absorption analysis, SDS-PAGE and MALDI-TOF mass spectroscopy. This is the first report of preparation of RNA-containing natural fluorescent nanoparticles. The study highlight the versatility of MS2 bacteriophage capsids as building blocks for functional nanomaterials construction for a variety of application purposes.

  7. Internationalisation of construction business and e-commerce: Innovation, integration and dynamic capabilities

    Directory of Open Access Journals (Sweden)

    Thayaparan Gajendran

    2013-06-01

    Full Text Available Despite the role of internet and web based applications in delivering competitive advantage through e-business process is widely acknowledged, little is done by way of research to use the dynamic capability framework, in exploring the role of ecommerce in the construction business internationalisation. The aim of this paper is to present a literature based theoretical exploration using dynamic capability view to discuss internationalising construction businesses through electronic commerce (e-commerce platforms. This paper contextualises the opportunities for internationalising construction, using a mix of supply chain paradigms, embedded with e-commerce platforms. The paper concludes by identifying the potential of dynamic capabilities of a firm, exploiting the innovation and integration potential of different e-business systems, in contributing to the internationalisation of construction businesses. It proposes that contracting firms with developed dynamic capabilities, has the potential to exploit e-commerce platforms to channel upstream activities to an international destination, and also offers the firm’s products/services to international markets.

  8. On the dynamics of non-holonomic systems: the construction of a lagrangian and a hamiltonian

    International Nuclear Information System (INIS)

    Galvao, C.A.P.; Negri, L.J.

    1982-01-01

    It is shown that once the motion of a non-holonomic system is known it is possible to reduce the system to the holonomic form. A (singular) Lagrangian function and a Hamiltonian which correctly describe the dynamics of the system can be constructed. This procedure is applied to a well known system. (Author) [pt

  9. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  10. Argumentation Text Construction by Japanese as a Foreign Language Writers: A Dynamic View of Transfer

    Science.gov (United States)

    Rinnert, Carol; Kobauashi, Hiroe; Katayama, Akemi

    2015-01-01

    This study takes a dynamic view of transfer as reusing and reshaping previous knowledge in new writing contexts to investigate how novice Japanese as a foreign language (JFL) writers draw on knowledge across languages to construct L1 and L2 texts. We analyzed L1 English and L2 Japanese argumentation essays by the same JFL writers (N = 19) and L1…

  11. Dynamical modeling of microRNA action on the protein translation process

    Directory of Open Access Journals (Sweden)

    Barillot Emmanuel

    2010-02-01

    Full Text Available Abstract Background Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc., the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. Results In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Conclusions Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters, or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step

  12. Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix.

    Directory of Open Access Journals (Sweden)

    Jakob H Havgaard

    2007-10-01

    Full Text Available It has become clear that noncoding RNAs (ncRNA play important roles in cells, and emerging studies indicate that there might be a large number of unknown ncRNAs in mammalian genomes. There exist computational methods that can be used to search for ncRNAs by comparing sequences from different genomes. One main problem with these methods is their computational complexity, and heuristics are therefore employed. Two heuristics are currently very popular: pre-folding and pre-aligning. However, these heuristics are not ideal, as pre-aligning is dependent on sequence similarity that may not be present and pre-folding ignores the comparative information. Here, pruning of the dynamical programming matrix is presented as an alternative novel heuristic constraint. All subalignments that do not exceed a length-dependent minimum score are discarded as the matrix is filled out, thus giving the advantage of providing the constraints dynamically. This has been included in a new implementation of the FOLDALIGN algorithm for pairwise local or global structural alignment of RNA sequences. It is shown that time and memory requirements are dramatically lowered while overall performance is maintained. Furthermore, a new divide and conquer method is introduced to limit the memory requirement during global alignment and backtrack of local alignment. All branch points in the computed RNA structure are found and used to divide the structure into smaller unbranched segments. Each segment is then realigned and backtracked in a normal fashion. Finally, the FOLDALIGN algorithm has also been updated with a better memory implementation and an improved energy model. With these improvements in the algorithm, the FOLDALIGN software package provides the molecular biologist with an efficient and user-friendly tool for searching for new ncRNAs. The software package is available for download at http://foldalign.ku.dk.

  13. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    Science.gov (United States)

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.

    Science.gov (United States)

    Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi

    2018-02-12

    Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.

  15. Developing a system dynamics model to analyse environmental problem in construction site

    Science.gov (United States)

    Haron, Fatin Fasehah; Hawari, Nurul Nazihah

    2017-11-01

    This study aims to develop a system dynamics model at a construction site to analyse the impact of environmental problem. Construction sites may cause damages to the environment, and interference in the daily lives of residents. A proper environmental management system must be used to reduce pollution, enhance bio-diversity, conserve water, respect people and their local environment, measure performance and set targets for the environment and sustainability. This study investigates the damaging impact normally occur during the construction stage. Environmental problem will cause costly mistake in project implementation, either because of the environmental damages that are likely to arise during project implementation, or because of modification that may be required subsequently in order to make the action environmentally acceptable. Thus, findings from this study has helped in significantly reducing the damaging impact towards environment, and improve the environmental management system performance at construction site.

  16. microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    Full Text Available microRNAs (miRNAs are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a "Goodwin-like" oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks.

  17. Construction

    Science.gov (United States)

    2002-01-01

    Harbor Deepening Project, Jacksonville, FL Palm Valley Bridge Project, Jacksonville, FL Rotary Club of San Juan, San Juan, PR Tren Urbano Subway...David. What is nanotechnology? What are its implications for construction?, Foresight/CRISP Workshop on Nanotechnology, Royal Society of Arts

  18. A dynamic Bayesian network based approach to safety decision support in tunnel construction

    International Nuclear Information System (INIS)

    Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying

    2015-01-01

    This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach

  19. Quantifying histone and RNA polymerase II post-translational modification dynamics in mother and daughter cells.

    Science.gov (United States)

    Stasevich, Timothy J; Sato, Yuko; Nozaki, Naohito; Kimura, Hiroshi

    2014-12-01

    Post-translational histone modifications are highly correlated with transcriptional activity, but the relative timing of these marks and their dynamic interplay during gene regulation remains controversial. To shed light on this problem and clarify the connections between histone modifications and transcription, we demonstrate how FabLEM (Fab-based Live Endogenous Modification labeling) can be used to simultaneously track histone H3 Lysine 9 acetylation (H3K9ac) together with RNA polymerase II Serine 2 and Serine 5 phosphorylation (RNAP2 Ser2ph/Ser5ph) in single living cells and their progeny. We provide a detailed description of the FabLEM methodology, including helpful tips for preparing and loading fluorescently conjugated antigen binding fragments (Fab) into cells for optimal results. We also introduce simple procedures for analyzing and visualizing FabLEM data, including color-coded scatterplots to track correlations between modifications through the cell cycle and temporal cross-correlation analysis to dissect modification dynamics. Using these methods, we find significant correlations that span cell generations, with a relatively strong correlation between H3K9ac and Ser5ph that appears to peak a few hours before mitosis and may reflect the bookmarking of genes for efficient re-initiation following mitosis. The techniques we have developed are broadly applicable and should help clarify how histone modifications dynamically contribute to gene regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Han Wenbiao; Cao Zhoujian

    2011-01-01

    A new scheme for computing dynamical evolutions and gravitational radiations for intermediate-mass-ratio inspirals (IMRIs) based on an effective one-body (EOB) dynamics plus Teukolsky perturbation theory is built in this paper. In the EOB framework, the dynamic essentially affects the resulted gravitational waveform for a binary compact star system. This dynamic includes two parts. One is the conservative part, which comes from effective one-body reduction. The other part is the gravitational backreaction, which contributes to the shrinking process of the inspiral of a binary compact star system. Previous works used an analytical waveform to construct this backreaction term. Since the analytical form is based on post-Newtonian expansion, the consistency of this term is always checked by numerical energy flux. Here, we directly use numerical energy flux by solving the Teukolsky equation via the frequency-domain method to construct this backreaction term. The conservative correction to the leading order terms in mass-ratio is included in the deformed-Kerr metric and the EOB Hamiltonian. We try to use this method to simulate not only quasicircular adiabatic inspiral, but also the nonadiabatic plunge phase. For several different spinning black holes, we demonstrate and compare the resulted dynamical evolutions and gravitational waveforms.

  1. Constructive Design and Dynamic Testing of the Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2015-07-01

    Full Text Available The paper presents the design construction and functioning of a new type of harmonic gear transmission named double harmonic gear transmission (D.H.G.T.. In the second part of this paper is presented the dynamic testing of the double harmonic gear transmission, which is based on the results of the experimental researches on the D.H.G.T. The authors present the results of experimental research, enabling a scientific interpretation of the dynamic behaviour of the D.H.G.T., on the mechanical efficiency and the stress state of flexible wheel.

  2. Optimization and comparison of different methods for RNA isolation for cDNA library construction from the reindeer lichen Cladonia rangiferina

    Directory of Open Access Journals (Sweden)

    Lim Kean-Jin

    2009-10-01

    Full Text Available Abstract Background The reindeer lichen is the product of a mutualistic relationship between a fungus and an algae. Lichen demonstrate a remarkable capacity to tolerate dehydration. This tolerance is driven by a variety of biochemical processes and the accumulation of specific secondary metabolites that may be of relevance to the pharmaceutical, biotechnology and agriculture industries. These protective metabolites hinder in vitro enzymatic reactions required in cDNA synthesis. Along with the low concentrations of RNA present within lichen tissues, the process of creating a cDNA library is technically challenging. Findings An evaluation of existing commercial and published protocols for RNA extraction from plant or fungal tissues has been performed and experimental conditions have been optimised to balance the need for the highest quality total ribonucleotides and the constraints of budget, time and human resources. Conclusion We present a protocol that balances inexpensive RNA extraction methods with commercial RNA clean-up kits to yield sufficient RNA for cDNA library construction. Evaluation of the protocol and the construction of, and sampling from, a cDNA library is used to demonstrate the suitability of the RNA extraction method for expressed sequence tag production.

  3. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues | Center for Cancer Research

    Science.gov (United States)

    Despite extensive genetic, biochemical and structural studies on Escherichia coli RNA polymerase (RNAP), little is known about its location and distribution in response to environmental changes. To visualize the RNAP by fluorescence microscopy in E. coli under different physiological conditions, we constructed a functional rpoC-gfp gene fusion on the chromosome.

  4. Green nanotechnology in Nordic Construction: Eco-innovation strategies and Dynamics in Nordic Window Value Chains

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2010-01-01

    This project analyzes Nordic trends in the development and industrial uptake of green nanotechno-logy in construction. The project applies an evolutionary economic perspective in analyzing the innovation dynamics and firm strategies in the window value chains in three Nordic countries, Denmark......, Finland and Sweden. Hence the project investigates two pervasive parallel market trends: The emergence of the green market and the emergence of nanotechnology. The analysis investigates how a traditional economic sector such as the construction sector reacts to such major trends. Conclusions are multiple...... of nanotechnology in the construction sector in the Nordic countries we do find quite a high number of nanotech applications in the Nordic window chains. Eco-innovation is influencing strongly on the nanotech development. We see several examples of nano-enabled smart, multifunctional green solutions in the Nordic...

  5. Green Nanotechnology in Nordic Construction - Eco-innovation strategies and Dynamics in nordic Window Chains

    DEFF Research Database (Denmark)

    Andersen, Maj Munch; Sandén, Björn A.; Palmberg, Christopher

    This project analyzes Nordic trends in the development and industrial uptake of green nanotechno-logy in construction. The project applies an evolutionary economic perspective in analyzing the innovation dynamics and firm strategies in the window value chains in three Nordic countries, Denmark......, Finland and Sweden. Hence the project investigates two pervasive parallel market trends: The emergence of the green market and the emergence of nanotechnology. The analysis investigates how a traditional economic sector such as the construction sector reacts to such major trends. Conclusions are multiple...... of nanotechnology in the construction sector in the Nordic countries we do find quite a high number of nanotech applications in the Nordic window chains. Eco-innovation is influencing strongly on the nanotech development. We see several examples of nano-enabled smart, multifunctional green solutions in the Nordic...

  6. On Constructing Dynamic and Forward Secure Authenticated Group Key Agreement Scheme from Multikey Encapsulation Mechanism.

    Science.gov (United States)

    Fathirad, Iraj; Devlin, John

    2015-01-01

    The approach of instantiating authenticated group key exchange (GAKE) protocol from the multikey encapsulation mechanism (mKEM) has an important advantage of achieving classical requirement of GAKE security in one communication round. In spite of the limitations of this approach, for example, lack of forward secrecy, it is very useful in group environments when maximum communication efficiency is desirable. To enrich this mKEM-based GAKE construction, we suggest an efficient solution to convert this static GAKE framework into a partially dynamic scheme. Furthermore, to address the associated lack of forward-secrecy, we propose two variants of this generic construction which can also provide a means of forward secrecy at the cost of extra communication round. In addition, concerning associated implementation cost of deploying this generic GAKE construction in elliptic curve cryptosystem, we compare the possible instantiations of this model from existing mKEM algorithms in terms of the number of elliptic curve scalar multiplications.

  7. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process.

    Science.gov (United States)

    Del Rio-Chanona, Ehecatl A; Fiorelli, Fabio; Zhang, Dongda; Ahmed, Nur R; Jing, Keju; Shah, Nilay

    2017-11-01

    Lutein is a high-value bioproduct synthesized by microalga Desmodesmus sp. It has great potential for the food, cosmetics, and pharmaceutical industries. However, in order to enhance its productivity and to fulfil its ever-increasing global market demand, it is vital to construct accurate models capable of simulating the entire behavior of the complicated dynamics of the underlying biosystem. To this aim, in this study two highly robust artificial neural networks (ANNs) are designed for the first time. Contrary to conventional ANNs, these networks model the rate of change of the dynamic system, which makes them highly relevant in practice. Different strategies are incorporated into the current research to guarantee the accuracy of the constructed models, which include determining the optimal network structure through a hyper-parameter selection framework, generating significant amounts of artificial data sets by embedding random noise of appropriate size, and rescaling model inputs through standardization. Based on experimental verification, the high accuracy and great predictive power of the current models for long-term dynamic bioprocess simulation in both real-time and offline frameworks are thoroughly demonstrated. This research, therefore, paves the way to significantly facilitate the future investigation of lutein bioproduction process control and optimization. In addition, the model construction strategy developed in this research has great potential to be directly applied to other bioprocesses. Biotechnol. Bioeng. 2017;114: 2518-2527. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Dynamic stability of deformable elements of one class of aeroelastic constructions

    Science.gov (United States)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2016-12-01

    At designing of the constructions and the devices interacting with the flow of gas or liquid, it is necessary to solve the problems associated with the investigation of the stability required for their functioning and operational reliability. The definition of stability of an elastic body corresponds to the Lyapunov's concept of stability of dynamical system. A mathematical model of the device relating to the vibration technique, which is intended for intensification of technological processes, for example, the process of mixing, is considered. The action of these devices is based on the oscillations of elastic elements at the flowing around gas or liquid flow. The dynamic stability of the elastic element, located inside of the flow channel with the subsonic flow of gas or liquid (in an ideal model of a compressible environment) is investigated. The model is described by coupled system of partial differential equations for the unknown functions - the potential of the gas velocity and deformation of the elastic element. On the basis of the construction of functional, the sufficient conditions of the dynamical stability, imposing restrictions on the free-stream velocity of the gas, the flexural stiffness of the elastic element, and other parameters of the mechanical system are obtained. The examples of construction of the stability regions for particular parameters of the mechanical system are presented.

  9. Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii Tratt).

    Science.gov (United States)

    Xu, Qiang; Wen, Xiaopeng; Tao, Nengguo; Hu, Zhiyong; Yue, Hailin; Deng, Xiuxin

    2006-04-01

    Chestnut rose (Rosa roxburghii Tratt) is a rare fruit crop of promising economical importance in fruit and ornamental exploitation in China. Isolation of high quality RNA from chestnut rose is difficult due to its high levels of polyphenols, polysaccharides and other compounds, but a modified CTAB extraction procedure without phenol gave satisfactory results. High concentrations of PVP (2%, w/v), CTAB (2%, w/v) and beta-mercaptoethanol (4%, v/v) were used in the extraction buffer to improve RNA quality. The average yield was about 200 microg RNA g(-1) fresh leaves. The isolated RNA was of sufficient quality for construction of suppression subtraction hybridization (SSH) library, which allowed the isolation of several pathogen-induced defense genes.

  10. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E

    Czech Academy of Sciences Publication Activity Database

    Réblová, K.; Špačková, Naďa; Štefl, R.; Csaszar, K.; Koča, J.; Leontis, N. B.; Šponer, Jiří

    2003-01-01

    Roč. 84, č. 6 (2003), s. 3564-3582 ISSN 0006-3495 R&D Projects: GA MŠk LN00A016 Grant - others:National Institutes of Health(US) 2R15 GM55898; National Science Foundation(US) CHE-9732563 Institutional research plan: CEZ:AV0Z5004920 Keywords : non- Watson -Crick base pairs * ribosomal RNA * Loop E Subject RIV: BO - Biophysics Impact factor: 4.463, year: 2003

  11. Construction of a fuel demand function portraying inter-fuel substitution, a system dynamics approach

    International Nuclear Information System (INIS)

    Abada, Ibrahim; Briat, Vincent; Massol, Olivier

    2011-04-01

    Most of the recent numerical market equilibrium models of natural gas markets use imperfect competition assumptions. These models are typically embedded with an oversimplified representation of the demand side, usually a single-variable affine function, that does not capture any dynamic adjustment to past prices. To remedy this, we report an effort to construct an enhanced functional specification using the system dynamics-based model of Moxnes (1987, 1990). Thanks to a vintage representation of capital stock, this putty-clay model captures the effect of both past and current energy prices on fuel consumption. Using a re-calibrated version of this model, we first confirm the pertinence of this modeling framework to represent inter-fuel substitutions at different fuel prices in the industrial sector. Building on these findings, a dynamic functional specification of the demand function for natural gas is then proposed and calibrated. (authors)

  12. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.

    Science.gov (United States)

    Rains, Emily K; Andersen, Hans C

    2010-10-14

    The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most

  13. Prerouted FPGA Cores for Rapid System Construction in a Dynamic Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Douglas L. Maskell

    2007-01-01

    Full Text Available A method of constructing prerouted FPGA cores, which lays the foundations for a rapid system construction framework for dynamically reconfigurable computing systems, is presented. Two major challenges are considered: how to manage the wires crossing a core's borders; and how to maintain an acceptable level of flexibility for system construction with only a minimum of overhead. In order to maintain FPGA computing performance, it is crucial to thoroughly analyze the issues at the lowest level of device detail in order to ensure that computing circuit encapsulation is as efficient as possible. We present the first methodology that allows a core to scale its interface bandwidth to the maximum available in a routing channel. Cores can be constructed independently from the rest of the system using a framework that is independent of the method used to place and route primitive components within the core. We use an abstract FPGA model and CAD tools that mirror those used in industry. An academic design flow has been modified to include a wire policy and an interface constraints framework that tightly constrains the use of the wires that cross a core's boundaries. Using this tool set we investigate the effect of prerouting on overall system optimality. Abutting cores are instantly connected by colocation of interface wires. Eliminating run-time routing drastically reduces the time taken to construct a system using a set of cores.

  14. Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-10-01

    The purpose of this study was to investigate students' mental models of chemical equilibrium using dynamic science assessments. Research in chemical education has shown that students at various levels have misconceptions about chemical equilibrium. According to Chi's theory of conceptual change, the concept of chemical equilibrium has constraint-based features (e.g., random, simultaneous, uniform activities) that might prevent students from deeply understanding the nature of the concept of chemical equilibrium. In this study, we examined how students learned and constructed their mental models of chemical equilibrium in a cognitive apprenticeship context. Thirty 10th-grade students participated in the study: 10 in a control group and 20 in a treatment group. Both groups were presented with a series of hands-on chemical experiments. The students in the treatment group were instructed based on the main features of cognitive apprenticeship (CA), such as coaching, modeling, scaffolding, articulation, reflection, and exploration. However, the students in the control group (non-CA group) learned from the tutor without explicit CA support. The results revealed that the CA group significantly outperformed the non-CA group. The students in the CA group were capable of constructing the mental models of chemical equilibrium - including dynamic, random activities of molecules and interactions between molecules in the microworld - whereas the students in the non-CA group failed to construct similar correct mental models of chemical equilibrium. The study focuses on the process of constructing mental models, on dynamic changes, and on the actions of students (such as self-monitoring/self-correction) who are learning the concept of chemical equilibrium. Also, we discuss the implications for science education.

  15. Assessing impacts of dike construction on the flood dynamics of the Mekong Delta

    Science.gov (United States)

    Tran, Dung Duc; van Halsema, Gerardo; Hellegers, Petra J. G. J.; Phi Hoang, Long; Quang Tran, Tho; Kummu, Matti; Ludwig, Fulco

    2018-03-01

    Recent flood dynamics of the Mekong Delta have raised concerns about an increased flood risk downstream in the Vietnamese Mekong Delta. Accelerated high dike building on the floodplains of the upper delta to allow triple cropping of rice has been linked to higher river water levels in the downstream city of Can Tho. This paper assesses the hydraulic impacts of upstream dike construction on the flood hazard downstream in the Vietnamese Mekong Delta. We combined the existing one-dimensional (1-D) Mekong Delta hydrodynamic model with a quasi-two-dimensional (2-D) approach. First we calibrated and validated the model using flood data from 2011 and 2013. We then applied the model to explore the downstream water dynamics under various scenarios of high dike construction in An Giang Province and the Long Xuyen Quadrangle. Calculations of water balances allowed us to trace the propagation and distribution of flood volumes over the delta under the different scenarios. Model results indicate that extensive construction of high dikes on the upstream floodplains has had limited effect on peak river water levels downstream in Can Tho. Instead, the model shows that the impacts of dike construction, in terms of peak river water levels, are concentrated and amplified in the upstream reaches of the delta. According to our water balance analysis, river water levels in Can Tho have remained relatively stable, as greater volumes of floodwater have been diverted away from the Long Xuyen Quadrangle than the retention volume lost due to dike construction. Our findings expand on previous work on the impacts of water control infrastructure on flood risk and floodwater regimes across the delta.

  16. Dynamic and Energetic Signatures of Adenine Tracts in a rA-dT RNA-DNA Hybrid and in Homologous RNA-DNA, RNA-RNA, and DNA-DNA Double Helices.

    Science.gov (United States)

    Huang, Yuegao; Russu, Irina M

    2017-05-16

    Nuclear magnetic resonance spectroscopy and proton exchange are being used to characterize the opening reactions of individual base pairs in the RNA-DNA hybrid 5'-rGCGAUAAAAAGGCC-3'/5'-dGGCCTTTTTATCGC-3'. The hybrid contains a central tract of five rA-dT base pairs. The rates and the equilibrium constant of the opening reaction for each base pair are determined from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results are compared to those previously obtained by our laboratory for three homologous duplexes of the same base sequence (except for the appropriate T/U substitution), containing tracts of dA-rU, rA-rU, or dA-dT base pairs. The rA-dT tract is distinguished by an enhanced propensity of the base pairs to exist in the extrahelical state. The opening rates of rA-dT base pairs also exhibit a strong dependence on the location of the base pair in the structure; namely, as one advances into the tract, the opening rates of rA-dT base pairs gradually decrease. The local stability of each rA-dT base pair within the tract is the same as that of the corresponding rA-rU base pair in the homologous RNA-only duplex but differs from the stabilities of dA-dT and dA-rU base pairs in the other two duplexes (namely, dA-dT > rA-dT > dA-rU). These results demonstrate that, in nucleic acid double helices with the same base sequence, the opening dynamics and the energetics of individual base pairs are strongly influenced by the nature of the strand and by the structural context of the base pair.

  17. Single, childless working women's construction of wellbeing: On balance, being dynamic and tensions between them.

    Science.gov (United States)

    Engler, Kim; Frohlich, Katherine; Descarries, Francine; Fernet, Mylène

    2011-01-01

    Single, childless working women (SCWW) are a notable proportion of the female workforce. The budding research on this population suggests that they have issues of wellbeing that may be tied to specific needs of both their workplaces and their personal lives, and hence, distinct work-life dynamics that require attention. This study explores how SCWW construct their wellbeing. The sample was composed of 22 SCWW aged 29 to 45. A discourse analysis of the transcripts of semi-structured interviews with these women was performed. Most women drew on an interpretative repertoire of "wellbeing as balance" (e.g., diversification and reasonable dosing of life's dimensions). It was associated with a recurrent subject position we have termed "the dynamic woman" whose intensity transfused talk of the activities in her life. Here, work becomes a "passion" and a source of appreciated challenges. However, a dilemma could arise from these constructions for positioning oneself in relation to the cadence of one's active life or rather, in articulating an unambiguous claim to balance. Balance/dosing and dynamicity/passion can be uneasy bedfellows. Our analyses raise questions about possible counter[balancing] discourses and further argue the relevance of work-life issues for SCWW.

  18. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.

    Science.gov (United States)

    Rayevsky, A V; Sharifi, M; Tukalo, M A

    2017-09-01

    Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA Leu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA Leu and isoleucyl-tRNA Leu . In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. OMIT: dynamic, semi-automated ontology development for the microRNA domain.

    Directory of Open Access Journals (Sweden)

    Jingshan Huang

    Full Text Available As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT, the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology.

  20. OMIT: dynamic, semi-automated ontology development for the microRNA domain.

    Science.gov (United States)

    Huang, Jingshan; Dang, Jiangbo; Borchert, Glen M; Eilbeck, Karen; Zhang, He; Xiong, Min; Jiang, Weijian; Wu, Hao; Blake, Judith A; Natale, Darren A; Tan, Ming

    2014-01-01

    As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology.

  1. Evolutionary dynamics of RNA-like replicators : A bioinformatic approach to the origin of life

    NARCIS (Netherlands)

    Takeuchi, N.

    2010-01-01

    The origin of life has always attracted scientific inquiries. The RNA world hypothesis suggests that, before the evolution of DNAs and proteins, primordial life was based on RNAs both for information storage and chemical catalysis. In its simplest form, an RNA world consists of RNA molecules that

  2. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  3. Dynamic Construction Scheme for Virtualization Security Service in Software-Defined Networks.

    Science.gov (United States)

    Lin, Zhaowen; Tao, Dan; Wang, Zhenji

    2017-04-21

    For a Software Defined Network (SDN), security is an important factor affecting its large-scale deployment. The existing security solutions for SDN mainly focus on the controller itself, which has to handle all the security protection tasks by using the programmability of the network. This will undoubtedly involve a heavy burden for the controller. More devastatingly, once the controller itself is attacked, the entire network will be paralyzed. Motivated by this, this paper proposes a novel security protection architecture for SDN. We design a security service orchestration center in the control plane of SDN, and this center physically decouples from the SDN controller and constructs SDN security services. We adopt virtualization technology to construct a security meta-function library, and propose a dynamic security service composition construction algorithm based on web service composition technology. The rule-combining method is used to combine security meta-functions to construct security services which meet the requirements of users. Moreover, the RETE algorithm is introduced to improve the efficiency of the rule-combining method. We evaluate our solutions in a realistic scenario based on OpenStack. Substantial experimental results demonstrate the effectiveness of our solutions that contribute to achieve the effective security protection with a small burden of the SDN controller.

  4. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  5. Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course data.

    Directory of Open Access Journals (Sweden)

    Ciira wa Maina

    2014-05-01

    Full Text Available Gene transcription mediated by RNA polymerase II (pol-II is a key step in gene expression. The dynamics of pol-II moving along the transcribed region influence the rate and timing of gene expression. In this work, we present a probabilistic model of transcription dynamics which is fitted to pol-II occupancy time course data measured using ChIP-Seq. The model can be used to estimate transcription speed and to infer the temporal pol-II activity profile at the gene promoter. Model parameters are estimated using either maximum likelihood estimation or via Bayesian inference using Markov chain Monte Carlo sampling. The Bayesian approach provides confidence intervals for parameter estimates and allows the use of priors that capture domain knowledge, e.g. the expected range of transcription speeds, based on previous experiments. The model describes the movement of pol-II down the gene body and can be used to identify the time of induction for transcriptionally engaged genes. By clustering the inferred promoter activity time profiles, we are able to determine which genes respond quickly to stimuli and group genes that share activity profiles and may therefore be co-regulated. We apply our methodology to biological data obtained using ChIP-seq to measure pol-II occupancy genome-wide when MCF-7 human breast cancer cells are treated with estradiol (E2. The transcription speeds we obtain agree with those obtained previously for smaller numbers of genes with the advantage that our approach can be applied genome-wide. We validate the biological significance of the pol-II promoter activity clusters by investigating cluster-specific transcription factor binding patterns and determining canonical pathway enrichment. We find that rapidly induced genes are enriched for both estrogen receptor alpha (ERα and FOXA1 binding in their proximal promoter regions.

  6. Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.

    Science.gov (United States)

    Byun, Jung S; Wong, Madeline M; Cui, Wenwu; Idelman, Gila; Li, Quentin; De Siervi, Adriana; Bilke, Sven; Haggerty, Cynthia M; Player, Audrey; Wang, Yong Hong; Thirman, Michael J; Kaberlein, Joseph J; Petrovas, Constantinos; Koup, Richard A; Longo, Dan; Ozato, Keiko; Gardner, Kevin

    2009-11-17

    Profiling the dynamic interaction of p300 with proximal promoters of human T cells identified a class of genes that rapidly coassemble p300 and RNA polymerase II (pol II) following mitogen stimulation. Several of these p300 targets are immediate early genes, including FOS, implicating a prominent role for p300 in the control of primary genetic responses. The recruitment of p300 and pol II rapidly transitions to the assembly of several elongation factors, including the positive transcriptional elongation factor (P-TEFb), the bromodomain-containing protein (BRD4), and the elongin-like eleven nineteen lysine-rich leukemia protein (ELL). However, transcription at many of these rapidly induced genes is transient, wherein swift departure of P-TEFb, BRD4, and ELL coincides with termination of transcriptional elongation. Unexpectedly, both p300 and pol II remain accumulated or "bookmarked" at the proximal promoter long after transcription has terminated, demarking a clear mechanistic separation between the recruitment and elongation phases of transcription in vivo. The bookmarked pol II is depleted of both serine-2 and serine-5 phosphorylation of its C-terminal domain and remains proximally positioned at the promoter for hours. Surprisingly, these p300/pol II bookmarked genes can be readily reactivated, and elongation factors can be reassembled by subsequent addition of nonmitogenic agents that, alone, have minimal effects on transcription in the absence of prior preconditioning by mitogen stimulation. These findings suggest that p300 is likely to play an important role in biological processes in which transcriptional bookmarking or preconditioning influences cellular growth and development through the dynamic priming of genes for response to rechallenge by secondary stimuli.

  7. Lagrangian methods in plasma dynamics. II - Construction of Lagrangians for plasmas

    Science.gov (United States)

    Dougherty, J. P.

    1974-01-01

    Consideration of the construction of suitable Lagrangian functions for the dynamics of a cold plasma in such a way as to retain the relativistically covariant formalism. In one method, this is achieved by the introduction of a set of three variables which label the world lines of the particles. A second method results in a Clebsch-type representation. Sturrock's relativistic Lagrangian and Low's hot plasma Lagrangian are also briefly discussed in the context of the present work. The behavior of the canonical stress tensor is considered. The applicability of many of the general results in part I (Dougherty, 1970) is ensured by establishing the existence of the Lagrangian function.

  8. On the Construction and Properties of Weak Solutions Describing Dynamic Cavitation

    KAUST Repository

    Miroshnikov, Alexey

    2014-08-21

    We consider the problem of dynamic cavity formation in isotropic compressible nonlinear elastic media. For the equations of radial elasticity we construct self-similar weak solutions that describe a cavity emanating from a state of uniform deformation. For dimensions d=2,3 we show that cavity formation is necessarily associated with a unique precursor shock. We also study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated to cavity initiation as a function of the cavity speed of the self-similar profiles. We show that for stress free cavities the critical stretching associated with dynamically cavitating solutions coincides with the critical stretching in the bifurcation diagram of equilibrium elasticity. Our analysis treats both stress-free cavities and cavities with contents.

  9. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.

    Science.gov (United States)

    Réblová, Kamila; Šponer, Judit E; Špačková, Naďa; Beššeová, Ivana; Šponer, Jiří

    2011-12-01

    The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is

  10. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe

    2016-10-05

    At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

  11. Origins of biological function in DNA and RNA hairpin loop motifs from replica exchange molecular dynamics simulation.

    Science.gov (United States)

    Swadling, Jacob B; Ishii, Kunihiko; Tahara, Tahei; Kitao, Akio

    2018-01-31

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) have remarkably similar chemical structures, but despite this, they play significantly different roles in modern biology. In this article, we explore the possible conformations of DNA and RNA hairpins to better understand the fundamental differences in structure formation and stability. We use large parallel temperature replica exchange molecular dynamics ensembles to sample the full conformational landscape of these hairpin molecules so that we can identify the stable structures formed by the hairpin sequence. Our simulations show RNA adopts a narrower distribution of folded structures compared to DNA at room temperature, which forms both hairpins and many unfolded conformations. RNA is capable of forming twice as many hydrogen bonds than DNA which results in a higher melting temperature. We see that local chemical differences lead to emergent molecular properties such as increased persistence length in RNA that is weakly temperature dependant. These discoveries provide fundamental insight into how RNA forms complex folded tertiary structures which confer enzymatic-like function in ribozymes, whereas DNA retains structural motifs in order to facilitate function such as translation of sequence.

  12. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications.

    Science.gov (United States)

    Haque, Farzin; Pi, Fengmei; Zhao, Zhengyi; Gu, Shanqing; Hu, Haibo; Yu, Hang; Guo, Peixuan

    2018-01-01

    In recent years, RNA has attracted widespread attention as a unique biomaterial with distinct biophysical properties for designing sophisticated architectures in the nanometer scale. RNA is much more versatile in structure and function with higher thermodynamic stability compared to its nucleic acid counterpart DNA. Larger RNA molecules can be viewed as a modular structure built from a combination of many 'Lego' building blocks connected via different linker sequences. By exploiting the diversity of RNA motifs and flexibility of structure, varieties of RNA architectures can be fabricated with precise control of shape, size, and stoichiometry. Many structural motifs have been discovered and characterized over the years and the crystal structures of many of these motifs are available for nanoparticle construction. For example, using the flexibility and versatility of RNA structure, RNA triangles, squares, pentagons, and hexagons can be constructed from phi29 pRNA three-way-junction (3WJ) building block. This review will focus on 2D RNA triangles, squares, and hexamers; 3D and 4D structures built from basic RNA building blocks; and their prospective applications in vivo as imaging or therapeutic agents via specific delivery and targeting. Methods for intracellular cloning and expression of RNA molecules and the in vivo assembly of RNA nanoparticles will also be reviewed. WIREs RNA 2018, 9:e1452. doi: 10.1002/wrna.1452 This article is categorized under: RNA Methods > RNA Nanotechnology RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs. © 2017 Wiley Periodicals, Inc.

  13. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  14. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support.

    Science.gov (United States)

    Yang, Kai-Chien; Yamada, Kathryn A; Patel, Akshar Y; Topkara, Veli K; George, Isaac; Cheema, Faisal H; Ewald, Gregory A; Mann, Douglas L; Nerbonne, Jeanne M

    2014-03-04

    Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.

  15. Developing a dynamic life cycle greenhouse gas emission inventory for wood construction for two different end-of-life scenarios

    Science.gov (United States)

    Richard D. Bergman; James Salazar; Scott Bowe

    2012-01-01

    Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....

  16. Construction of multiple trade-offs to obtain arbitrary singularities of adaptive dynamics.

    Science.gov (United States)

    Kisdi, Éva

    2015-04-01

    Evolutionary singularities are central to the adaptive dynamics of evolving traits. The evolutionary singularities are strongly affected by the shape of any trade-off functions a model assumes, yet the trade-off functions are often chosen in an ad hoc manner, which may unjustifiably constrain the evolutionary dynamics exhibited by the model. To avoid this problem, critical function analysis has been used to find a trade-off function that yields a certain evolutionary singularity such as an evolutionary branching point. Here I extend this method to multiple trade-offs parameterized with a scalar strategy. I show that the trade-off functions can be chosen such that an arbitrary point in the viability domain of the trait space is a singularity of an arbitrary type, provided (next to certain non-degeneracy conditions) that the model has at least two environmental feedback variables and at least as many trade-offs as feedback variables. The proof is constructive, i.e., it provides an algorithm to find trade-off functions that yield the desired singularity. I illustrate the construction of trade-offs with an example where the virulence of a pathogen evolves in a small ecosystem of a host, its pathogen, a predator that attacks the host and an alternative prey of the predator.

  17. Elucidation of the conformational dynamics of multi-body systems by construction of Markov state models.

    Science.gov (United States)

    Zhu, Lizhe; Sheong, Fu Kit; Zeng, Xiangze; Huang, Xuhui

    2016-11-09

    Constructing Markov State Models (MSMs) based on short molecular dynamics simulations is a powerful computational technique to complement experiments in predicting long-time kinetics of biomolecular processes at atomic resolution. Even though the MSM approach has been widely applied to study one-body processes such as protein folding and enzyme conformational changes, the majority of biological processes, e.g. protein-ligand recognition, signal transduction, and protein aggregation, essentially involve multiple entities. Here we review the attempts at constructing MSMs for multi-body systems, point out the challenges therein and discuss recent algorithmic progresses that alleviate these challenges. In particular, we describe an automatic kinetics based partitioning method that achieves optimal definition of the conformational states in a multi-body system, and discuss a novel maximum-likelihood approach that efficiently estimates the slow uphill kinetics utilizing pre-computed equilibrium populations of all states. We expect that these new algorithms and their combinations may boost investigations of important multi-body biological processes via the efficient construction of MSMs.

  18. FlightDynLib: An Object-Oriented Model Component Library for Constructing Multi-Disciplinary Aircraft Dynamics Models

    OpenAIRE

    Looye, G.; Hecker, S.; Kier, T.; Reschke, C.

    2005-01-01

    In this paper a model component library for developing multi-disciplinary aircraft flight dynamics models is presented, named FlightDynLib. This library is based on the object-oriented modelling language Modelica that has been designed for modelling of large scale multi-physics systems. The flight dynamics library allows for graphical construction of comlex rigid as well as flexible aircraft dynamics models and is fully compatible with other available libraries for electronics, thermodynamics...

  19. A new technique in constructing closed-form solutions for nonlinear PDEs appearing in fluid mechanics and gas dynamics

    Directory of Open Access Journals (Sweden)

    Panayotounakos D. E.

    1996-01-01

    Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.

  20. [Construction of Eukaryotic Expression Vector of siRNA Specific for BCR/ABL Fusion Gene and Its Effects on K562 Cells].

    Science.gov (United States)

    Li, Ming; Wang, Bao-Lin; Wang, Li-Na; Xi, Ya-Ming

    2016-12-01

    To construct eukaryotic expression vector of siRNA specific for BCR/ABL and to investigate the effect of recombinant plasmid on BCR/ABL and P210 protein expression in K562 cells. siRNA(small interfering RNA)was designed according to the Tuschl's principle of Ai-based medicine, and was converted into cDNA coding expression of shRNA(small hairpin RNAs)of siRNA for BCR/ABL fusion gene. The cDNA was synthesized and inserted into plasmid pTER. The pTER117 and pTER363 of recombinant plasmid being eukaryotic expression vector was controlled by the H1 promoter of RNA polymerase III, and identified by the restriction map and the sequence analysis. The recombinant plasmid did not only have the screening resisting antibiotics, its expression but also are induced by tetracycline (tet). After steadily transfection into K562 cells by Lipofectamine, their positive mono-cell clones being resistant to Zeocin were isolated. TaqMan real-time quantitative RT-PCR (RQ-PCR) and Western blot respectively detected expression of BCR/ABL mRNA and P210 protein. Trypaum blue dying was used to analyze the proliferation of K562 cells. Cell apoptosis was observed by flow cytometer. the recombinant plasmid was steadily transfected into K562 cells by Lipofectamine 2000, Their positive mono-cell clones being resistant to Zeocin were isolated. The proliferation of K562 cells were remarkably inhibited by the recombinant plasmid induced gene expression by tetracycline. Tetracycline induced its expression for 48 h and 72 h. pTER117, pTER363 decreased the mRNA level of BCR/ABL 90%, 82% and 91.5%, 84%, respectively, P210 protein were almost measured in K562 cells. FCM analysis showed that the recombinant plasmid induced apoptosis in K562 cells, the apoptosis rate were respectively 34.4%, 58.1% in K562 cells treated by pTER117 for 48 h and 72 h, apoptosis rate were 31.8%, 54.6% by pTER363, but the control groups did not show these effects on K562 cells. The siRNA eukaryotic expression vector against BCR

  1. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase.

    Science.gov (United States)

    Chang, Chih-Yao; Chien, Chin-I; Chang, Chia-Pei; Lin, Bo-Chun; Wang, Chien-Chia

    2016-08-05

    WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Seasonal Dynamics of Bacterioplankton Community Structure in a Eutrophic Lake as Determined by 5S rRNA Analysis

    Science.gov (United States)

    Höfle, Manfred G.; Haas, Heike; Dominik, Katja

    1999-01-01

    Community structure of bacterioplankton was studied during the major growth season for phytoplankton (April to October) in the epilimnion of a temperate eutrophic lake (Lake Plußsee, northern Germany) by using comparative 5S rRNA analysis. Estimates of the relative abundances of single taxonomic groups were made on the basis of the amounts of single 5S rRNA bands obtained after high-resolution electrophoresis of RNA directly from the bacterioplankton. Full-sequence analysis of single environmental 5S rRNAs enabled the identification of single taxonomic groups of bacteria. Comparison of partial 5S rRNA sequences allowed the detection of changes of single taxa over time. Overall, the whole bacterioplankton community showed two to eight abundant (>4% of the total 5S rRNA) taxa. A distinctive seasonal succession was observed in the taxonomic structure of this pelagic community. A rather-stable community structure, with seven to eight different taxonomic units, was observed beginning in April during the spring phytoplankton bloom. A strong reduction in this diversity occurred at the beginning of the clear-water phase (early May), when only two to four abundant taxa were observed, with one taxon dominating (up to 72% of the total 5S rRNA). The community structure during summer stagnation (June and July) was characterized by frequent changes of different dominating taxa. During late summer, a dinoflagellate bloom (Ceratium hirudinella) occurred, with Comamonas acidovorans (β-subclass of the class Proteobacteria) becoming the dominant bacterial species (average abundance of 43% of the total 5S rRNA). Finally, the seasonal dynamics of the community structure of bacterioplankton were compared with the abundances of other major groups of the aquatic food web, such as phyto- and zooplankton, revealing that strong grazing pressure by zooplankton can reduce microbial diversity substantially in pelagic environments. PMID:10388718

  3. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  4. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  5. Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening.

    Science.gov (United States)

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2013-08-16

    Cheddar cheese is a complex ecosystem where both the bacterial population and the cheese making process contribute to flavor and texture development. The aim of this study was to use molecular methods to evaluate the impact of milk heat treatment and ripening temperature on starter lactococci and non-starter lactic acid bacteria (NSLAB) throughout ripening of Cheddar cheese. Eight Cheddar cheese batches were manufactured (four with thermized and four with pasteurized milk) and ripened at 4, 7 and 12°C to analyze the bacterial composition and rRNA transcriptional activity reflecting the ability of lactococci and lactobacilli to synthesize proteins. Abundance and rRNA transcription of lactococci and lactobacilli were quantified after DNA and RNA extraction by using quantitative PCR (qPCR) and reverse transcription-quantitative PCR (RT-qPCR) targeting the 16S rRNA gene, respectively. Results showed that lactococci remained dominant throughout ripening, although 16S rRNA genome and cDNA copies/g of cheese decreased by four and two log copy numbers, respectively. Abundance and rRNA transcription of Lactobacillus paracasei, Lactobacillus buchneri/parabuchneri, Lactobacillus rhamnosus, Lactobacillus brevis, and Lactobacillus coryniformis as well as total lactobacilli were also estimated using specific 16S rRNA primers. L. paracasei and L. buchneri/parabuchneri concomitantly grew in cheese made from thermized milk at 7 and 12°C, although L. paracasei displayed the most rRNA transcription among Lactobacillus species. This work showed that rRNA transcriptional activity of lactococci decreased throughout ripening and supports the usefulness of RNA analysis to assess which bacterial species have the ability to synthesize proteins during ripening, and could thereby contribute to cheese quality. © 2013.

  6. Molecular insights into the specific recognition between the RNA binding domain qRRM2 of hnRNP F and G-tract RNA: A molecular dynamics study.

    Science.gov (United States)

    Wang, Lingyun; Yan, Feng

    2017-12-09

    Heterogeneous nuclear ribonucleoprotein F (hnRNP F) controls the expression of various genes through regulating the alternative splicing of pre-mRNAs in the nucleus. It uses three quasi-RNA recognition motifs (qRRMs) to recognize G-tract RNA which contains at least three consecutive guanines. The structures containing qRRMs of hnRNP F in complex with G-tract RNA have been determined by nuclear magnetic resonance (NMR) spectroscopy, shedding light on the recognition mechanism of qRRMs with G-tract RNA. However, knowledge of the recognition details is still lacking. To investigate how qRRMs specifically bind with G-tract RNA and how the mutations of any guanine to an adenine in the G-tract affect the binding, molecular dynamics simulations with binding free energy analysis were performed based on the NMR structure of qRRM2 in complex with G-tract RNA. Simulation results demonstrate that qRRM2 binds strongly with G-tract RNA, but any mutation of the G-tract leads to a drastic reduction of the binding free energy. Further comparisons of the energetic components reveal that van der Waals and non-polar interactions play essential roles in the binding between qRRM2 and G-tract RNA, but the interactions are weakened by the effect of RNA mutations. Structural and dynamical analyses indicate that when qRRM2 binds with G-tract RNA, both qRRM2 and G-tract maintain stabilized structures and dynamics; however, the stability is disrupted by the mutations of the G-tract. These results provide novel insights into the recognition mechanism of qRRM2 with G-tract RNA that are not elucidated by the NMR technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Capturing Parenting as a Multidimensional and Dynamic Construct with a Person-Oriented Approach.

    Science.gov (United States)

    Zheng, Yao; Pasalich, Dave S; Oberth, Carla; McMahon, Robert J; Pinderhughes, Ellen E

    2017-04-01

    Although parenting is one of the most commonly studied predictors of child problem behavior, few studies have examined parenting as a multidimensional and dynamic construct. This study investigated different patterns of developmental trajectories of two parenting dimensions (harsh discipline [HD] and parental warmth [PW]) with a person-oriented approach and examined the associations between different parenting patterns and child externalizing problems and callous-unemotional traits. Data were drawn from the combined high-risk control and normative sample (n = 753) of the Fast Track Project. Parent-reported HD and observer-reported PW from kindergarten to grade 2 were fit to growth mixture models. Two subgroups were identified for HD (low decreasing, 83.0 %; high stable, 17.0 %) and PW (high increasing, 78.7 %; low increasing, 21.3 %). The majority of parents (67.0 %) demonstrated the low decreasing HD and high increasing PW pattern, while the prevalence of the high stable HD and low increasing PW pattern was the lowest (6.8 %). Parenting satisfaction, parental depression, family socioeconomic status, and neighborhood safety predicted group memberships jointly defined by the two dimensions. Children from the high stable HD and low increasing PW pattern showed the highest levels of externalizing problems in grades 4 and 5. Children from the low decreasing HD and low increasing PW pattern showed the highest levels of callous-unemotional traits in grade 7. These findings demonstrate the utility and significance of a person-oriented approach to measuring parenting as a multidimensional and dynamic construct and reveal the interplay between HD and PW in terms of their influences on child developmental outcomes.

  8. The “sociotype” construct: Gauging the structure and dynamics of human sociality

    Science.gov (United States)

    Marijuán, Pedro C.; Montero-Marín, Jesús; Navarro, Jorge; García-Campayo, Javier; del Moral, Raquel

    2017-01-01

    Exploring the pertinence of a "sociotype" construct, established along the conceptual chain genotype-phenotype-sociotype, is the essential purpose of the present paper. Further, by following the sociotype’s conceptual guidelines, a new psychometric indicator has been developed in order to gauge the level of social interaction around each individual—the sociotype questionnaire (SOCQ). A first version of this questionnaire has been elaborated by gathering data about the different classes of social bonds (family, friends, acquaintances, and work/study colleagues) in general population and about the dynamic update of these bonds via face-to-face conversation and other modes of interaction. A specific fieldwork was undertaken, involving 1,075 participants, all of them Spanish adults (with diverse social and regional backgrounds). The data obtained were analyzed by means of the correlational method with an analytical cross-sectional design: the number of factors and the consistency and reliability of the resulting scales were evaluated and correlated. The new sociotype indicator resulting from that fieldwork, in spite of its limitations, seems to be valid and reliable, as well as closely associated with widely used metrics of loneliness and psychological distress. It is interesting that the construct noticeably varies throughout the life course and circumstances of individuals, based on their gender and age, and adjusting to the different situations of social networking. This is the first study, to the best of our knowledge, which has tried to reach both a theoretical and an operational formulation of the sociotype construct, by establishing an ad hoc psychometric questionnaire. We think that the information provided by this operational definition opens a new direction of work that could be useful to guide the development and evaluation of programs aimed at improving and strengthening social networking in people at risk, especially for the elderly. PMID:29240816

  9. The "sociotype" construct: Gauging the structure and dynamics of human sociality.

    Science.gov (United States)

    Marijuán, Pedro C; Montero-Marín, Jesús; Navarro, Jorge; García-Campayo, Javier; Del Moral, Raquel

    2017-01-01

    Exploring the pertinence of a "sociotype" construct, established along the conceptual chain genotype-phenotype-sociotype, is the essential purpose of the present paper. Further, by following the sociotype's conceptual guidelines, a new psychometric indicator has been developed in order to gauge the level of social interaction around each individual-the sociotype questionnaire (SOCQ). A first version of this questionnaire has been elaborated by gathering data about the different classes of social bonds (family, friends, acquaintances, and work/study colleagues) in general population and about the dynamic update of these bonds via face-to-face conversation and other modes of interaction. A specific fieldwork was undertaken, involving 1,075 participants, all of them Spanish adults (with diverse social and regional backgrounds). The data obtained were analyzed by means of the correlational method with an analytical cross-sectional design: the number of factors and the consistency and reliability of the resulting scales were evaluated and correlated. The new sociotype indicator resulting from that fieldwork, in spite of its limitations, seems to be valid and reliable, as well as closely associated with widely used metrics of loneliness and psychological distress. It is interesting that the construct noticeably varies throughout the life course and circumstances of individuals, based on their gender and age, and adjusting to the different situations of social networking. This is the first study, to the best of our knowledge, which has tried to reach both a theoretical and an operational formulation of the sociotype construct, by establishing an ad hoc psychometric questionnaire. We think that the information provided by this operational definition opens a new direction of work that could be useful to guide the development and evaluation of programs aimed at improving and strengthening social networking in people at risk, especially for the elderly.

  10. The "sociotype" construct: Gauging the structure and dynamics of human sociality.

    Directory of Open Access Journals (Sweden)

    Pedro C Marijuán

    Full Text Available Exploring the pertinence of a "sociotype" construct, established along the conceptual chain genotype-phenotype-sociotype, is the essential purpose of the present paper. Further, by following the sociotype's conceptual guidelines, a new psychometric indicator has been developed in order to gauge the level of social interaction around each individual-the sociotype questionnaire (SOCQ. A first version of this questionnaire has been elaborated by gathering data about the different classes of social bonds (family, friends, acquaintances, and work/study colleagues in general population and about the dynamic update of these bonds via face-to-face conversation and other modes of interaction. A specific fieldwork was undertaken, involving 1,075 participants, all of them Spanish adults (with diverse social and regional backgrounds. The data obtained were analyzed by means of the correlational method with an analytical cross-sectional design: the number of factors and the consistency and reliability of the resulting scales were evaluated and correlated. The new sociotype indicator resulting from that fieldwork, in spite of its limitations, seems to be valid and reliable, as well as closely associated with widely used metrics of loneliness and psychological distress. It is interesting that the construct noticeably varies throughout the life course and circumstances of individuals, based on their gender and age, and adjusting to the different situations of social networking. This is the first study, to the best of our knowledge, which has tried to reach both a theoretical and an operational formulation of the sociotype construct, by establishing an ad hoc psychometric questionnaire. We think that the information provided by this operational definition opens a new direction of work that could be useful to guide the development and evaluation of programs aimed at improving and strengthening social networking in people at risk, especially for the elderly.

  11. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Luo Zhaohui

    2012-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA (mRNA and protein synthesis. Recent studies have shown that some miRNAs are involved in the progression of nasopharyngeal carcinoma (NPC. However, the aberrant miRNAs implicated in different clinical stages of NPC remain unknown and their functions have not been systematically studied. Methods In this study, miRNA microarray assay was performed on biopsies from different clinical stages of NPC. TargetScan was used to predict the target genes of the miRNAs. The target gene list was narrowed down by searching the data from the UniGene database to identify the nasopharyngeal-specific genes. The data reduction strategy was used to overlay with nasopharyngeal-specifically expressed miRNA target genes and complementary DNA (cDNA expression data. The selected target genes were analyzed in the Gene Ontology (GO biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG biological pathway. The microRNA-Gene-Network was build based on the interactions of miRNAs and target genes. miRNA promoters were analyzed for the transcription factor (TF binding sites. UCSC Genome database was used to construct the TF-miRNAs interaction networks. Results Forty-eight miRNAs with significant change were obtained by Multi-Class Dif. The most enriched GO terms in the predicted target genes of miRNA were cell proliferation, cell migration and cell matrix adhesion. KEGG analysis showed that target genes were significantly involved in adherens junction, cell adhesion molecules, p53 signalling pathway et al. Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-29a/c, miR-34b, miR-34c-3p, miR-34c-5p, miR-429, miR-203, miR-222, miR-1/206, miR-141, miR-18a/b, miR-544, miR-205 and miR-149 may play important roles on the development of NPC. We proposed an integrative strategy for identifying the miRNA-mRNA

  12. Construction of Potential Energy Surfaces for Theoretical Studies of Spectroscopy and Dynamics

    Science.gov (United States)

    Dawes, Richard

    2015-06-01

    Accurate potential energy surfaces (PESs) combined with methods to solve the Schrödinger equation for the nuclei permit the prediction and interpretation of various types of molecular spectra and/or dynamics. Part of this talk describes the development of a PES generator (software code) which uses parallel processing on High-Performance Computing (HPC) clusters to construct PESs automatically. Thousands of ab initio data are computed at geometries chosen by an algorithm and fit to a functional form. This strategy is particularly successful when the electronic structure is robustly convergent (such as vdWs systems composed of two closed-shell monomers). Results for a few of such systems [e.g., (CO)2, (NNO)2, CO2-CS2, (OCS)2] will be presented. The electronic structure of molecules is difficult to describe continuously across global reactive PESs since it changes qualitatively as bonds are formed and broken along reaction coordinates. I will discuss a high-level ab initio method (GDW-SA-CASSCF/MRCI) designed to allow the electronic wavefunction to smoothly evolve across the PES and provide an accurate and balanced description of the various regions. These methods are combined to study a number of small gas-phased molecules from the areas of atmospheric, combustion and interstellar chemistry including a large variational calculation of all the bound vibrational states of ozone and the photodissociation dynamics of the simplest Criegee intermediate (CH2OO).

  13. Justice as a dynamic construct: effects of individual trajectories on distal work outcomes.

    Science.gov (United States)

    Hausknecht, John P; Sturman, Michael C; Roberson, Quinetta M

    2011-07-01

    Despite an amassing organizational justice literature, few studies have directly addressed the temporal patterning of justice judgments and the effects that changes in these perceptions have on important work outcomes. Drawing from Gestalt characteristics theory (Ariely & Carmon, 2000, 2003), we examine the concept of justice trajectories (i.e., levels and trends of individual fairness perceptions over time) and offer empirical evidence to highlight the value of considering fairness within a dynamic context. Participants included 523 working adults who completed surveys about their work experiences on 4 occasions over the course of 1 year. Results indicate that justice trends explained additional variance in distal work outcomes (job satisfaction, organizational commitment, and turnover intentions) after controlling for end-state levels of justice, demonstrating the cumulative effects of justice over time. Findings also reveal that change in procedural justice perceptions affected distal work outcomes more strongly than any other justice dimension. Implications for theory and future investigations of justice as a dynamic construct are discussed.

  14. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape

    Science.gov (United States)

    St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp

    2012-01-01

    Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933

  15. The Competing Dynamics and Relationships in Corporate and Local Government Agency Constructions of Place

    Directory of Open Access Journals (Sweden)

    Natalie Russell

    2014-05-01

    Full Text Available This paper explores the dynamics of how private sector business entities and local government bodies perceive and interact with the identity of the locality in which they operate. It identifies tensions and differences in, and consequences of, the dynamics and relationships between how private sector business entities view constructions of ‘place’ and how government and publicly-funded place-marketing organisations portray and promote localities. These issues are examined through the phenomenon, brand and slogan of ‘visit, live, invest’ which is gaining credence in the United Kingdom and elsewhere in the world. The paper develops data using in-depth interviews and a small-scale survey set within an overall interpretivistic case study approach. The data and the case-study demonstrate that, despite the rebranding of the local government agencies as a place-marketing organisation committed to the new ‘live, visit, invest’ initiative and brand agenda, there is an ongoing ‘cultural hangover’ from previous place promotion policies. There are also serious impacts and consequences for relationships between the public and private sectors and with other stakeholders. The prevailing image of UKTown (real name anonymised by business leaders is one that sees this town fundamentally as a historic, traditional and conservative town. This image has been the product of many years of older style promotion in this vein. While such an image may suggest pleasant aspects of the living environment, it has little to do with corporate image, values and concerns and many private sector business entities do not identity with it. In several instances it is even considered by certain business sectors to be ‘detrimental’ to the need for a dynamic business environment and the forms of relationships and activities these necessitate. The paper indicates a number of strategic moves that could be adopted in order to improve this predicament.

  16. Snapshots of Dynamics in Synthesizing N6-isopentenyladenosine at tRNA Anticodon†,‡

    Science.gov (United States)

    Chimnaronk, Sarin; Forouhar, Farhad; Sakai, Junichi; Yao, Min; Tron, Cecile M.; Atta, Mohamed; Fontecave, Marc; Hunt, John F.; Tanaka, Isao

    2009-01-01

    Bacterial and eukaryotic transfer RNAs that decode codons starting with uridine have a hydrophobically-hypermodified adenosine at the position 37 (A37) adjacent to the 3′-end of the anticodon, which is essential for efficient and highly accurate protein translation by the ribosome. However, it remains unclear how the corresponding tRNAs are selected to be modified by alkylation at the correct position of the adenosine base. We have determined a series of the crystal structures of bacterial tRNA isopentenyltransferase (MiaA) in apo- and tRNA-bound forms, which completely render snapshots of substrate selections during modification of RNA. A compact evolutionary inserted domain (herein ‘swinging domain’) in MiaA that exhibits as a highly mobile entity moves around the catalytic domain as likely to reach and trap the tRNA substrate. Thereby, MiaA clamps the anticodon stem loop of tRNA substrate between the catalytic and swinging domains, where the two conserved elongated residues from the swinging domain pinch the two flanking A36 and A38 together to squeeze out A37 into the reaction tunnel. The site-specific isopentenylation of RNA is thus ensured by a characteristic pinch-and-flip mechanism and by a reaction tunnel to confine the substrate selection. Furthermore, combining information from soaking experiments with structural comparisons, we propose a mechanism for the ordered substrate-binding of MiaA. PMID:19435325

  17. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis

    Directory of Open Access Journals (Sweden)

    Mayuri Rege

    2015-11-01

    Full Text Available The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac, a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal noncoding RNAs (ncRNAs in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs. Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.

  18. Eigenvectors determination of the ribosome dynamics model during mRNA translation using the Kleene Star algorithm

    Science.gov (United States)

    Ernawati; Carnia, E.; Supriatna, A. K.

    2018-03-01

    Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.

  19. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  20. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  1. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  2. RNA Polymerase Structure, Function, Regulation, Dynamics, Fidelity, and Roles in GENE EXPRESSION | Center for Cancer Research

    Science.gov (United States)

    Multi-subunit RNA polymerases (RNAP) are ornate molecular machines that translocate on a DNA template as they generate a complementary RNA chain. RNAPs are highly conserved in evolution among eukarya, eubacteria, archaea, and some viruses. As such, multi-subunit RNAPs appear to be an irreplaceable advance in the evolution of complex life on earth. Because of their stepwise movement on DNA, RNAPs are considered to be molecular motors, and because RNAPs catalyze a templated polymerization reaction, they are central to biological information flow.

  3. Deep RNA sequencing reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1.

    Directory of Open Access Journals (Sweden)

    Guillaume Blanc

    Full Text Available Paramecium bursaria chlorella virus 1 (PBCV-1 is the prototype of the genus Chlorovirus (family Phycodnaviridae that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i., transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i. was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.

  4. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

    Science.gov (United States)

    Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su

    2014-12-01

    Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Rapid Construction of Complex Plant RNA Virus Infectious cDNA Clones for Agroinfection Using a Yeast-E. coli-Agrobacterium Shuttle Vector.

    Science.gov (United States)

    Sun, Kai; Zhao, Danyang; Liu, Yong; Huang, Changjun; Zhang, Wei; Li, Zhenghe

    2017-11-07

    The availability of infectious full-length clone is indispensable for reverse genetics studies of virus biology, pathology and construction of viral vectors. However, for RNA viruses with large genome sizes or those exhibiting inherent cloning difficulties, procedure to generate biologically active circular DNA (cDNA) clones can be time-consuming or technically challenging. Here we have constructed a yeast- Escherichia coli - Agrobacterium shuttle vector that enables highly efficient homologous recombination in yeast for assembly of Agrobacterium compatible plant virus clones. Using this vector, we show that infectious cDNA clones of a plant negative-stranded RNA virus, sonchus yellow net rhabdovirus, can be rapidly assembled. In addition, one-step assembly of infectious clones of potato virus Y in yeast, either with or without intron, was readily achieved from as many as eight overlapping DNA fragments. More importantly, the recovered yeast plasmids can be transformed directly into Agrobacterium for inoculation, thereby obviating the E. coli cloning steps and associated toxicity issues. This method is rapid, highly efficient and cost-effective and should be readily applicable to a broad range of plant viruses.

  6. Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing.

    Science.gov (United States)

    Ng, Chuan Young; Gu, Feng; Phong, Wai Yee; Chen, Yen-Liang; Lim, Siew Pheng; Davidson, Andrew; Vasudevan, Subhash G

    2007-12-01

    Self-replicating, non-infectious flavivirus subgenomic replicons have been broadly used in the studies of trans-complementation, adaptive mutation, viral assembly and packaging in Kunjin, yellow fever and West Nile viruses. We describe here the construction of subgenomic EGFP- or Renilla luciferase-reporter based dengue replicons of the type 2 New Guinea C (NGC) strain and the establishment of stable BHK21 cell lines harboring the replicons. In replicon cells, viral proteins and RNAs are stably expressed at levels similar to cells transfected with the full length NGC infectious RNA. Furthermore, the replicon can be packaged by separately transfected C (core)-prM (pre-membrane)-E (envelope) polyprotein construct. The replicon cells were subjected to treatment with several antiviral compounds and inhibition of the replicon was observed in treatment with known nucleoside analog inhibitors of NS5 such as 2'-C-methyladenosine (EC(50)=2.42 +/- 0.59 microM), or ribavirin (EC(50)=6.77 +/- 1.33 microM), mycophenolic acid (EC(50)=1.31 +/- 0.27 microM) and siRNA against NS3. The BHK-replicon cells have been stably maintained for about 10 passages without significant loss in reporter intensity and are sufficiently robust for both research and drug discovery.

  7. Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Hindra

    Full Text Available Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization of a conserved small RNA (sRNA, scr4677. In the model species Streptomyces coelicolor, this sRNA is located in the intergenic region separating SCO4677 (an anti-sigma factor-encoding gene and SCO4676 (a putative regulatory protein-encoding gene, close to the SCO4676 translation start site in an antisense orientation. There appears to be considerable genetic interplay between these different gene products, with wild type expression of scr4677 requiring function of the anti-sigma factor SCO4677, and scr4677 in turn influencing the abundance of SCO4676-associated transcripts. The scr4677-mediated effects were independent of RNase III (a double stranded RNA-specific nuclease, with RNase III having an unexpectedly positive influence on the level of SCO4676-associated transcripts. We have shown that both SCO4676 and SCO4677 affect the production of the blue-pigmented antibiotic actinorhodin under specific growth conditions, and that this activity appears to be independent of scr4677.

  8. Asymmetric Dynamic Attunement of Speech and Gestures in the Construction of Children's Understanding.

    Science.gov (United States)

    De Jonge-Hoekstra, Lisette; Van der Steen, Steffie; Van Geert, Paul; Cox, Ralf F A

    2016-01-01

    As children learn they use their speech to express words and their hands to gesture. This study investigates the interplay between real-time gestures and speech as children construct cognitive understanding during a hands-on science task. 12 children (M = 6, F = 6) from Kindergarten (n = 5) and first grade (n = 7) participated in this study. Each verbal utterance and gesture during the task were coded, on a complexity scale derived from dynamic skill theory. To explore the interplay between speech and gestures, we applied a cross recurrence quantification analysis (CRQA) to the two coupled time series of the skill levels of verbalizations and gestures. The analysis focused on (1) the temporal relation between gestures and speech, (2) the relative strength and direction of the interaction between gestures and speech, (3) the relative strength and direction between gestures and speech for different levels of understanding, and (4) relations between CRQA measures and other child characteristics. The results show that older and younger children differ in the (temporal) asymmetry in the gestures-speech interaction. For younger children, the balance leans more toward gestures leading speech in time, while the balance leans more toward speech leading gestures for older children. Secondly, at the group level, speech attracts gestures in a more dynamically stable fashion than vice versa, and this asymmetry in gestures and speech extends to lower and higher understanding levels. Yet, for older children, the mutual coupling between gestures and speech is more dynamically stable regarding the higher understanding levels. Gestures and speech are more synchronized in time as children are older. A higher score on schools' language tests is related to speech attracting gestures more rigidly and more asymmetry between gestures and speech, only for the less difficult understanding levels. A higher score on math or past science tasks is related to less asymmetry between gestures and

  9. Asymmetric dynamic attunement of speech and gestures in the construction of children’s understanding

    Directory of Open Access Journals (Sweden)

    Lisette eDe Jonge-Hoekstra

    2016-03-01

    Full Text Available As children learn they use their speech to express words and their hands to gesture. This study investigates the interplay between real-time gestures and speech as children construct cognitive understanding during a hands-on science task. 12 children (M = 6, F = 6 from Kindergarten (n = 5 and first grade (n = 7 participated in this study. Each verbal utterance and gesture during the task were coded, on a complexity scale derived from dynamic skill theory. To explore the interplay between speech and gestures, we applied a cross recurrence quantification analysis (CRQA to the two coupled time series of the skill levels of verbalizations and gestures. The analysis focused on 1 the temporal relation between gestures and speech, 2 the relative strength and direction of the interaction between gestures and speech, 3 the relative strength and direction between gestures and speech for different levels of understanding, and 4 relations between CRQA measures and other child characteristics. The results show that older and younger children differ in the (temporal asymmetry in the gestures-speech interaction. For younger children, the balance leans more towards gestures leading speech in time, while the balance leans more towards speech leading gestures for older children. Secondly, at the group level, speech attracts gestures in a more dynamically stable fashion than vice versa, and this asymmetry in gestures and speech extends to lower and higher understanding levels. Yet, for older children, the mutual coupling between gestures and speech is more dynamically stable regarding the higher understanding levels. Gestures and speech are more synchronized in time as children are older. A higher score on schools’ language tests is related to speech attracting gestures more rigidly and more asymmetry between gestures and speech, only for the less difficult understanding levels. A higher score on math or past science tasks is related to less asymmetry between

  10. A Competency Model for Process Dynamics and Control and Its Use for Test Construction at University Level

    Science.gov (United States)

    Taskinen, Päivi H.; Steimel, Jochen; Gräfe, Linda; Engell, Sebastian; Frey, Andreas

    2015-01-01

    This study examined students' competencies in engineering education at the university level. First, we developed a competency model in one specific field of engineering: process dynamics and control. Then, the theoretical model was used as a frame to construct test items to measure students' competencies comprehensively. In the empirical…

  11. Learning How to Construct Models of Dynamic Systems: An Initial Evaluation of the Dragoon Intelligent Tutoring System

    Science.gov (United States)

    VanLehn, Kurt; Wetzel, Jon; Grover, Sachin; van de Sande, Brett

    2017-01-01

    Constructing models of dynamic systems is an important skill in both mathematics and science instruction. However, it has proved difficult to teach. Dragoon is an intelligent tutoring system intended to quickly and effectively teach this important skill. This paper describes Dragoon and an evaluation of it. The evaluation randomly assigned…

  12. Dynamics of a Definition: A Framework to Analyse Student Construction of the Concept of Solution to a Differential Equation

    Science.gov (United States)

    Raychaudhuri, Debasree

    2008-01-01

    In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…

  13. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.

    Science.gov (United States)

    Baumschlager, Armin; Aoki, Stephanie K; Khammash, Mustafa

    2017-11-17

    Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.

  14. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution

    Science.gov (United States)

    Zur, Hadas; Tuller, Tamir

    2016-01-01

    mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field. PMID:27591251

  15. Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life

    Science.gov (United States)

    Takeuchi, Nobuto; Hogeweg, Paulien

    2012-09-01

    We review computational studies on prebiotic evolution, focusing on informatic processes in RNA-like replicator systems. In particular, we consider the following processes: the maintenance of information by replicators with and without interactions, the acquisition of information by replicators having a complex genotype-phenotype map, the generation of information by replicators having a complex genotype-phenotype-interaction map, and the storage of information by replicators serving as dedicated templates. Focusing on these informatic aspects, we review studies on quasi-species, error threshold, RNA-folding genotype-phenotype map, hypercycle, multilevel selection (including spatial self-organization, classical group selection, and compartmentalization), and the origin of DNA-like replicators. In conclusion, we pose a future question for theoretical studies on the origin of life.

  16. Evolutionary Dynamics of RNA-like Replicator Systems: A Bioinformatic Approach to the Origin of Life✩

    Science.gov (United States)

    Takeuchi, Nobuto; Hogeweg, Paulien

    2012-01-01

    We review computational studies on prebiotic evolution, focusing on informatic processes in RNA-like replicator systems. In particular, we consider the following processes: the maintenance of information by replicators with and without interactions, the acquisition of information by replicators having a complex genotype-phenotype map, the generation of information by replicators having a complex genotype-phenotype-interaction map, and the storage of information by replicators serving as dedicated templates. Focusing on these informatic aspects, we review studies on quasi-species, error threshold, RNA-folding genotype-phenotype map, hypercycle, multilevel selection (including spatial self-organization, classical group selection, and compartmentalization), and the origin of DNA-like replicators. In conclusion, we pose a future question for theoretical studies on the origin of life. PMID:22727399

  17. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription.

    Science.gov (United States)

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-03-06

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

  18. Genome-Wide Dynamics of Nascent Noncoding RNA Transcription in Porcine Heart After Myocardial Infarction.

    Science.gov (United States)

    Kaikkonen, Minna U; Halonen, Paavo; Liu, Oscar Hsin-Fu; Turunen, Tiia A; Pajula, Juho; Moreau, Pierre; Selvarajan, Ilakya; Tuomainen, Tomi; Aavik, Einari; Tavi, Pasi; Ylä-Herttuala, Seppo

    2017-06-01

    Microarrays and RNA sequencing are widely used to profile transcriptome remodeling during myocardial ischemia. However, the steady-state RNA analysis lacks in sensitivity to detect all noncoding RNA species and does not provide separation between transcriptional and post-transcriptional regulations. Here, we provide the first comprehensive analysis of nascent RNA profiles of mRNAs, primary micro-RNAs, long noncoding RNAs, and enhancer RNAs in a large animal model of acute infarction. Acute infarction was induced by cardiac catheterization of domestic swine. Nuclei isolated from healthy, border zone, and ischemic regions of the affected heart were subjected to global run-on sequencing. Global run-on sequencing analysis indicated that half of affected genes are regulated at the level of transcriptional pausing. A gradient of induction of inflammatory mediators and repression of peroxisome proliferator-activated receptor signaling and oxidative phosphorylation was detected when moving from healthy toward infarcted area. In addition, we interrogated the transcriptional regulation of primary micro-RNAs and provide evidence that several arrhythmia-related target genes exhibit repression at post-transcriptional level. We identified 450 long noncoding RNAs differently regulated by ischemia, including novel conserved long noncoding RNAs expressed in antisense orientation to myocardial transcription factors GATA-binding protein 4, GATA-binding protein 6, and Krüppel-like factor 6. Finally, characterization of enhancers exhibiting differential expression of enhancer RNAs pointed a central role for Krüppel-like factor, MEF2C, ETS, NFY, ATF, E2F2, and NRF1 transcription factors in determining transcriptional responses to ischemia. Global run-on sequencing allowed us to follow the gradient of gene expression occurring in the ischemic heart and identify novel noncoding RNAs regulated by oxygen deprivation. These findings highlight potential new targets for diagnosis and

  19. Dynamic parent-of-origin effects on small interfering RNA expression in the developing maize endosperm

    OpenAIRE

    Xin, Mingming; Yang, Ruolin; Yao, Yingyin; Ma, Chuang; Peng, Huiru; Sun, Qixin; Wang, Xiangfeng; Ni, Zhongfu

    2014-01-01

    Background In angiosperms, the endosperm plays a crucial placenta-like role in that not only is it necessary for nurturing the embryo, but also regulating embryogenesis through complicated genetic and epigenetic interactions with other seed compartments and is the primary tissue in which genomic imprinting occurs. Results We observed a gradual increase of paternal siRNA expression in the early stages of kernels and an expected 2:1 maternal to paternal ratio in 7-DAP endosperm via sequencing o...

  20. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Science.gov (United States)

    Liu, Chengshi

    2010-08-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  1. Clinical assessment of hand motor performance after acquired brain injury with dynamic computerized hand dynamometry: construct, concurrent, and predictive validity.

    Science.gov (United States)

    Barden, Hannah L; Nott, Melissa T; Heard, Robert; Chapparo, Christine; Baguley, Ian J

    2012-12-01

    To assess the construct, concurrent, and predictive validity of dynamic computerized hand dynamometry. Prospective correlational study between dynamometry and functional upper limb performance. Hospital outpatient spasticity clinics. Adults with upper motor neuron syndrome affecting the upper limb after acquired brain injury (ABI) (n=38; median age, 50 y; range, 18-81 y) and healthy adult control participants (n=27; median age, 37 y; range, 22-62 y). Not applicable. Dynamic computerized dynamometry elements of hand performance (isometric force, force velocity, isometric grip work, contraction and relaxation duration) and the Action Research Arm Test. Motor elements of hand performance objectively measured by the dynamic computerized dynamometry protocol achieved moderate to good validity when correlated with standardized measures of functional hand performance. Dynamic computerized dynamometry identified clear differences in hand performance between participants with and without ABI. Within the ABI group, dynamic computerized hand dynamometry achieved fair to moderate predictive validity with regards to whether a participant would be referred for botulinum toxin A injections. This study provides support for the construct, concurrent, and predictive validity of the dynamic computerized dynamometry protocol. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Construction of an M1GS ribozyme for targeted and rapid mRNA cleavage; application on the Ets-2 oncogene.

    Science.gov (United States)

    Toumpeki, Chrisavgi; Anastasakis, Dimitrios; Panagoulias, Ioannis; Stamatopoulou, Vassiliki; Georgakopoulos, Tassos; Kallia-Raftopoulos, Sofia; Mouzaki, Athanasia; Drainas, Denis

    2018-01-11

    Background RNase P-mediated cleavage of target RNAs has been proposed as a promising tool for gene silencing. Ets-2 proto-oncogene controls the expression of a wide variety of genes involved in cancer and immunity. Objective Construction of a functional RNase P-based ribozyme (M1GS303) that targets Ets-2 mRNA Method The accessible sites for targeting of Ets-2 mRNA were identified by footprinting analysis. M1GS303 ribozyme was constructed by cloning. The activity of the ribozyme in the presence or absence of spiramysin in E. coli cells and human cell lines was quantified by RT-PCR. The efficiency of the ribozyme in silencing the endogenous expression of Ets-2 in human cell lines was examined by RT-PCR, western blot and immunofluorescence analysis. Results In E. coli cells co-transformed with plasmids bearing M1GS303 and the ets-2 target gene, Ets-2 mRNA was decreased by 93% 12h after IPTG induction in the absence, and after 4h in the presence of spiramycin. Ets-2 was rapidly downregulated in the human embryonic kidney cell line HEK293 and the T-cell line Jurkat transfected with a M1GS303 plasmid; the silencing effect of M1GS303 was considerably faster when the cells were cultured with spiramycin. In Jurkat cells, Ets-2-downregulation resulted in upregulation of the expression of IL-2, IL-4 and IFN-α cytokine genes that have Ets-2 binding sites on their promoters, whereas it had no effect on the expression of the IL-10 gene that lacks Ets-2 binding sites on its promoter. Conclusion M1GS303 ribozyme cleaves effectively Ets-2 mRNA in bacteria and mammalian cells, and its activity is enhanced by spiramycin. Downregulation of ets-2 gene in the T-cell line Jurkat upregulates IL-2, IL-4 and IFN-α cytokine genes. M1GS technology may be a better alternative to conventional gene-interference therapies and the delineation of the effects of gene silencing in various pathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    Science.gov (United States)

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  4. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding.

    Science.gov (United States)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS(SV40)) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS(SV40) in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS(SV40) formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS(SV40) likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS(SV40) can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.

    Science.gov (United States)

    Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin

    2012-03-01

    During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented

  6. [Dynamic changes of heme oxygenase-1 protein and mRNA in the brains of rats with experimental allergic encephalomyelitis].

    Science.gov (United States)

    Tan, Guo-Jun; Zhu, Yi-Fei; Cao, Cui-Fang; Zhao, Xiao-Yun; Ma, Chang-Sheng; Yang, Tian-Zhu

    2004-10-25

    In order to investigate the role of heme oxygenase-1 (HO-1) in the molecular mechanism of experimental allergic encephalomyelitis (EAE), which was induced by guinea pig spinal cord homogenate + complete freund adjuvant on Wistar rats, we observed the gene of HO-1 and its protein expression with reverse transcriptase polymerase chain reaction(RT-PCR) and immunohistochemistry 1, 7, 14, and 21 d after EAE induction in rats. The relationship between HO-1 and the symptoms of EAE was also observed. The results showed that the levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On day 7, the level of HO-1 mRNA reached the peak, but the expression level of HO-1 protein in the brains reached the peak on day 14. The immunoreactive cells of HO-1 were mainly located at the choroid plexuses and subfornical organ (SFO), as well as in regions around the "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The levels of HO-1 mRNA and its protein expression were lowered gradually on day 21, which were in parallel with the severities of symptoms and signs of EAE. After a specific inhibitor of HO-1, Snpp-9, was applied, both of the symptoms and pathological lesions of EAE in the rat brains were mitigated markedly. Therefore, these results may suggest that the dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brain. In conclusion, the levels of HO-1 mRNA and its protein expression in brains may play an important role in the pathogenesis of EAE, and application of inhibitors of HO-1 may be one of the potential therapeutic ways for the prevention and treatment of EAE.

  7. Construction of a laser combiner for dual fluorescent single molecule imaging of pRNA of phi29 DNA packaging motor.

    Science.gov (United States)

    Zhang, Hui; Shu, Dan; Browne, Mark; Guo, Peixuan

    2010-02-01

    A customized laser combiner was designed and constructed for dual channel single molecule imaging. The feasibility of a combiner-incorporated imaging system was demonstrated in studies of single molecule FRET. Distance rulers made of dual-labeled dsDNA were used to evaluate the system by determining the distance between one FRET pair. The results showed that the system is sensitive enough to distinguish between distances differing by two base pair and the distances calculated from FRET efficiencies are close to those documented in the literature. The single molecule FRET with the dual-color imaging system was also applied to reconstructed phi29 motor pRNA monomers. Finally, techniques for dual laser alignment and tuning of laser power for dual-color excitation are discussed.

  8. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Mykuliak V. V.

    2014-03-01

    Full Text Available Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS. Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD simulations in solution. Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyrosine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the enzyme evidences a significant conformational mobility of the active site.

  9. Dynamic Analyses of Alternative Polyadenylation from RNA-Seq Reveal 3′-UTR Landscape Across 7 Tumor Types

    Science.gov (United States)

    Xia, Zheng; Donehower, Lawrence A; Cooper, Thomas A.; Neilson, Joel R.; Wheeler, David A.; Wagner, Eric J.; Li, Wei

    2015-01-01

    Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human genes, and its implication in diseases including cancer is only beginning to be appreciated. Since conventional APA profiling has not been widely adopted, global cancer APA studies are very limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo identification of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-Cancer tumor/normal pairs across 7 tumor types, DaPars reveals 1,346 genes with recurrent and tumor-specific APAs. Most APA genes (91%) have shorter 3′ UTRs in tumors that can avoid miRNA-mediated repression, including glutaminase (GLS), a key metabolic enzyme for tumor proliferation. Interestingly, selected APA events add strong prognostic power beyond common clinical and molecular variables, suggesting their potential as novel prognostic biomarkers. Finally, our results implicate CstF64, an essential polyadenylation factor, as a master regulator of 3′ UTR shortening across multiple tumor types. PMID:25409906

  10. Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Benjamin Cieply

    2016-04-01

    Full Text Available Alternative splicing (AS plays a critical role in cell fate transitions, development, and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS, including a splicing program that is unique to transgene-independent induced pluripotent stem cells (iPSCs. Changes in the expression of AS factors Zcchc24, Esrp1, Mbnl1/2, and Rbm47 were demonstrated to contribute to phase-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA-binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1. These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency.

  11. Urbanization and the dynamics of RNA viruses in Mallards (Anas platyrhynchos).

    Science.gov (United States)

    Wille, Michelle; Lindqvist, Kristine; Muradrasoli, Shaman; Olsen, Björn; Järhult, Josef D

    2017-07-01

    Urbanization is intensifying worldwide, and affects the epidemiology of infectious diseases. However, the effect of urbanization on natural host-pathogen systems remains poorly understood. Urban ducks occupy an interesting niche in that they directly interact with both humans and wild migratory birds, and either directly or indirectly with food production birds. Here we have collected samples from Mallards (Anas platyrhynchos) residing in a pond in central Uppsala, Sweden, from January 2013 to January 2014. This artificial pond is kept ice-free during the winter months, and is a popular location where the ducks are fed, resulting in a resident population of ducks year-round. Nine hundred and seventy seven (977) fecal samples were screened for RNA viruses including: influenza A virus (IAV), avian paramyxovirus 1, avian coronavirus (CoV), and avian astrovirus (AstroV). This intra-annual dataset illustrates that these RNA viruses exhibit similar annual patterns to IAV, suggesting similar ecological factors are at play. Furthermore, in comparison to wild ducks, autumnal prevalence of IAV and CoV are lower in this urban population. We also demonstrate that AstroV might be a larger burden to urban ducks than IAV, and should be better assessed to demonstrate the degree to which wild birds contribute to the epidemiology of these viruses. The presence of economically relevant viruses in urban Mallards highlights the importance of elucidating the ecology of wildlife pathogens in urban environments, which will become increasingly important for managing disease risks to wildlife, food production animals, and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve.

    Science.gov (United States)

    Huang, Lanfeng; Li, Rui; Liu, Wanguo; Dai, Jin; Du, Zhenwu; Wang, Xiaonan; Ma, Jianchao; Zhao, Jinsong

    2014-07-15

    Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.

  13. The Dynamic Relationship between Growth and Profitability under Long-Term Recession: The Case of Korean Construction Companies

    Directory of Open Access Journals (Sweden)

    Seungkyu Yoo

    2015-12-01

    Full Text Available We conducted an empirical analysis of the dynamic relationship between growth and profitability for small- and medium-sized construction companies that faced long-term economic stagnation in Korea. The period of the analysis spanned 2000 to 2014, and the full period was divided into two halves: before the 2008 global financial crisis and after it. Our empirical model was based on the system generalized method of moments model, and 264 construction companies were used as the study sample. The results of the empirical analysis are as follows. (1 A profitability-driven management strategy limits company growth, thus prolonging the economic downturn; (2 When the macroeconomic environment is relatively stable, high growth in the previous period fosters profitability in the current period. This implies that the phenomenon of dynamic increasing returns is present in the Korean construction industry, and learning through growth enhances productivity and profitability. Consequentially, a strategy oriented towards short-term profitability (popular with small- and medium-sized Korean construction companies makes the corporate management less resilient, causing them to select “de-growth” during the long-term stagnation by decreasing their scale of operations. Accordingly, it is important for companies to maintain the balance between growth and profitability.

  14. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste

    International Nuclear Information System (INIS)

    Yuan Hongping; Chini, Abdol R.; Lu Yujie; Shen Liyin

    2012-01-01

    Highlights: ► We proposes a model for projecting C and D waste reduction of construction projects. ► The model can simulate effects of various management strategies on waste reduction. ► The model integrates all essential variables that affect C and D waste reduction. ► By using the model, best strategies could be identified before being implemented. - Abstract: During the past few decades, construction and demolition (C and D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C and D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C and D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C and D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C and D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity – interrelationships and dynamics – of any social, economic and managerial system. The dynamic model integrates major variables that affect C and D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C and D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only

  15. Cations and hydration in catalytic RNA: Molecular dynamics of the hepatitis delta virus ribozyme

    Czech Academy of Sciences Publication Activity Database

    Krasovská, Maryna V.; Šefčíková, J.; Réblová, Kamila; Schneider, Bohdan; Walter, N.G.; Šponer, Jiří

    2006-01-01

    Roč. 91, č. 2 (2006), s. 626-638 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z40550506 Keywords : molecular dynamics * cations * hydration Subject RIV: BO - Biophysics Impact factor: 4.757, year: 2006

  16. Construction of Rational Maps on the Projective Line with Given Dynamical Structure

    Science.gov (United States)

    2016-05-11

    Gröbner Basis of the Ideal 35 B Proof of Corollary without Transformation 36 3 C SageMath Construction Function for a Quadratic Rational Map 39 D...f2q3 − f3q3 − pq3 + q4)−1 = p Thus p, q form a two-cycle for f(x). 39 C. SageMath Construction Function for a Quadratic Rational Map def

  17. Dynamic regulation of uncoupling protein 2 expression by microRNA-214 in hepatocellular carcinoma.

    Science.gov (United States)

    Yu, Guangsheng; Wang, Jianlu; Xu, Kesen; Dong, Jiahong

    2016-07-01

    Gemcitabine (GEM), a commonly used chemotherapeutic agent in hepatocellular carcinoma (HCC) patients, uses oxidative stress induction as a common effector pathway. However, GEM alone or in combination with oxaliplatin hardly renders any survival benefits to HCC patients. We have recently shown that this is part due to the overexpression of the mitochondrial uncoupling protein 2 (UCP2) that in turn mediates resistance to GEM in HCC patients. However, not much is known about regulatory mechanisms underlying UCP2 overexpression in HCC. Differential protein expression in HCC cell lines did not show a concomitant change in UCP2 transcript level, indicating post-transcriptional or post-translational regulatory mechanism. In situ analysis revealed that UCP2 is a putative target of miR-214 miR-214 expression is significantly down-regulated in HCC patient samples as compared with normal adjacent tissues and in cell line, human hepatoblastoma cells (HuH6), with high UCP2 protein expression. We demonstrated using miR-214 mimic and antagomir that the miRNA targeted UCP2 expression by directly targeting the wild-type, but not a miR-214 seed mutant, 3' UTR of UCP2 Overexpression of miR-214 significantly attenuated cell proliferation. Finally, analysis in 20 HCC patients revealed an inverse correlation in expression of UCP2 and miR-214 (Pearson's correlation coefficient, r=-0.9792). Cumulatively, our data indicate that in the context of HCC, miR-214 acts as a putative tumour suppressor by targeting UCP2 and defines a novel mechanism of regulation of UCP2. © 2016 The Author(s).

  18. Mosquito population dynamics during the construction of Three Gorges Dam in Yangtze River, China.

    Science.gov (United States)

    Guo, Yuhong; Lai, ShengJie; Zhang, Jing; Liu, Qiyong; Zhang, Huaiqing; Ren, Zhoupeng; Mao, Deqiang; Luo, Chao; He, Yuanyuan; Wu, Haixia; Li, Guichang; Ren, Dongsheng; Liu, Xiaobo; Chang, Zhaorui

    2018-06-01

    Mosquitoes are responsible for spreading many diseases and their populations are susceptible to environmental changes. The ecosystems in the Three Gorges Region were probably altered because of changes to the environment during the construction of the Three Gorges Dam (TGD), the world's largest hydroelectric dam by generating capacity. We selected three sites at which to monitor the mosquitoes from 1997 to 2009. We captured adult mosquitoes with battery-powered aspirators fortnightly between May and September of each year in dwellings and sheds. We identified the mosquito species, and examined changes in the species density during the TGD construction. We monitored changes in the species and density of mosquitoes in this area for 13 years during the TGD construction and collected information that could be used to support the control and prevention of mosquito-borne infections. We found that the mosquito species composition around the residential areas remained the same, and the density changed gradually during the TGD construction. The changes in the populations tended to be consistent over the years, and the densities were highest in July, and were between 3 and 5 times greater in the sheds than in the dwellings. The mosquito species and populations remained stable during the construction of the TGD. The mosquito density may have increased as the reservoir filled, and may have decreased during the clean-up work. Clean-up work may be an effective way to control mosquitoes and prevent mosquito-borne diseases. Copyright © 2018. Published by Elsevier B.V.

  19. A New Dynamic Multicriteria Decision-Making Approach for Green Supplier Selection in Construction Projects under Time Sequence

    Directory of Open Access Journals (Sweden)

    Shi Yin

    2017-01-01

    Full Text Available Nowadays, due to the lack of natural resources and environment problems which have been appearing increasingly, green building is more and more involved in the construction industry. The evaluation and selection of green supplier are a significant part of the development of green building. In this paper, we propose a new dynamic multicriteria decision-making approach in construction projects under time sequence to deal with these problems. First, the paper establishes 4 main criteria and 17 subcriteria for green supplier selection in construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the interval-valued intuitionistic fuzzy geometric weighted Heronian means (IVIFGWHM operator and multitarget nonlinear programming model to calculate the comprehensive evaluation results of potential green suppliers. The proposed method is much easier for constructors to select green supplier and make the localization of green supplier more practical and accurate in construction projects. Finally, a case study about a green building project is given to verify practicality and effectiveness of the proposed approach.

  20. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking.

    Science.gov (United States)

    Horner, Stacy M; Wilkins, Courtney; Badil, Samantha; Iskarpatyoti, Jason; Gale, Michael

    2015-01-01

    RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.

  1. Non-Watson-Crick base pairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E

    Czech Academy of Sciences Publication Activity Database

    Réblová, K.; Špačková, Naďa; Koča, J.; Leontis, N. B.; Šponer, Jiří

    2003-01-01

    Roč. 20, č. 6 (2003), s. 986 ISSN 0739-1102. [Albany 2003: Conversation 13. 17.06.2003-21.06.2003, Albany] Institutional research plan: CEZ:AV0Z5004920 Keywords : non- Watson -Crick base pairs * Loop E * RNA Subject RIV: BO - Biophysics

  2. RNA-Seq reveals dynamic changes of gene expression in key stages of intestine regeneration in the sea cucumber Apostichopus japonicus. [corrected].

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: Sea cucumbers (Holothuroidea; Echinodermata have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ~30000 ESTs. RESULTS: We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe. This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M reads were sequenced in every library. Over 2400 up-regulated genes (>10% and over 1000 down-regulated genes (~5% were observed at 3 and 7dpe (log2Ratio ≥ 1, FDR ≤ 0.001. Specific "Go terms" revealed that the DEGs (Differentially Expressed Genes performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term, the "Notch signaling pathway," the "ECM-receptor interaction" and the "Cytokine-cytokine receptor interaction" were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. CONCLUSION: Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched

  3. The Roller-Ground Dynamic Interaction in The Compaction Process Through Vibrations for Road Construction

    Directory of Open Access Journals (Sweden)

    Sergiu Bejan

    2016-12-01

    Full Text Available The natural soil used in filling the embankment of the road communications is characterized by the following factors: humidity, porosity, toughness. For certain factor values that describe the soil state is distinguished a certain soil behavior under the influence of the external forces applied through static or dynamic mechanical means.

  4. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells.

    Science.gov (United States)

    Li, Jie; Wang, Gaofu; Jiang, Jing; Zhou, Peng; Liu, Liangjia; Zhao, Jinhong; Wang, Lin; Huang, Yongfu; Ma, Youji; Ren, Hangxing

    2016-12-01

    MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats). Our results demonstrated that i) miR-127-3p was extensively expressed in tissues of goats; ii) miR-127-3p was higher expressed in muscle, spleen, heart, and skin in the muscular goats (Boer goats) than the control (Wushan black goats). Then we further characterized the dynamical expression of miR-127-3p, MyoD , MyoG , Myf5 , Mef2c , and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0, 1, 3, 5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably plays roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.

  5. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Jie Li

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats. Our results demonstrated that i miR-127-3p was extensively expressed in tissues of goats; ii miR-127-3p was higher expressed in muscle, spleen, heart, and skin in the muscular goats (Boer goats than the control (Wushan black goats. Then we further characterized the dynamical expression of miR-127-3p, MyoD, MyoG, Myf5, Mef2c, and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0, 1, 3, 5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably plays roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.

  6. FLIGHT DYNAMICS MODEL OF ONE CLASS OF AIRCRAFT WITH A VIEW OF ELASTIC CONSTRUCTION

    OpenAIRE

    2016-01-01

    It remains urgent problem of damping of elastic vibrations occurring aircraft structure means the automatic control systems on board. In solving this problem the aircraft elastic model is the basis for the synthesis of control laws and analysis of closed-loop system "control object - the regulator." In general, the problem of mathematical modeling of flight dynamics of the elastic aircraft breaks for at least another two objectives, one of which - direct simulation of the behavior of elastic ...

  7. Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.

    Science.gov (United States)

    Nguyen, M N

    2010-04-01

    Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.

  8. Empirical modelling of ENSO dynamics: construction of optimal complexity models from data

    Science.gov (United States)

    Mukhina, A.; Kondrashov, D.; Mukhin, D.

    2012-04-01

    One of the main problems arising in modelling of data taken from natural system is finding of a phase space suitable for construction of the evolution operator model. The matter is we ususaly deal with strongly high-dimensional behavior and we are forced to construct a model working in some projection of system phase space corresponding to time scales of interest. Selection of optimal projecion is non-trivial problem since there are many ways to reconstruct phase variables from given time series, especially in the case when time series has a form of spatial field depending on time. Actually, it is sort of model selection problem, because, on the one hand, the transformation of data to some phase variables vector can be considered as a part of the model. On the other hand, such an optimization of a phase space makes sense only in relation to the parameterization of the model we use, i.e. representation of evolution operator, so we should find an optimal structure of the model togerther with phase variables vector. In this work we suggest Bayesian approach to this problem: a prior set of the models of different complexity is defined, then posterior probabilities of each model from this set given the data are calculated, and the model corresponding to largest probability is selected. The suggested approach is applied to optimization of EMR-model of ENSO phenomenon elaborated by Kondrashov et. al. This model operates with number of principal EOFs constructed from spatial field of SST in Equatorial Pacific, and has a form of stochastic differential equations (SDE) system with polynomial parameterization of the right-hand part. Optimal values for both the number of EOFs and the order of SDE system are estimated from the time series generated by Jin & Neelin intermediate ENSO model.

  9. Live-cell imaging combined with immunofluorescence, RNA, or DNA FISH to study the nuclear dynamics and expression of the X-inactivation center.

    Science.gov (United States)

    Pollex, Tim; Piolot, Tristan; Heard, Edith

    2013-01-01

    Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.

  10. Evaluating measurement of dynamic constructs: defining a measurement model of derivatives.

    Science.gov (United States)

    Estabrook, Ryne

    2015-03-01

    While measurement evaluation has been embraced as an important step in psychological research, evaluating measurement structures with longitudinal data is fraught with limitations. This article defines and tests a measurement model of derivatives (MMOD), which is designed to assess the measurement structure of latent constructs both for analyses of between-person differences and for the analysis of change. Simulation results indicate that MMOD outperforms existing models for multivariate analysis and provides equivalent fit to data generation models. Additional simulations show MMOD capable of detecting differences in between-person and within-person factor structures. Model features, applications, and future directions are discussed. (c) 2015 APA, all rights reserved).

  11. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff

    Directory of Open Access Journals (Sweden)

    Sarah A. White

    2017-12-01

    Full Text Available Constructed wetlands (CWs are used to remediate runoff from a variety of agricultural, industrial, and urban sources. CW remediation performance is often evaluated at the laboratory scale over durations less than one year. The purpose of this study was to characterize the effect of CW design (cell depth and residence time on nitrogen (N speciation and fate across season and years in two free water surface wetlands receiving runoff from irrigated plant production areas at an ornamental plant nursery. Water quality (mg·L−1 of nitrate, nitrite, and ammonium, dissolved oxygen and oxidation reduction potential was monitored at five sites within each of two CWs each month over four years. Nitrate-N was the dominant form of ionic N present in both CWs. Within CW1, a deep cell to shallow cell design, nitrate comprised 86% of ionic N in effluent. Within CW2, designed with three sequential deep cells, nitrate comprised only 66% of total N and ammonium comprised 27% of total N in CW2 effluent. Differences in ionic N removal efficacies and shifts in N speciation in CW1 and CW2 were controlled by constructed wetland design (depth and hydraulic retention time, the concentration of nutrients entering the CW, and plant species richness.

  12. The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica.

    Science.gov (United States)

    Yin, Hengxia; Yan, Xia; Shi, Yong; Qian, Chaoju; Li, Zhonghu; Zhang, Wen; Wang, Lirong; Li, Yi; Li, Xiaoze; Chen, Guoxiong; Li, Xinrong; Nevo, Eviatar; Ma, Xiao-Fei

    2015-10-29

    Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant.

  13. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics.

    Science.gov (United States)

    Prinz, Jan-Hendrik; Chodera, John D; Pande, Vijay S; Swope, William C; Smith, Jeremy C; Noé, Frank

    2011-06-28

    Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.

  14. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    Science.gov (United States)

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals

  15. The Dynamics of microRNA Transcriptome in Bovine Corpus Luteum during Its Formation, Function, and Regression

    Directory of Open Access Journals (Sweden)

    Rreze M. Gecaj

    2017-12-01

    Full Text Available The formation, function, and subsequent regression of the ovarian corpus luteum (CL are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL. Utilizing small RNA next-generation sequencing we profiled miRNA transcriptome in bovine CL during the entire physiological estrous cycle, by sampling the CL on days: d 1–2, d 3–4, and d 5–7 (early CL, eCL, d 8–12 (mid CL, mCL, d 13–16 (late CL, lCL, and d > 18 (regressed CL, rCL. We characterized patterns of miRNAs abundance and identified 42 miRNAs that were consistent significantly different expressed (DE in the eCL relative to their expression at each of the analyzed stages (mCL, lCL, and rCL. Out of these, bta-miR-210-3p, −2898, −96, −7-5p, −183-5p, −182, and −202 showed drastic up-regulation with a fold-change of ≥2.0 and adjusted P < 0.01 in the eCL, while bta-miR-146a was downregulated at lCL and rCL vs. the eCL. Another 24, 11, and 21 miRNAs were significantly DE only between individual comparisons, eCL vs. the mCL, lCL, and rCL, respectively. Irrespective of cycle stage two miRNAs, bta-miR-21-5p and bta-miR-143 were identified as the most abundant miRNAs species and show opposing expression abundance. Whilst bta-miR-21-5p peaked in number of reads in the eCL and was significantly downregulated in the mCL and lCL, bta-miR-143 reached its peak in the rCL and is significantly downregulated in the eCL. MiRNAs with significant DE in at least one cycle stage (CL class were further grouped into eight distinct clusters by the self-organizing tree algorithm (SOTA. Half of the clusters contain miRNAs with low-expression, whilst the other half contain miRNAs with high-expression levels during eCL. Prediction analysis for significantly DE miRNAs resulted in target genes involved with CL formation

  16. Synchronization of construction, replenishment and leasing cycles with account of wave dynamics of innovation cycles in the construction and transport field

    Science.gov (United States)

    Alekseeva, Tatyana

    2017-10-01

    The article considers the contradictive nature of the basic cycles of the growth in construction, the core of which are construction cycles, replenishment cycles of the active part of fixed assets, innovation and investment cycles. All of the listed cycles objectively thwart the science and technology progress in construction. There are presented results of the study of finance leasing as an effective tool, that provides time reduction of the innovation replenishment cycle of the active part of fixed assets in construction. It takes into account the development and implementation terms of construction investment projects in order to timely support the innovation wave and enhance its efficiency in construction for a rapid transition of the construction investment complex and national economy to a new vector of growth.

  17. Design and construction of the Donner 280-crystal positron ring for dynamic transverse section emission imaging

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Banchero, P.G.; Cahoon, J.L.; Huesman, R.H.; Vuletich, T.; Budinger, T.F.

    1977-09-01

    The design and construction of a medical imaging system for the rapid, accurate, three-dimensional imaging of positron-labeled compounds in the human body are described. Our medical research goals include quantifying blood flow and metabolism in human heart muscle and brain. The system consists of a large gantry containing lead shielding and a ring of 280 NaI(Tl) detectors that completely encircles the patient; 280 photomultiplier tubes, preamplifiers and timing discriminators; circuits that determine whenever a crystal has detected a gamma ray in time coincidence (i.e., within 12 nsec) of any of the opposing 105 crystals and determine the addresses of the crystals involved; 120K words of 12 bit memory for the simultaneous acquisition of data from eight portions of the cardiac cycle; and a hardwired image reconstructor capable of filtering and backprojecting data from 140 views to form a 210 x 210 computed transverse section image in less than 2 sec

  18. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics.

    Science.gov (United States)

    Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig

    2012-11-01

    In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.

  19. Resistance to the destruction of concrete in constructions of height buildings at dynamic loads

    Science.gov (United States)

    Berlinov, Mikhail; Berlinova, Marina; Tvorogov, Alexandr

    2018-03-01

    The analysis of the criterion of strength of concrete in structures of high-rise buildings under vibration and shock impacts is presented. The idea of an energy approach to ensuring the strength of concrete and the durability of building structures from reinforced concrete under the influence of shock impacts on the life of such structures is presented in a high-rise construction. A method for determining the strength and durability of concrete in load-bearing building structures made of reinforced concrete for irreversible thermodynamic processes has been developed. Dependences that determine the behavior of concrete in reinforced concrete structures of high stores on the load-bearing structures of a building under the influence of damped oscillations from the operation of air transport on the landing site are determined, taking into account the impact arising from its landing.

  20. A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load.

    Directory of Open Access Journals (Sweden)

    Chunyu Yang

    Full Text Available Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor.Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs using random amplified polymorphic DNA-PCR profiles (RAPD. Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l(-1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l(-1 (27.3% COD(cr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE and gas chromatography/mass spectrometry (GC/MS analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions.Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment. Facilitating the treatment process by the

  1. Language and other artifacts: socio-cultural dynamics of niche construction.

    Science.gov (United States)

    Sinha, Chris

    2015-01-01

    Niche construction theory is a relatively new approach in evolutionary biology that seeks to integrate an ecological dimension into the Darwinian theory of evolution by natural selection. It is regarded by many evolutionary biologists as providing a significant revision of the Neo-Darwinian modern synthesis that unified Darwin's theory of natural and sexual selection with 20th century population genetics. Niche construction theory has been invoked as a processual mediator of social cognitive evolution and of the emergence and evolution of language. I argue that language itself can be considered as a biocultural niche and evolutionary artifact. I provide both a general analysis of the cognitive and semiotic status of artifacts, and a formal analysis of language as a social and semiotic institution, based upon a distinction between the fundamental semiotic relations of "counting as" and "standing for." I explore the consequences for theories of language and language learning of viewing language as a biocultural niche. I suggest that not only do niches mediate organism-organism interactions, but also that organisms mediate niche-niche interactions in ways that affect evolutionary processes, with the evolution of human infancy and childhood as a key example. I argue that language as a social and semiotic system is not only grounded in embodied engagements with the material and social-interactional world, but also grounds a sub-class of artifacts of particular significance in the cultural history of human cognition. Symbolic cognitive artifacts materially and semiotically mediate human cognition, and are not merely informational repositories, but co-agentively constitutive of culturally and historically emergent cognitive domains. I provide examples of the constitutive cognitive role of symbolic cognitive artifacts drawn from my research with my colleagues on cultural and linguistic conceptualizations of time, and their cultural variability. I conclude by reflecting on

  2. Language and other artifacts: socio-cultural dynamics of niche construction

    Science.gov (United States)

    Sinha, Chris

    2015-01-01

    Niche construction theory is a relatively new approach in evolutionary biology that seeks to integrate an ecological dimension into the Darwinian theory of evolution by natural selection. It is regarded by many evolutionary biologists as providing a significant revision of the Neo-Darwinian modern synthesis that unified Darwin’s theory of natural and sexual selection with 20th century population genetics. Niche construction theory has been invoked as a processual mediator of social cognitive evolution and of the emergence and evolution of language. I argue that language itself can be considered as a biocultural niche and evolutionary artifact. I provide both a general analysis of the cognitive and semiotic status of artifacts, and a formal analysis of language as a social and semiotic institution, based upon a distinction between the fundamental semiotic relations of “counting as” and “standing for.” I explore the consequences for theories of language and language learning of viewing language as a biocultural niche. I suggest that not only do niches mediate organism-organism interactions, but also that organisms mediate niche-niche interactions in ways that affect evolutionary processes, with the evolution of human infancy and childhood as a key example. I argue that language as a social and semiotic system is not only grounded in embodied engagements with the material and social-interactional world, but also grounds a sub-class of artifacts of particular significance in the cultural history of human cognition. Symbolic cognitive artifacts materially and semiotically mediate human cognition, and are not merely informational repositories, but co-agentively constitutive of culturally and historically emergent cognitive domains. I provide examples of the constitutive cognitive role of symbolic cognitive artifacts drawn from my research with my colleagues on cultural and linguistic conceptualizations of time, and their cultural variability. I conclude by

  3. Language and other artifacts: socio-cultural dynamics of niche construction.

    Directory of Open Access Journals (Sweden)

    Chris eSinha

    2015-10-01

    Full Text Available Niche construction theory is a relatively new approach in evolutionary biology that seeks to integrate an ecological dimension into the Darwinian theory of evolution by natural selection. It is regarded by many evolutionary biologists as providing a significant revision of the Neo-Darwinian modern synthesis that unified Darwin’s theory of natural and sexual selection with 20th century population genetics. Niche construction theory has been invoked as a processual mediator of social cognitive evolution and of the emergence and evolution of language. I argue that language itself can be considered as a biocultural niche and evolutionary artifact. I provide both a general analysis of the cognitive and semiotic status of artifacts, and a formal analysis of language as a social and semiotic institution, based upon a distinction between the fundamental semiotic relations of counting as and standing for. I explore the consequences for theories of language and language learning of viewing language as a biocultural niche. I suggest that not only do niches mediate organism-organism interactions, but also that organisms mediate niche-niche interactions in ways that affect evolutionary processes, with the evolution of human infancy and childhood as a key example. I argue that language as a social and semiotic system is not only grounded in embodied engagements with the material and social-interactional world, but also grounds a sub-class of artifacts of particular significance in the cultural history of human cognition. Symbolic cognitive artifacts materially and semiotically mediate human cognition, and are not merely informational repositories, but co-agentively constitutive of culturally and historically emergent cognitive domains. I provide examples of the constitutive cognitive role of symbolic cognitive artifacts drawn from my research with my colleagues on cultural and linguistic conceptualizations of time, and their cultural variability. I conclude

  4. RNA Sequencing Analysis of Salivary Extracellular RNA.

    Science.gov (United States)

    Majem, Blanca; Li, Feng; Sun, Jie; Wong, David T W

    2017-01-01

    Salivary biomarkers for disease detection, diagnostic and prognostic assessments have become increasingly well established in recent years. In this chapter we explain the current leading technology that has been used to characterize salivary non-coding RNAs (ncRNAs) from the extracellular RNA (exRNA) fraction: HiSeq from Illumina® platform for RNA sequencing. Therefore, the chapter is divided into two main sections regarding the type of the library constructed (small and long ncRNA libraries), from saliva collection, RNA extraction and quantification to cDNA library generation and corresponding QCs. Using these invaluable technical tools, one can identify thousands of ncRNA species in saliva. These methods indicate that salivary exRNA provides an efficient medium for biomarker discovery of oral and systemic diseases.

  5. Inverse folding of RNA pseudoknot structures

    Directory of Open Access Journals (Sweden)

    Li Linda YM

    2010-06-01

    Full Text Available Abstract Background RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. Results In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. Conclusions The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  6. Conformational transitions of flanking purines in HIV-1 RNA dimerization initiation site kissing complexes studied by charmm explicit solvent molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Sarzynska, J.; Réblová, Kamila; Šponer, Jiří; Kulinski, T.

    2008-01-01

    Roč. 89, č. 9 (2008), s. 732-746 ISSN 0006-3525 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * RNA * force field Subject RIV: BO - Biophysics Impact factor: 2.823, year: 2008

  7. Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-03-01

    Full Text Available Abstract Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc, as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this

  8. A new approach to construct representative future forcing data for dynamic downscaling

    Science.gov (United States)

    Dai, Aiguo; Rasmussen, Roy M.; Ikeda, Kyoko; Liu, Changhai

    2017-05-01

    Climate downscaling using regional climate models (RCMs) has been widely used to generate local climate change information needed for climate change impact assessments and other applications. Six-hourly data from individual simulations by global climate models (GCMs) are often used as the lateral forcing for the RCMs. However, such forcing often contains both internal variations and externally-forced changes, which complicate the interpretation of the downscaled changes. Here, we describe a new approach to construct representative forcing for RCM-based climate downscaling and discuss some related issues. The new approach combines the transient weather signal from one GCM simulation with the monthly mean climate states from the multi-model ensemble mean for the present and future periods, together with a bias correction term. It ensures that the mean climate differences in the forcing data between the present and future periods represent externally-forced changes only and are representative of the multi-model ensemble mean, while changes in transient weather patterns are also considered based on one select GCM simulation. The adjustments through the monthly fields are comparable in magnitude to the bias correction term and are small compared with the variations in 6-hourly data. Any inconsistency among the independently adjusted forcing fields is likely to be small and have little impact. For quantifying the mean response to future external forcing, this approach avoids the need to perform RCM large ensemble simulations forced by different GCM outputs, which can be very expensive. It also allows changes in transient weather patterns to be included in the lateral forcing, in contrast to the Pseudo Global Warming (PGW) approach, in which only the mean climate change is considered. However, it does not address the uncertainty associated with internal variability or inter-model spreads. The simulated transient weather changes may also be unrepresentative of other models

  9. DMPD: Transcriptional signaling by double-stranded RNA: role of TLR3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15733829 Transcriptional signaling by double-stranded RNA: role of TLR3. Sen GC, Sa...rkar SN. Cytokine Growth Factor Rev. 2005 Feb;16(1):1-14. (.png) (.svg) (.html) (.csml) Show Transcriptional sign...aling by double-stranded RNA: role of TLR3. PubmedID 15733829 Title Transcriptional signaling by double

  10. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs.

    Science.gov (United States)

    Lu, Yongbo; Kamel-El Sayed, Suzan A; Wang, Kun; Tiede-Lewis, LeAnn M; Grillo, Michael A; Veno, Patricia A; Dusevich, Vladimir; Phillips, Charlotte L; Bonewald, Lynda F; Dallas, Sarah L

    2018-02-20

    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel

  11. Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics.

    Science.gov (United States)

    Zhang, Dongqing; Luo, Jinxue; Lee, Zarraz May Ping; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2016-01-01

    The treatment performance of ibuprofen (IBP)-enriched wastewater by horizontal subsurface flow constructed wetlands planted with cattail (Typha angustifolia) and unplanted control mesocosms was investigated. Removal efficiencies of IBP were significantly (p fungal community in these wetland systems. The overall diversity of the fungal community was reduced under the IBP exposure. Taxonomic analysis revealed that 62.2% of the fungal sequences were affiliated with Basidiomycota, followed by Ascomycota (37.4%) at the phylum level. Uncultured fungus (48.2%), Chaetomium sp. (14.2%), Aspergillus sp. (12.4%), Trichoderma sp. (5.7%), Cladosporium sp. (5.4%), and Emericellopsis sp. (5.2%) were identified as dominant genera. At the genus level, a distinct profile of the fungal community in the IBP-enriched mesocosms was observed as compared to the control beds, and as well specific fungal genera were enhanced in the planted beds, regardless of IBP enrichment. However, despite these differences, the composition of the fungal community (as measured by Bray-Curtis similarity) was mostly unaffected by the significant IBP enrichment. On the other hand, a consistent similarity pattern of fungal community structure in the planted mesocosms suggests that the presence of higher macrophytes in the wetland systems may well help shape the fungal community structure.

  12. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage.

    Science.gov (United States)

    Wiessner, A; Rahman, K Z; Kuschk, P; Kästner, M; Jechorek, M

    2010-12-01

    The knowledge regarding the dynamics of sulphur compounds inside constructed wetlands is still insufficient. Experiments in planted (Juncus effusus) and unplanted horizontal sub-surface-flow laboratory-scale constructed wetlands fed with artificial wastewater were carried out to evaluate the sulphate reduction, the composition and dynamics of generated sulphur compounds, as well as the influence of carbon load and plants on processes of sulphur transformation. In planted and unplanted wetlands, the addition of organic carbon (TOC of about 120 mg L(-1)) immediately affected the transformation of up to 90% of the incoming sulphate (150 mg L(-1)), directing it mainly towards elemental sulphur (30%) and sulphide (8%). During this experimental period, nearly 52% of the transformed sulphate-sulphur was calculated to be immobilized inside the planted wetland and 66% inside the unplanted one. In subsequent experiments, the deficiency of organic carbon inside the planted wetlands favoured the decrease of elemental sulphur in the pore water coupled to retransformation of depot-sulphur to dissolved sulphate. Nearly 90% of the deposited and reduced sulphur was found to be reoxidized. In principle, the results indicate a substantial improvement of this reoxidation of sulphur by oxygen released by the helophytes. Surplus of organic carbon promotes the ongoing sulphate reduction and the stability of deposed and dissolved reduced sulphur compounds. In contrast, inside the unplanted control wetland, a relative stability of the formed sulphur depots and the generated amount of dissolved sulphur compounds including elemental sulphur could be observed independently of the different loading conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2017-03-01

    Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.

  14. FLIGHT DYNAMICS MODEL OF ONE CLASS OF AIRCRAFT WITH A VIEW OF ELASTIC CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It remains urgent problem of damping of elastic vibrations occurring aircraft structure means the automatic control systems on board. In solving this problem the aircraft elastic model is the basis for the synthesis of control laws and analysis of closed-loop system "control object - the regulator." In general, the problem of mathematical modeling of flight dynamics of the elastic aircraft breaks for at least another two objectives, one of which - direct simulation of the behavior of elastic aircraft defined interacting forces, and the other - the account of the changes operating aerogidrodynamic forces and moments caused by the deformation elastic aircraft and work control systems. This paper discusses the theoretical basis of the approach to the solution of this problem, based on the replacement of the actual design of aircraft by equivalent circuit and its implementation for the missiles, the most simple in terms of schematic, class of aircraft. At the same time accounting for changes in aerodynamic forces and moments caused by the elastic deformation of the aircraft, it was performed by help of stationary hypothesis

  15. Security Enhancement for Multicast over Internet of Things by Dynamically Constructed Fountain Codes

    Directory of Open Access Journals (Sweden)

    Qinghe Du

    2018-01-01

    Full Text Available The Internet of Things (IoT is expected to accommodate every object which exists in this world or likely to exist in the near future. The enormous scale of the objects is challenged by big security concerns, especially for common information dissemination via multicast services, where the reliability assurance for multiple multicast users at the cost of increasing redundancy and/or retransmissions also benefits eavesdroppers in successfully decoding the overheard signals. The objective of this work is to address the security challenge present in IoT multicast applications. Specifically, with the presence of the eavesdropper, an adaptive fountain code design is proposed in this paper to enhance the security for multicast in IoT. The main novel features of the proposed scheme include two folds: (i dynamical encoding scheme which can effectively decrease intercept probability at the eavesdropper; (ii increasing the transmission efficiency compared with the conventional nondynamical design. The analysis and simulation results show that the proposed scheme can effectively enhance information security while achieving higher transmission efficiency with a little accredited complexity, thus facilitating the secured wireless multicast transmissions over IoT.

  16. Dynamic properties analysis of a stay cable-damper system in consideration of design and construction factors

    Science.gov (United States)

    Dan, Danhui; Chen, Yanyang; Xiao, Rong

    2014-06-01

    A numerical solution based on the Steffensen stable point iterative method is proposed to resolve the transcendental frequency equation of a stay cable-damper system. The frequency equation, which considers clamped supports and flexural rigidity of the cable, is intended to investigate the influence of the parameters of the cable damper system on its dynamic characteristics. Two factors involved in the design and construction phases, the damping coefficient induced by external dampers and the cable tension, are the focus of this study. Their impact on modal frequencies and damping ratios in these two phases of cable-damper systems are investigated by resolving the equation with the proposed solution. It is shown that the damping coefficient and cable tension exert more noticeable effects on the modal damping ratios than on the modal frequencies of stay cable-damper systems, and the two factors can serve as design variables in the design phase and as adjustment factors in the construction phase. On the basis of the results, a roadmap for system-level optimal design of stay cable-damper systems that can achieve global optimal vibration suppression for the entire bridge is proposed and discussed.

  17. Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations

    Science.gov (United States)

    2017-01-01

    In order to reliably predict and understand the breathing behavior of highly flexible metal–organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials. PMID:29131647

  18. Efficient Construction of Free Energy Profiles of Breathing Metal-Organic Frameworks Using Advanced Molecular Dynamics Simulations.

    Science.gov (United States)

    Demuynck, Ruben; Rogge, Sven M J; Vanduyfhuys, Louis; Wieme, Jelle; Waroquier, Michel; Van Speybroeck, Veronique

    2017-12-12

    In order to reliably predict and understand the breathing behavior of highly flexible metal-organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials.

  19. Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp.

    Science.gov (United States)

    Tian, Xue; Pang, Xiaolei; Wang, Liangyan; Li, Mengrong; Dong, Chuanju; Ma, Xiao; Wang, Lei; Song, Dongying; Feng, Jianxin; Xu, Peng; Li, Xuejun

    2018-04-20

    The Japanese ornamental carp (Cyprinus carpio var. Koi) is famous for multifarious colors and patterns, making it commonly culture and trade across the world. Although functional genes and inheritance of color traits have been commonly studied, seldom attentions were focused on the genetic regulation during the developmental process of pigmentation. To better understand the mechanism of skin color development, we observed the morphogenesis of pigment cells during the post-embryonic stages and analysed the temporal expression pattern of mRNAs/miRNAs profiles in four distinct developmental stages. 59 and 103 differentially expressed genes/miRNAs (DEGs/DEMs) associated with pigmentation and skin were identified, including pax7, mitf, tyr, tyrp1, etc., and the highest DEGs were detected at 11 days post hatching (dph). In addition, the functional characteristics of mRNAs/miRNAs associated with pteridine and carotenoid pathway were also examined. Furthermore, 65 miRNA-mRNA interaction pairs related to pigmentation, pteridines and carotenoids metabolism were detected between different stages. Interestingly, the largest pairs appeared in the transition from 11 dph to 48 dph, which had the similar trend with DEGs further manifesting the importance of 11 dph. This study produced a comprehensive programme of DEGs/DEMs during color development, which will provide resources to understand the regulation mechanism in color formation. The understanding of genetic basis in color formation might promote the production and breeding of the Koi carp. Copyright © 2017. Published by Elsevier B.V.

  20. Structure and Dynamics of DNA and RNA Double Helices Obtained from the GGGGCC and CCCCGG Hexanucleotide Repeats That Are the Hallmark of C9FTD/ALS Diseases.

    Science.gov (United States)

    Zhang, Yuan; Roland, Christopher; Sagui, Celeste

    2017-03-15

    A (GGGGCC) hexanucleotide repeat (HR) expansion in the C9ORF72 gene, and its associated antisense (CCCCGG) expansion, are considered the major cause behind frontotemporal dementia and amyotrophic lateral sclerosis. We have performed molecular dynamics simulations to characterize the conformation and dynamics of the 12 duplexes that result from the three different reading frames in sense and antisense HRs for both DNA and RNA. These duplexes display atypical structures relevant not only for a molecular level understanding of these diseases but also for enlarging the repertoire of nucleic-acid structural motifs. G-rich helices share common features. The inner G-G mismatches stay inside the helix in G syn -G anti conformations and form two hydrogen bonds (HBs) between the Watson-Crick edge of G anti and the Hoogsteen edge of G syn . In addition, G syn in RNA forms a base-phosphate HB. Inner G-G mismatches cause local unwinding of the helix. G-rich double helices are more stable than C-rich helices due to better stacking and HBs of G-G mismatches. C-rich helix conformations vary wildly. C mismatches flip out of the helix in DNA but not in RNA. Least (most) stable C-rich RNA and DNA helices have single (double) mismatches separated by two (four) Watson-Crick basepairs. The most stable DNA structure displays an "e-motif" where mismatched bases flip toward the minor groove and point in the 5' direction. There are two RNA conformations, where the orientation and HB pattern of the mismatches is coupled to bending of the helix.

  1. The Interplay between Topic Shift and Focus in the Dynamic Construction of Discourse Representations

    Directory of Open Access Journals (Sweden)

    Xiaohong Yang

    2017-12-01

    Full Text Available Previous studies have suggested that focusing an element can enhance the activation of the focused element and bring about a number of processing benefits. However, whether and how this local prominence of information interacts with global discourse organization remains unclear. In the present study, we addressed this issue in two experiments. Readers were presented with four-sentence discourses. The first sentence of each discourse contained a critical word that was either focused or unfocused in relation to a wh-question preceding the discourse. The second sentence either maintained or shifted the topic of the first sentence. Participants were told to read for comprehension and for a probe recognition task in which the memory of the critical words was tested. In Experiment 1, when the probe words were tested immediately after the point of topic shift, we found shorter response times for the focused critical words than the unfocused ones regardless of topic manipulation. However, in Experiment 2, when the probe words were tested two sentences away from the point of topic shift, we found the facilitation effect of focus only in the topic-maintained discourses, but not in the topic-shifted discourses. This suggests that the facilitation effect of focus was not immediately suppressed at the point of topic shifting, but when additional information was added to the new topic. Our findings provide evidence for the dynamic interplay between global topic structure and local salience of information and have important implications on how activation of information fluctuates in mental representation.

  2. Construction and Biological Evaluation of a Novel Integrin ανβ3-Specific Carrier for Targeted siRNA Delivery In Vitro

    Directory of Open Access Journals (Sweden)

    Xueqi Chen

    2017-02-01

    Full Text Available (1 Background: The great potential of RNA interference (RNAi-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2 Methods: Arginine-glycine-aspartate motif (RGD was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3 Results: An optimal 10:1 molar ratio of c(RGD2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4 Conclusion: The chimeric peptide of c(RGD2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.

  3. Constructing a Depth-Stratified Model for Soil Organic Carbon: Dynamics of Past, Current, and Future Accumulation and Decomposition

    Science.gov (United States)

    Ise, T.

    2010-12-01

    Accumulation and decomposition of soil organic carbon (SOC) have significant impacts on global carbon cycling. Especially, high-latitudinal regions, where a particularly strong warming is expected, currently store large amounts of SOC, and vulnerability against environmental changes are hotly discussed. Due to the expected warming, the SOC in high-latitudinal regions can start to decompose quickly and the resultant carbon dioxide emissions to the atmosphere would further intensify the ongoing climate change. To quantitatively study this land-atmosphere feedback, I developed a depth-stratified SOC model and applied it to a boreal forest site in Alaska. Based on model structure of ED2.0-peat and VISIT, the newly constructed model was designed to reproduce short- (months to several years) and long-term (centuries to millennia) SOC dynamics (Figure a). Since decomposition rates of SOC are highly sensitive to soil environmental conditions (i.e., temperature and moisture), a physics-based approach to simulate belowground thermal and hydrological conditions is used. Moreover, the model simulates radiocarbon dynamics simultaneously with SOC. Current anthropogenic impacts in radiocarbon concentrations such as the Suess effect (since the industrial revolution) and explosions of thermonuclear weapons (mid-20th century) are tracked (Figure b). Since Δ14C was highly sensitive to the recent anthropogenic impacts, a direct comparison against field sampling data will enhance the predictive ability of the model by estimating the recent SOC dynamics. (a) accumulation of soil organic carbon in 2 layers: litter and humus. (b) changes in Δ14C in 2 layers: litter and humus.

  4. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    Science.gov (United States)

    Choubey, Amit

    performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.

  5. BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction

    Science.gov (United States)

    Townsley, Brad T.; Covington, Michael F.; Ichihashi, Yasunori; Zumstein, Kristina; Sinha, Neelima R.

    2015-01-01

    Next Generation Sequencing (NGS) is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq) has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq libraries utilizing the terminal breathing of double-stranded cDNA to capture and incorporate a sequencing adapter. Breath Adapter Directional sequencing (BrAD-seq) reduces sample handling and requires far fewer enzymatic steps than most available methods to produce high quality strand-specific RNA-seq libraries. The method we present is optimized for 3-prime Digital Gene Expression (DGE) libraries and can easily extend to full transcript coverage shotgun (SHO) type strand-specific libraries and is modularized to accommodate a diversity of RNA and DNA input materials. BrAD-seq offers a highly streamlined and inexpensive option for RNA-seq libraries. PMID:26052336

  6. BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction.

    Directory of Open Access Journals (Sweden)

    Brad Thomas Townsley

    2015-05-01

    Full Text Available Next Generation Sequencing (NGS is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq libraries utilizing inherent properties of double-stranded cDNA to capture and incorporate a sequencing adapter. Breath Adapter Directional sequencing (BrAD-seq reduces sample handling and requires far fewer enzymatic steps than most available methods to produce high quality strand-specific RNA-seq libraries. The method we present is optimized for 3-prime Digital Gene Expression (DGE libraries and can easily extend to full transcript coverage shotgun (SHO type strand-specific libraries and is modularized to accommodate a diversity of RNA and DNA input materials. BrAD-seq offers a highly streamlined and inexpensive option for RNA-seq libraries.

  7. Reduction of Dimensionality of a Dynamical Model of Aggressive Tumor Treated by Chemotherapy, Immunotherapy and siRNA Infusion. Part І. Establishment of Time Hierarchy in the Model Dynamics

    Directory of Open Access Journals (Sweden)

    Nikolova E.

    2008-12-01

    Full Text Available The Tichonov's theorem for quasi-stationary approximation is considered as a basic approach for reduction of dynamical systems with time hierarchy. On the basis of previously determined parameters, seven ordinary differential equations of the dynamical model of tumor treated by chemotherapy, immunotherapy and siRNA infusion are written in a form appropriate to evaluate their terms for model reduction. In accordance with the terminology of the Tichonov's theorem, it is established that three of the system components are fast varying such that the corresponding kinetic equations form an attached system. The other four variables are slow varying and their kinetic equations form a degenerate system

  8. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development.

    Science.gov (United States)

    Fernández-Pérez, Daniel; Brieño-Enríquez, Miguel A; Isoler-Alcaraz, Javier; Larriba, Eduardo; Del Mazo, Jesús

    2018-03-01

    In mammals, commitment and specification of germ cell lines involves complex programs that include sex differentiation, control of proliferation, and meiotic initiation. Regulation of these processes is genetically controlled by fine-tuned mechanisms of gene regulation in which microRNAs (miRNAs) are involved. We have characterized, by small-RNA-seq and bioinformatics analyses, the miRNA expression patterns of male and female mouse primordial germ cells (PGCs) and gonadal somatic cells at embryonic stages E11.5, E12.5, and E13.5. Differential expression analyses revealed differences in the regulation of key miRNA clusters such as miR-199-214 , miR-182-183-96 , and miR-34c-5p , whose targets have defined roles during gonadal sexual determination in both germ and somatic cells. Extensive analyses of miRNA sequences revealed an increase in noncanonical isoforms on PGCs at E12.5 and dramatic changes of 3' isomiR expression and 3' nontemplate nucleotide additions in female PGCs at E13.5. Additionally, RT-qPCR analyses of genes encoding proteins involved in miRNA biogenesis and 3' nucleotide addition uncovered sexually and developmentally specific expression, characterized by the decay of Drosha , Dgcr8 , and Xpo5 expression along gonadal development. These results demonstrate that miRNAs, their isomiRs, and miRNA machinery are differentially regulated and participate actively in gonadal sexual differentiation in both PGCs and gonadal somatic cells. © 2018 Fernández-Pérez et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Dynamics of arsenic species in laboratory-scale horizontal subsurface-flow constructed wetlands treating an artificial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, K.Z. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Umweltbiotechnologisches Zentrum (UbZ), Leipzig (Germany)]|[Institut fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Arbeitsbereich Wasserguetewirtschaft und Wasserversorgung (ISWA), Stuttgart (Germany); Wiessner, A.; Kaestner, M. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Bioremediation (Germany); Mattusch, J. [Department Analytische Umweltchemie, UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Leipzig (Germany); Mueller, R.A. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Umweltbiotechnologisches Zentrum (UbZ), Leipzig (Germany); Kuschk, P.

    2008-12-15

    Knowledge regarding the dynamics of arsenic species and their interactions under gradient redox conditions in treatment wetlands is still insufficient. The aim of this investigation was to gain more information on the biotransformation of As and the dynamics of As species in horizontal subsurface-flow constructed wetlands. Experiments were carried out in laboratory-scale wetland systems, two planted with Juncus effusus and one unplanted, using an As-containing artificial wastewater under defined organic C- and SO{sub 4}{sup 2-}-loading conditions. Immobilization of As was found in all systems under conditions of limited C, mainly due to adsorption and/or co-precipitation. The removal efficiencies were substantially higher in the planted systems (60-70%) as compared to the unplanted system (37% on average). Immobilization under the conditions mentioned above appeared to decrease over time in all systems. At the beginning, the dosage of organic carbon immediately caused intensive microbial dissimilatory sulfate reduction in all systems (in the range of 85-95%) and highly efficient removal of total arsenic (81-96% on average). Later on, in this operation period, the intensity of sulfate reduction and simultaneous removal of As decreased, particularly in the planted wetlands (ranging from 30-46%). One reason could be the re-oxidation of reduced compounds due to oxygenation of the rhizosphere by the emergent wetland plants (helophytes). A significant amount of reduced As [As(III)] was found in the planted systems (>75% of total As) during the period of efficient microbial sulfate reduction, compared to the unplanted system (>25% of total As). The immobilization of arsenic was found to behave more stably in the planted beds than in the unplanted bed. Both systems (planted and unplanted) were suitable to treat wastewater containing As, particularly under sulfate reducing conditions. The unplanted system seemed to be more efficient regarding the immobilization of As, but

  10. Free-Energy Landscape of Reverse tRNA Translocation through the Ribosome Analyzed by Electron Microscopy Density Maps and Molecular Dynamics Simulations

    Science.gov (United States)

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999

  11. BIOACCUMULATION DYNAMICS OF HEAVY METALS IN Oreochromis nilotycus: PREDICTED THROUGH A BIOACCUMULATION MODEL CONSTRUCTED BASED ON BIOTIC LIGAND MODEL (BLM

    Directory of Open Access Journals (Sweden)

    Sri Noegrohati

    2010-06-01

    Full Text Available In estuarine ecosystem, sediments are not only functioning as heavy metal scavenger, but also as one of potential sources for heavy metals to the ecosystem. Due the capability of aquatic organisms to accumulate heavy metals, there is possibility of heavy metals to exert their toxic effect towards the organisms and other organisms positioned in higher trophic level, such as fish, and further to human beings. To understand the different processes of heavy metal bioaccumulation in a dynamic manner, a bioaccumulation model is required. Since bioaccumulation starts with the uptake of chemical across a biological membrane, the bioaccumulation model was constructed based on Biotic Ligand Model (BLM. The input for the model was determined from laboratory scale simulated estuarine ecosystem of  sediment-brackish water (seawater:Aquaâ 1:1 for determining the heavy metal fractions in sediments; simulated Oreochromis nilotycus - brackish water (fish-water ecosystem for determining the rate constants; simulated fish-water-sediment ecosystem for evaluating the closeness between model-predicted and measured concentration, routes and distribution within specific internal organs. From these bioaccumulation studies, it was confirmed that the internalization of metals into the cells of gills and internal epithelias follows similar mechanisms, and governed mostly by the waterborne or hydrophilic heavy metals. The level of hydrophilic heavy metals are determined by desorption equilibrium coefficients, 1/KD, and influenced by salinity. Physiologically, the essential Cu and Zn body burden in O. nilotycus are tightly homeostasis regulated, shown as decreasing uptake efficiency factor, EW, at higher exposure concentrations, while non essential Cd and Hg were less or not regulated. From the distribution within specific internal organs, it was revealed that carcass was more relevant in describing the bioaccumulation condition than liver. It is clear that every heavy

  12. Examining the Accuracy and Justification of Geometric Constructions Made by Pre-Service Teachers with Dynamic Geometry Software and the Awareness They Gained throughout the Process

    Science.gov (United States)

    Bozkurt, Ali

    2018-01-01

    This study examined pre-service teachers' accuracy for geometric constructions with dynamic geometry software, their justification for the accuracy of geometric figures, and their awareness they gained throughout the process. The data come from a sample of 71 elementary grade pre-service teachers activity form completed as a part of geometry…

  13. Dynamic Testing of Analogical Reasoning in 5- to 6-Year-Olds : Multiple-Choice Versus Constructed-Response Training Items

    NARCIS (Netherlands)

    Stevenson, C.E.; Heiser, W.J.; Resing, W.C.M.

    2016-01-01

    Multiple-choice (MC) analogy items are often used in cognitive assessment. However, in dynamic testing, where the aim is to provide insight into potential for learning and the learning process, constructed-response (CR) items may be of benefit. This study investigated whether training with CR or MC

  14. Dynamic Testing of Analogical Reasoning in 5- to 6-Year-Olds: Multiple-Choice versus Constructed-Response Training Items

    Science.gov (United States)

    Stevenson, Claire E.; Heiser, Willem J.; Resing, Wilma C. M.

    2016-01-01

    Multiple-choice (MC) analogy items are often used in cognitive assessment. However, in dynamic testing, where the aim is to provide insight into potential for learning and the learning process, constructed-response (CR) items may be of benefit. This study investigated whether training with CR or MC items leads to differences in the strategy…

  15. On the of neural modeling of some dynamic parameters of earthquakes and fire safety in high-rise construction

    Science.gov (United States)

    Haritonova, Larisa

    2018-03-01

    The recent change in the correlation of the number of man-made and natural catastrophes is presented in the paper. Some recommendations are proposed to increase the firefighting efficiency in the high-rise buildings. The article analyzes the methodology of modeling seismic effects. The prospectivity of applying the neural modeling and artificial neural networks to analyze a such dynamic parameters of the earthquake foci as the value of dislocation (or the average rupture slip) is shown. The following two input signals were used: the power class and the number of earthquakes. The regression analysis has been carried out for the predicted results and the target outputs. The equations of the regression for the outputs and target are presented in the work as well as the correlation coefficients in training, validation, testing, and the total (All) for the network structure 2-5-5-1for the average rupture slip. The application of the results obtained in the article for the seismic design for the newly constructed buildings and structures and the given recommendations will provide the additional protection from fire and earthquake risks, reduction of their negative economic and environmental consequences.

  16. Investigation of the in vitro culture process for skeletal-tissue-engineered constructs using computational fluid dynamics and experimental methods.

    Science.gov (United States)

    Hossain, Md Shakhawath; Chen, X B; Bergstrom, D J

    2012-12-01

    The in vitro culture process via bioreactors is critical to create tissue-engineered constructs (TECs) to repair or replace the damaged tissues/organs in various engineered applications. In the past, the TEC culture process was typically treated as a black box and performed on the basis of trial and error. Recently, computational fluid dynamics (CFD) has demonstrated its potential to analyze the fluid flow inside and around the TECs, therefore, being able to provide insight into the culture process, such as information on the velocity field and shear stress distribution that can significantly affect such cellular activities as cell viability and proliferation during the culture process. This paper briefly reviews the CFD and experimental methods used to investigate the in vitro culture process of skeletal-type TECs in bioreactors, where mechanical deformation of the TEC can be ignored. Specifically, this paper presents CFD modeling approaches for the analysis of the velocity and shear stress fields, mass transfer, and cell growth during the culture process and also describes various particle image velocimetry (PIV) based experimental methods to measure the velocity and shear stress in the in vitro culture process. Some key issues and challenges are also identified and discussed along with recommendations for future research.

  17. Use of magnetic micro-cantilevers to study the dynamics of 3D engineered smooth muscle constructs

    Science.gov (United States)

    Liu, Alan; Zhao, Ruogang; Copeland, Craig; Chen, Christopher; Reich, Daniel

    2013-03-01

    The normal and pathological response of arterial tissue to mechanical stimulus sheds important light on such conditions as atherosclerosis and hypertension. While most previous methods of determining the biomechanical properties of arteries have relied on excised tissue, we have devised a system that enables the growth and in situ application of forces to arrays of stable suspended microtissues consisting of arterial smooth muscle cells (SMCs). Briefly, this magnetic microtissue tester system consists of arrays of pairs of elastomeric magnetically actuated micro-cantilevers between which SMC-infused 3D collagen gels self-assemble and remodel into aligned microtissue constructs. These devices allow us to simultaneously apply force and track stress-strain relationships of multiple microtissues per substrate. We have studied the dilatory capacity and subsequent response of the tissues and find that the resulting stress-strain curves show viscoelastic behavior as well as a linear dynamic recovery. These results provide a foundation for elucidating the mechanical behavior of this novel model system as well as further experiments that simulate pathological conditions. Supported in part by NIH grant HL090747.

  18. RNA topology

    OpenAIRE

    Frank-Kamenetskii, Maxim D.

    2013-01-01

    A new variety on non-coding RNA has been discovered by several groups: circular RNA (circRNA). This discovery raises intriguing questions about the possibility of the existence of knotted RNA molecules and the existence of a new class of enzymes changing RNA topology, RNA topoisomerases.

  19. Genome-Wide Polyadenylation Maps Reveal Dynamic mRNA 3'-End Formation in the Failing Human Heart

    NARCIS (Netherlands)

    Creemers, Esther E.; Bawazeer, Amira; Ugalde, Alejandro P.; van Deutekom, Hanneke W. M.; van der Made, Ingeborg; de Groot, Nina E.; Adriaens, Michiel E.; Cook, Stuart A.; Bezzina, Connie R.; Hubner, Norbert; van der Velden, Jolanda; Elkon, Ran; Agami, Reuven; Pinto, Yigal M.

    2016-01-01

    Alternative cleavage and polyadenylation (APA) of mRNA represents a layer of gene regulation that to date has remained unexplored in the heart. This phenomenon may be relevant, as the positioning of the poly(A) tail in mRNAs influences the length of the 3'-untranslated region (UTR), a critical

  20. lsosteric and Nonisosteric Base Pairs in RNA Motifs: Molecular Dynamics and Bioinformatics Study of the Sarcin Ricin Internal Loop

    Czech Academy of Sciences Publication Activity Database

    Havrila, Marek; Réblová, Kamila; Zirbel, C.L.; Leontis, B. N.; Šponer, Jiří

    2013-01-01

    Roč. 117, č. 46 (2013), s. 14302-14319 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : 23S RIBOSOMAL-RNA * PARTICLE MESH EWALD * NUCLEIC-ACIDS Subject RIV: BO - Biophysics Impact factor: 3.377, year: 2013

  1. Implications of fast-time scale dynamics of human DNA/RNA cytosine methyltransferases (DNMTs) for protein function

    Czech Academy of Sciences Publication Activity Database

    Evans, D. A.; Bronowska, Agnieszka Katarzyna

    2010-01-01

    Roč. 125, 3/6 (2010), s. 407-418 ISSN 1432-881X Institutional research plan: CEZ:AV0Z40550506 Keywords : MD simulations * DNA/RNA methyltransferase * enthalpy-entropy compensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.903, year: 2010

  2. An RNA molecular switch: Intrinsic flexibility of 23S rRNA helices 40 and 68 5’-UAA/5’-GAN internal loops studied by molecular dynamics methods

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Střelcová, Z.; Kulhánek, P.; Beššeová, Ivana; Mathews, D.H.; Van Nostrand, K.; Yildirim, I.; Turner, D.H.; Šponer, Jiří

    2010-01-01

    Roč. 6, č. 3 (2010), s. 910-929 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) KJB400040901 Grant - others:GA MŠk(CZ) LC06030; GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476 Program:LC; GD; GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : RNA * internal loop * molecular dynamics Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 5.138, year: 2010

  3. CLDN5 affects lncRNAs acting as ceRNA dynamics contributing to regulating blood‑brain barrier permeability in tumor brain metastasis.

    Science.gov (United States)

    Ma, Shun-Chang; Li, Qi; Peng, Jia-Yi; Zhouwen, Jian-Long; Zhang, Dai-Nan; Zhang, Chuan-Bao; Jiang, Wen-Guo; Jia, Wang

    2018-03-01

    The blood‑brain barrier (BBB) constitutes an efficient organization of tight junctions that limits the delivery of tumor to the brain. The principal tight junction protein in BBB is claudin‑5 (CLDN5), but its mechanism of action remains largely unknown. Long non‑coding RNAs (lncRNAs) are aberrantly expressed in many cancers, some lncRNAs play key roles in regulating BBB permeability and are involved in tumor brain metastasis. In particular, lncRNAs can function as competing endogenous RNAs (ceRNAs). Herein, we investigated whether ceRNA dysregulation is associated with alterations of the level of CLDN5 in human brain vascular endothelial hCMEC/D3 cells. The Affymetrix Human Transcriptome Array 2.0 and Affymetrix GeneChip miRNA 4.0 Array were used to detect the expression levels of 2,578 miRNAs, 22,829 lncRNAs, and 44,699 mRNAs in pLL3.7‑CLDN5‑transfected and pLL3.7 control hCMEC/D3 cells. The distinctly expressed miRNAs, lncRNAs, and mRNAs were subjected to construction of miRNA‑lncRNA‑mRNA interaction network. A total of 41 miRNAs, 954 lncRNAs, and 222 mRNAs were found to be differentially expressed between the CLDN5‑overexpressing and control group. 148 lncRNA acting as ceRNAs were identified based on the miRNA‑lncRNA‑mRNA interaction network. The function of differential mRNA in the network was determined by GO and pathway analysis. The potential roles of the 27 ceRNAs were revealed, the possible biology functions of these regulatory ceRNAs mainly included tight junction, focal adhesion, cell‑cell adhesion, cell growth and apoptosis. The identified sets of miRNAs, lncRNAs and mRNAs specific to CLDN5‑overexpressing hCMEC/D3 cells were verified by quantitative real‑time RT‑PCR experiment. Our study predicts the biological functions of a multitude of ceRNAs associated with the alteration of CLDN5 in brain vascular endothelial cells. Our data suggest that these dysregulated ceRNAs, in conjunction with the high CLDN5 levels, could serve

  4. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  5. Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan

    2018-02-01

    Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights

  6. lsosteric and Nonisosteric Base Pairs in RNA Motifs: Molecular Dynamics and Bioinformatics Study of the Sarcin Ricin Internal Loop

    Czech Academy of Sciences Publication Activity Database

    Havrila, Marek; Réblová, K.; Zirbel, C.L.; Leontis, N. B.

    2013-01-01

    Roč. 117, č. 46 (2013), s. 14302-14319 ISSN 1520-6106 R&D Projects: GA ČR GBP305/12/G034; GA MŠk ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : 23S RIBOSOMAL-RNA * PARTICLE MESH EWALD * NUCLEIC-ACIDS Subject RIV: BO - Biophysics Impact factor: 3.377, year: 2013

  7. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis

    Czech Academy of Sciences Publication Activity Database

    Liebl, K.; Dršata, Tomáš; Lankaš, Filip; Lipfert, J.; Zacharias, M.

    2015-01-01

    Roč. 43, č. 21 (2015), s. 10143-10156 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : double stranded RNA * B-DNA * nucleic acids Subject RIV: BO - Biophysics Impact factor: 9.202, year: 2015 http://nar.oxfordjournals.org/content/43/21/10143.full.pdf+html

  8. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.

    Science.gov (United States)

    Liu, Ding-yuan; Qiu, Ting; Ding, Xiao-hui; Li, Miao-miao; Zhu, Mu-yuan; Wang, Jun-hui

    2016-08-01

    IAA2 is a member of the Aux/IAA auxin responsive gene family in Arabidopsis thaliana. No iaa2 mutant has been reported until now, thus hindering its further mechanistic investigations. The normal genomic editing technology of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) uses only a single guide RNA (sgRNA) to target one site in a specific gene, and the gene knockout efficiency is not high. Instead, multiple sgRNAs can target multiple sites; therefore, the efficiency may be improved. In the present investigation, we used the golden-gate cloning strategy and two rounds of PCR reactions to combine three sgRNAs in the same entry vector. The final expression vector was obtained by LR reactions with the destination vector containing the Cas9 expression cassette. Four out of the six sgRNAs were effective, and we also obtained a lot of insertion and deletion mutations. Compared with one sgRNA approach, multiple sgRNAs displayed higher gene-knockout efficiency and produced more germ-line mutants. Thus, we established a more rapid and efficient method and generated five mutants for further studies of IAA2 functions.

  9. Localization of the human RNA polymerase I transcription factor gene (UBTF) to the D17S183 locus on chromosome 17q21 and construction of a long-range restriction map of the region

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.A.; Black, D.M.; Griffiths, B.L.; Solomon, E. [Somatic Cell Genetics Lab., London (United Kingdom)

    1995-12-10

    Human upstream binding factor (hUBF) is a sequence-specific DNA-binding protein that is essential for the activation of human 18s and 28s rRNA gene transcription. We have isolated and localized the gene (UBTF) encoding hUBF to the D17S183 locus on chromosome 17q21 by analyzing a cosmid from the region and carrying out Southern analysis on a previously constructed chromosome 17 somatic cell hybrid mapping panel using a probe from the hUBF cDNA. Confirmation of its location at this region was obtained from the results of pulsed-field gel electrophoresis analysis of genomic DNA using the hUBF cDNA and other probes from the region. These data also enabled the construction of a long-range restriction map of the region. 13 refs., 2 figs., 1 tab.

  10. Construction of an ultrasensitive non-enzymatic sensor to investigate the dynamic process of superoxide anion release from living cells.

    Science.gov (United States)

    Wei, Hongwei; Shang, Tianyi; Wu, Tiaodi; Liu, Guoan; Ding, Lan; Liu, Xiuhui

    2018-02-15

    In this work, a novel non-enzymatic superoxide anion (O 2 • - ) sensor was constructed based on Ag nanoparticles (NPs) / poly (amidoamine) (PAMAM) dendrimers and used to investigate the dynamic process of O 2 • - release from living cells. The AgNPs/PAMAM nanohybrids were characterized by transmission electron microscopy (TEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated electrode exhibited excellent catalytic activity toward the reaction of O 2 • - with a super low detection limit (LOD) of 2.530 × 10 -13 M (S/N = 3) and wide linear range of 8 orders of magnitude. It could fulfill the requirement of real-time measurement O 2 • - released from living cells. Furthermore, zymosan was chosen as the stimulant to induce O 2 • - generation from cancer cells (rat adrenal medulla pheochromocytoma cell (PC12)). The electrochemical experiment results indicated that the levels of intracellular O 2 • - depended on the amount of Zymosan. A large amount of O 2 • - generated in the living cells by added heavy stimulant could damage cells seriously. More importantly, a vitro simulation experiment confirmed the role of superoxide dismutase (SOD) for the first time because it could maintain the O 2 • - concentration at a normal physiological range. These findings are of great significance for evaluating the metabolic processes of O 2 • - in the biological system, and this work has the tremendous potential application in clinical diagnostics to assess oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. System Dynamic Analysis of Impacts of Government Charges on Disposal of Construction and Demolition Waste: A Hong Kong Case Study

    Directory of Open Access Journals (Sweden)

    Lai Sheung Au

    2018-04-01

    Full Text Available With the purpose of reducing the amount of construction and demolition (C&D waste disposed to landfills, many countries and municipalities have introduced increasingly stringent C&D waste disposal charges (CDWDC but the level of CDWDC is often determined without a clear understanding of its broad and complex impacts. Against this background, this paper aims to propose a system dynamics (SD model that can help predict CDWDC’s environmental implications as well as its financial implications. Specifically, the proposed model explains complex causal relationships between variables such as the level of CDWDC, the amount of C&D waste disposed to landfills, the government’s revenues from CDWDC as well as the costs of supplying and operating landfills over time. For a case study, the developed model is customized and calibrated with actual data from Hong Kong, where the remaining capacities of existing landfills are limited and the need for supplying more landfills is imminent. The simulation analysis with the model predicts that the current charging levels may not be high enough to effectively control the amount of C&D waste disposed to landfills or to compensate for the costs to the government of supplying additional landfills. The analysis also predicts how much illegal dumping may increase as the level of CDWDC increases. This case study illustrates that the proposed SD model can help policy makers to see the potential impacts of increased CDWDC on the amount of C&D waste disposed to landfills, government costs and the amount of illegal dumping of C&D waste; and can therefore help them to determine the most appropriate level of CDWDC.

  12. A virtual tornadic thunderstorm enabling students to construct knowledge about storm dynamics through data collection and analysis

    Directory of Open Access Journals (Sweden)

    W. A. Gallus Jr.

    2006-01-01

    Full Text Available A visually realistic tornadic supercell thunderstorm has been constructed in a fully immersive virtual reality environment to allow students to better understand the complex small-scale dynamics present in such a storm through data probing. Less-immersive versions have been created that run on PCs, facilitating broader dissemination. The activity has been tested in introductory meteorology classes over the last four years. An exercise involving the virtual storm was first used by a subset of students from a large introductory meteorology course in spring 2002. Surveys were used at that time to evaluate the impact of this activity as a constructivist learning tool. More recently, data probe capabilities were added to the virtual storm activity enabling students to take measurements of temperature, wind, pressure, relative humidity, and vertical velocity at any point within the 3-D volume of the virtual world, and see the data plotted via a graphical user interface. Similar surveys applied to groups of students in 2003 and 2004 suggest that the addition of data probing improved the understanding of storm-scale features, but the improved understanding may not be statistically significant when evaluated using quizzes reflecting short-term retention. The use of the activity was revised in 2005 to first have students pose scientific questions about these storms and think about a scientific strategy to answer their questions before exploring the storm. Once again, scores on quizzes for students who used the virtual storm activity were slightly better than those of students who were exposed to only a typical lecture, but differences were not statistically significant.

  13. Raman crystallography of RNA.

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C

    2009-10-01

    Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.

  14. Combination of 16S rRNA variable regions provides a detailed analysis of bacterial community dynamics in the lungs of cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Doud Melissa S

    2010-02-01

    Full Text Available Abstract Chronic bronchopulmonary bacterial infections remain the most common cause of morbidity and mortality among patients with cystic fibrosis (CF. Recent community sequencing work has now shown that the bacterial community in the CF lung is polymicrobial. Identifying bacteria in the CF lung through sequencing can be costly and is not practical for many laboratories. Molecular techniques such as terminal restriction fragment length polymorphism or amplicon length heterogeneity-polymerase chain reaction (LH-PCR can provide many laboratories with the ability to study CF bacterial communities without costly sequencing. The aim of this study was to determine if the use of LH-PCR with multiple hypervariable regions of the 16S rRNA gene could be used to identify organisms found in sputum DNA. This work also determined if LH-PCR could be used to observe the dynamics of lung infections over a period of time. Nineteen samples were analysed with the V1 and the V1_V2 region of the 16S rRNA gene. Based on the amplicon size present in the V1_V2 region, Pseudomonas aeruginosa was confirmed to be in all 19 samples obtained from the patients. The V1 region provided a higher power of discrimination between bacterial profiles of patients. Both regions were able to identify trends in the bacterial population over a period of time. LH profiles showed that the CF lung community is dynamic and that changes in the community may in part be driven by the patient's antibiotic treatment. LH-PCR is a tool that is well suited for studying bacterial communities and their dynamics.

  15. Dynamics of synthetic activity of RNA and glycoproteins in epithel cells of endometrium in heifers after ovulation

    International Nuclear Information System (INIS)

    Pivko, J.; Grafenau, P.; Uhrin, V.; Kopecny, V.

    1998-01-01

    Synchronized heifers (n=9) of Black Pied HF breed were slaughtered on 3rd, 6th and 9th day of sexual cycle (first day of estrus = 0). Excisions from basal part (A) and functional part (B) of uteri were taken immediately after killing and were processed for autoradiographic analyses. The samples of endometrium were incubated for 20 minutes in isotonic medium with 100 micro Ci uridine (5 -3H) additive with specific activity 740 GBq/mM (UVVVR Prague) to study the RNA synthesis. The endometrium samples were incubated for 60 minutes, and 240 minutes in isotonic medium with 100 micro Ci L-(6-3 H) fucose with specific activity 0.55-1.1 TBqImM (Amersham Int., G.B.) for autoradiographic analysis of the glycoprotein synthesis. The samples were fixed, dehydrated and embedded in Epon 812 after the incubation. The prepared cuts were covered with photographic emulsion and stored in dark box in a refrigerator at 5øC. They were developed in the developer ORWO D 19, stained with methylene blue and examined through the light microscope after one month exposition. We found out by the autoradiographic analysis that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day. The intensity of RNA synthesis does not change in the functional zone during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The autoradiographical analysis showed that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day The intensity of RNA synthesis in functional zone does not change during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The glycoproteins are synthetised mainly by the Golgi apparatus in supranuclear sphere in the cells of surface epithel and in glandular cells. The glycoproteins were not observed in apical regions of cells on 3rd day of cycle, however, they are intensively

  16. Dynamic transcription of long non-coding RNA genes during CD4+ T cell development and activation.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available BACKGROUND: Recent evidence shows that long non-coding RNA (LncRNA play important regulatory roles in many biology process, including cell development, activation and oncogenesis. However, the roles of these LncRNAs in the development and activation of CD4+ T cells, which is an important component of immune response, remain unknown. RESULTS: To predict the function of LncRNA in the development and activation of CD4+ T cells, first, we examined the expression profiles of LncRNAs and mRNAs in CD4-CD8- (DN, CD4+CD8+ (DP, CD4+CD8-, and activated CD4+CD8- T cells in a microarray analysis and verified these results by real time PCRs (qPCR. We found that the expression of hundreds of LncRNAs significantly changed in each process of developmental transition, including DN into DP, DP into CD4+CD8-, and CD4+CD8- into activated CD4+ T cells. A Kendall distance analysis suggested that the expression of LncRNAs in DN, DP, CD4+CD8- T cells and activated CD4+ T cells were correlated with the expression of mRNAs in these T cells. The Blat algorithm and GO analysis suggested that LncRNAs may exert important roles in the development and activation of CD4+ T cells. These roles included proliferation, homeostasis, maturation, activation, migration, apoptosis and calcium ion transportation. CONCLUSION: The present study found that the expression profiles of LncRNAs in different stages of CD4+ T cells are distinguishable. LncRNAs are involved in the key biological process in CD4+ T cell development and activation.

  17. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  18. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells

    OpenAIRE

    Jie Li; Gaofu Wang; Jing Jiang; Peng Zhou; Liangjia Liu; Jinhong Zhao; Lin Wang; Yongfu Huang; Youji Ma; Hangxing Ren

    2016-01-01

    MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats). Our results demonstrated that i) miR-127-3p was extensively expr...

  19. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  20. Spatial-Temporal Dynamics of the Economic Efficiency of Construction Land in the Pearl River Delta Megalopolis from 1998 to 2012

    Directory of Open Access Journals (Sweden)

    Yuyao Ye

    2017-12-01

    Full Text Available Since the 1980s, the rapid, extensive, and dispersed urban expansion in the Pearl River Delta megalopolis (PRDM has led to landscape fragmentation and the inefficient use of construction land. Like other developed regions in China that are subject to the dual challenges of shortages of construction land and deterioration of the ecological environment, it is becoming increasingly important in the PRDM to improve the land-use efficiency of urban construction. However, current methods for assessing land-use efficiency do not meet the emerging needs of land-use planning and policymaking. Therefore, using the American Defense Meteorological Satellite Program (DMSP/Operational Linescan System (OLS nighttime light imagery and Landsat TM data, this study aims to develop a timely and efficient approach to model the high-resolution economic efficiency of construction land (EECL. With this approach, we mapped the reliable EECL of the PRDM at township level and with a one-kilometer grid. Next, the study compared the temporal changes and revealed the spatial-temporal dynamics in order to provide a scientific reference for informed land-use planning and policymaking. The results show that since 1998, the economic efficiency of construction land in the PRDM increased in general but varied significantly throughout the area. Further, these disparities widened from 1998 to 2012 between the PRDM’s inner and peripheral circles. Only one-fifth of the towns and subdistricts were categorized as fast-growth or ultrafast-growth, with the majority located in the most developed areas of the PRDM’s inner circle. In order to improve the efficiency of construction land in the PRDM and realize sustainable development, differentiated land-use policies for the inner and peripheral circles were proposed. The inner circle should focus on promoting the efficiency of existing construction land and encourage urban renewal, while the peripheral circle should enhance the control

  1. Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis†

    Science.gov (United States)

    Randazzo, Cinzia L.; Torriani, Sandra; Akkermans, Antoon D. L.; de Vos, Willem M.; Vaughan, Elaine E.

    2002-01-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene, respectively. DGGE profiles from samples taken during cheese production indicated dramatic shifts in the microbial community structure. Cloning and sequencing of rDNA amplicons revealed that mesophilic lactic acid bacteria (LAB), including species of Leuconostoc, Lactococcus lactis, and Macrococcus caseolyticus were dominant in the raw milk, while Streptococcus thermophilus prevailed during lactic fermentation. Other thermophilic LAB, especially Lactobacillus delbrueckii and Lactobacillus fermentum, also flourished during ripening. Comparison of the rRNA-derived patterns obtained by RT-PCR to the rDNA DGGE patterns indicated a substantially different degree of metabolic activity for the microbial groups detected. Identification of cultivated LAB isolates by phenotypic characterization and 16S rDNA analysis indicated a variety of species, reflecting to a large extent the results obtained from the 16S rDNA clone libraries, with the significant exception of the Lactobacillus delbrueckii species, which dominated in the ripening cheese but was not detected by cultivation. The present molecular approaches combined with culture can effectively describe the complex ecosystem of natural fermented dairy products, giving useful information for starter culture design and preservation of artisanal fermented food technology. PMID:11916708

  2. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  3. RNA captor: a tool for RNA characterization.

    Directory of Open Access Journals (Sweden)

    Christian Clepet

    Full Text Available BACKGROUND: In the genome era, characterizing the structure and the function of RNA molecules remains a major challenge. Alternative transcripts and non-protein-coding genes are poorly recognized by the current genome-annotation algorithms and efficient tools are needed to isolate the less-abundant or stable RNAs. RESULTS: A universal RNA-tagging method using the T4 RNA ligase 2 and special adapters is reported. Based on this system, protocols for RACE PCR and full-length cDNA library construction have been developed. The RNA tagging conditions were thoroughly optimized and compared to previous methods by using a biochemical oligonucleotide tagging assay and RACE PCRs on a range of transcripts. In addition, two large-scale full-length cDNA inventories relying on this method are presented. CONCLUSION: The RNA Captor is a straightforward and accessible protocol. The sensitivity of this approach was shown to be higher compared to previous methods, and applicable on messenger RNAs, non-protein-coding RNAs, transcription-start sites and microRNA-directed cleavage sites of transcripts. This strategy could also be used to study other classes of RNA and in deep sequencing experiments.

  4. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry

    DEFF Research Database (Denmark)

    Trelle, Morten B; Dupont, Daniel Miotto; Madsen, Jeppe Buur

    2014-01-01

    , about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects...... of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection...... against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins....

  5. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Trelle, Morten B; Dupont, Daniel M; Madsen, Jeppe B; Andreasen, Peter A; Jørgensen, Thomas J D

    2014-01-17

    RNA aptamers, selected from large synthetic libraries, are attracting increasing interest as protein ligands, with potential uses as prototype pharmaceuticals, conformational probes, and reagents for specific quantification of protein levels in biological samples. Very little is known, however, about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects on the biochemical properties of PAI-1. In particular, they are potent inhibitors of the structural transition of PAI-1 from the active state to the inactive, so-called latent state. This transition is one of the largest conformational changes of a folded protein domain without covalent modification. Binding of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins.

  6. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499.

    Science.gov (United States)

    Wilson, Kitchener D; Hu, Shijun; Venkatasubrahmanyam, Shivkumar; Fu, Ji-Dong; Sun, Ning; Abilez, Oscar J; Baugh, Joshua J A; Jia, Fangjun; Ghosh, Zhumur; Li, Ronald A; Butte, Atul J; Wu, Joseph C

    2010-10-01

    MicroRNAs (miRNAs) are a newly discovered endogenous class of small, noncoding RNAs that play important posttranscriptional regulatory roles by targeting messenger RNAs for cleavage or translational repression. Human embryonic stem cells are known to express miRNAs that are often undetectable in adult organs, and a growing body of evidence has implicated miRNAs as important arbiters of heart development and disease. To better understand the transition between the human embryonic and cardiac "miRNA-omes," we report here the first miRNA profiling study of cardiomyocytes derived from human embryonic stem cells. Analyzing 711 unique miRNAs, we have identified several interesting miRNAs, including miR-1, -133, and -208, that have been previously reported to be involved in cardiac development and disease and that show surprising patterns of expression across our samples. We also identified novel miRNAs, such as miR-499, that are strongly associated with cardiac differentiation and that share many predicted targets with miR-208. Overexpression of miR-499 and -1 resulted in upregulation of important cardiac myosin heavy-chain genes in embryoid bodies; miR-499 overexpression also caused upregulation of the cardiac transcription factor MEF2C. Taken together, our data give significant insight into the regulatory networks that govern human embryonic stem cell differentiation and highlight the ability of miRNAs to perturb, and even control, the genes that are involved in cardiac specification of human embryonic stem cells.

  7. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna

    2018-01-01

    The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.

  8. Study of the effect of composition and construction of material on sub-bandage pressure during dynamic loading of a limb in vitro.

    Science.gov (United States)

    Kumar, Bipin; Das, Apurba; Alagirusamy, R

    2013-01-01

    Internal stress in a compression bandage wrapped over a limb in vitro is expected to reduce over time because of fatigue which may occur due to repetitive and prolonged variations in the extension of the bandage during posture change and exercise. This phenomenon may cause significant variation in the sub-bandage pressure over time. To examine the effect of composition and construction of material on the sub-bandage pressure variation over time in the dynamic state of a limb in the laboratory. Yarns comprising fibers of polyester, viscose, cotton and elastomeric yarn were used to prepare different knitted bandage samples having varying thread densities in the structure. A leg-segment prototype was used for the measurement of the interface pressure over a mannequin limb to analyse different bandages under similar dynamic conditions. The pressure drop in the dynamic state of the mannequin limb was greater than that in the static state. The mean pressure drop in 2 h in the dynamic state was greater by >30% for bandages made of pure cotton or viscose yarns than for bandages having elastomeric yarns in their structure. At the same applied tension, increasing the number of yarns per unit length in the bandage structure resulted in a smaller drop in pressure in the dynamic mode. Elastomeric yarn improves the elasticity and fatigue resistance of the bandage. Therefore, these yarns should be used in bandages to obtain sustained compression effects under dynamic conditions.

  9. Mild Two-Step Method to Construct DNA-Conjugated Silicon Nanoparticles: Scaffolds for the Detection of MicroRNA-21

    OpenAIRE

    Su, Xiaoye; Kuang, Li; Battle, Cooper; Shaner, Ted; Mitchell, Brian S.; Fink, Mark J.; Jayawickramarajah, Janarthanan

    2014-01-01

    We describe a novel two-step method, starting from bulk silicon wafers, to construct DNA conjugated silicon nanoparticles (SiNPs). This method first utilizes reactive high-energy ball milling (RHEBM) to obtain alkene grafted SiNPs. The alkene moieties are subsequently reacted with commercially available thiol-functionalized DNA via thiol–ene click chemistry to produce SiNP DNA conjugates wherein the DNA is attached through a covalent thioether bond. Further, to show the utility of this synthe...

  10. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  11. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai

    2014-09-01

    The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Data on the construction of a recombinant HEK293 cell line overexpressing hERG potassium channel and examining the presence of hERG mRNA and protein expression

    Directory of Open Access Journals (Sweden)

    Yi Fan Teah

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr and human ether-a-go-go-related gene (hERG expression” (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293 cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

  13. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...... biosensorer. Afhandlingen består af en introduktion til RNA-nanoteknologi feltet, en introduktion af enkeltstrenget RNA-origami design, og fire studier, der beskriver design, produktion og karakterisering af både strukturelle og funktionelle RNA-origamier. Flere RNA-origami designs er blevet undersøgt, og...... projekterne, der indgår i denne afhandling, inkluderer de nyeste fremskridt indenfor strukturel RNA-nanoteknologi og udvikling af funktionelle RNA-baserede enheder. Det første studie beskriver konstruktion og karakterisering af en enkeltstrenget 6-helix RNA-origami stuktur, som er den første demonstration af...

  14. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.

    Science.gov (United States)

    Joshi, Raj Kumar; Megha, Swati; Rahman, Muhammad Hafizur; Basu, Urmila; Kav, Nat N V

    2016-09-15

    The necrotrophic phytopathogen, Sclerotinia sclerotiorum, causes Sclerotinia stem rot, which is a serious constraint to canola (Brassica napus L.) production worldwide. To understand the detailed molecular mechanisms underlying host response to Sclerotinia infection, we analyzed the transcript level changes in canola post-infection with S. sclerotiorum in a time course of a compatible interaction using strand specific whole transcriptome sequencing. Following infection, 161 and 52 genes (P≤0.001) were induced while 24 and 23 genes were repressed at 24h post-inoculation (hpi) and 48hpi, respectively. This suggests that, a gradual increase in host cell lyses and increase virulence of the pathogen led to the expression of only a fewer host specific genes at the later stage of infection. We observed rapid induction of key pathogen responsive genes, including glucanases, chitinases, peroxidases and WRKY Transcription factors (TFs) within 24hpi, indicating early detection of the pathogen by the host. Only 16 genes were significantly induced at both the time points suggesting a coordinated suppression of host responses by the pathogen. In addition to genes involved in plant-pathogen interactions, many novel disease responsive genes, including various TF sand those associated with jasmonate (JA) and ethylene (ET) signalling were identified. This suggests that canola adopts multiple strategies in mediating plant responses to the pathogen attack. Quantitative real time PCR (qRT-PCR) validation of a selected set of genes demonstrated a similar trend as observed by RNA-Seq analysis and highlighted the potential involvement of these genes by the host to defend itself from pathogen attack. Overall, this work presents an in-depth analysis of the interaction between host susceptibility and pathogen virulence in the agriculturally important B. napus-S. sclerotiorum pathosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Construction and analysis of the transcription factor-microRNA co-regulatory network response to Mycobacterium tuberculosis: a view from the blood.

    Science.gov (United States)

    Lin, Yan; Duan, Zipeng; Xu, Feng; Zhang, Jiayuan; Shulgina, Marina V; Li, Fan

    2017-01-01

    Mycobacterium tuberculosis ( Mtb ) infection has been regional outbreak, recently. The traditional focus on the patterns of "reductionism" which was associated with single molecular changes has been unable to meet the demand of early diagnosis and clinical application when current tuberculosis infection happened. In this study, we employed a systems biology approach to collect large microarray data sets including mRNAs and microRNAs (miRNAs) to identify the differentially expressed mRNAs and miRNAs in the whole blood of TB patients. The aim was to identify key genes associated with the immune response in the pathogenic process of tuberculosis by analyzing the co-regulatory network that was consisted of transcription factors and miRNAs as well as their target genes. The network along with their co-regulatory genes was analyzed utilizing Transcriptional Regulatory Element Database (TRED) and Database for Annotation, Visualization and Integrated Discovery (DAVID). We got 21 (19 up-regulated and 2 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway enrichment analysis showed that the 21 differentially expressed genes were predominantly involved in Tuberculosis signaling pathway, which may play a major role in tuberculosis biological process. Quantitative real-time PCR was performed to verify the over expression of co-regulatory genes ( FCGR1A and CEBPB ). The genetic expression was correlated with clinicopathological characteristics in TB patients and inferences drawn. Our results suggest the TF-miRNA gene co-regulatory network may help us further understand the molecular mechanism of immune response to tuberculosis and provide us a new angle of future biomarker and therapeutic targets.

  16. Comparative chromosome mapping of U2 snRNA and 5S rRNA genes in Gymnotus species (Gymnotiformes, Gymnotidae): evolutionary dynamics and sex chromosome linkage in G . pantanal.

    Science.gov (United States)

    Utsunomia, Ricardo; Scacchetti, Priscilla C; Pansonato-Alves, José C; Oliveira, Claudio; Foresti, Fausto

    2014-01-01

    A comparative mapping of U2 small nuclear RNA (snRNA) and 5S ribosomal RNA (rRNA) genes was performed in 6 Gymnotus species. All species analyzed presented the U2 snDNA organized in conspicuous blocks and not co-located with rRNA genes. In addition, 5 species showed the U2 snDNA located in a single pair of chromosomes, which seems to be a conserved trait in this genus. Conversely, G. pantanal was the only species displaying several terminal signals in different chromosome pairs, including the X1 sex chromosome but not the Y chromosome. This is the first report of U2 snRNA genes in sex chromosomes of fishes. The absence of sites in the Y chromosome of G. pantanal indicates a possible loss of terminal segments of the chromosomes involved in the Y formation. © 2014 S. Karger AG, Basel.

  17. Large intergenic non-coding RNA-ROR as a potential biomarker for the diagnosis and dynamic monitoring of breast cancer.

    Science.gov (United States)

    Zhao, Tianhe; Wu, Lichun; Li, Xinyang; Dai, Huangmei; Zhang, Zunzhen

    2017-08-23

    Recent study has revealed that large intergenic non-coding RNA-ROR (linc-ROR) is aberrantly expressed in a number of cancers including breast cancer. However, whether circulating linc-ROR in plasma could be used for breast cancer diagnosis and dynamic monitoring is not clear. The objective of this study is to determine if plasma linc-ROR could be applied as a biomarker for the diagnosis and dynamic monitoring of breast cancer. We tested the expression levels of linc-ROR in 24 pairs of tissue samples and 96 plasma samples from breast cancer patients by quantitative real time-polymerase chain reaction (qRT-PCR), and analyzed the correlation between plasma linc-ROR levels and clinico-pathological characteristics. Receiver operating characteristic (ROC) curve was used to assess the diagnostic power of plasma linc-ROR, carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)153 for breast cancer. Furthermore, we explored the monitoring values of plasma linc-ROR for breast cancer by analyzing the preoperative and postoperative plasma linc-ROR levels of the same patients. The expression levels of linc-ROR were significantly higher in breast cancer tissues and plasma than the levels in the control (PROR expression levels in plasma were correlated with lymph node metastasis (PROR was 0.758 (sensitivity 80.0%; specificity 73.3%), which was higher than CEA and CA153 values from the same patients obtained. Combination of the linc-ROR with the conventional biomarkers might produce better diagnostic ability. Additionally, the linc-ROR expression levels of plasma in postoperative patients were lower than those in preoperative patients (PROR may be a potential biomarker for the diagnosis and dynamic monitoring of breast cancer.

  18. On RNA-RNA interaction structures of fixed topological genus.

    Science.gov (United States)

    Fu, Benjamin M M; Han, Hillary S W; Reidys, Christian M

    2015-04-01

    Interacting RNA complexes are studied via bicellular maps using a filtration via their topological genus. Our main result is a new bijection for RNA-RNA interaction structures and a linear time uniform sampling algorithm for RNA complexes of fixed topological genus. The bijection allows to either reduce the topological genus of a bicellular map directly, or to lose connectivity by decomposing the complex into a pair of single stranded RNA structures. Our main result is proved bijectively. It provides an explicit algorithm of how to rewire the corresponding complexes and an unambiguous decomposition grammar. Using the concept of genus induction, we construct bicellular maps of fixed topological genus g uniformly in linear time. We present various statistics on these topological RNA complexes and compare our findings with biological complexes. Furthermore we show how to construct loop-energy based complexes using our decomposition grammar. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal ans spatial fluctuations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Jiří; Picek, T.; Čížková, Hana

    2008-01-01

    Roč. 34, - (2008), s. 223-232 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z60870520 Keywords : Redox potential * Redox prosesses * Phragmites australis * Wastewater treatment s * Constructed wetlands * Contunuous measurement Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.836, year: 2008

  20. Individual effects of the copia and gypsy enhancer and insulator on chromatin marks, eRNA synthesis, and binding of insulator proteins in transfected genetic constructs.

    Science.gov (United States)

    Fedoseeva, Daria M; Kretova, Olga V; Gorbacheva, Maria A; Tchurikov, Nickolai A

    2018-01-30

    Enhancers and insulators are involved in the regulation of gene expression, but the basic underlying mechanisms of action of these elements are unknown. We analyzed the individual effects of the enhancer and the insulator from Drosophila mobile elements copia [enh(copia)] and gypsy using transfected genetic constructs in S2 cells. This system excludes the influence of genomic cis regulatory elements. The enhancer-induced synthesis of 350-1050-nt-long enhancer RNAs (eRNAs) and H3K4me3 and H3K18ac marks, mainly in the region located about 300bp downstream of the enhancer. Insertion of the insulator between the enhancer and the promoter reduced these effects. We also observed the binding of dCTCF to the enhancer and to gypsy insulator. Our data indicate that a single gypsy insulator interacts with both the enhancer and the promoter, while two copies of the gypsy insulator preferentially interact with each other. Our results suggest the formation of chromatin loops that are shaped by the enhancer and the insulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  2. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  3. Dynamic Contrast Enhanced MRI Assessing the Antiangiogenic Effect of Silencing HIF-1α with Targeted Multifunctional ECO/siRNA Nanoparticles.

    Science.gov (United States)

    Malamas, Anthony S; Jin, Erlei; Gujrati, Maneesh; Lu, Zheng-Rong

    2016-07-05

    Stabilization of hypoxia inducible factor 1α (HIF-1α), a biomarker of hypoxia, in hypoxic tumors mediates a variety of downstream genes promoting tumor angiogenesis and cancer cell survival as well as invasion, and compromising therapeutic outcome. In this study, dynamic contrast enhanced MRI (DCE-MRI) with a biodegradable macromolecular MRI contrast agent was used to noninvasively assess the antiangiogenic effect of RGD-targeted multifunctional lipid ECO/siHIF-1α nanoparticles in a mouse HT29 colon cancer model. The RGD-targeted ECO/siHIF-1α nanoparticles resulted in over 50% reduction in tumor size after intravenous injection at a dose of 2.0 mg of siRNA/kg every 3 days for 3 weeks compared to a saline control. DCE-MRI revealed significant decline in vascularity and over a 70% reduction in the tumor blood flow, permeability-surface area product, and plasma volume fraction vascular parameters in the tumor treated with the targeted ECO/siHIF-1α nanoparticles. The treatment with targeted ECO/siRNA nanoparticles resulted in significant silencing of HIF-1α expression at the protein level, which also significantly suppressed the expression of VEGF, Glut-1, HKII, PDK-1, LDHA, and CAIX, which are all important players in tumor angiogenesis, glycolytic metabolism, and pH regulation. By possessing the ability to elicit a multifaceted effect on tumor biology, silencing HIF-1α with RGD-targeted ECO/siHIF-1α nanoparticles has great promise as a single therapy or in combination with traditional chemotherapy or radiation strategies to improve cancer treatment.

  4. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun

    2016-12-06

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  5. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    Czech Academy of Sciences Publication Activity Database

    Fausser, A. C.; Dušek, Jiří; Čížková, Hana; Kazda, M.

    2016-01-01

    Roč. 8, JUL (2016), č. článku plw025. ISSN 2041-2851 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:86652079 Keywords : typha-latifolia l * internal gas-transport * phragmites-australis * convective throughflow * pressurized ventilation * angustifolia l * ex steud * roots * flow * respiration * Aeration * constructed wetland * in-situ field study * internal carbon dioxide * internal oxygen dynamics * Phragmites australis Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.238, year: 2016

  6. Policy analysis of the budget used in training program for reducing lower back pain among heavy equipment operators in the construction industry: System dynamics approach

    Science.gov (United States)

    Vitharana, V. H. P.; Chinda, T.

    2018-04-01

    Lower back pain (LBP), prevalence is high among the heavy equipment operators leading to high compensation cost in the construction industry. It is found that proper training program assists in reducing chances of having LBP. This study, therefore aims to examine different safety related budget available to support LBP related training program for different age group workers, utilizing system dynamics modeling approach. The simulation results show that at least 2.5% of the total budget must be allocated in the safety and health budget to reduce the chances of having LBP cases.

  7. Study on seismic stability of seawall in man-made island. Pt. 1. Shaking table tests on dynamic behavior of seawall constructed on the bedrock

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi; Kanatani, Mamoru; Kawai, Tadashi

    1999-01-01

    In the development of siting technology for off-shore nuclear power plants on man-made island, assessing the stability of seawall which ensures the safety of backfill ground against ocean waves and earthquakes is indispensable. In assessing seismic stability of seawall, evaluation of dynamic nonlinear behavior like sliding and settlement is an important factor. For this purpose, shake-table tests of seawall model have been carried out. By the experiments in the case of well compacted backfill ground, it is indicated that dynamic failure of caisson type seawall constructed on the strong seabed ground is mainly induced by the sliding of caisson toward the sea and followed by the settlement of backfill ground. And as the influence of armour embankment on the seismic stability of seawall, we experimentally showed that the sliding displacement of caisson during earthquake is reduced by the lateral pressure of armour units and armour embankment works effectively to rise up earthquake resistance capability of seawall. (author)

  8. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Garcia Vanegas, Katherina; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-01-01

    to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. Conclusions We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell......Background The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. Results In this study, we have developed a new...... Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have...

  9. HYPOXIA-INDUCED GROWTH LIMITATION OF JUVENILE FISHES IN AN ESTUARINE NURSERY: ASSESSMENT OF SMALL-SCALE TEMPORAL DYNAMICS USING RNA:DNA

    Science.gov (United States)

    The ratio of RNA to DNA (RNA:DNA) in white muscle tissue of juvenile summer flounder (Paralichthys dentatus) and weakfish (Cynoscion regalis) was used as a proxy for recent growth rate in an estuarine nursery. Variability in RNA:DNA was examined relative to temporal changes in te...

  10. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

    International Nuclear Information System (INIS)

    Henriksen, Niel M.; Davis, Darrell R.; Cheatham, Thomas E. III

    2012-01-01

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility—using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions—by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to “update” older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  11. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    Science.gov (United States)

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure.

    Science.gov (United States)

    Henriksen, Niel M; Davis, Darrell R; Cheatham, Thomas E

    2012-08-01

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility-using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions-by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to "update" older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  13. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics.

    Directory of Open Access Journals (Sweden)

    Serena Nicolai

    Full Text Available The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER known as transcription coupled repair (TCR. CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.

  14. Beliefs about lying and spreading of dishonesty: undetected lies and their constructive and destructive social dynamics in dice experiments.

    Directory of Open Access Journals (Sweden)

    Heiko Rauhut

    Full Text Available Field experiments have shown that observing other people littering, stealing or lying can trigger own misconduct, leading to a decay of social order. However, a large extent of norm violations goes undetected. Hence, the direction of the dynamics crucially depends on actors' beliefs regarding undetected transgressions. Because undetected transgressions are hardly measureable in the field, a laboratory experiment was developed, where the complete prevalence of norm violations, subjective beliefs about them, and their behavioral dynamics is measurable. In the experiment, subjects could lie about their monetary payoffs, estimate the extent of liars in their group and make subsequent lies contingent on information about other people's lies. Results show that informed people who underestimate others' lying increase own lying more than twice and those who overestimate, decrease it by more than half compared to people without information about others' lies. This substantial interaction puts previous results into perspective, showing that information about others' transgressions can trigger dynamics in both directions: the spreading of normative decay and restoring of norm adherence.

  15. Beliefs about lying and spreading of dishonesty: undetected lies and their constructive and destructive social dynamics in dice experiments.

    Science.gov (United States)

    Rauhut, Heiko

    2013-01-01

    Field experiments have shown that observing other people littering, stealing or lying can trigger own misconduct, leading to a decay of social order. However, a large extent of norm violations goes undetected. Hence, the direction of the dynamics crucially depends on actors' beliefs regarding undetected transgressions. Because undetected transgressions are hardly measureable in the field, a laboratory experiment was developed, where the complete prevalence of norm violations, subjective beliefs about them, and their behavioral dynamics is measurable. In the experiment, subjects could lie about their monetary payoffs, estimate the extent of liars in their group and make subsequent lies contingent on information about other people's lies. Results show that informed people who underestimate others' lying increase own lying more than twice and those who overestimate, decrease it by more than half compared to people without information about others' lies. This substantial interaction puts previous results into perspective, showing that information about others' transgressions can trigger dynamics in both directions: the spreading of normative decay and restoring of norm adherence.

  16. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

    Science.gov (United States)

    Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo

    2014-09-01

    Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok

    2015-01-01

    Highlights: • This study reviews the state-of-the-art in “energy” as well as “building”. • Building’s dynamic energy performance should be managed in the built environments. • This study summarizes recent progress in the building’s dynamic energy performance. • The major phases can be categorized into monitoring, diagnosing, and retrofitting. • This study proposes the specific future development directions and challenges by phase. - Abstract: According to a press release, the building sector accounts for about 40% of the global primary energy consumption. Energy savings can be achieved in the building sector by improving the building’s dynamic energy performance in terms of sustainable construction management in the urban-based built environments (referred to as an “Urban Organism”). This study implements the concept of “dynamic approach” to reflect the unexpected changes in the climate and energy environments as well as in the energy policies and technologies. Research in this area is very significant for the future of the building, energy, and environmental industries around the world. However, there is a lack of studies from the perspective of the dynamic approach and the system integration, and thus, this study is designed to fill the research gap. This study highlights the state-of-the-art in the major phases for a building’s dynamic energy performance (i.e., monitoring, diagnosing, and retrofitting phases), focusing on the operation and maintenance phase. This study covers a wide range of research works and provides various illustrative examples of the monitoring, diagnosing, and retrofitting of a building’s dynamic energy performance. Finally, this study proposes the specific future developments and challenges by phase and suggests the future direction of system integration for the development of a carbon-integrated management system as a large complex system. It is expected that researchers and practitioners can

  18. [Anti-HBV effects of genetically engineered replication-defective HBV with combined expression of antisense RNA and dominant negative mutants of core protein and construction of first-generation packaging cell line for HBV vector].

    Science.gov (United States)

    Sun, Dian Xing; Hu, Da Rong; Wu, Guang Hui; Hu, Xue Ling; Li, Juan; Fan, Gong Ren

    2002-08-01

    To explore the possibility of using HBV as a gene delivery vector, and to test the anti-HBV effects by intracellular combined expression of antisense RNA and dominant negative mutants of core protein. Full length of mutant HBV genome, which expresses core-partial P fusion protein and/or antisense RNA, was transfected into HepG2.2.15 cell lines. Positive clones were selected and mixed in respective groups with hygromycin in the culture medium. HBsAg and HBeAg, which exist in the culture medium, were tested by ELISA method. Intracellular HBc related HBV DNA was examined by dot blot hybridization. The existence of recombinant HBV virion in the culture medium was examined by PCR. Free of packaging signal, HBV genome, which express the HBV structural proteins including core, pol and preS/S proteins, was inserted into pCI-neo vector. HepG2 cell lines were employed to transfect with the construct. G418 selection was done at the concentration of 400mug/ml in the culture medium. The G418-resistant clones with the best expression of HBsAg and HBcAg were theoretically considered as packaging cell lines and propagated under the same conditions. It was transfected with plasmid pMEP-CPAS and then selected with G418 and hygromycin in the culture medium. The existence of recombinant HBV virion in the culture medium was examined by PCR. The mean inhibitory rates of HBsAg were 2.74% 3.83%, 40.08 2.05% (t=35.5, PDNA were 0, 82.0%, 59.9%, and 96.6%, respectively. Recombinant HB virion was detectable in the culture medium of all the three treatment groups. G418-resistant HBV packaging cell line, which harbored an HBV mutant whose packaging signal had been deleted, was generated. Expression of HBsAg and HBcAg was detectable. Transfected with plasmid pMEP-CPAS, it was found to secrete recombinant HB virion and no wild-type HBV was detectable in the culture medium. It has stronger anti-HBV effects by combined expression of antisense RNA and dominant negative mutants than by individual

  19. Development of damage evaluation method on the brittle materials for constructions using microscopic structural dynamics and probability theory

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1997-01-01

    The conventional stress analysis evaluation of the ceramic apparatuses is due to a perfect model of continuous mechanical materials. Such approximate and simplified treatment is thought to be unsufficient with the following two reasons. At first, because of changes of materials mechanical properties with manufacturing conditions and presence of limit in experimentalismic understanding, establishment of quantitative guideline for improvement of materials and structures and general understanding of thermo-mechanical property change due to neutron radiation becomes difficult. The second, because of statistical change of mechanical property and others containing fracture condition at various loading types, judgement standard of conventional deterministic evaluation is apt to be conservative and causes inferior performance and economics of the constructions under their using conditions. Therefore, in this study, following two basic approaches are planned; 1) Preparation of material deformation and fracture model considering correlation between microscopic/mesoscopic damage and macroscopic behavior, and 2) Improvement of the finite element method calculation due to parallel treatment for soundness and reliability evaluation of the construction. (G.K.)

  20. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  1. Pyrite footprinting of RNA

    Energy Technology Data Exchange (ETDEWEB)

    Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Wieder, Matthew S. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Jones, Christopher D.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, NY (United States); Brenowitz, Michael [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  2. Extremist Construction of Identity: How Escalating Demands for Legitimacy Shape and Define In-Group and Out-Group Dynamics

    Directory of Open Access Journals (Sweden)

    J.M. Berger

    2017-04-01

    Full Text Available This Research Paper examines how the white supremacist movement Christian Identity emerged from a non-extremist forerunner known as British Israelism. By examining ideological shifts over the course of nearly a century, the paper seeks to identify key pivot points in the movement’s shift toward extremism and explain the process through which extremist ideologues construct and define in-group and out-group identities. Based on these findings, the paper proposes a new framework for analysing and understanding the behaviour and emergence of extremist groups. The proposed framework can be leveraged to design strategic counter-terrorism communications programmes using a linkage-based approach that deconstructs the process of extremist in-group and out-group definition. Future publications will continue this study, seeking to refine the framework and operationalise messaging recommendations.

  3. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  4. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  5. A robust construction algorithm of the centerline skeleton for complex aortic vascular structure using computational fluid dynamics.

    Science.gov (United States)

    Touati, Julien; Bologna, Marco; Schwein, Adeline; Migliavacca, Francesco; Garbey, Marc

    2017-07-01

    Centerlines of blood vessels are useful tools to make important anatomical measurements (length, diameter, area), which cannot be accurately obtained using 2D images. In this paper a brand new method for centerline extraction of vascular trees is presented. By using computational fluid dynamics (CFD) we are able to obtain a robust and purely functional centerline allowing us to support better measurements than classic purely geometrical-based centerlines. We show that the CFD-based centerline is within a few pixels from the geometrical centerline where the latter is defined (far away from inlet/outlets and from the branches). We show that the centerline computed with our method is not affected by traditional errors of other classical volume-based algorithms such as topological thinning, and could be a potential alternative to be considered for future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Research 0n Incentive Mechanism of General Contractor and Subcontractors Dynamic Alliance in Construction Project Based on Team Cooperation

    Science.gov (United States)

    Yin, Honglian; Sun, Aihua; Liu, Quanru; Chen, Zhiyi

    2018-03-01

    It is the key of motivating sub-contractors working hard and mutual cooperation, ensuring implementation overall goal of the project that to design rational incentive mechanism for general contractor. Based on the principal-agency theory, the subcontractor efforts is divided into two parts, one for individual efforts, another helping other subcontractors, team Cooperation incentive models of multiple subcontractors are set up, incentive schemes and intensities are also given. The results show that the general contractor may provide individual and team motivation incentives when subcontractors working independently, not affecting each other in time and space; otherwise, the general contractor may only provide individual incentive to entice teams collaboration between subcontractors and helping each other. The conclusions can provide a reference for the subcontract design of general and sub-contractor dynamic alliances.

  7. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    Science.gov (United States)

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  8. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    Directory of Open Access Journals (Sweden)

    Rayevsky A. V.

    2016-02-01

    Full Text Available Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [PDBID: 1OBH] was taken from RCSB. Docking settings and evaluation of substrate efficiency were followed by twofold docking function analysis for each conformation with Gold CCDC. The molecular dynamics simulation was performed using Gromacs. The procedures of relaxation and binding study were separated in two different subsequent simulations for 50ns and 5ns. Results. The evaluation of substrate efficiency for 8 amino acids by twofold docking function analysis, based on score values,has shown that the ligands of LeuRSTT can be positioned in the following order: Leu>Nva>Hcy>Nle>Met>Cys>Ile >Val. MD simulation has revealed lower electrostatic interactions of isoleucine with the active site of the enzyme compared with those for norvaline and leucine. In the case of aminoacyl-adenylates no significant differences were found based on score values for both GoldScore and Asp functions. Molecular dynamics of leucyl-, isoleucyl- and norvalyl-adenylates showed that the most stable and conformationally favorable is leucine, then follow norvaline and isoleucine. It has been also found that the TYR43 of the active site covers carboxyl group of leucine and norvaline like a shield and deflected towards isoleucine, allowing water molecules to come closer. Conclusions. In this study we revealed some structural basis for screening unfavorable substrates by shape, size and flexibility of a radical. The results obtained for different amino acids by molecular docking and MD studies

  9. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wu-Sheng Sun

    2016-01-01

    Full Text Available Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE and proximal enhancer (PE, in the 5′ upstream regulatory sequences (URSs of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs and epiblast stem cells (EpiSCs. We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free-Oct4-promoter-driven EGFP reporter cassette with a PE-free-Oct4-promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9 and a mouse EpiSC-like cell line (P19 before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  10. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation.

    Science.gov (United States)

    Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong

    2016-01-01

    Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  11. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  12. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  13. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    Science.gov (United States)

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  14. The interplay between polymerase organization and nucleosome occupancy along DNA : How dynamic roadblocks on the DNA induce the formation of RNA polymerase pelotons

    NARCIS (Netherlands)

    van den Berg, A.A.

    2017-01-01

    During transcription RNA polymerase (RNAP) moves along a DNA molecule to copy the information on the DNA to an RNA molecule. Many textbook pictures show an RNAP sliding along empty DNA, but in reality it is crowded on the DNA and RNAP competes for space with many proteins such as other RNAP’s and

  15. The construction of general basis functions in reweighting ensemble dynamics simulations: Reproduce equilibrium distribution in complex systems from multiple short simulation trajectories

    Science.gov (United States)

    Zhang, Chuan-Biao; Ming, Li; Xin, Zhou

    2015-12-01

    Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics (RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions, are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation (RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space. Project supported by the National Natural Science Foundation of China (Grant No. 11175250).

  16. Porous polymer adsorbent media constructed by molecular dynamics modeling and simulations: the immobilization of charged ligands and their effect on pore structure and local nonelectroneutrality.

    Science.gov (United States)

    Riccardi, E; Wang, J-C; Liapis, A I

    2009-02-26

    A molecular dynamics modeling and simulation approach is presented and employed to construct porous dextran polymer ion-exchange adsorbent media. Both the activation step of the surface of the pores of the dextran polymer layer grafted on an agarose surface and the immobilization of charged ligands on the activated surface of the porous dextran polymer layer are considered. For the systems studied in this work, the activation step modifies slightly the pore structure of the base, nonactivated porous dextran polymer, while the immobilization of the ligands on the activated pore surface of the dextran layer changes significantly the pore structure of the activated dextran layer. The density distributions of the counterions and immobilized charged ligands along the direction of net transport in the adsorbent media constructed in this study are found to be nonuniform. The variables that affect the shape and magnitude of the density distributions of the counterions and immobilized charged ligands as well as the total number of charged ligands that can be immobilized on the activated porous dextran layer are identified and presented in this work. Furthermore, the data clearly show that there is local nonelectroneutrality in the porous dextran polymer ion-exchange adsorbent media, and this result has very important practical implications for the operation and performance of separation systems involving ion-exchange adsorbent media (e.g., ion-exchange chromatography systems). Also, the results of this work suggest approaches for (1) controlling the immobilization process of charged ligands and (2) constructing and studying the behavior of chromatographic polymeric monoliths and packed bed columns having a gradient of density of functionalities along the axis of the chromatographic polymeric monolith or packed bed column.

  17. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Directory of Open Access Journals (Sweden)

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  18. Independent channels for miRNA biosynthesis ensure efficient static and dynamic control in the regulation of the early stages of myogenesis.

    Science.gov (United States)

    Fiorentino, Jonathan; De Martino, Andrea

    2017-10-07

    Motivated by recent experimental work, we define and study a deterministic model of the complex miRNA-based regulatory circuit that putatively controls the early stage of myogenesis in human. We aim in particular at a quantitative understanding of (i) the roles played by the separate and independent miRNA biosynthesis channels (one involving a miRNA-decoy system regulated by an exogenous controller, the other given by transcription from a distinct genomic locus) that appear to be crucial for the differentiation program, and of (ii) how competition to bind miRNAs can efficiently control molecular levels in such an interconnected architecture. We show that optimal static control via the miRNA-decoy system constrains kinetic parameters in narrow ranges where the channels are tightly cross-linked. On the other hand, the alternative locus for miRNA transcription can ensure that the fast concentration shifts required by the differentiation program are achieved, specifically via non-linear response of the target to even modest surges in the miRNA transcription rate. While static, competition-mediated regulation can be achieved by the miRNA-decoy system alone, both channels are essential for the circuit's overall functionality, suggesting that that this type of joint control may represent a minimal optimal architecture in different contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamics of freshwater snails and Schistosoma infection prevalence in schoolchildren during the construction and operation of a multipurpose dam in central Côte d'Ivoire.

    Science.gov (United States)

    Diakité, Nana R; Winkler, Mirko S; Coulibaly, Jean T; Guindo-Coulibaly, Négnorogo; Utzinger, Jürg; N'Goran, Eliézer K

    2017-05-04

    The construction and operation of small multipurpose dams in Africa have a history of altering the transmission of water-based diseases, including schistosomiasis. The current study was designed to investigate the abundance and dynamics of schistosomiasis intermediate host snails and Schistosoma infections in humans during the construction and the first years of operation of a small multipurpose dam in Côte d'Ivoire. The study was carried out in Raffierkro and four neighbouring villages in central Côte d'Ivoire between 2007 and 2012. Snails were collected by two experienced investigators using scoops and forceps for 15 min at each site. Snails were identified at genera and, whenever possible, species level, and subjected to testing for cercarial shedding. Schoolchildren aged 6-15 years were examined once every year for Schistosoma haematobium and S. mansoni infection, using urine filtration and duplication Kato-Katz thick smears, respectively. Additionally, 551 adults were examined for Schistosoma infection before (June 2007) and 359 individuals 2 years after dam construction (June 2009). Overall, 1 700 snails belonging to nine different genera were collected from 19 sampling sites. Bulinus (potential intermediate host snails of S. haematobium) and Pila were the most common genera, whereas Biomphalaria (potential intermediate host snail of S. mansoni), Lymnaea, Physa and Melanoides were found in two villages. During the first-year sampling period, 65 snails were collected, of which 13 (20%) were schistosomiasis intermediate hosts. In subsequent years, out of 1 635 snails collected, 1 079 (66%) were identified as potential intermediate host for schistosomiasis, but none were shedding cercariae. The prevalence of S. mansoni among adults in the study area was low (0.4% in 2007 and 0.3% in 2009), whereas the prevalence of S. haematobium declined from 13.9% to 2.9% in this two-year period. The low prevalence of schistosomiasis in humans and the absence of infected

  20. Hairpins under tension: RNA versus DNA.

    Science.gov (United States)

    Bercy, Mathilde; Bockelmann, Ulrich

    2015-11-16

    We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contribute to the fact that DNA and RNA play fundamentally different biological roles in spite of chemical similarity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.

    Directory of Open Access Journals (Sweden)

    Renee M Petri

    Full Text Available Subacute rumen acidotic (SARA conditions are a consequence of high grain feeding. Recent work has shown that the pattern of grain feeding can significantly impact the rumen epimural microbiota. In a continuation of these works, the objective of this study was to determine the role of grain feeding patterns on the colonization and associated changes in predicted functional properties of the fiber-adherent microbial community over a 48 h period. Eight rumen-cannulated Holstein cows were randomly assigned to interrupted or continuous 60%-grain challenge model (n = 4 per model to induce SARA conditions. Cows in the continuous model were challenged for 4 weeks, whereas cows of interrupted model had a 1-wk break in between challenges. To determine dynamics of rumen fiber-adherent microbial community we incubated the same hay from the diet samples for 24 and 48 h in situ during the baseline (no grain fed, week 1 and 4 of the continuous grain feeding model as well as during the week 1 following the break in the interrupted model. Microbial DNA was extracted and 16SrRNA amplicon (V3-V5 region sequencing was done with the Illumina MiSeq platform. A significant decrease (P 0.1% relative abundance in the rumen, 18 of which were significantly impacted by the feeding challenge model. Correlation analysis of the significant OTUs to rumen pH as an indicator of SARA showed genus Succiniclasticum had a positive correlation to SARA conditions regardless of treatment. Predictive analysis of functional microbial properties suggested that the glyoxylate/dicarboxylate pathway was increased in response to SARA conditions, decreased between 24h to 48h of incubation, negatively correlated with propanoate metabolism and positively correlated to members of the Veillonellaceae family including Succiniclasticum spp. This may indicate an adaptive response in bacterial metabolism under SARA conditions. This research clearly indicates that changes to the colonizing fiber

  2. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  3. Application of Live-Cell RNA Imaging Techniques to the Study of Retroviral RNA Trafficking

    Directory of Open Access Journals (Sweden)

    Darrin V. Bann

    2012-06-01

    Full Text Available Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA, which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.

  4. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition.

    Science.gov (United States)

    Madina, Bhaskara R; Kumar, Vikas; Metz, Richard; Mooers, Blaine H M; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-07-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. © 2014 Madina et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  6. From Understanding the Development Landscape of the Canonical Fate-Switch Pair to Constructing a Dynamic Landscape for Two-Step Neural Differentiation

    Science.gov (United States)

    2012-01-01

    Abstract Recent progress in stem cell biology, notably cell fate conversion, calls for novel theoretical understanding for cell differentiation. The existing qualitative concept of Waddington’s “epigenetic landscape” has attracted particular attention because it captures subsequent fate decision points, thus manifesting the hierarchical (“tree-like”) nature of cell fate diversification. Here, we generalized a recent work and explored such a developmental landscape for a two-gene fate decision circuit by integrating the underlying probability landscapes with different parameters (corresponding to distinct developmental stages). The change of entropy production rate along the parameter changes indicates which parameter changes can represent a normal developmental process while other parameters’ change can not. The transdifferentiation paths over the landscape under certain conditions reveal the possibility of a direct and reversible phenotypic conversion. As the intensity of noise increases, we found that the landscape becomes flatter and the dominant paths more straight, implying the importance of biological noise processing mechanism in development and reprogramming. We further extended the landscape of the one-step fate decision to that for two-step decisions in central nervous system (CNS) differentiation. A minimal network and dynamic model for CNS differentiation was firstly constructed where two three-gene motifs are coupled. We then implemented the SDEs (Stochastic Differentiation Equations) simulation for the validity of the network and model. By integrating the two landscapes for the two switch gene pairs, we constructed the two-step development landscape for CNS differentiation. Our work provides new insights into cellular differentiation and important clues for better reprogramming strategies. PMID:23300518

  7. A Computational Fluid Dynamic (CFD Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-03-01

    Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  8. From understanding the development landscape of the canonical fate-switch pair to constructing a dynamic landscape for two-step neural differentiation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Qiu

    2012-12-01

    Full Text Available Recent progress in stem cell biology, notably cell fate conversion, calls for novel theoretical understanding for cell differentiation. The existing qualitative concept of Waddington's "epigenetic landscape" has attracted particular attention because it captures subsequent fate decision points, thus manifesting the hierarchical ("tree-like" nature of cell fate diversification. Here, we generalized a recent work and explored such a developmental landscape for a two-gene fate decision circuit by integrating the underlying probability landscapes with different parameters (corresponding to distinct developmental stages. The change of entropy production rate along the parameter changes indicates which parameter changes can represent a normal developmental process while other parameters' change can not. The transdifferentiation paths over the landscape under certain conditions reveal the possibility of a direct and reversible phenotypic conversion. As the intensity of noise increases, we found that the landscape becomes flatter and the dominant paths more straight, implying the importance of biological noise processing mechanism in development and reprogramming. We further extended the landscape of the one-step fate decision to that for two-step decisions in central nervous system (CNS differentiation. A minimal network and dynamic model for CNS differentiation was firstly constructed where two three-gene motifs are coupled. We then implemented the SDEs (Stochastic Differentiation Equations simulation for the validity of the network and model. By integrating the two landscapes for the two switch gene pairs, we constructed the two-step development landscape for CNS differentiation. Our work provides new insights into cellular differentiation and important clues for better reprogramming strategies.

  9. Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system

    Science.gov (United States)

    Lemus-Diaz, Nicolas; Böker, Kai O.; Rodriguez-Polo, Ignacio; Mitter, Michael; Preis, Jasmin; Arlt, Maximilian; Gruber, Jens

    2017-01-01

    Despite major advances on miRNA profiling and target predictions, functional readouts for endogenous miRNAs are limited and frequently lead to contradicting conclusions. Numerous approaches including functional high-throughput and miRISC complex evaluations suggest that the functional miRNAome differs from the predictions based on quantitative sRNA profiling. To resolve the apparent contradiction of expression versus function, we generated and applied a fluorescence reporter gene assay enabling single cell analysis. This approach integrates and adapts a mathematical model for miRNA-driven gene repression. This model predicts three distinct miRNA-groups with unique repression activities (low, mid and high) governed not just by expression levels but also by miRNA/target-binding capability. Here, we demonstrate the feasibility of the system by applying controlled concentrations of synthetic siRNAs and in parallel, altering target-binding capability on corresponding reporter-constructs. Furthermore, we compared miRNA-profiles with the modeled predictions of 29 individual candidates. We demonstrate that expression levels only partially reflect the miRNA function, fitting to the model-projected groups of different activities. Furthermore, we demonstrate that subcellular localization of miRNAs impacts functionality. Our results imply that miRNA profiling alone cannot define their repression activity. The gene regulatory function is a dynamic and complex process beyond a minimalistic conception of “highly expressed equals high repression”. PMID:28338079

  10. Synthesis of 2′-Fluoro RNA by Syn5 RNA polymerase

    Science.gov (United States)

    Zhu, Bin; Hernandez, Alfredo; Tan, Min; Wollenhaupt, Jan; Tabor, Stanley; Richardson, Charles C.

    2015-01-01

    The substitution of 2′-fluoro for 2′-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2′-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2′-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2′-fluoro-dNMPs by Syn5 RNA polymerase have been identified. PMID:25897116

  11. [The concept of dignity and life science law: a symbolic, dynamic value at the heart of the social construction of man].

    Science.gov (United States)

    Byk, Christian

    2010-12-01

    Included in human rights law just after the Second World War, dignity is the quality common to all people in that it symbolises their human condition. Inherent to each person, it is therefore independent of any other personal and random condition (physical state, origin, colour, religion...) just as it is independent of social conditions (a person's dignity cannot be questioned by society). However, the very context of this recognition--in the aftermath of the defeat of Nazism--emphasises the fact that it was not something evident in human history. So there is in this manifestation of the international community a strong political sign which makes dignity as much a construction of man as a quality consubstantial with his nature. A symbol of the human condition, dignity is therefore also a dynamic value, a combat value. As such, it forces us to wonder about what belongs to the human sphere and also about the particular responsibility which springs for every man and for mankind, from the dignity with which he is invested.

  12. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    Science.gov (United States)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and Me

  13. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  14. A Comparison of the Dynamics of S100B, S100A1, and S100A6 mRNA Expression in Hippocampal CA1 Area of Rats during Long-Term Potentiation and after Low-Frequency Stimulation

    OpenAIRE

    Lisachev, Pavel D.; Shtark, Mark B.; Sokolova, Olga O.; Pustylnyak, Vladimir O.; Salakhutdinova, Mary Yu.; Epstein, Oleg I.

    2010-01-01

    The interest in tissue- and cell-specific S100 proteins physiological roles in the brain remains high. However, necessary experimental data for the assessment of their dynamics in one of the most important brain activities, its plasticity, is not sufficient. We studied the expression of S100B, S100A1, and S100A6 mRNA in the subfield CA1 of rat hippocampal slices after tetanic and low-frequency stimulation by real-time PCR. Within 30?min after tetanization, a 2?4 fold increase of the S100B mRN...

  15. Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA.

    Science.gov (United States)

    Shanker, Savita; Paulson, Ariel; Edenberg, Howard J; Peak, Allison; Perera, Anoja; Alekseyev, Yuriy O; Beckloff, Nicholas; Bivens, Nathan J; Donnelly, Robert; Gillaspy, Allison F; Grove, Deborah; Gu, Weikuan; Jafari, Nadereh; Kerley-Hamilton, Joanna S; Lyons, Robert H; Tepper, Clifford; Nicolet, Charles M

    2015-04-01

    This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA.

  16. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the

  17. Construction management

    CERN Document Server

    Pellicer, Eugenio; Teixeira, José C; Moura, Helder P; Catalá, Joaquín

    2014-01-01

    The management of construction projects is a wide ranging and challenging discipline in an increasingly international industry, facing continual challenges and demands for improvements in safety, in quality and cost control, and in the avoidance of contractual disputes. Construction Management grew out of a Leonardo da Vinci project to develop a series of Common Learning Outcomes for European Managers in Construction. Financed by the European Union, the project aimed to develop a library of basic materials for developing construction management skills for use in a pan-European context. Focused exclusively on the management of the construction phase of a building project from the contractor's point of view, Construction Management covers the complete range of topics of which mastery is required by the construction management professional for the effective delivery of new construction projects. With the continued internationalisation of the construction industry, Construction Management will be required rea...

  18. INFO-RNA--a fast approach to inverse RNA folding.

    Science.gov (United States)

    Busch, Anke; Backofen, Rolf

    2006-08-01

    The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programming method for good initial sequences and a following improved stochastic local search that uses an effective neighbor selection method. During the initialization, we design a sequence that among all sequences adopts the given structure with the lowest possible energy. For the selection of neighbors during the search, we use a kind of look-ahead of one selection step applying an additional energy-based criterion. Afterwards, the pre-ordered neighbors are tested using the actual optimization criterion of minimizing the structure distance between the target structure and the mfe structure of the considered neighbor. We compared our algorithm to RNAinverse and RNA-SSD for artificial and biological test sets. Using INFO-RNA, we performed better than RNAinverse and in most cases, we gained better results than RNA-SSD, the probably best inverse RNA folding tool on the market. www.bioinf.uni-freiburg.de?Subpages/software.html.

  19. Constructal law: Pleasure, golden ratio, animal locomotion and the design of pedestrian evacuation. Comment on “The emergence of design in pedestrian dynamics: Locomotion, self-organization, walking paths and the constructal law” by A. Miguel

    Science.gov (United States)

    Bejan, Adrian

    2013-06-01

    Pedestrian flow belongs to the design of animal movement, covered by the constructal law of design (animate, inanimate) in nature. Walking and running, like water waves, are forms of falling-forward movement, with speeds in accord with the constructal law. Travel on an area is a balanced combination of “long and fast and short and slow”. Bodies moving on an area are a balanced combination of “few large and many small”. Comfort, beauty (golden ratio) and pleasure guide human movement to greater access, in accord with the constructal law.

  20. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches.

    Science.gov (United States)

    Czimmerer, Zsolt; Horvath, Attila; Daniel, Bence; Nagy, Gergely; Cuaranta-Monroy, Ixchelt; Kiss, Mate; Kolostyak, Zsuzsanna; Poliska, Szilard; Steiner, Laszlo; Giannakis, Nikolas; Varga, Tamas; Nagy, Laszlo

    2018-01-01

    MicroRNAs are important components of the post-transcriptional fine-tuning of macrophage gene expression in physiological and pathological conditions. However, the mechanistic underpinnings and the cis-acting genomic factors of how macrophage polarizing signals induce miRNA expression changes are not well characterized. Therefore, we systematically evaluated the transcriptional basis underlying the inflammation-mediated regulation of macrophage microRNome using the combination of different next generation sequencing datasets. We investigated the LPS-induced expression changes at mature miRNA and pri-miRNA levels in mouse macrophages utilizing a small RNA-seq method and publicly available GRO-seq dataset, respectively. Next, we identified an enhancer set associated with LPS-responsive pri-miRNAs based on publicly available H3K4 mono-methylation-specific ChIP-seq and GRO-seq datasets. This enhancer set was further characterized by the combination of publicly available ChIP and ATAC-seq datasets. Finally, direct interactions between the miR-155-coding genomic region and its distal regulatory elements were identified using a 3C-seq approach. Our analysis revealed 15 robustly LPS-regulated miRNAs at the transcriptional level. In addition, we found that these miRNA genes are associated with an inflammation-responsive enhancer network. Based on NFκB-p65 and JunB transcription factor binding, we showed two distinct enhancer subsets associated with LPS-activated miRNAs that possess distinct epigenetic characteristics and LPS-responsiveness. Finally, our 3C-seq analysis revealed the LPS-induced extensive reorganization of the pri-miR-155-associated functional chromatin domain as well as chromatin loop formation between LPS-responsive enhancers and the promoter region. Our genomic approach successfully combines various genome-wide datasets and allows the identification of the putative regulatory elements controlling miRNA expression in classically activated macrophages

  1. RNA viruses in the sea.

    Science.gov (United States)

    Lang, Andrew S; Rise, Matthew L; Culley, Alexander I; Steward, Grieg F

    2009-03-01

    Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.

  2. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons.

    Science.gov (United States)

    Fallini, Claudia; Rouanet, Jeremy P; Donlin-Asp, Paul G; Guo, Peng; Zhang, Honglai; Singer, Robert H; Rossoll, Wilfried; Bassell, Gary J

    2014-03-01

    Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1. Copyright © 2013 Wiley Periodicals, Inc.

  3. tPA-binding RNA Aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils

    2015-01-01

    -density lipoprotein receptor Related Protein-1 (LRP-1). Here, we describe the selection and characterisation of structured RNA ligands (“RNA aptamers”) to tPA, K18 and K32. Both aptamers were truncated to minimal 32-nucleotide constructs (v2) with improved or unchanged activities, and were shown to bind tPA with low...

  4. Natural selection and algorithmic design of mRNA.

    Science.gov (United States)

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  5. tRNA splicing

    OpenAIRE

    Abelson, John; Trotta, Christopher R.; Li, Hong

    1998-01-01

    Introns interrupt the continuity of many eukaryal genes, and therefore their removal by splicing is a crucial step in gene expression. Interestingly, even within Eukarya there are at least four splicing mechanisms. mRNA splicing in the nucleus takes place in two phosphotransfer reactions on a complex and dynamic machine, the spliceosome. This reaction is related in mechanism to the two self-splicing mechanisms for Group 1 and Group 2 introns. In fact the Group 2 introns are spliced by an iden...

  6. Prebiotic RNA Network Formation: A Taxonomy of Molecular Cooperation.

    Science.gov (United States)

    Mathis, Cole; Ramprasad, Sanjay N; Walker, Sara Imari; Lehman, Niles

    2017-10-16

    Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real RNA system based on the Azoarcus ribozyme, by constructing a taxonomy of possible cooperative groups. We construct a computational model of this system to investigate the features of the real system promoting cooperation. We find triplet interactions among genotypes are intrinsically biased towards cooperation due to the particular distribution of catalytic rate constants measured empirically in the real system. For other distributions cooperation is less favored. We discuss implications for understanding cooperation as a driver of complexification in the origin of life.

  7. Construction practice

    International Nuclear Information System (INIS)

    Winters, J.; Clelland, J.; Rumble, E.; Sandell, L.

    2007-01-01

    One has elaborated a virtual computer model (VRC) of construction of the AP1000 project reactor to demonstrate its viability, to improve the NPP project making it more easy for construction with simultaneous reduction of time, costs and risk of construction. The approach ensured time sequence of the 3-D visualization of NPP at the construction stages. The VRC ensures optimization of scheme implementation time period and specifies the basic costs. The VRC application offers essential advantages when planning construction of a nuclear power facility [ru

  8. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    Science.gov (United States)

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  9. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance.

    Science.gov (United States)

    Urayama, Syun-Ichi; Takaki, Yoshihiro; Nunoura, Takuro

    2016-01-01

    Knowledge of the distribution and diversity of RNA viruses is still limited in spite of their possible environmental and epidemiological impacts because RNA virus-specific metagenomic methods have not yet been developed. We herein constructed an effective metagenomic method for RNA viruses by targeting long double-stranded (ds)RNA in cellular organisms, which is a hallmark of infection, or the replication of dsRNA and single-stranded (ss)RNA viruses, except for retroviruses. This novel dsRNA targeting metagenomic method is characterized by an extremely high recovery rate of viral RNA sequences, the retrieval of terminal sequences, and uniform read coverage, which has not previously been reported in other metagenomic methods targeting RNA viruses. This method revealed a previously unidentified viral RNA diversity of more than 20 complete RNA viral genomes including dsRNA and ssRNA viruses associated with an environmental diatom colony. Our approach will be a powerful tool for cataloging RNA viruses associated with organisms of interest.

  10. The RNA modification landscape in human disease.

    Science.gov (United States)

    Jonkhout, Nicky; Tran, Julia; Smith, Martin A; Schonrock, Nicole; Mattick, John S; Novoa, Eva Maria

    2017-12-01

    RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps. © 2017 Jonkhout et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Diversity, Dynamics and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis

    NARCIS (Netherlands)

    Randazzo, C.L.; Torriani, S.; Akkermans, A.D.L.; Vos, de W.M.; Vaughan, E.E.

    2002-01-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and

  12. Reliability and construction control

    Directory of Open Access Journals (Sweden)

    Sherif S. AbdelSalam

    2016-06-01

    Full Text Available The goal of this study was to determine the most reliable and efficient combination of design and construction methods required for vibro piles. For a wide range of static and dynamic formulas, the reliability-based resistance factors were calculated using EGYPT database, which houses load test results for 318 piles. The analysis was extended to introduce a construction control factor that determines the variation between the pile nominal capacities calculated using static versus dynamic formulae. From the major outcomes, the lowest coefficient of variation is associated with Davisson’s criterion, and the resistance factors calculated for the AASHTO method are relatively high compared with other methods. Additionally, the CPT-Nottingham and Schmertmann method provided the most economic design. Recommendations related to a pile construction control factor were also presented, and it was found that utilizing the factor can significantly reduce variations between calculated and actual capacities.

  13. Construction aggregates

    Science.gov (United States)

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  14. FFTF constructibility

    International Nuclear Information System (INIS)

    Weber, S.A.; Hulbert, D.I.

    1975-01-01

    The influence of the design criteria on the constructibility of the Fast Flux Test Facility is described. Specifically, the effects of requirements due to maintenance accessibility, inerting of cells, seismicity, codes, and standards are addressed. The design and construction techniques developed to minimize the impact of the design criteria on cost and schedule are presented with particular emphasis on the cleanliness and humidity controls imposed during construction of the sodium systems. (U.S.)

  15. Runaway cultural niche construction

    Science.gov (United States)

    Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.

    2011-01-01

    Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897

  16. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles.

    Science.gov (United States)

    Afonin, Kirill A; Viard, Mathias; Kagiampakis, Ioannis; Case, Christopher L; Dobrovolskaia, Marina A; Hofmann, Jen; Vrzak, Ashlee; Kireeva, Maria; Kasprzak, Wojciech K; KewalRamani, Vineet N; Shapiro, Bruce A

    2015-01-27

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use.

  17. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis.

    Science.gov (United States)

    Li, S; Liu, X; Li, H; Pan, H; Acharya, A; Deng, Y; Yu, Y; Haak, R; Schmidt, J; Schmalz, G; Ziebolz, D

    2018-03-08

    Long noncoding RNAs (lncRNAs) play critical and complex roles in regulating various biological processes of periodontitis. This bioinformatic study aims to construct a putative competing endogenous RNA (ceRNA) network by integrating lncRNA, miRNA and mRNA expression, based on high-throughput RNA sequencing and microarray data about periodontitis. Data from 1 miRNA and 3 mRNA expression profiles were obtained to construct the lncRNA-associated ceRNA network. Gene Ontology enrichment analysis and pathway analysis were performed using the Gene Ontology website and Kyoto Encyclopedia of Genes and Genomes. A protein-protein interaction network was constructed based on the Search Tool for the retrieval of Interacting Genes/Proteins. Transcription factors (TFs) of differentially expressed genes were identified based on TRANSFAC database and then a regulatory network was constructed. Through constructing the dysregulated ceRNA network, 6 genes (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL) and 3 miRNAs (miR-125a-3p, miR-200a, miR-142-3p) were detected. Three lncRNAs (MALAT1, TUG1, FGD5-AS1) were found to target both miR-125a-3p and miR-142-3p in this ceRNA network. Protein-protein interaction network analysis identified several hub genes, including VCAM1, ITGA4, UBC, LYN and SSX2IP. Three pathways (cytokine-cytokine receptor, cell adhesion molecules, chemokine signaling pathway) were identified to be overlapping results with the previous bioinformatics studies in periodontitis. Moreover, 2 TFs including FOS and EGR were identified to be involved in the regulatory network of the differentially expressed genes-TFs in periodontitis. These findings suggest that 6 mRNAs (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL), 3 miRNAs (hsa-miR-125a-3p, hsa-miR-200a, hsa-miR-142-3p) and 3 lncRNAs (MALAT1, TUG1, FGD5-AS1) might be involved in the lncRNA-associated ceRNA network of periodontitis. This study sought to illuminate further the genetic and epigenetic mechanisms of periodontitis

  18. Why Argonaute is needed to make microRNA target search fast and reliable

    NARCIS (Netherlands)

    Klein, M.; Chandradoss, S.D.; Depken, S.M.; Joo, C.

    2017-01-01

    MicroRNA (miRNA) interferes with the translation of cognate messenger RNA (mRNA) by finding, preferentially binding, and marking it for degradation. To facilitate the search process, Argonaute (Ago) proteins come together with miRNA, forming a dynamic search complex. In this review we use the

  19. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe.

    Science.gov (United States)

    Sato, Shin-Ichi; Yatsuzuka, Kenji; Katsuda, Yousuke; Uesugi, Motonari

    2018-01-01

    Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

  20. Construction fraud

    NARCIS (Netherlands)

    Graafland, J.J.; Liedekerke, L.; Dubbink, W.; van Liedekerke, L.; van Luijk, H.

    2011-01-01

    Due to the actions of a whistleblower The Netherlands was confronted with a massive case of construction fraud involving almost the entire construction sector. Price fixing, prior consulting, duplicate accounts, fictitious invoices and active corruption of civil servants were rampant practices. This

  1. Superstring construction

    CERN Document Server

    1989-01-01

    The book includes a selection of papers on the construction of superstring theories, mainly written during the years 1984-1987. It covers ten-dimensional supersymmetric and non-supersymmetric strings, four-dimensional heterotic strings and four-dimensional type-II strings. An introduction to more recent developments in conformal field theory in relation to string construction is provided.

  2. Usability Constructs

    DEFF Research Database (Denmark)

    Hertzum, Morten; Clemmesen, Torkil; Hornbæk, Kasper Anders Søren

    2007-01-01

    frustrating systems are experienced similarly to easy-to-use systems. Looking at the most characteristic construct for each participant we find that Chinese participants use constructs related to security, task types, training, and system issues, whereas Danish and to some extent Indian participants make more...

  3. The RNA-Seq based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.

    Science.gov (United States)

    Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K

    2018-04-10

    Chickpea is one of the world's largest cultivated food legume and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across the plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivar, ICC 4958 has been used to generate RNA-Seq data from 27 samples at five major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after QC were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. This article is protected by copyright. All rights reserved.

  4. TELP, a sensitive and versatile library construction method for next-generation sequencing

    Science.gov (United States)

    Peng, Xu; Wu, Jingyi; Brunmeir, Reinhard; Kim, Sun-Yee; Zhang, Qiongyi; Ding, Chunming; Han, Weiping; Xie, Wei; Xu, Feng

    2015-01-01

    Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies. PMID:25223787

  5. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  6. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling

    Directory of Open Access Journals (Sweden)

    Hailan ePiao

    2014-07-01

    Full Text Available The rumen is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit this anaerobic environment. Although interspecies hydrogen (H2 transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and methanogenesis process remains to be established. We investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated switchgrass was dominated by members of the Bacilli. During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13% of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just before rates of dry matter degradation increased again. We hypothesize that during this period microbial-mediated fibrolysis was temporarily inhibited until H2 was metabolized into CH4 by methanogens.

  7. Ask, don’t tell : A complex dynamic systems approach to improving science education by focusing on the co-construction of scientific understanding

    NARCIS (Netherlands)

    van Vondel, Sabine; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    Studying real-time teacher-student interaction provides insight into student's learning processes. In this study, upper grade elementary teachers were supported to optimize their instructional skills required for co-constructing scientific understanding. First, we examined the effect of the Video

  8. 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Poland Gregory A

    2009-11-01

    Full Text Available Abstract Background Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ and 3'-tag digital gene expression (DGE. In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC. Results Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. Conclusion 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix in detecting lower abundant transcripts.

  9. Worldwide construction

    International Nuclear Information System (INIS)

    Williamson, M.

    1994-01-01

    The paper lists major construction projects in worldwide processing and pipelining, showing capacities, contractors, estimated costs, and time of construction. The lists are divided into refineries, petrochemical plants, sulfur recovery units, gas processing plants, pipelines, and related fuel facilities. This last classification includes cogeneration plants, coal liquefaction and gasification plants, biomass power plants, geothermal power plants, integrated coal gasification combined-cycle power plants, and a coal briquetting plant

  10. Cytochrome c oxidase subunit 1-based human RNA quantification to enhance mRNA profiling in forensic biology

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2017-01-01

    Full Text Available RNA analysis offers many potential applications in forensic science, and molecular identification of body fluids by analysis of cell-specific RNA markers represents a new technique for use in forensic cases. However, due to the nature of forensic materials that often admixed with nonhuman cellular components, human-specific RNA quantification is required for the forensic RNA assays. Quantification assay for human RNA has been developed in the present study with respect to body fluid samples in forensic biology. The quantitative assay is based on real-time reverse transcription-polymerase chain reaction of mitochondrial RNA cytochrome c oxidase subunit I and capable of RNA quantification with high reproducibility and a wide dynamic range. The human RNA quantification improves the quality of mRNA profiling in the identification of body fluids of saliva and semen because the quantification assay can exclude the influence of nonhuman components and reduce the adverse affection from degraded RNA fragments.

  11. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new pa...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  12. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    Science.gov (United States)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  13. Construction history and construction management

    International Nuclear Information System (INIS)

    Agh, S.

    1999-01-01

    The process of pre-design and design preparation of the Mochovce NPP as well as the construction history of the plant is highlighted, including the financing aspect and problems arising from changes in the technological and other conditions of start-up of the reactor units. The results of international audits performed to improve the level of nuclear safety and implementation of the measures suggested are also described. The milestones of the whole construction process and start-up process, the control and quality system, and the methods of control and management of the complex construction project are outlined. (author)

  14. Internal oxygen dynamics in rhizomes of Phragmites australis and presence of methanotrophs in root biofilms in a constructed wetland for wastewater treatment

    Czech Academy of Sciences Publication Activity Database

    Faußer, A.; Dušek, Jiří; Čížková, Hana; Hoppert, M.; Walther, P.; Kazda, M.

    2013-01-01

    Roč. 51, 13-15 (2013), s. 3026-3031 ISSN 1944-3994. [3rd International Conference on Environmental Management , Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference. Skiathos Island, 19.06.2011-24.06.2011] Institutional support: RVO:67179843 Keywords : Aerenchyma * Macrophyte * Constructed wetland * Internal oxygen partial pressure * Methane-oxidising bacteria Subject RIV: EH - Ecology, Behaviour Impact factor: 0.988, year: 2013

  15. Rapid NMR screening of RNA secondary structure and binding

    Energy Technology Data Exchange (ETDEWEB)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA.

  16. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  17. Principle or constructive relativity

    Science.gov (United States)

    Frisch, Mathias

    Appealing to Albert Einstein's distinction between principle and constructive theories, Harvey Brown has argued for an interpretation of the theory of relativity as a dynamic and constructive theory. Brown's view has been challenged by Michel Janssen and in this paper I investigate their dispute. I argue that their disagreement appears larger than it actually is due to the two frameworks used by Brown and Janssen to express their respective views: Brown's appeal to Einstein's principle-constructive distinction and Janssen's framing of the disagreement as one over the question whether relativity provides a kinematic or a dynamic constraint. I appeal to a distinction between types of theories drawn by H. A. Lorentz two decades before Einstein's distinction to argue that Einstein's distinction represents a false dichotomy. I argue further that the disagreement concerning the kinematics-dynamics distinction is a disagreement about labels but not about substance. There remains a genuine disagreement over the explanatory role of spacetime geometry and here I agree with Brown arguing that Janssen sees a pressing need for an explanation of Lorentz invariance where no further explanation is needed.

  18. T7-RNA Polymerase

    Science.gov (United States)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  19. The construction and legitimation of workplace bullying in the public sector: insight into power dynamics and organisational failures in health and social care.

    Science.gov (United States)

    Hutchinson, Marie; Jackson, Debra

    2015-03-01

    Health-care and public sector institutions are high-risk settings for workplace bullying. Despite growing acknowledgement of the scale and consequence of this pervasive problem, there has been little critical examination of the institutional power dynamics that enable bullying. In the aftermath of large-scale failures in care standards in public sector healthcare institutions, which were characterised by managerial bullying, attention to the nexus between bullying, power and institutional failures is warranted. In this study, employing Foucault's framework of power, we illuminate bullying as a feature of structures of power and knowledge in public sector institutions. Our analysis draws upon the experiences of a large sample (n = 3345) of workers in Australian public sector agencies - the type with which most nurses in the public setting will be familiar. In foregrounding these power dynamics, we provide further insight into how cultures that are antithetical to institutional missions can arise and seek to broaden the debate on the dynamics of care failures within public sector institutions. Understanding the practices of power in public sector institutions, particularly in the context of ongoing reform, has important implications for nursing. © 2014 John Wiley & Sons Ltd.

  20. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  1. Construction work

    CERN Multimedia

    2004-01-01

    Construction work on building 179 will start on the 16th February 2004 and continue until November 2004. The road between buildings 179 and 158 will temporarily become a one way street from Route Democrite towards building 7. The parking places between buildings 179 and 7 will become obsolete. The ISOLDE collaboration would like to apologize for any inconveniences.

  2. Scale Construction.

    Science.gov (United States)

    Dawis, Rene V.

    1987-01-01

    Discusses design, development, and evaluation of scales used in counseling psychology research. Describes methods of scale construction including the Thurstone, Q-sort, rank-order methods, Likert, semantic differential, Guttman, Rasch, and external criterion methods. Presents ways of evaluating newly developed scales. Discusses measurement versus…

  3. Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level

    Science.gov (United States)

    He, Fei; Han, Ye; Gong, Jianting; Song, Jiazhi; Wang, Han; Li, Yanwen

    2017-03-01

    Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and qualitative aspects. For quantitative analyses, we form four groups of effective features, including nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And then an F-score based feature selection is employed to investigate the contribution of each feature and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The experimental results indicate that our method may select the features with powerful discriminative ability and make the two kinds of siRNA representations work at full capacity. The prediction results also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms.

  4. The art of editing RNA structural alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth

    2014-01-01

    Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is re......Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious...

  5. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  6. Cancer-Related Triplets of mRNA-lncRNA-miRNA Revealed by Integrative Network in Uterine Corpus Endometrial Carcinoma

    Directory of Open Access Journals (Sweden)

    Chenglin Liu

    2017-01-01

    Full Text Available The regulation of transcriptome expression level is a complex process involving multiple-level interactions among molecules such as protein coding RNA (mRNA, long noncoding RNA (lncRNA, and microRNA (miRNA, which are essential for the transcriptome stability and maintenance and regulation of body homeostasis. The availability of multilevel expression data enables a comprehensive view of the regulatory network. In this study, we analyzed the coding and noncoding gene expression profiles of 301 patients with uterine corpus endometrial carcinoma (UCEC. A new method was proposed to construct a genome-wide integrative network based on variance inflation factor (VIF regression method. The cross-regulation relations of mRNA, lncRNA, and miRNA were then selected based on clique-searching algorithm from the network, when any two molecules of the three were shown as interacting according to the integrative network. Such relation, which we call the mRNA-lncRNA-miRNA triplet, demonstrated the complexity in transcriptome regulation process. Finally, six UCEC-related triplets were selected in which the mRNA participates in endometrial carcinoma pathway, such as CDH1 and TP53. The multi-type RNAs are proved to be cross-regulated as to each of the six triplets according to literature. All the triplets demonstrated the association with the initiation and progression of UCEC. Our method provides a comprehensive strategy for the investigation of transcriptome regulation mechanism.

  7. Constructing dialogues

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2017-01-01

    The concept of montage is proposed as a driver for establishing heterogeneous, open and dynamic new-industrial architecture. Drawing parallels between the intense industrialization that occurred in Denmark in the 1960s and current scenarios of IT-based production methods, montage is unfolded both...

  8. Modelling Constructs

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2009-01-01

    , these notations have been extended in order to increase expressiveness and to be more competitive. This resulted in an increasing number of notations and formalisms for modelling business processes and in an increase of the different modelling constructs provided by modelling notations, which makes it difficult......There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts...... to compare modelling notations and to make transformations between them. One of the reasons is that, in each notation, the new concepts are introduced in a different way by extending the already existing constructs. In this chapter, we go the opposite direction: We show that it is possible to add most...

  9. Airship construction

    Science.gov (United States)

    Roda, J.

    1975-01-01

    Forty-four years ago the first successful metal airship was completed and delivered to the United States Navy, the ZMC-2. Between those years and the present, very little effort or serious consideration has been given to the manufacture, design, construction, or economic impact of airships. It is important to retain and exploit the small but continually diminishing pool of airship talent that will expedite the success of the United States in what is now a pioneering venture. The relative simplicity of airship construction, utilizing the tremendous technical advances of the last 44 years, leads to the conclusion that this form of transportation holds great promise for reducing costs of military missions and improving the international competitive position of the United States in commercial applications.

  10. TARDIS, a targeted RNA directional sequencing method for rare RNA discovery.

    Science.gov (United States)

    Portal, Maximiliano M; Pavet, Valeria; Erb, Cathie; Gronemeyer, Hinrich

    2015-12-01

    High-throughput transcriptional analysis has unveiled a myriad of novel RNAs. However, technical constraints in RNA sequencing library preparation and platform performance hamper the identification of rare transcripts contained within the RNA repertoire. Herein we present targeted-RNA directional sequencing (TARDIS), a hybridization-based method that allows subsets of RNAs contained within the transcriptome to be interrogated independently of transcript length, function, the presence or absence of poly-A tracts, or the mechanism of biogenesis. TARDIS is a modular protocol that is subdivided into four main phases, including the generation of random DNA traps covering the region of interest, purification of input RNA material, DNA trap-based RNA capture, and finally RNA-sequencing library construction. Importantly, coupling RNA capture to strand-specific RNA sequencing enables robust identification and reconstruction of novel transcripts, the definition of sense and antisense RNA pairs and, by the concomitant analysis of long and natural small RNA pools, it allows the user to infer potential precursor-product relations. TARDIS takes ∼10 d to implement.

  11. Native gel electrophoresis to study the binding and release of RNA polymerase by 6S RNA.

    Science.gov (United States)

    Wassarman, Karen M

    2012-01-01

    RNA-protein interactions are critical in diverse aspects of gene expression and often serve to mediate regulatory events. Many procedures are available to gain information about RNA-protein interactions. They span from initial identification of an interaction, such as through co-immunoprecipitation studies, to highly detailed atomic resolution definition of the interaction gained from crystallographic and NMR studies. One of the most versatile techniques uses native gel electrophoresis to study RNA-protein complexes, which is often called band shift, gel retardation, or electrophoretic mobility shift assays. Gel shift assays have been used to study a plethora of RNA-protein interactions in all organisms, but here we will use the 6S RNA:RNA polymerase interaction from Escherichia coli as an example to direct discussion of questions that can be addressed, including the ability to follow the dynamics of complexes over time.

  12. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  13. RNA structures regulating nidovirus RNA synthesis

    NARCIS (Netherlands)

    Born, Erwin van den

    2006-01-01

    Viruses depend on their host cell for the production of their progeny. The genetic information that is required to regulate this process is contained in the viral genome. In the case of plus-stranded RNA viruses, like nidoviruses, the RNA genome is directly involved in translation (resulting in the

  14. Time-resolved dynamics of two-channel molecular systems in cw laser fields: Wave-packet construction in the Floquet formalism

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.

    1995-01-01

    The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities

  15. Evolution of RNA-Based Networks.

    Science.gov (United States)

    Stadler, Peter F

    2016-01-01

    RNA molecules have served for decades as a paradigmatic example of molecular evolution that is tractable both in in vitro experiments and in detailed computer simulation. The adaptation of RNA sequences to external selection pressures is well studied and well understood. The de novo innovation or optimization of RNA aptamers and riboswitches in SELEX experiments serves as a case in point. Likewise, fitness landscapes building upon the efficiently computable RNA secondary structures have been a key toward understanding realistic fitness landscapes. Much less is known, however, on models in which multiple RNAs interact with each other, thus actively influencing the selection pressures acting on them. From a computational perspective, RNA-RNA interactions can be dealt with by same basic methods as the folding of a single RNA molecule, although many details become more complicated. RNA-RNA interactions are frequently employed in cellular regulation networks, e.g., as miRNA bases mRNA silencing or in the modulation of bacterial mRNAs by small, often highly structured sRNAs. In this chapter, we summarize the key features of networks of replicators. We highlight the differences between quasispecies-like models describing templates copied by an external replicase and hypercycle similar to autocatalytic replicators. Two aspects are of importance: the dynamics of selection within a population, usually described by conventional dynamical systems, and the evolution of replicating species in the space of chemical types. Product inhibition plays a key role in modulating selection dynamics from survival of the fittest to extinction of unfittest. The sequence evolution of replicators is rather well understood as approximate optimization in a fitness landscape for templates that is shaped by the sequence-structure map of RNA. Some of the properties of this map, in particular shape space covering and extensive neutral networks, give rise to evolutionary patterns such as drift

  16. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency.

    Science.gov (United States)

    Seo, Sang Woo; Yang, Jae-Seong; Kim, Inhae; Yang, Jina; Min, Byung Eun; Kim, Sanguk; Jung, Gyoo Yeol

    2013-01-01

    Precise prediction of prokaryotic translation efficiency can provide valuable information for optimizing bacterial host for the production of biochemical compounds or recombinant proteins. However, dynamic changes in mRNA folding throughout translation make it difficult to assess translation efficiency. Here, we systematically determined the universal folding regions that significantly affect the efficiency of translation in Escherichia coli. By assessing the specific regions for mRNA folding, we could construct a predictive design method, UTR Designer, and demonstrate that proper codon optimization around the 5'-proximal coding sequence is necessary to achieve a broad range of expression levels. Finally, we applied our method to control the threshold value of input signals switching on a genetic circuit. This should increase our understanding of the processes underlying gene expression and provide an efficient design principle for optimizing various biological systems, thereby facilitating future efforts in metabolic engineering and synthetic biology. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Constructing Catalonia

    Directory of Open Access Journals (Sweden)

    Bill Philips

    2009-07-01

    Full Text Available Catalonia, in common with other nations, has long been concerned with the question of identity and difference. Its problematic relationship with Spain has led to an emphasis on differentiating itself from its larger neighbour (if we are to accept, as most Spaniards do not, that Catalonia is not Spain, a situation complicated by the loss of the Spanish colonies of Cuba and The Philippines in 1898, and the Spanish Civil War and subsequent dictatorship from 1936 to 1976. Beginning in the late nineteenth century, the construction of a Catalan identity followed a similar route to that taken by other European nations such as England, Ireland and, indeed, Spain, including an emphasis on rural values, activities and the countryside, and the conversion of specifically local traditions into national past times. It is only in the last ten years or so that this model of Catalan identity has been recognised for what it is – a model constructed and encouraged for and by specific nationalist political interests. Ironically, Catalonia’s identity abroad has also been constructed and manipulated for political purposes, but from quite a different perspective. Orwell’s /Homage to Catalonia/ (1938 narrates an extremely blinkered version of the Spanish Civil War which has achieved iconic status as a result of cold war politics. Subsequent portrayals of the Spanish Civil War – Valentine Cunningham’s /The Penguin Book of Spanish Civil War Verse/ (ed., Penguin, 1980, or Ken Loach’s 1995 film /Land and Freedom/ base their arguments unquestioningly on /Homage to Catalonia/, perpetuating a view of the nation’s recent history that is both reductive and inaccurate

  18. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected in cryosect......The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected...

  19. Layout Construction

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Palsberg, Jens; Schmidt, Erik Meineche

    We design a system for generating newspaper layout proposals. The input to the system consists of editorial information (text, pictures, etc) and style information (non-editorial information that specifies the aesthetic appearance of a layout). We consider the automation of layout construction...... to pose two main problems. One problem consists in optimizing the layout with respect to the constraints and preferences specified in the style information. Another problem consists in finding a representation of the style information that both supports its use in the combinatorial optimization...

  20. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...... other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes...

  1. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Traude H Beilharz

    2009-08-01

    Full Text Available Animal microRNAs (miRNAs typically regulate gene expression by binding to partially complementary target sites in the 3' untranslated region (UTR of messenger RNA (mRNA reducing its translation and stability. They also commonly induce shortening of the mRNA 3' poly(A tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and translational repression has been less clear. Using transfection of reporter constructs carrying three imperfectly matching let-7 target sites in the 3' UTR into mammalian cells we observe rapid target mRNA deadenylation that precedes measureable translational repression by endogenous let-7 miRNA. Depleting cells of the argonaute co-factors RCK or TNRC6A can impair let-7-mediated repression despite ongoing mRNA deadenylation, indicating that deadenylation alone is not sufficient to effect full repression. Nevertheless, the magnitude of translational repression by let-7 is diminished when the target reporter lacks a poly(A tail. Employing an antisense strategy to block deadenylation of target mRNA with poly(A tail also partially impairs translational repression. On the one hand, these experiments confirm that tail removal by deadenylation is not strictly required for translational repression. On the other hand they show directly that deadenylation can augment miRNA-mediated translational repression in mammalian cells beyond stimulating mRNA decay. Taken together with published work, these results suggest a dual role of deadenylation in miRNA function: it contributes to translational repression as well as mRNA decay and is thus critically involved in establishing the quantitatively appropriate physiological response to miRNAs.

  2. Computer-Aided Design of RNA Origami Structures.

    Science.gov (United States)

    Sparvath, Steffen L; Geary, Cody W; Andersen, Ebbe S

    2017-01-01

    RNA nanostructures can be used as scaffolds to organize, combine, and control molecular functionalities, with great potential for applications in nanomedicine and synthetic biology. The single-stranded RNA origami method allows RNA nanostructures to be folded as they are transcribed by the RNA polymerase. RNA origami structures provide a stable framework that can be decorated with functional RNA elements such as riboswitches, ribozymes, interaction sites, and aptamers for binding small molecules or protein targets. The rich library of RNA structural and functional elements combined with the possibility to attach proteins through aptamer-based binding creates virtually limitless possibilities for constructing advanced RNA-based nanodevices.In this chapter we provide a detailed protocol for the single-stranded RNA origami design method using a simple 2-helix tall structure as an example. The first step involves 3D modeling of a double-crossover between two RNA double helices, followed by decoration with tertiary motifs. The second step deals with the construction of a 2D blueprint describing the secondary structure and sequence constraints that serves as the input for computer programs. In the third step, computer programs are used to design RNA sequences that are compatible with the structure, and the resulting outputs are evaluated and converted into DNA sequences to order.

  3. Development on analytical method of computational dynamic property and optimum design method of texture construction considering microscopic texture of the materials for nuclear powers

    International Nuclear Information System (INIS)

    Shiraishi, Haruki

    1997-01-01

    In structural design of the nuclear reactor core, He void boundary embrittlement used for a factor of determining using temperature limit of the structural materials is said to be formed by He void present at the crystal particles boundary. However, it has been not succeeded in quantitative estimation on ductility of the materials containing He voids formed on neutron radiation. In this paper, the results of qualitative analysis on effect of voids shapes (size and density) on the boundary He embrittlement were reported. Using two-dimensional elastoplastic finite element method, stress-strain curve of the materials containing voids at crystal boundary was analyzed. At that time, suppositions such as continuous body dynamics, Von Mises yield condition, n-power hardening rule, repeating boundary condition and so on were adopted. As a result, it was found that deformation type was divided to inter-particle deformation and boundary deformation types, and that so-called boundary He embrittlement was belonged to the latter. (G.K.)

  4. A Multistep Procedure To Prepare Pre-Vascularized Cardiac Tissue Constructs Using Adult Stem Sells, Dynamic Cell Cultures And Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Stefania ePagliari

    2014-06-01

    Full Text Available The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs are stimulated in vitro to obtain their commitment towards the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

  5. Mapping the universe of RNA tetraloop folds

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Lindorff-Larsen, Kresten

    2017-01-01

    We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG fold...

  6. The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater.

    Science.gov (United States)

    Chen, Zhongbing; Kuschk, Peter; Paschke, Heidrun; Kästner, Matthias; Köser, Heinz

    2015-03-01

    A rarely used hydroponic plant root mat filter (PRMF, of 6 m(2)) and a horizontal subsurface flow constructed wetland (HSSF CW, of 6 m(2)), operating in continuous flow and discontinuous outflow flushing modes, were investigated for treating sulfate-rich and organic carbon-lean groundwater contaminated with monochlorobenzene (MCB); 1,2-dichlorobenzene (1,2-DCB); 1,4-dichlorobenzene (1,4-DCB); and 2-chlorotoluene. Whereas the mean inflow loads ranged from 1 to 247 mg m(-2) days(-1), the range of mean inflow concentrations of the chlorobenzenes recorded over a period of 7 months was within 0.04 and 8 mg L(-1). A hydraulic surface loading rate of 30 L m(-2) days(-1) was obtained in both systems. The mean load removal efficiencies were found to vary between 87 and 93 % in the PRMF after a flow path of 4 m, while the removal efficiencies were found to range between 46 and 70 % and 71 to 73 % in the HSSF CW operating in a continuous flow mode and a discontinuous outflow flushing mode, respectively. Seasonal variations in the removal efficiencies were observed for all low-chlorinated hydrocarbons both in the PRMF and the HSSF CW, whereby the highest removal efficiencies were reached during the summer months. Sulfide formation occurred in the organic carbon-lean groundwater particularly in summer, which is probably due to the plant-derived organic carbon that fostered the microbial dissimilatory sulfate reduction. Higher redox potential in water was observed in the PRMF. In conclusion, the PRMF could be an option for the treatment of water contaminated with compounds which in particular need oxic conditions for their microbial degradation, such as in the case of low-chlorinated benzenes.

  7. Messenger RNA transcripts

    Science.gov (United States)

    Dan Cullen

    2004-01-01

    In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture...

  8. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when po...

  9. Isolation of RNA from tumor samples: single-step guanidinium acid-phenol method.

    Science.gov (United States)

    Robertson, Naomi; Leek, Russell

    2006-01-01

    The guanidinium acid-phenol method of RNA extraction is relatively fast (4 h) and is useful for the processing of large numbers of samples, without the need for ultracentrifugation. This protocol produces total RNA that includes ribosomal, transfer, and messenger RNA. This high-quality RNA is suitable for Northern blot analysis, dot-blot hybridization, poly (A) RNA selection, in vitro translation, cDNA library construction, reverse transcriptase-polymerase chain reaction, ribonuclease protection assay, and primer extension experiments.

  10. RNA-SeQC: RNA-seq metrics for quality control and process optimization.

    Science.gov (United States)

    DeLuca, David S; Levin, Joshua Z; Sivachenko, Andrey; Fennell, Timothy; Nazaire, Marc-Danie; Williams, Chris; Reich, Michael; Winckler, Wendy; Getz, Gad

    2012-06-01

    RNA-seq, the application of next-generation sequencing to RNA, provides transcriptome-wide characterization of cellular activity. Assessment of sequencing performance and library quality is critical to the interpretation of RNA-seq data, yet few tools exist to address this issue. We introduce RNA-SeQC, a program which provides key measures of data quality. These metrics include yield, alignment and duplication rates; GC bias, rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 3'/5' bias and count of detectable transcripts, among others. The software provides multi-sample evaluation of library construction protocols, input materials and other experimental parameters. The modularity of the software enables pipeline integration and the routine monitoring of key measures of data quality such as the number of alignable reads, duplication rates and rRNA contamination. RNA-SeQC allows investigators to make informed decisions about sample inclusion in downstream analysis. In summary, RNA-SeQC provides quality control measures critical to experiment design, process optimization and downstream computational analysis. See www.genepattern.org to run online, or www.broadinstitute.org/rna-seqc/ for a command line tool.

  11. Holocene construction and evolution of the Ganges-Brahmaputra-Meghna delta: the influ