WorldWideScience

Sample records for constructed model wetland

  1. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  2. Process-Based Modeling of Constructed Wetlands

    Science.gov (United States)

    Baechler, S.; Brovelli, A.; Rossi, L.; Barry, D. A.

    2007-12-01

    Constructed wetlands (CWs) are widespread facilities for wastewater treatment. In subsurface flow wetlands, contaminated wastewater flows through a porous matrix, where oxidation and detoxification phenomena occur. Despite the large number of working CWs, system design and optimization are still mainly based upon empirical equations or simplified first-order kinetics. This results from an incomplete understanding of the system functioning, and may in turn hinder the performance and effectiveness of the treatment process. As a result, CWs are often considered not suitable to meet high water quality-standards, or to treat water contaminated with recalcitrant anthropogenic contaminants. To date, only a limited number of detailed numerical models have been developed and successfully applied to simulate constructed wetland behavior. Among these, one of the most complete and powerful is CW2D, which is based on Hydrus2D. The aim of this work is to develop a comprehensive simulator tailored to model the functioning of horizontal flow constructed wetlands and in turn provide a reliable design and optimization tool. The model is based upon PHWAT, a general reactive transport code for saturated flow. PHWAT couples MODFLOW, MT3DMS and PHREEQC-2 using an operator-splitting approach. The use of PHREEQC to simulate reactions allows great flexibility in simulating biogeochemical processes. The biogeochemical reaction network is similar to that of CW2D, and is based on the Activated Sludge Model (ASM). Kinetic oxidation of carbon sources and nutrient transformations (nitrogen and phosphorous primarily) are modeled via Monod-type kinetic equations. Oxygen dissolution is accounted for via a first-order mass-transfer equation. While the ASM model only includes a limited number of kinetic equations, the new simulator permits incorporation of an unlimited number of both kinetic and equilibrium reactions. Changes in pH, redox potential and surface reactions can be easily incorporated

  3. Modelling the Hydraulic Processes on Constructed Stormwater Wetland

    Directory of Open Access Journals (Sweden)

    Isri Ronald Mangangka

    2017-03-01

    Full Text Available Constructed stormwater wetlands are manmade, shallow, and extensively vegetated water bodies which promote runoff volume and peak flow reduction, and also treat stormwater runoff quality. Researchers have noted that treatment processes of runoff in a constructed wetland are influenced by a range of hydraulic factors, which can vary during a rainfall event, and their influence on treatment can also vary as the event progresses. Variation in hydraulic factors during an event can only be generated using a detailed modelling approach, which was adopted in this research by developing a hydraulic conceptual model. The developed model was calibrated using trial and error procedures by comparing the model outflow with the measured field outflow data. The accuracy of the developed model was analyzed using a well-known statistical analysis method developed based on the regression analysis technique. The analysis results show that the developed model is satisfactory.

  4. Modeling Escherichia coli removal in constructed wetlands under pulse loading.

    Science.gov (United States)

    Hamaamin, Yaseen A; Adhikari, Umesh; Nejadhashemi, A Pouyan; Harrigan, Timothy; Reinhold, Dawn M

    2014-03-01

    Manure-borne pathogens are a threat to water quality and have resulted in disease outbreaks globally. Land application of livestock manure to croplands may result in pathogen transport through surface runoff and tile drains, eventually entering water bodies such as rivers and wetlands. The goal of this study was to develop a robust model for estimating the pathogen removal in surface flow wetlands under pulse loading conditions. A new modeling approach was used to describe Escherichia coli removal in pulse-loaded constructed wetlands using adaptive neuro-fuzzy inference systems (ANFIS). Several ANFIS models were developed and validated using experimental data under pulse loading over two seasons (winter and summer). In addition to ANFIS, a mechanistic fecal coliform removal model was validated using the same sets of experimental data. The results showed that the ANFIS model significantly improved the ability to describe the dynamics of E. coli removal under pulse loading. The mechanistic model performed poorly as demonstrated by lower coefficient of determination and higher root mean squared error compared to the ANFIS models. The E. coli concentrations corresponding to the inflection points on the tracer study were keys to improving the predictability of the E. coli removal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A Comparison of Modeling Approaches in Simulating Chlorinated Ethene Removal in a Constructed Wetland by a Microbial Consortia

    National Research Council Canada - National Science Library

    Campbell, Jason

    2002-01-01

    The purpose of this study is to compare different approaches to modeling the reductive dechlorination of chlorinated ethenes in the anaerobic region of an upward flow constructed wetland by microbial consortia...

  6. Pesticide mitigation capacities of constructed wetlands

    Science.gov (United States)

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  7. Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique.

    Science.gov (United States)

    Zounemat-Kermani, Mohammad; Scholz, Miklas; Tondar, Mohammad-Mahdi

    2015-01-01

    One of the key factors in designing free water-surface constructed wetlands (FWS CW) is the hydraulic efficiency (λ), which depends primarily on the retention time of the polluted storm water. Increasing the hydraulic retention time (HRT) at various flow levels will increase λ of the overall constructed wetland (CW). The effects of characteristic geometric features that increase HRT were explored through the use of a two-dimensional depth-average hydrodynamic model. This numerical model was developed to solve the equations of continuity and motions on an unstructured triangular mesh using the Galerkin finite volume formulation and equations of the k-ε turbulence model. Eighty-nine diverse forms of artificial FWS CW with 11 different aspect ratios were numerically simulated and subsequently analysed for four scenarios: rectangular CW, modified rectangular CW with rounded edges, different inlet/outlet configurations of CW, and surface and submerged obstructions in front of the inlet part of the CW. Results from the simulations showed that increasing the aspect ratio has a direct influence on the enhancement of λ in all cases. However, the aspect ratio should be at least 9 in order to achieve an appropriate rate for λ in rectangular CW. Modified rounded rectangular CW improved λ by up to 23%, which allowed for the selection of a reduced aspect ratio. Simulation results showed that CW with low aspect ratios benefited from obstructions and optimized inlet/outlet configurations in terms of improved HRT.

  8. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  9. Removal of emerging organic pollutants in constructed wetlands: imazalil and tebuconazole as model pesticides

    DEFF Research Database (Denmark)

    Lyu, Tao

    2016-01-01

    on aquatic environment and human health. Constructed wetland systems (CWs) have been an economical, robust and sustainable technology for wastewater treatment, and are emerging for the treatment of pesticides contaminated water. However, excluding the studies on pesticides removal efficiency, the research......The pesticides imazalil and tebuconazole are commonly used to protect various agricultural crops against fungal attack or as biocides for wood protection, as such, they have been found in both rural and urban water bodies. The emerging pesticides are gaining prominence due to the toxic effects...... model pesticides imazalil and tebuconazole under different CWs designs with various operation strategies. The results showed that CWs can be applied to efficiently treat imazalil and tebuconazole contaminated wastewater. The pesticides removal in CWs can be adequate described by first order kinetics...

  10. Removal of the pesticide tebuconazole in constructed wetlands: design comparison, influencing factors and modelling

    OpenAIRE

    Lyu, T; Zhang, L; Xu, X; Arias, CA; Brix, H; Carvalho, PN

    2018-01-01

    Constructed wetlands (CWs) are a promising technology to treat pesticide contaminated water, but its implementation is impeded by lack of data to optimize designs and operating factors. Unsaturated and saturated CW designs were used to compare the removal of triazole pesticide, tebuconazole, in unplanted mesocosms and mesocosms planted with five different plant species: Typha latifolia, Phragmites australis, Iris pseudacorus, Juncus effusus and Berula erecta. Tebuconazole removal efficiencies...

  11. Removal of emerging organic pollutants in constructed wetlands: imazalil and tebuconazole as model pesticides

    OpenAIRE

    Lyu, Tao

    2016-01-01

    The pesticides imazalil and tebuconazole are commonly used to protect variousagricultural crops against fungal attack or as biocides for wood protection, as such, they have been found in both rural and urban water bodies. The emerging pesticides are gaining prominence due to the toxic effects on aquatic environment and human health. Constructed wetland systems (CWs) have been an economical, robust and sustainable technology for wastewater treatment, and are emerging for the treatment of pesti...

  12. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling.

    Science.gov (United States)

    Lyu, Tao; Zhang, Liang; Xu, Xiao; Arias, Carlos A; Brix, Hans; Carvalho, Pedro N

    2018-02-01

    Constructed wetlands (CWs) are a promising technology to treat pesticide contaminated water, but its implementation is impeded by lack of data to optimize designs and operating factors. Unsaturated and saturated CW designs were used to compare the removal of triazole pesticide, tebuconazole, in unplanted mesocosms and mesocosms planted with five different plant species: Typha latifolia, Phragmites australis, Iris pseudacorus, Juncus effusus and Berula erecta. Tebuconazole removal efficiencies were significantly higher in unsaturated CWs than saturated CWs, showing for the first time the potential of unsaturated CWs to treat tebuconazole contaminated water. An artificial neural network model was demonstrated to provide more accurate predictions of tebuconazole removal than the traditional linear regression model. Also, tebuconazole removal could be fitted an area-based first order kinetics model in both CW designs. The removal rate constants were consistently higher in unsaturated CWs (range of 2.6-10.9 cm d -1 ) than in saturated CWs (range of 1.7-7.9 cm d -1 ) and higher in planted CWs (range of 3.1-10.9 cm d -1 ) than in unplanted CWs (range of 1.7-2.6 cm d -1 ) for both designs. The low levels of sorption of tebuconazole to the substrate (0.7-2.1%) and plant phytoaccumulation (2.5-12.1%) indicate that the major removal pathways were biodegradation and metabolization inside the plants after plant uptake. The main factors influencing tebuconazole removal in the studied systems were system design, hydraulic loading rate and plant presence. Moreover, tebuconazole removal was positively correlated to dissolved oxygen and all nutrients removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Changes in bacteria composition and efficiency of constructed wetlands under sustained overloads: A modeling experiment.

    Science.gov (United States)

    Boano, F; Rizzo, A; Samsó, R; García, J; Revelli, R; Ridolfi, L

    2018-01-15

    The average organic and hydraulic loads that Constructed Wetlands (CWs) receive are key parameters for their adequate long-term functioning. However, over their lifespan they will inevitably be subject to either episodic or sustained overloadings. Despite that the consequences of sustained overloading are well known (e.g., clogging), the threshold of overloads that these systems can tolerate is difficult to determine. Moreover, the mechanisms that might sustain the buffering capacity (i.e., the reduction of peaks in nutrient load) during overloads are not well understood. The aim of this work is to evaluate the effect of sudden but sustained organic and hydraulic overloads on the general functioning of CWs. To that end, the mathematical model BIO_PORE was used to simulate five different scenarios, based on the features and operation conditions of a pilot CW system: a control simulation representing the average loads; 2 simulations representing +10% and +30% sustained organic overloads; one simulation representing a sustained +30% hydraulic overload; and one simulation with sustained organic and hydraulic overloads of +15% each. Different model outputs (e.g., total bacterial biomass and its spatial distribution, effluent concentrations) were compared among different simulations to evaluate the effects of such operation changes. Results reveal that overloads determine a temporary decrease in removal efficiency before microbial biomass adapts to the new conditions and COD removal efficiency is recovered. Increasing organic overloads cause stronger temporary decreases in COD removal efficiency compared to increasing hydraulic loads. The pace at which clogging develops increases by 10% for each 10% increase on the organic load. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  15. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda

    2016-01-01

    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  16. Design and development of two novel constructed wetlands: the duplex-constructed wetland and the constructed wetroof

    NARCIS (Netherlands)

    Zapater Pereyra, M.

    2015-01-01

    Maribel Zapater Pereyra Abstract thesis:  Design and development of two novel constructed wetlands: the Duplex-constructed wetland and the Constructed wetroof Constructed wetlands (CWs) are among the few natural treatment systems that can guarantee an efficient wastewater treatment and an

  17. Isolation and characterization of Magnetospirillum sp strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model

    DEFF Research Database (Denmark)

    Meyer-Cifuentes, Ingrid; Lavanchy, Paula Maria Martinez; Marin-Cevada, Vianey

    2017-01-01

    Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent ...

  18. Constructed wetlands as biofuel production systems

    Science.gov (United States)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  19. Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2016-11-01

    Full Text Available We monitored the water quality and hydrological conditions of a horizontal subsurface constructed wetland (HSSF-CW in Beijing, China, for two years. We simulated the area-based constant and the temperature coefficient with the first-order kinetic model. We examined the relationships between the nitrogen (N removal rate, N load, seasonal variations in the N removal rate, and environmental factors—such as the area-based constant, temperature, and dissolved oxygen (DO. The effluent ammonia (NH4+-N and nitrate (NO3−-N concentrations were significantly lower than the influent concentrations (p < 0.01, n = 38. The NO3−-N load was significantly correlated with the removal rate (R2 = 0.96, p < 0.01, but the NH4+-N load was not correlated with the removal rate (R2 = 0.02, p > 0.01. The area-based constants of NO3−-N and NH4+-N at 20 °C were 27 ± 26 (mean ± SD and 14 ± 10 m∙year−1, respectively. The temperature coefficients for NO3−-N and NH4+-N were estimated at 1.004 and 0.960, respectively. The area-based constants for NO3−-N and NH4+-N were not correlated with temperature (p > 0.01. The NO3−-N area-based constant was correlated with the corresponding load (R2 = 0.96, p < 0.01. The NH4+-N area rate was correlated with DO (R2 = 0.69, p < 0.01, suggesting that the factors that influenced the N removal rate in this wetland met Liebig’s law of the minimum.

  20. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks.

    Science.gov (United States)

    Li, Wei; Zhang, Yan; Cui, Lijuan; Zhang, Manyin; Wang, Yifei

    2015-08-01

    A horizontal subsurface flow constructed wetland (HSSF-CW) was designed to improve the water quality of an artificial lake in Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China. Artificial neural networks (ANNs), including multilayer perceptron (MLP) and radial basis function (RBF), were used to model the removal of total phosphorus (TP). Four variables were selected as the input parameters based on the principal component analysis: the influent TP concentration, water temperature, flow rate, and porosity. In order to improve model accuracy, alternative ANNs were developed by incorporating meteorological variables, including precipitation, air humidity, evapotranspiration, solar heat flux, and barometric pressure. A genetic algorithm and cross-validation were used to find the optimal network architectures for the ANNs. Comparison of the observed data and the model predictions indicated that, with careful variable selection, ANNs appeared to be an efficient and robust tool for predicting TP removal in the HSSF-CW. Comparison of the accuracy and efficiency of MLP and RBF for predicting TP removal showed that the RBF with additional meteorological variables produced the most accurate results, indicating a high potentiality for modeling TP removal in the HSSF-CW.

  1. Modeling of constructed wetland performance in BOD5removal for domestic wastewater under changes in relative humidity using genetic programming.

    Science.gov (United States)

    Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Chandrasekaran, Sivapragasam

    2017-04-01

    Despite the extensive use of constructed wetland (CW) as an effective method for domestic wastewater treatment, there is lack of clarity in arriving at well-defined design guidelines. This is particularly due to the fact that the design of CW is dependent on many inter-connected parameters which interact in a complex manner. Consequently, different researchers in the past have tried to address different aspects of this complexity. In this study, an attempt is made to model the influence of relative humidity (RH) in the effectiveness of BOD 5 removal. Since it is an accepted fact that plants respond to change in humidity, it is necessary to take this parameter into consideration particularly when the CW is to be designed involving changes in relative humidity over a shorter time horizon (say a couple of months). This study reveals that BOD 5out depends on the ratio of BOD 5in and relative humidity. An attempt is also made to model the outlet BOD 5 using genetic programming with inlet BOD 5 and relative humidity as input parameters.

  2. Are constructed treatment wetlands sustainable sanitation solutions?

    Science.gov (United States)

    Langergraber, Guenter

    2013-01-01

    The main objective of sanitation systems is to protect and promote human health by providing a clean environment and breaking the cycle of disease. In order to be sustainable, a sanitation system has to be not only economically viable, socially acceptable and technically and institutionally appropriate, but it should also protect the environment and the natural resources. 'Resources-oriented sanitation' describes the approach in which human excreta and water from households are recognized as resource made available for reuse. Nowadays, 'resources-oriented sanitation' is understood in the same way as 'ecological sanitation'. For resources-oriented sanitation systems to be truly sustainable they have to comply with the definition of sustainable sanitation as given by the Sustainable Sanitation Alliance (SuSanA, www.susana.org). Constructed treatment wetlands meet the basic criteria of sustainable sanitation systems by preventing diseases, protecting the environment, and being an affordable, acceptable, and simple technology. Additionally, constructed treatment wetlands produce treated wastewater of high quality, which is fostering reuse, which in turn makes them applicable in resources-oriented sanitation systems. The paper discusses the features that make constructed treatment wetlands a suitable solution in sustainable resources-oriented sanitation systems, the importance of system thinking for sustainability, as well as key factors for sustainable implementation of constructed wetland systems.

  3. Assessing the Ecological Relevance of Organic Discharge Limits for Constructed Wetlands by Means of a Model-Based Analysis

    Directory of Open Access Journals (Sweden)

    Natalia Donoso

    2018-01-01

    Full Text Available Polder watercourses within agricultural areas are affected by high chemical oxygen demand (COD and biological oxygen demand (BOD5 concentrations, due to intensive farming activities and runoff. Practical cases have shown that constructed wetlands (CWs are eco-friendly and cost-effective treatment systems which can reduce high levels of organic and nutrient pollution from agricultural discharges. However, accumulated recalcitrant organic matter, originated by in-situ sources or elements of CWs (i.e., plants or microbial detritus, limits the fulfilment of current COD discharge threshold. Thus, to evaluate its relevance regarding rivers ecosystem health preservation, we analysed the response of bio-indicators, the Multimetric Macroinvertebrate Index Flanders (MMIF and the occurrence of organic pollution sensitive taxa towards organic pollutants. For this purpose, statistical models were developed based on collected data in polder watercourses and CWs located in Flanders (Belgium. Results showed that, given the correlation between COD and BOD5, both parameters can be used to indicate the ecological and water quality conditions. However, the variability of the MMIF and the occurrence of sensitive species are explained better by BOD5, which captures a major part of their common effect. Whereas, recalcitrant COD and the interaction among other physico-chemical variables indicate a minor variability on the bio-indicators. Based on these outcomes we suggest a critical re-evaluation of current COD thresholds and moreover, consider other emerging technologies determining organic pollution levels, since this could support the feasibility of the implementation of CWs to tackle agricultural pollution.

  4. Environmental footprint of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2015-01-01

    The aim of the study is to determine environmentally friendlier construction materials for constructed wetland facilities treating wastewater. This is done by computing the environmental footprint of the facility based on the methodology of life cycle assessment (LCA). This methodology reveals the dominant aggravating processes during the construction of a constructed wetland (CW) and can help to create alternative environmentally friendlier solutions. This methodology was applied for the determination of the overall environmental profile of a hybrid CW facility. The LCA was applied first to the facility as originally designed, where reinforced concrete was used in some components. Then, alternative construction materials to reinforced concrete were used, such as earth covered with high density polyethylene (HDPE) or clay, and LCA was applied again. Earth structures were found to have reduced environmental impact compared to concrete ones, and clay was found environmentally friendlier compared to HDPE. Furthermore, estimation of the construction costs of the three scenarios indicate that the last scenario is also the least expensive.

  5. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    Science.gov (United States)

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  6. Construction and operation costs of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2014-01-01

    Design data from nine constructed wetlands (CW) facilities of various capacities (population equivalent (PE)) are used to estimate construction and operation costs, and then to derive empirical equations relating the required facility land area and the construction cost to PE. In addition, comparisons between the costs of CW facilities based on various alternative construction materials, i.e., reinforced concrete and earth structures (covered with either high density polyethylene or clay), are presented in relation to the required area. The results show that earth structures are economically advantageous. The derived equations can be used for providing a preliminary cost estimate of CW facilities for domestic wastewater treatment.

  7. Balancing carbon sequestration and GHG emissions in a constructed wetland

    NARCIS (Netherlands)

    Klein, de J.J.M.; Werf, van der A.K.

    2014-01-01

    In many countries wetlands are constructed or restored for removing nutrients from surface water. At the same time vegetated wetlands can act as carbon sinks when CO2 is sequestered in biomass. However, it is well known that wetlands also produce substantial amounts of greenhouse gasses CH4 and N2O.

  8. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands.

    Science.gov (United States)

    Cardinal, Pascal; Anderson, Julie C; Carlson, Jules C; Low, Jennifer E; Challis, Jonathan K; Beattie, Sarah A; Bartel, Caitlin N; Elliott, Ashley D; Montero, Oscar F; Lokesh, Sheetal; Favreau, Alex; Kozlova, Tatiana A; Knapp, Charles W; Hanson, Mark L; Wong, Charles S

    2014-06-01

    Outdoor shallow wetland mesocosms, designed to simulate surface constructed wetlands to improve lagoon wastewater treatment, were used to assess the role of macrophytes in the dissipation of wastewater nutrients, selected pharmaceuticals, and antibiotic resistance genes (ARGs). Specifically, mesocosms were established with or without populations of Typha spp. (cattails), Myriophyllum sibiricum (northern water milfoil), and Utricularia vulgaris (bladderwort). Following macrophyte establishment, mesocosms were seeded with ARG-bearing organisms from a local wastewater lagoon, and treated with a single pulse of artificial municipal wastewater with or without carbamazepine, clofibric acid, fluoxetine, and naproxen (each at 7.6μg/L), as well as sulfamethoxazole and sulfapyridine (each at 150μg/L). Rates of pharmaceutical dissipation over 28d ranged from 0.073 to 3.0d(-1), corresponding to half-lives of 0.23 to 9.4d. Based on calculated rate constants, observed dissipation rates were consistent with photodegradation driving clofibric acid, naproxen, sulfamethoxazole, and sulfapyridine removal, and with sorption also contributing to carbamazepine and fluoxetine loss. Of the seven gene determinants assayed, only two genes for both beta-lactam resistance (blaCTX and blaTEM) and sulfonamide resistance (sulI and sulII) were found in sufficient quantity for monitoring. Genes disappeared relatively rapidly from the water column, with half-lives ranging from 2.1 to 99d. In contrast, detected gene levels did not change in the sediment, with the exception of sulI, which increased after 28d in pharmaceutical-treated systems. These shallow wetland mesocosms were able to dissipate wastewater contaminants rapidly. However, no significant enhancement in removal of nutrients or pharmaceuticals was observed in mesocosms with extensive aquatic plant communities. This was likely due to three factors: first, use of naïve systems with an unchallenged capacity for nutrient assimilation and

  9. [Problems and countermeasures in the application of constructed wetlands].

    Science.gov (United States)

    Huang, Jin-Lou; Chen, Qin; Xu, Lian-Huang

    2013-01-01

    Constructed wetlands as a wastewater eco-treatment technology are developed in recent decades. It combines sewage treatment with the eco-environment in an efficient way. It treats the sewage effectively, and meanwhile beautifies the environment, creates ecological landscape, and brings benefits to the environment and economics. The unique advantages of constructed wetlands have attracted intensive attention since developed. Constructed wetlands are widely used in treatment of domestic sewage, industrial wastewater, and wastewater from mining and petroleum production. However, many problems are found in the practical application of constructed wetland, e. g. they are vulnerable to changes in climatic conditions and temperature, their substrates are easily saturated and plugged, they are readily affected by plant species, they often occupy large areas, and there are other problems including irrational management, non-standard design, and a single function of ecological service. These problems to a certain extent influence the efficiency of constructed wetlands in wastewater treatment, shorten the life of the artificial wetland, and hinder the application of artificial wetland. The review presents correlation analysis and countermeasures for these problems, in order to improve the efficiency of constructed wetland in wastewater treatment, and provide reference for the application and promotion of artificial wetland.

  10. Kinetics of nitrogen removal processes in constructed wetlands

    Science.gov (United States)

    Gajewska, Magdalena; Skrzypiec, Katarzyna

    2018-01-01

    The aim of this paper is to present a state-of-the-art review of the kinetics of nitrogen removal in constructed wetlands. Biological processes of nitrogen removal from wastewater can be described using equations and kinetic models. Hence, these kinetic models which have been developed and evaluated allow for predicting the removal of nitrogen in treatment wetlands. One of the most important, first order removal model, which is still applied, was analysed and its rate coefficients and factors were compared. This study also demonstrates the validity of Monod and multiple Monod kinetics, commonly seen today. Finally, a computational example of the reaction kinetics of nitrogen removal was also included in the study.

  11. Kinetics of nitrogen removal processes in constructed wetlands

    Directory of Open Access Journals (Sweden)

    Gajewska Magdalena

    2018-01-01

    Full Text Available The aim of this paper is to present a state-of-the-art review of the kinetics of nitrogen removal in constructed wetlands. Biological processes of nitrogen removal from wastewater can be described using equations and kinetic models. Hence, these kinetic models which have been developed and evaluated allow for predicting the removal of nitrogen in treatment wetlands. One of the most important, first order removal model, which is still applied, was analysed and its rate coefficients and factors were compared. This study also demonstrates the validity of Monod and multiple Monod kinetics, commonly seen today. Finally, a computational example of the reaction kinetics of nitrogen removal was also included in the study.

  12. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  13. Molecular Characterization of Wetland Soil Bacterial Community in Constructed Mesocosms

    National Research Council Canada - National Science Library

    Bishop, Ethan C

    2006-01-01

    .... In order to better understand this process and test its legitimacy, a treatment wetland was constructed at Wright-Patterson AFB, Dayton, Ohio and, in a joint effort with Wright State University (WSU...

  14. Potential of constructed wetlands as an alternative for wastewater ...

    African Journals Online (AJOL)

    surface flow Constructed Wetland (HSSFCW) system in polishing pre-treated wastewater in the UPward Flow Anaerobic sludge Blanket (UASB) reactor plant as a potential wastewater treatment system that can meet the requirement for ...

  15. Pre- and post-construction analysis of a wetland used for mine drainage control

    International Nuclear Information System (INIS)

    Wise, K.M.; Mitsch, W.J.

    1994-01-01

    A 0.39 ha constructed wetland in Athens County, Ohio is being evaluated for its ability to remove contaminants from acidic mine drainage. The wetland receives water flow from Lick run stream which is contaminated by two major abandoned underground mine seeps. The wetland effluent is then directed back into Lick Run, a tributary of the Hocking River. Data were collected 1.5 years prior to construction and 11 months following completion of the passive wetland system. Preconstruction data reported average spring quarter 1991 and 1992 iron concentrations in the stream at the future wetland influent and effluents sites to be 330 and 106 mg/l, while spring quarter 1993 showed iron levels at the wetland influent and effluent to be 64 and 3 mg/l, respectively. Iron removal percentages were 68% prior to the construction of the wetland and 95% following its completion. Preconstruction data were analyzed using a dynamic computer model and preliminary comparison with the first 11 months of the wetland data show the actual iron removal rates to be 4 g/m 2 day 1 compared to the predicted value of 6.5 g/m 2 day 1 (based on data collected from April 1991--March 1992, under similar hydrologic conditions)

  16. Efficiency and kinetic modeling of removal of nutrients and organic matter from a full-scale constructed wetland in Qasre-Shirin, Iran

    Directory of Open Access Journals (Sweden)

    Abdolmajid Gholizadeh

    2015-09-01

    Full Text Available Background: This study assessed the removal of organic material and nutrients from full-scale subsurface flow (SSF constructed wetlands (CWs followed by anaerobic stabilization ponds under environmental conditions. Methods: The effluents were distributed evenly in 12 reed beds. Samples were taken twice monthly for a total of 6 months from several points in the wetland. Biochemical oxygen demand (BOD, chemical oxygen demand (COD, total suspended solids (TSS, and nutrient removal from the system and the longitudinal effect of the reed beds for removal of pollutions were determined. A full-scale model of flow, BOD, and nutrients in SSF in the CWs is presented. Results: The flow rate and concentrations of parameters indicated that removal of organic matter and nutrients in the cold months decreased rather than in the hot months, as expected. The removal efficiency for BOD, COD, and TSS and the strongest biological interactions showed no uniform trends. The beds showed the highest removal rates in the first few meters of bed. The hybrid Monod-Plug flow regime and the Stover-Kincannon models showed the best fit for the kinetics of the processes. Umax in the Stover-Kincannon model was 3.64 mg/l.d for nitrogen and 0.24 mg/l.d for phosphorus. These values are very low, which indicates lower consumption and inefficiency of the system for removing nitrogen and phosphorus. Conclusion: It can be concluded that the SSF in CWs are able to treat average wastewater as effectively as common mechanical systems at lower cost.

  17. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  18. Biotic development comparisons of a wetland constructed to treat mine water drainage with a natural wetland system

    International Nuclear Information System (INIS)

    Webster, H.J.; Hummer, J.W.; Lacki, M.J.

    1994-01-01

    Using 5-yr of baseline data from a constructed wetland, the authors compared the biotic changes in this wetland to conditions in a natural wetland to determine if biotic development patterns were similar. The constructed wetland was built in 1985 to treat a coal mine discharge and was planted with broadleaf cattail (Typha latifolia) within the three-cell, 0.26 ha wetland. Species richness in permanent quadrants of the constructed wetland declined over the study period, while cattail coverage increased. Plant species composition diversified at the edges, with several species becoming established. The constructed wetland deepened and expanded slightly in area coverage during the study period. The constructed wetland supported herptofaunal communities that appeared more stable through time than those of the natural wetland and sustained a rudimentary food chain dependent upon autotrophic algal populations. Despite fundamental differences in substrate base, morphology, and water flow patterns, biotic trends for the constructed wetland coincided with succession-like patterns at the natural wetland. They suggest that further shifts in the biotic composition of the constructed wetland are likely, but the system should continue to persist if primary production meets or exceeds the microbial metabolic requirements necessary to treat mine drainage

  19. Investigation into the kinetics of constructed wetland degradation ...

    African Journals Online (AJOL)

    -scale, horizontal subsurface-flow constructed wetland (6.0 m × 1.0 m × 0.5 m) in Leipzig, Germany. The bed contained glacial gravel (4–8 mm) planted with Phragmites australis. Construction was completed in October 2013 and experiments ...

  20. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  1. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    Science.gov (United States)

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  2. Intensification of constructed wetlands for land area reduction: a review.

    Science.gov (United States)

    Ilyas, Huma; Masih, Ilyas

    2017-05-01

    The large land area requirement of constructed wetlands (CWs) is a major limitation of its application especially in densely populated and mountainous areas. This review paper provides insights on different strategies applied for the reduction of land area including stack design and intensification of CWs with different aeration methods. The impacts of different aeration methods on the performance and land area reduction were extensively and critically evaluated for nine wetland systems under three aeration strategies such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) applied on three types of CWs including vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW), and hybrid constructed wetland (HCW). The area reduction and pollutant removal efficiency showed substantial variation among different types of CWs and aeration strategies. The ER-VFCW designated the smallest footprint of 1.1 ± 0.5 m 2 PE -1 (population equivalent) followed by TF-VFCW with the footprint of 2.1 ± 1.8 m 2 PE -1 , and the large footprint was of AA-HFCW (7.8 ± 4.7 m 2 PE -1 ). When footprint and removal efficiency both are the major indicators for the selection of wetland type, the best options for practical application could be TF-VFCW, ER-HCW, and AA-HCW. The data and results outlined in this review could be instructive for futures studies and practical applications of CWs for wastewater treatment, especially in land-limited regions.

  3. [Characteristics of phosphorus fractions in sediments of constructed wetlands].

    Science.gov (United States)

    Lu, Jin; Gao, Bol; Hao, Hong

    2014-11-01

    In order to better understand phosphorus (P) cycle in wetland ecosystem, the characteristics of phosphorus fractions in sediments of Heituwa constructed wetland system were investigated using soil organic phosphorus (Po) fractionation scheme and 31P-NMR technology. The concentrations of TP, Pi, Po and soil organic matter were all increased along the flow direction. Four kinds of P-compounds (orthophosphate, orthophosphate monoesters, orthophosphate diesters, and pyrophosphate) were detected in the NMR spectrum. Orthophosphate and phosphate monoester accounted for the dominants position in sediment phosphorus. This study indicates that the Po in sediment plays an importance role in wetland ecosystem and suggested that more attention should be paid to Po, especially to DNA-P and pyrophosphate in further research and management of constructed wetlands. Compared with the traditional chemical analysis method, 31P-NMR method has sample preparation relatively simple and is less destructive, with components analyzed completely. Using 31P-NMR technology, the cognition of wetland phosphorus cycle, especially organophosphate, will be expected to get new breakthrough.

  4. Horizontal subsurface flow constructed wetlands for mitigation of ...

    African Journals Online (AJOL)

    contaminated water. AC Borges, M do Carmo Calijur, AT de Matos, MELR de Queiroz. Abstract. The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related ...

  5. Removal Efficiency of Constructed Wetland for Treatment of Agricultural Wastewaters

    Directory of Open Access Journals (Sweden)

    Michal Šereš

    2017-06-01

    Full Text Available This study describes performance of a hybrid constructed wetland (CW for treating wastewater from small farm in Czech Republic. The CW consisting of two horizontal filters, one vertical filter and three shallow pondsand reduced inflow values of 25.400 mg/L COD and 2.640 mg/L BOD5 by up to 99%.

  6. Fate of estrone in laboratory-scale constructed wetlands

    Science.gov (United States)

    A horizontal, subsurface, laboratory-scale constructed wetland (CW) consisting of four cells in series was used to determine the attenuation of the steroid hormone estrone (E1) present in animal wastewater. Liquid swine manure diluted 1:80 with farm pond water and dosed with [14C]E1 flowed through ...

  7. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    Science.gov (United States)

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  8. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    Science.gov (United States)

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  9. Effectiveness of vegetated constructed wetland in the reducation of ...

    African Journals Online (AJOL)

    This paper describes the performance of a Horizontal Sub-Surface Flow Constructed Wetland (HSSFCW) as a post-treatment unit to reduce BOD5 from Upflow Anaerobic Sludge Blanket (UASB) pre-treated domestic wastewater in a pilot treatment system at the University College of Lands and Architectural Studies (UCLAS) ...

  10. Removal efficiency of constructed wetland for treatment of agricultural wastewaters

    Czech Academy of Sciences Publication Activity Database

    Šereš, M.; Hnátková, T.; Vymazal, J.; Vaněk, Tomáš

    2017-01-01

    Roč. 12, č. 1 (2017), s. 45-52 ISSN 1857-1727 R&D Projects: GA TA ČR TA01020573 Institutional support: RVO:61389030 Keywords : Agriculture wastewater * Constructed wetland * Horizontal filter * Hybrid systems * Vertical filter Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management

  11. Performance of Subsurface Flow Constructed Wetland for Domestic ...

    African Journals Online (AJOL)

    Constructed wetlands (CW) have recently emerged as efficient technology for secondary treatment of wastewater in developing countries because of its low cost, ease operation, maintenance and generally good performance. At present there are a number of small scale units of CW for wastewater treatment in Tanzania but ...

  12. Performance evaluation of constructed wetlands: A review of arid ...

    African Journals Online (AJOL)

    Aiming at environmental pollution control through the use of constructed wetlands systems (CWs) in arid and semi arid climatic region, a detailed review of CWs was undertaken. Given the practical application and simplicity of the technology, principles for building phytotechnology-ecohydrology environment used for ...

  13. Modelling Constructs

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2009-01-01

    , these notations have been extended in order to increase expressiveness and to be more competitive. This resulted in an increasing number of notations and formalisms for modelling business processes and in an increase of the different modelling constructs provided by modelling notations, which makes it difficult......There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts...... to compare modelling notations and to make transformations between them. One of the reasons is that, in each notation, the new concepts are introduced in a different way by extending the already existing constructs. In this chapter, we go the opposite direction: We show that it is possible to add most...

  14. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    Science.gov (United States)

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  15. A Comparison of Modeling Approaches in Simulating Chlorinated Ethene Removal in a Constructed Wetland by a Microbial Consortia

    National Research Council Canada - National Science Library

    Campbell, Jason

    2002-01-01

    ... of the modeling approaches affect simulation results. Concepts like microbial growth in the form of a biofilm and spatially varying contaminant concentrations bring the validity of the CSTR assumption into question...

  16. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model.

    Directory of Open Access Journals (Sweden)

    Ingrid Meyer-Cifuentes

    Full Text Available Previously, Planted Fixed-Bed Reactors (PFRs have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15-1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99% with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15-1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15-1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15-1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place.

  17. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Science.gov (United States)

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  18. Application of a constructed wetland system for polluted stream remediation

    Science.gov (United States)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp

  19. Design and optimisation of novel configurations of stormwater constructed wetlands

    Science.gov (United States)

    Kiiza, Christopher

    2017-04-01

    Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.

  20. A LOW-COST THREE-DIMENSIONAL SAMPLE COLLECTION ARRAY TO EVALUATE AND MONITOR CONSTRUCTED WETLANDS

    Science.gov (United States)

    Artificially constructed wetlands are gaining acceptance as a low cost treatment alternative to remove a number of undesirable constituents from water. Wetlands can be used to physically remove compounds such as suspended solids through sedimentation. Dissolved nutrients, biochemical oxygen demand, ...

  1. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  2. Integrated Constructed Wetlands (ICW) for livestock wastewater management.

    Science.gov (United States)

    Harrington, Rory; McInnes, Robert

    2009-11-01

    Social, economic and environmental coherence is sought in the management of livestock wastewater. Wetlands facilitate the biogeochemical processes that exploit livestock wastewater and provide opportunities to achieve such coherence and also to deliver on a range of ecosystem services. The Integrated Constructed Wetland (ICW) concept integrates three inextricably linked objectives: water quantity and quality management, landscape-fit to improve aesthetic site values and enhanced biodiversity. The synergies derived from this explicit integration allow one of the key challenges for livestock management to be addressed. An example utilizing twelve ICW systems from a catchment on the south coast of Ireland demonstrates that over an eight year period mean reduction of total and soluble phosphorus (molybdate reactive phosphorus) exceeded 95% and the mean removal of ammonium-N exceeded 98%. This paper reviews evidence regarding the capacity of ICWs to provide a coherent and sustainable alternative to conventional systems.

  3. Qualitative variability in microbial community of constructed wetlands used for purifying wastewater contaminated with pharmaceutical substances.

    Science.gov (United States)

    Nowrotek, Monika; Ziembińska-Buczyńska, Aleksandra; Miksch, Korneliusz

    2015-01-01

    Pharmaceutical substances and their residues are increasingly present in the environment. Therefore, attempts at their removal are made by using different processes. Increasingly important among these processes are those modeled on natural phenomena which occur in wetland ecosystems, called technical scale constructed wetlands. Microbial degradation is an important process in these constructed wetlands. The biodegradation of chemicals often involves a complex series of biochemical reactions and usually varies with the microorganisms involved. The objectives of this study were to determine the impact of sulfamethoxazole and diclofenac on ammonia oxidizing bacteria and other parameters of wastewater in the microcosm of down-flow constructed wetlands. The Spearman correlation coefficient attained negative values in the case of comparison of the Shannon biodiversity index and the parameters of purified wastewater. This dependence was pronounced. In the case of pharmaceutical substances dosed with wastewater, the Spearman correlation coefficient assumed positive values. The highest value assumed by the Spearman correlation coefficient (0.9) was for the removal of diclofenac and Shannon index values for the planted columns, with a very high relationship. For unplanted columns, this value equaled 0.6. For sulfamethoxazole, the value for planted columns was 0.7, and for unplanted -0.7. The presence of plants did not have an impact on the Shannon biodiversity index.

  4. Dewatering and Treatment of Septage Using Vertical Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Yee Yong Tan

    2017-10-01

    Full Text Available The vertical flow constructed wetland (VFCW has become an attractive decentralised technology for septage treatment. One of the main purposes of the septage treatment is to reduce the volume of raw septage through dewatering, where the solids content is retained in the wetland bed and the water content is released. The retention of solids forms a layer of sludge deposit at the wetland surface, and the drained water, the so-called leachate, typically contains a lower solids content. This article reports the performance of dewatering and filtration of a pilot-scale VFCW designed for septage treatment. A comparison between two feeding strategies, hydraulic loading rate (HLR and solids loading rate (SLR, is presented. The dewatering efficiency through drainage was found to be dependent on the solids load. The removal of total solids (TS and chemical oxygen demand (COD were excellent as the quality of leachate showed that more than 90% of TS and COD were retained in the system. This study reveals that the feeding based on SLR delivered a more sustainable performance for dewatering and solids removal. The build-up of sludge deposit significantly deteriorated the dewatering efficiency through drainage, but it tended to improve the filtration capacity.

  5. Efficiency of a constructed wetland for wastewaters treatment

    Directory of Open Access Journals (Sweden)

    Fernanda Travaini-Lima

    Full Text Available AIM: The limnological characteristics of three different inlets water of the constructed wetland were compared in terms of concentration data and loading rate data and evaluated the removal efficiencies of nutrients, solids, BOD5, chlorophyll-a and thermotolerant coliforms (TC by the treatment system; METHODS: The constructed wetland, measuring 82.8 m² and with detention time of 1 hour and 58 minutes in the rainy season and 2 hours and 42 minutes in the dry one, was provided with four species, Cyperus giganteus Vahl, Typha domingensis Pers., Pontederia cordata L. e Eichhornia crassipes (Mart. Solms. The sampling sites evaluated in the dry (D and rainy (R seasons were: inlet water from aquaculture farm = IA; inlet channel of rainwater runoff = IR; inlet from UASB wastewater = IB; outlet wetland = OUT. The conductivity, pH, temperature, dissolved oxygen, alkalinity, BOD5, total soluble and dissolved solids, nitrogen, phosphorus, chlorophyll-a and TC were analyzed. Multivariate analyses, such as Cluster and Principal Components Analysis (PCA, were carried out to group sampling sites with similar limnological characteristics; RESULTS: In the PCA with the concentration data was retained 90.52% variability of data, correlating the inlet IB with high concentrations of conductivity, alkalinity, pH, TC, nutrients and solids. Regarding loading rate data, the PCA was retained 80.9% of the data's total variability and correlated the sampling sites IA D, IA R and OUT R with higher BOD5, chlorophyll-a, TDS, nitrate, nitrite, total-P, temperature, oxygen and water flow. The highest removal efficiencies rates occurred in the dry season, mainly in concentration, with 78% of ammonia, 95.5% of SRP, 94.9% of TSS and 99.9% of TC; CONCLUSIONS: The wetland was highly efficacious in the removal of nutrients, solids, BOD5, chlorophyll-a and TC, mainly during the dry season. The system restructuring to increase the detention time during the rainy season and a pre

  6. Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal.

    Science.gov (United States)

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2014-02-01

    Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bioaccumulation of metals in constructed wetlands used to treat acid drainage

    International Nuclear Information System (INIS)

    Edwards, G.S.; Mays, P.A.

    1994-01-01

    Constructed wetlands are being used extensively as a potential mitigation for acid drainage. However, removal of metals to meet compliance requirements has varied among wetlands, ranging from partial to total success. In addition, wetlands are sinks for contaminants found in acid drainage, and bioaccumulation of these contaminants to levels that would adversely affect the food web is of growing concern. The primary objective of this project was to determine whether bioaccumulation of metals occurs in wetlands constructed for treatment of acid drainage. Water, sediment, plant and benthos samples were collected from two wetlands constructed by the Tennessee Valley Authority and a natural wetland in the spring and fall of 1992, and metal concentrations were determined. One of the constructed wetlands, Impoundment 1, has generally been in compliance for NPDES; the other, Widow's Creek, has never been in compliance. Preliminary results indicate similarities in sediment and plant metal concentrations between Impoundment 1 and the natural wetland and greater metal concentrations in the sediment and plants at Widow's Creek. Data also indicate that Mn, Zn, Cu, Ni, and Cr are being accumulated in the plants at each wetland. However, accumulation of metals by these plants probably accounts for only a small percentage of the removal of the annual metal load supplied to each wetland. Bioaccumulation of metals in the benthic organisms at each wetland is currently being investigated

  8. Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.

    Science.gov (United States)

    Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai

    2017-09-01

    To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.

  9. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands

    International Nuclear Information System (INIS)

    Tietz, Alexandra; Kirschner, Alexander; Langergraber, Guenter; Sleytr, Kirsten; Haberl, Raimund

    2007-01-01

    In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via 14 C leucine incorporation into bacterial biomass. All methods showed that > 50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction

  10. Constructed Wetland Treatment Systems For Water Quality Improvement

    International Nuclear Information System (INIS)

    Nelson, E.

    2010-01-01

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m 3 per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m 3 of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m 3 per day, and be able to handle 9,690 m 3 of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of

  11. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  12. APPLICATION OF CONSTRUCTED WETLANDS FOR TREATMENT OF WASTEWATER FROM FRUIT AND VEGETABLE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Monika Puchlik

    2016-01-01

    Full Text Available About 2000 plants are involved in fruit and vegetable processing in Poland, they are mostly located in non-urbanized areas and without any access to sewerage and sewage treatment facilities. In 2014, they produced more than 10 hm3 of wastewater requiring treatment, which was discharged directly into surface waters or into the ground. The aim of the study was to evaluate the efficiency of the constructed wetland for treating the sewage from fruit and vegetable industry. The analyzed constructed wetland with vertical flow reveled a reduction in the value of BOD5 to 68.2%, and CODCr to 79.3%. The model was characterized by 60.2% efficiency of total phosphorus removal.

  13. Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland

    OpenAIRE

    Wang, Yong-Feng; Gu, Ji-Dong

    2012-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) are three groups of ammonium/ammonia-oxidizing prokaryotes (AOPs) that are involved in the nitrogen cycle. This research compared the AOP communities in a constructed freshwater wetland with a natural coastal marine wetland in the subtropical Hong Kong. Both vegetated/rhizosphere and nonvegetated sediments were investigated to identify the effects of different macroph...

  14. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    Science.gov (United States)

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  15. Kinetic and empirical design criteria for constructed wetlands

    International Nuclear Information System (INIS)

    Nix, P.G.; Gulley, J.R.

    1995-01-01

    A study was conducted to demonstrate the capabilities of wetlands as long-term, self-sustaining natural systems for the treatment of large quantities of waste water released from tailings ponds after mine abandonment. Constructed wetlands were built and planted with aquatic plants. The experimental design included three replicate trenches for each of two treatment systems. The objective of the research was to assess the optimum contaminant loading rates which would result in an acceptable quality of the effluent water. Using empirical data (i.e., hydrocarbon loading rates versus effluent quality), the optimal range of hydrocarbon loading was 5 to 25 gTEH/m 2/ month. Using more conservative kinetic data (i.e. microbial mineralization rates), the range of optimal treatment effectiveness was 9.6 to 13.2 gTEH/m 2/ month. The two design criteria methodologies were calculated using two independent analytical methods. The similarity in results was judged to be a confirmation of their accuracy. 20 refs., 5 figs

  16. The microbial aspects of constructed wetlands treating simulated wastewater

    International Nuclear Information System (INIS)

    Pervez, A.; Firdus, S.

    2005-01-01

    The microbial populations (bacteria, actinomycetes and fungi) in six different types of 68 dm/sup 3/ experimental constructed wetlands with or with reed were quantified using standard counts of colony forming units grown on different types of medias. The wetlands were supplied with a simulated wastewater and number of environmental variables were measured, including COD, temperature, pH, Oxygen concentration, suspended solids, NH/sub 4//sup +/, NO/sub 3//sup -/ and HPO/sub 4//sup 2-/. Mean number of colony forming units of bacteria, actinomycetes and fungi differed significantly between each system, sample dates and depths. Correlation coefficient for variables were calculated to determine whether a relationship between biological and physico-chemical factors at all samples depths could be detected. Not surprisingly the numbers of bacteria and actinomycetes were strongly positively correlated with temperature and oxygen concentration. However, fungal populations were partially correlated with temperature. No correlation was found between the number of any microorganisms and the levels of HPO/sub 4//sup 2-/ in the effluent. (author)

  17. Constructed wetland and aquatic treatment systems for fish farms in Egypt : Desk study report

    NARCIS (Netherlands)

    Truijen, G.; Heijden, van der P.G.M.

    2013-01-01

    This report summarises the information found in scientific literature regarding the mechanisms and processes that enable constructed wetlands to remove heavy metals and pesticides from waste water. It examines what factors have an influence on the effectiveness of constructed wetlands to treat waste

  18. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands

    DEFF Research Database (Denmark)

    Brix, Hans; Koottatep, H.; Laugesen, C.H.

    2007-01-01

    (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland...

  19. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands.

    Science.gov (United States)

    Dan A; Yang, Yang; Dai, Yu-nv; Chen, Chun-xing; Wang, Su-yu; Tao, Ran

    2013-10-01

    Twelve pilot-scale constructed wetlands with different configurations were set up in the field to evaluate the removal and factors that influence removal of sulfonamides (sulfadiazine, sulfapyridine, sulfacetamide, sulfamethazine and sulfamethoxazole) and trimethoprim from domestic sewage. The treatments included four flow types, three substrates, two plants and three hydraulic loading rates across two seasons (summer and winter). Most target antibiotics were efficiently removed by specific constructed wetlands; in particular, all types of constructed wetlands performed well for the degradation of sulfapyridine. Flow types were the most important influencing factor in this study, and the best removal of sulfonamides was achieved in vertical subsurface-flow constructed wetlands; however, the opposite phenomenon was found with trimethoprim. Significant relationships were observed between antibiotic degradation and higher temperature and redox potential, which indicated that microbiological pathways were the most probable degradation route for sulfonamides and trimethoprim in constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phosphorus removal by expanded clay--six years of pilot-scale constructed wetlands experience.

    Science.gov (United States)

    Mateus, Dina M R; Pinho, Henrique J O

    2010-02-01

    Constructed wetlands, which facilitate phosphorus removal via precipitation, adsorption, and biological assimilation, offer a promising appropriate technology for advanced treatment in wastewater treatment plants. Because adsorption and precipitation are pointed out as the major phosphorus-removal mechanisms, the selection of a medium with high phosphorus-sorption capacity is important to obtain a sustained phosphorus removal. The objective of this study was to evaluate two kinds of lightweight expanded clay aggregates (LWAs)--Filtralite NR and Filtralite MR (Maxit Group, Avelar, Portugal)--as substrates in constructed wetlands to improve phosphorus-removal performance. Laboratory experiments were performed to test the potential of the LWAs to remove phosphorus from a phosphate solution. The experimental data were well-fitted by both the Langmuir and Freundlich isotherm models. Pilot-scale investigations were carried out to evaluate the phosphorus removal under field conditions. Four subsurface constructed wetlands were operated since June 2002; two of them were planted with Phragmites australis, and the other two were unplanted. The beds were filled with the two kinds of LWAs. Total phosphorous and pH were monitored since 2003, at a mean hydraulic load of 50 +/- 4 L/(m2 x d), during 6 years. The inflow phosphorus concentration was in the range 4 to 13 mg/L. Under the conditions used, beds with Filtralite MR had better efficiency, and the bed with Filtralite MR planted with Phragmites australis provided a phosphorus effluent mean concentration of 0.7 +/- 0.2 mg/L, during the trial period. This study presents the first long-term pilot-scale data for constructed wetlands using LWAs.

  1. Drainage filters and constructed wetlands to mitigate sitespecific nutrient losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Canga, Eriona; Heckrath, Goswin Johann

    2012-01-01

    Despite substantial efforts, the leaching of nutrients from agricultural land is still a serious and costly environmental problem in Denmark and elsewhere. The quality goals of the European Water Framework Directive (WFD) for the aquatic environment require a substantial reduction of diffuse...... losses and 45-60% of total N losses. Hence, for a large number of recipients, drainage water nutrient loads has a major impact on water quality, however, mitigation options targeting subsurface drainage are lacking. An end-of-pipe drainage filter solution offers the benefits of a targeted measure...... as surface-flow and subsurface flow constructed wetlands. Various natural and industrial P filter substrates are tested towards P sorption properties, as well as hydraulic efficiency and P retention efficiency during variable flow regimes. A major challenge is to reduce comparatively low P concentrations...

  2. Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; Gupta, Pankaj Kumar; Yadav, Brijesh Kumar; van Bruggen, J J A; Lens, P N L

    2018-04-09

    A duplex constructed wetland (duplex-CW) is a hybrid system that combines a vertical flow (VF) CW as a first stage with a horizontal flow filter (HFF) as a second stage for a more efficient wastewater treatment as compared to traditional constructed wetlands. This study evaluated the potential of the hybrid CW system to treat influent wastewater containing diesel range organic compounds varying from C 7 - C 40 using a series of 12-week practical and numerical experiments under controlled conditions in a greenhouse (pH was kept at 7.0 ± 0.2, temperature between 20 and 23° C and light intensity between 85 and 100-μmol photons m -2 sec -1 for 16 h d -1 ). The VF CWs were planted with Phragmites australis and were spiked with different concentrations of NH 4 + -N (10, 30 and 60 mg/L) and PO 4 3- -P (3, 6 and 12 mg/L) to analyse their effects on the degradation of the supplied petroleum hydrocarbons. The removal rate of the diesel range organics considering the different NH 4 + -N and PO 4 3- -P concentrations were simulated using Monod degradation kinetics. The simulated results compared well with the observed database. The results showed that the model can effectively be used to predict biochemical transformation and degradation of diesel range organic compounds along with nutrient amendment in duplex constructed wetlands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Bacteriophage Technique for Assessing Viral Removal in Constructed Wetland and Detention Pond Systems

    Directory of Open Access Journals (Sweden)

    Z Yousefi, CM Davies, HJ Bavor

    2004-10-01

    Full Text Available Constructed wetland and detention pond as a treatment system was applied for stormwater management in two adjacent areas in western Sydney. F-specific RNA and somatic coliphages were used as a model for assessing two systems for removal of viral pollution, fate, behavior and survival of viruses in the sediment. Water samples were collected weekly in sterile containers and sediment samples were collected three times using a box dredge sampler via a boat at the inlet, middle and outlet areas of the systems. F-specific RNA coliphages were enumerated using the double layer plaque assay (ISO 1995 with Salmonella typhimurium WG49 as a host. Survival test continued 28 d for each sub-sample. Viral removal in constructed wetland was more effective than the detention pond system. Survival of somatic coliphages in the inlet and middle of the systems was similar. Slope of declining for outlet of two systems was very slow and completely stable in whole of test duration. Constructed wetland may offer an attractive alternative to stormwater management for reducing the load of disease-causing viruses to the receiving waters.

  4. Constructed wetland: an alternative for wastewater treatment; Humedales construidos: una alternativa a considerar para el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Plaza de los Reyes del Rio, C.; Vidal Saez, G.

    2007-07-01

    Research and trends dealing with sewage and industrial wastewaters treated by constructed wetlands are shown in this paper. Plant and constructed wetlands configurations are also described. Sewage domestic wastewaters from individual houses or villages have used constructed wetlands as wastewater treatment. On the other hand, constructed wetlands as finally treatment working together with conventional technologies could be a good alternative for improving the treated quality wastewater. (Author) 56 refs.

  5. Establishment of a constructed wetland in extreme dryland.

    Science.gov (United States)

    Tencer, Yoram; Idan, Gil; Strom, Marjorie; Nusinow, Uri; Banet, Dorit; Cohen, Eli; Schröder, Peter; Shelef, Oren; Rachmilevitch, Shimon; Soares, Ines; Gross, Amit; Golan-Goldhirsh, Avi

    2009-11-01

    The project was set to construct an extensive wetland in the southernmost region of Israel at Kibbutz Neot Smadar (30 degree 02'45" N and 35 degree 01'19" E). The results of the first period of monitoring, summary, and perspectives are presented. The constructed wetland (CW) was built and the subsequent monitoring performed in the framework of the Southern Arava Sustainable Waste Management Plan, funded by the EU LIFE Fund. The specific aims were: (1) To end current sewage disposal and pollution of the ground, the aquifer, and the dry river bed (wadi) paths by biologically treating the sewage as part of the creation of a sustainable wetland ecosystem. (2) Serve as an example of CW in the Negev highlands and the Arava Valley climates for neighboring communities and as a test ground for plants and building methods appropriate to hyper arid climate. (3) Serve as an educational resource and tourist attraction for groups to learn about water reuse, recycling, local wildlife and migrating birds, including serving the heart of a planned Ecological-Educational Bird Park. This report is intended to allow others who are planning similar systems in hyper arid climates to learn from our experience. The project is located in an extreme arid desert with less than 40 mm of rain annually and temperature ranges of -5 degree C to +42 degree C. The site receives 165-185 m3 of municipal and agricultural wastes daily, including cowshed and goat wastes and winery outflow. The CW establishment at Neot Smadar was completed in October 2006. For 8 months, clean water flowed through the system while the plants were taking root. In June 2007, the wetland was connected to the oxidation pond and full operation began. Because of seepage and evaporation, during the first several months, the water level was not high enough to allow free flow from one bed to the next. To bed A, the water was pumped periodically from the oxidation pond (Fig. 1) and from there flowed by gravitation through the rest

  6. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model

    Science.gov (United States)

    Spencer, Thomas; Schuerch, Mark; Nicholls, Robert J.; Hinkel, Jochen; Lincke, Daniel; Vafeidis, A. T.; Reef, Ruth; McFadden, Loraine; Brown, Sally

    2016-04-01

    The Dynamic Interactive Vulnerability Assessment Wetland Change Model (DIVA_WCM) comprises a dataset of contemporary global coastal wetland stocks (estimated at 756 × 103 km2 (in 2011)), mapped to a one-dimensional global database, and a model of the macro-scale controls on wetland response to sea-level rise. Three key drivers of wetland response to sea-level rise are considered: 1) rate of sea-level rise relative to tidal range; 2) lateral accommodation space; and 3) sediment supply. The model is tuned by expert knowledge, parameterised with quantitative data where possible, and validated against mapping associated with two large-scale mangrove and saltmarsh vulnerability studies. It is applied across 12,148 coastal segments (mean length 85 km) to the year 2100. The model provides better-informed macro-scale projections of likely patterns of future coastal wetland losses across a range of sea-level rise scenarios and varying assumptions about the construction of coastal dikes to prevent sea flooding (as dikes limit lateral accommodation space and cause coastal squeeze). With 50 cm of sea-level rise by 2100, the model predicts a loss of 46-59% of global coastal wetland stocks. A global coastal wetland loss of 78% is estimated under high sea-level rise (110 cm by 2100) accompanied by maximum dike construction. The primary driver for high vulnerability of coastal wetlands to sea-level rise is coastal squeeze, a consequence of long-term coastal protection strategies. Under low sea-level rise (29 cm by 2100) losses do not exceed ca. 50% of the total stock, even for the same adverse dike construction assumptions. The model results confirm that the widespread paradigm that wetlands subject to a micro-tidal regime are likely to be more vulnerable to loss than macro-tidal environments. Countering these potential losses will require both climate mitigation (a global response) to minimise sea-level rise and maximisation of accommodation space and sediment supply (a regional

  7. Prediction of water quality index in constructed wetlands using support vector machine.

    Science.gov (United States)

    Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin; Chan, Ngai Weng

    2015-04-01

    Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.

  8. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland.

    Science.gov (United States)

    Hu, Yuansheng; Zhao, Yaqian; Rymszewicz, Anna

    2014-02-01

    Achieving effective total nitrogen (TN) removal is one of the major challenges faced by constructed wetlands (CWs). To address this issue, multiple "tides" were proposed in a single stage tidal flow constructed wetland (TFCW). With this adoption, exceptional TN removal (85% on average) was achieved under a high nitrogen loading rate (NLR) of around 28 g Nm(-2)day(-1), which makes the proposed system an adequate option to provide advanced wastewater treatment for peri-urban communities and rural area. It was revealed that the multiple "tides" not only promoted TN removal performance, but also brought more flexibility to TFCWs. Adsorption of NH4(+)-N onto the wetland medium (during contact period) and regeneration of the adsorption capacity via nitrification (during bed resting) were validated as the key processes for NH4(+)-N conversion in TFCWs. Moreover, simultaneous nitrification denitrification (SND) was found to be significant during the bed resting period. These findings will provide a new foundation for the design and modeling of nitrogen conversion and oxygen transfer in TFCWs. © 2013.

  9. The hydrological functioning of a constructed fen wetland watershed.

    Science.gov (United States)

    Ketcheson, Scott J; Price, Jonathan S; Sutton, Owen; Sutherland, George; Kessel, Eric; Petrone, Richard M

    2017-12-15

    Mine reclamation requires the reconstruction of entire landforms and drainage systems. The hydrological regime of reclaimed landscapes will be a manifestation of the processes operating within the individual landforms that comprise it. Hydrology is the most important process regulating wetland function and development, via strong controls on chemical and biotic processes. Accordingly, this research addresses the growing and immediate need to understand the hydrological processes that operate within reconstructed landscapes following resource extraction. In this study, the function of a constructed fen watershed (the Nikanotee Fen watershed) is evaluated for the first two years following construction (2013-2014) and is assessed and discussed within the context of the construction-level design. The system design was capable of sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the water fluxes from the system. These losses were partially offset by groundwater discharge from the upland aquifer, which demonstrated strong hydrologic connectivity with the fen in spite of most construction materials having lower than targeted saturated hydraulic conductivities. However, the variable surface infiltration rates and thick placement of a soil-capping layer constrained recharge to the upland aquifer, which remained below designed water contents in much of the upland. These findings indicate that it is possible to engineer the landscape to accommodate the hydrological functions of a fen peatland following surface oil sands extraction. Future research priorities should include understanding the storage and release of water within coarse-grained reclaimed landforms as well as evaluating the relative importance of external water sources and internal water conservation mechanisms for the viability of fen ecosystems over the longer-term. Copyright © 2017 Elsevier B

  10. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  11. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    Science.gov (United States)

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  12. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  13. Appropriate and sustainable wastewater management in developing countries by the use of constructed wetlands

    DEFF Research Database (Denmark)

    Brix, Hans; Koottatep, Thammarat; Fryd, Ole

    2010-01-01

    Constructed wetland systems for wastewater management may have great potential in developing countries as robust and decentralized solution. A case study from Koh Phi Phi island in Thailand where a constructed wetland systems was established after the destructions by the tsunami in 2004...... is described. The project includes a wastewater collection system for the main business area of the island, a pumping station, a multistage constructed wetland system, and a system for reuse of treated wastewater. The wastewater is treated to meet the Thai effluent standards for total suspended solids......, the system is only partly a success, mainly because no key-person or key-authority took responsibility for managing the system....

  14. Microbial fuel cells for clogging assessment in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Clara; García, Joan; Puigagut, Jaume, E-mail: jaume.puigagut@upc.edu

    2016-11-01

    Clogging in HSSF CW may result in a reduction of system's life-span or treatment efficiency. Current available techniques to assess the degree of clogging in HSSF CW are time consuming and cannot be applied on a continuous basis. Main objective of this work was to assess the potential applicability of microbial fuel cells for continuous clogging assessment in HSSF CW. To this aim, two replicates of a membrane-less microbial fuel cell (MFC) were built up and operated under laboratory conditions for five weeks. The MFC anode was gravel-based to simulate the filter media of HSSF CW. MFC were weekly loaded with sludge that had been accumulating for several years in a pilot HSSF CW treating domestic wastewater. Sludge loading ranged from ca. 20 kg TS·m{sup −} {sup 3} CW·year{sup −} {sup 1} at the beginning of the study period up to ca. 250 kg TS·m{sup −} {sup 3} CW·year{sup −} {sup 1} at the end of the study period. Sludge loading applied resulted in sludge accumulated within the MFC equivalent to a clogging degree ranging from 0.2 years (ca. 0.5 kg TS·m{sup –3}CW) to ca. 5 years (ca. 10 kg TS·m{sup –3}CW). Results showed that the electric charge was negatively correlated to the amount of sludge accumulated (degree of clogging). Electron transference (expressed as electric charge) almost ceased when accumulated sludge within the MFC was equivalent to ca. 5 years of clogging (ca. 10 kg TS·m{sup –3}CW). This result suggests that, although longer study periods under more realistic conditions shall be further performed, HSSF CW operated as a MFC has great potential for clogging assessment. - Highlights: • Microbial fuel cells are used as tool for clogging assessment in constructed wetlands. • Microbial fuel cells were loaded with sludge from constructed wetlands. • Sludge retained within the systems simulated a clogging time ranging from 0.2 to ca. 5 years. • Electrons transferred decreased potentially as function of sludge loading.

  15. Water quality during storm events from two constructed wetlands receiving mine drainage

    International Nuclear Information System (INIS)

    Stark, L.R.; Brooks, R.P.; Williams, F.M.; Stevens, S.E. Jr.; Davis, L.K.

    1994-01-01

    Flow rates, pH, iron concentration, and manganese concentration were measured during several storm event at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. 14 refs., 7 figs., 4 tabs

  16. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  17. Start-up of a free water surface constructed wetland for treating olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Michailides Michail

    2015-01-01

    Full Text Available An olive mill's existing evaporation pond was separated into five cells and transformed into a free water surface constructed wetland. The constructed wetland was used as a post-treatment stage for olive mill wastewater (OMW. Wastewater was previously treated by an aerobic trickling filter. The influent concentrations in the constructed wetland were 27400 mg.L-1, 4800 mg.L-1, 105 mg.L-1 and 770 mg.L-1 for COD, phenols, ortho-phosphate and TKN, respectively. Despite the rather high influent concentrations, the performance of the constructed wetland was very good since after the 60-day start-up operation period it achieved removal rates of about 94%, 95%, 95% and 98% for COD, phenols, ortho-phosphate and TKN, respectively. The major pollutant removal processes can be attributed to both biological processes occurring in the wetland and photo-oxidation. Laboratory-scale experiments with OMW from fifth cell of the wetland revealed that the net contribution of photo-oxidation after 112 hours of simulated solar radiation at 765 W/m2 (i.e. about 38 days of sunlight irradiation was 18% and 31% removal for COD and phenols, respectively. In the constructed wetland, the total removal reached 81% and 86% for COD and phenols, respectively, for the same time period (38 days.

  18. Performance of an innovative FWS constructed wetland in Crete, Greece.

    Science.gov (United States)

    Dialynas, G; Kefalakis, N; Dialynas, M; Angelakis, A

    2002-01-01

    Pompia is an ancient name of a small community in Messara valley, which is the main agricultural area, in central Crete. The constructed wetland in Pompia is a free water surface (FWS) system, for treating the wastewater of the local community of 1,200 p.e. That wastewater treatment plant (WWTP) is a pilot plant but it is simple, safe, innovative, and environmentally friendly. The WWTP was funded by the Region of Crete. The Eastern Crete Development Organization was responsible for the design, supervision, management, and initial operation. The project was completed in August 1999, and has been under operation since then. The effluent is considered to be equivalent to tertiary treated municipal wastewater, and it will be used to irrigate olive orchards. The general sense for a visitor is that the FWS system operates like a natural marsh and a habitat of birds and wild animals. In addition, very high removal rates for BOD5, COD, TSS, TKN, TP, TC, and FC have been obtained.

  19. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Science.gov (United States)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  20. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes.

    Science.gov (United States)

    Shi, Xia; Fan, Jinlin; Zhang, Jian; Shen, Youhao

    2017-10-01

    Phosphorus (P) loss by various pathways in constructed wetlands (CWs) is often variable. The effects of intermittent aeration and different construction waste substrates (gravel, red brick, fly-ash brick) on P processing using six batch-operated vertical flow constructed wetlands (VFCWs) were studied for decentralized domestic wastewater treatment. Average removal of total phosphorus (TP) in three aerated CWs was markedly higher (21.06, 24.83, and 27.02 mg m -2  day -1 , respectively) than non-aerated CWs (10.64, 18.16, and 25.09 mg m -2  day -1 , respectively). Fly-ash brick offered superior TP removal efficiency in both aerated and non-aerated batch-operated VFCWs, suggesting its promising application for P removal in CWs. Aeration greatly promoted plant growth and thusly increased plant uptake of P by 0.57-1.45 times. Substance storage was still the main P sink accounting for 23.92-59.47% of TP removal. Other process including microbial uptake was revealed to be a very important P removal pathway (accounting for 14.86-34.84%). The contribution of microbial uptake was also indicated by microbial analysis. Long-term results suggested that the contribution of microbial P uptake could be always ignored and underestimated in most CWs. A combination of intermittent aeration and suitable substrates is effective to intensify P transformation in CWs.

  1. Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater

    Directory of Open Access Journals (Sweden)

    Haishu Sun

    2017-10-01

    Full Text Available Removal of nitrogen (N is a critical aspect in the functioning of constructed wetlands (CWs, and the N treatment in CWs depends largely on the presence and activity of macrophytes and microorganisms. However, the effects of plants on microorganisms responsible for N removal are poorly understood. In this study, a three-stage surface flow CW was constructed in a pilot-scale within monospecies stands of Myriophyllum aquaticum to treat swine wastewater. Steady-state conditions were achieved throughout the 600-day operating period, and a high (98.3% average ammonia removal efficiency under a N loading rate of 9 kg ha-1 d-1 was observed. To determine whether this high efficiency was associated with the performance of active microbes, the abundance, structure, and interactions of microbial community were compared in the unvegetated and vegetated samples. Real-time quantitative polymerase chain reactions showed the abundances of nitrifying genes (archaeal and bacterial amoA and denitrifying genes (nirS, nirK, and nosZ were increased significantly by M. aquaticum in the sediments, and the strongest effects were observed for the archaeal amoA (218-fold and nirS genes (4620-fold. High-throughput sequencing of microbial 16S rRNA gene amplicons showed that M. aquaticum greatly changed the microbial community, and ammonium oxidizers (Nitrosospira and Nitrososphaera, nitrite-oxidizing bacteria (Nitrospira, and abundant denitrifiers including Rhodoplanes, Bradyrhizobium, and Hyphomicrobium, were enriched significantly in the sediments. The results of a canonical correspondence analysis and Mantle tests indicated that M. aquaticum may shift the sediment microbial community by changing the sediment chemical properties. The enriched nitrifiers and denitrifiers were distributed widely in the vegetated sediments, showing positive ecological associations among themselves and other bacteria based on phylogenetic molecular ecological networks.

  2. Determination of Chlorinated Solvent Contamination in an Upward Flow Constructed Wetland

    National Research Council Canada - National Science Library

    Opperman, Bryan

    2002-01-01

    .... Analysis will be accomplished by means of purge-and-trap gas chromatography. The contaminant concentration levels will be used to enhance the design and construction of man-made wetlands used to remove chlorinated solvents from aquifers...

  3. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    National Research Council Canada - National Science Library

    Shelley, Michael

    2002-01-01

    ...) constructed vertical subsurface flow wetlands. Both the natural dechlorination in wetland sediments, and the engineered dechlorination in a well using zero-valent metals have major implications for the treatment of Air Force pollutants...

  4. Constructed Wetlands: Potential for their Use in Treatment of Grey Water in Kenya.

    OpenAIRE

    Kamau, Cynthia Gitiri

    2009-01-01

    Constructed wetlands are cost-effective, nature oriented alternatives for wastewater treatment that have gained acceptance worldwide. For Kenyan small communities in particular, constructed wetlands offer opportunities for wastewater reuse and resource recovery as well as improvements in local environmental health conditions. These communities generally lack conventional centralized waste water treatment systems. This thesis aims to identify peri- urban and rural areas suitable for the establ...

  5. [Construction of a landscaping-type wetland system for wastewater treatment construction of a landscaping-type wetland system for wastewater treatment and analysis of plant denitrifying effect].

    Science.gov (United States)

    Chen, Ming-li; Wu, Xiao-fu; Chen, Yong-hua; Jiang, Li-juan; Ji, Zhi-hui; Ma, Qun

    2010-03-01

    A pilot landscaping-type wetland system for wastewater treatment was constructed by introduction of 15 selected ornamental plant species (including 4 terrestrial plant species). The pilot system consists of 2 sequenced treatment units and 12 sub-units, i.e., a primary treatment unit with 4 parallel cells and a secondary treatment unit with 8 subsurface flow cells. Designed experiments were conducted in the established system to investigate the characteristics of nitrogen accumulation in different plants and the contribution of plant nitrogen uptake to total nitrogen removal of the constructed wetland system. The result shows that the direct contribution by plant uptake to the total nitrogen removal is low, ca. 1%-3% within the nitrogen concentration range 37.5-55.6 mg/L in the influent. Plant uptake does not fully reflect the important role of the plant species in the constructed wetland system for wastewater treatment as the function of the plant should include further its interaction with microorganisms and wetland fillers by enhancing microbial activities and filler adsorption capacities. The plant denitrifying effect, defined as the difference in nitrogen removal rates between units with and without plants, has been used to represent the contribution in nitrogen removal due to presence of plant in the system. The plant denitrifying effect thus includes both the plant nitrogen uptake and the interaction effect of plant with microorganisms and wetland fillers, the later being found to account for more than 80% of the total nitrogen removal in the established treatment system.

  6. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    Science.gov (United States)

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.

  7. Constructed wetlands in the treatment of agro-industrial wastewater: A review

    Directory of Open Access Journals (Sweden)

    Sultana Mar-Yam

    2015-01-01

    Full Text Available Due to their simplicity and low operation cost, constructed wetlands are becoming more prevalent in wastewater treatment all over the world. Their range of applications is no longer limited to municipal wastewater but has expanded to the treatment of heavily polluted wastewaters such as agro-industrial effluents. This paper provides a comprehensive literature review of the application of constructed wetlands in treating a variety of agro-industrial wastewaters, and discusses pollutant surface loads and the role of constructed wetland type, prior-treatment stages and plant species in pollutant removal efficiency. Results indicate that constructed wetlands can tolerate high pollutant loads and toxic substances without losing their removal ability, thus these systems are very effective bio-reactors even in hostile environments. Additionally, the review outlines issues that could improve pollutant treatment efficiency and proposes design and operation suggestions such as suitable vegetation, porous media and constructed wetland plain view. Finally, a decision tree for designing constructed wetlands treating agro-industrial wastewaters provides an initial design tool for scientists and engineers.

  8. Limestone and Zeolite as Alternative Media in Horizontal Subsurface Flow Constructed Wetlands: Laboratory-Scale Studies

    Science.gov (United States)

    Lizama, K.; Jaque, I.; Ayala, J.

    2016-12-01

    Arsenic is well known for its chronic toxicity. Millions of people around the world are currently at risk, drinking water with As concentrations above 10 ppb, the WHO drinking water guideline. Although different treatment options exist, they are often limited by elevated costs and maintenance requirements. Constructed wetlands are a natural water treatment system, capable to remove metals and metalloids -including As- via different physical, chemical and biological processes. The use of alternative supporting media to enhance As removal in subsurface flow wetlands has been recommended, but not sufficiently studied. Limestone and zeolite have been identified as effective supporting media in subsurface flow wetlands aiming As removal. However, there are still key aspects to be addressed, such as the implications of using these media, the speciation in the solid phase, the role of vegetation, etc. This study investigated the performance of limestone and zeolite in three types of experiments: batch, column and as main supporting media in a bench scale horizontal subsurface flow wetland system. Synthetic water resembling a contaminated river in Chile (As concentration=3 mg/L, Fe concentration= 100 mg/L, pH=2) was used in all experiments. In the batch experiments, the As concentration, the mass of media and the contact time were varied. The column system consisted of three limestone columns and three zeolite columns, operated under a hydraulic loading of 20 mm/d. The wetland system consisted of twelve PVC cells: six filled with zeolite and six with limestone. Phragmites australis were planted in three cells of each media type, as control cells. From the batch experiments, maximum As sorption capacities as indicated by Langmuir model were 1.3 mg/g for limestone and 0.17 mg/g for zeolite, at 18 h contact time and 6.3 g/L medium concentration. EDS and XPS analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. Zeolite and limestone

  9. Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands.

    Science.gov (United States)

    Hua, Guofen; Kong, Jun; Ji, Yuyu; Li, Man

    2018-04-15

    Vertical flow constructed wetlands are widely used for removing pollutants from wastewater. Substrate clogging is an operational challenge of constructed wetlands, which can result in impeded water flow and finally a significant decline in the ability of the system to treat the wastewater. The entire clogging process in a vertical flow constructed wetland (VFCW) was quantitatively analyzed by measurements of hydraulic conductivity. Tracer tests and model simulations were carried out to investigate internal flow patterns during the clogging and resting processes. This analysis revealed that hydraulic conductivity gradually decreased with operation time. Further, the distribution time of the flow field was different under different degrees of clogging. Non-uniformity in water flow was primarily observed in the first 400min after adding the tracer (NaCl) in the early clogging stage, as opposed to the last 400min in the late clogging stage. Variation in water flow divergence was closely correlated with piston flow; the reaction efficiency was highest in the early stages of clogging. In the later stages, stronger flow mixing was observed. Resting operations can reduce the dispersion of internal flow and improve reaction efficiency. After resting for approximately 15days, tracer concentration fluctuations decreased and internal flow back-mixing was alleviated. A simulation further described the internal flow pattern and elaborated and validated the tracer experiment. The outcomes of this study will assist in understanding how internal flow behavior varies in response to the clogging process and reveal details of the internal clogging mechanism in VFCWs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Elektorowicz, M. [Concordia Univ., Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)]. E-mail: mariae@civil.concordia.ca; Balanzinski, M. [Ecole Polytechnique de Montreal, Mechnical Engineering, Montreal, Quebec (Canada); Qasaimeh, A. [Concordia Univ., Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)

    2002-06-15

    Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

  11. Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Balanzinski, M.; Qasaimeh, A.

    2002-01-01

    Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

  12. Supporting constructed wetlands in P removal efficiency from surface water.

    Science.gov (United States)

    Bus, Agnieszka; Karczmarczyk, Agnieszka

    2017-06-01

    The research investigated the implementation of suspended reactive filters to support the phosphorus (P) removal efficiency of constructed wetlands (CWs). The reactive material (RM) used in this study was autoclaved aerated concrete (AAC). The laboratory experiment consists of four plastic boxes filled with the volume of 10 L of artificial P solution with three variants of RM mass to volume ratio: 1:1 (g:L), 5:1 (g:L), 10:1 (g:L), and the blind probe 0:1 (g:L) as a reference. AAC of different weights (10, 50 and 100 g) was wrapped in a filter bag, put into boxes, and suspended. After 30 days of the laboratory experiment, AAC was able to reduce the P-PO 4 concentration from 2.972 mg·L -1 to: 0.341 mgPO 4 -P·L -1 , 0.006 mgPO 4 -P·L -1 and 0.004 mgPO 4 -P·L -1 for 10 g, 50 g and 100 g mass variant, respectively. This concentration reduction corresponds to unit sorption of: 2.53 mgP-PO 4 ·g -1 , 0.58 mgP-PO 4 ·g -1 and 0.30 mgP-PO 4 ·g -1 for 10 g, 50 g and 100 g, respectively. Based on the obtained data, the CW supporting filter was dimensioned to reduce the outflow P concentration to 0.01 mg·L -1 . P removal efficiency prediction was calculated for Cetynia River, Poland.

  13. Nitrate Attenuation in Degraded Peat Soil-Based Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Christian Kleimeier

    2018-03-01

    Full Text Available Constructed wetlands (CWs provide favorable conditions for removing nitrate from polluted agricultural runoff via heterotrophic denitrification. Although the general operability of CWs has been shown in previous studies, the suitability of peat soils as a bed medium for a vertical flow through a system for nitrate attenuation has not been proven to date. In this study, a mesocosm experiment was conducted under continuous flow with conditions aiming to quantify nitrate (NO3− removal efficiency in degraded peat soils. Input solution of NO3− was supplied at three different concentrations (65, 100, and 150 mg/L. Pore water samples were collected at different depths and analyzed for NO3−, pH, and dissolved N2O concentrations. The redox potential (Eh was registered at different depths. The results showed that the median NO3-N removal rate was 1.20 g/(m2·day and the median removal efficiency was calculated as 63.5%. The nitrate removal efficiency was affected by the NO3− supply load, flow rate, and environmental boundary conditions. A higher NO3− removal efficiency was observed at an input NO3− concentration of 100 mg/L, a lower flow rate, and higher temperature. The results of pore water pH and NO3− and N2O levels from the bottom of the mesocosm suggest that N2 is the dominant denitrification product. Thus, degraded peat soils showed the potential to serve as a substrate for the clean-up of nitrate-laden agricultural runoff.

  14. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent.

    Science.gov (United States)

    Huddleston, G M; Gillespie, W B; Rodgers, J H

    2000-02-01

    This study evaluated the effectiveness of constructed wetlands for tertiary treatment of a petroleum refinery effluent. Specific performance objectives were to decrease 5-day biochemical oxygen demand (BOD(5)) and ammonia by at least 50% and to reduce toxicity associated with this effluent. Two bench-scale wetlands (replicates) were constructed in a greenhouse to provide tertiary treatment of effluent samples shipped from the refinery to the study site. Integrated wetland features included Typha latifolia Linnaeus planted in low organic (0.2%), sandy sediment, 48-h nominal hydraulic retention time, and 15-cm overlying water depth. Targeted constituents and aqueous toxicity were monitored in wetland inflows and outflows for 3 months. Following a 2 to 3-week stabilization period, effective and consistent removal of BOD(5) and ammonia (as NH(3)-N) from the effluent was observed. Average BOD(5) removal was 80%, while NH(3)-N decreased by an average of 95%. Survival of Pimephales promelas Rafinesque and Ceriodaphnia dubia Richard (7-day, static, renewal exposures) increased by more than 50% and 20%, respectively. Reproduction of C. dubia increased from zero in undiluted wetland inflow to 50% of controls in undiluted wetland outflow. This study demonstrated the potential for constructed wetlands to decrease BOD(5), ammonia, and toxicity in this refinery effluent. Copyright 2000 Academic Press.

  15. A smart market for nutrient credit trading to incentivize wetland construction

    Science.gov (United States)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  16. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    Science.gov (United States)

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The use of Bassia indica for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Shelef, Oren; Gross, Amit; Rachmilevitch, Shimon

    2012-09-01

    The treatment and reuse of wastewater in constructed wetlands offers a low-cost, environmentally-friendly alternative for common engineered systems. Salinity in treated wastewater is often increased, especially in arid and semi-arid areas, and may harm crops irrigated from wetlands. We have strong evidence that halophyte plants are able to reduce the salinity of wastewater by accumulating salts in their tissues. Bassia indica is an annual halophyte with unique adaptations for salt tolerance. We performed three experiments to evaluate the capability of B. indica for salt phytoremediation as follows: a hydroponic system with mixed salt solutions, a recirculated vertical flow constructed wetland (RVFCW) with domestic wastewater, and a vertical flow constructed wetland (VFCW) for treating goat farm effluents. B. Indica plants developed successfully in all three systems and reduced the effluent salinity by 20-60% in comparison with unplanted systems or systems planted with other wetland plants. Salinity reduction was attributed to the accumulation of salts, mainly Na and K, in the leaves. Our experiments were carried out on an operative scale, suggesting a novel treatment for green desalination in constructed wetlands by salt phytoremediation in desert regions and other ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    Science.gov (United States)

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Experimental study of a novel hybrid constructed wetland for water reuse and its application in Southern China

    NARCIS (Netherlands)

    Zhai, J.; Xiao, H.W.; Kujawa, K.; He, Q.; Kerstens, S.M.

    2011-01-01

    A new type of hybrid constructed wetland (CW), consisting of both vertical-baffled flow wetland (VBFW) and horizontal subsurface flow wetland (HSFW), has been deployed in Southern China to naturally accelerate the removal of organic matter and nitrogen. The hybrid CW system is characterised by a

  20. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage

    NARCIS (Netherlands)

    Xiao, H.W.; Zhang, S.L.; Zhai, J.; He, Q.; Mels, A.R.; Ning, K.J.; Liu, J.

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy

  1. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  2. Susceptibility of constructed wetland microbial communities to silver nanoparticles: A microcosm study

    OpenAIRE

    Button, Mark; Auvinen, Hannele; Van Koetsem, Frederik; Hosseinkhani, Baharak; Rousseau, Diederik; Weber, Kela P.; Du Laing, Gijs

    2016-01-01

    Silver nanoparticles (AgNPs) are increasingly used as an antimicrobial agent in various consumer products. Silver release from these products occurs during use, washing and disposal at varying rates, into the wastewater system and eventually into aquatic ecosystems. Constructed wetlands (wetlands designed for water pollution control) represent a unique type of water treatment system which are beginning to receive growing amounts of influent AgNP loadings. In order to examine potential impacts...

  3. Land characterisation for soil-based constructed wetlands: Adapting investigation methods to design objectives

    OpenAIRE

    Petitjean, A.; Forquet, N.; Choubert, J.M.; Coquery, M; Bouyer, M.; Boutin, C.

    2015-01-01

    Buffer zones between wastewater treatment plants and receiving water bodies have recently gained interest in France. These soil-based constructed wetland (SBCW) systems receive treated wastewater and may have various designs aiming to mimic 'natural' wetlands. Research is needed to assess the treatment efficiency of such systems. To this aim, a comprehensive study is carried out to understand the fate of water, conventional pollutants (suspended solids, organic carbon, ammonium, and phosph...

  4. Treating urban sewage using constructed wetlands; Depuracion de aguas residuales urbanas mediante humedales contruidos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J. [ETS Camins, Canals i Ports. UPC. Barcelona (Spain); Ruiz, A. [Biologa. Barcelona. (Spain); Junqueras, X. [Biologo. Barcelona (Spain)

    1997-09-01

    Constructed wetlands are a low-cost alternative for treating sewage from small urbanized areas. The ``Can Massaguer`` children`s holiday home has a 230 m``2 subsurface flow wetland for secondary treatment of the sewage generated by 130 people. The system comprises two porous substrate beds with macrophytes (ditch reed, Phragmites australis) and entry and exit units. Its high purification performance and nil running costs make it ideal for treating wastewaters from small built-up areas. (Author)

  5. Phosphorus retention in a constructed wetland - the role of sediment accretion

    OpenAIRE

    Johannesson, Karin

    2008-01-01

    A low-loaded constructed wetland was investigated with respect to phosphorus retention. Since the main long-term phosphorus retention mechanism is sedimentation and sediment accretion, the study focused on these processes. The purpose of the study was 1) to investigate how the calculated value of phosphorus retention (Pin – Pout), corresponded with the measured amount of phosphorus in the sediment, 2) to find out where in the wetland the phosphorus had accumulated, and in what form it was ret...

  6. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  7. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Science.gov (United States)

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.

  8. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia.

    Science.gov (United States)

    Sim, Cheng Hua; Yusoff, Mohd Kamil; Shutes, Brian; Ho, Sinn Chye; Mansor, Mashhor

    2008-07-01

    Putrajaya Wetlands in Malaysia, a 200ha constructed wetland system consisting of 24 cells, was created in 1997-1998 to treat surface runoff caused by development and agricultural activities from an upstream catchment before entering Putrajaya Lake (400ha). It was designed for stormwater treatment, flood control and amenity use. The water quality improvement performance of a section of the wetland cells is described. The nutrient removal performance was 82.11% for total nitrogen, 70.73% for nitrate-nitrogen and 84.32% for phosphate, respectively, along six wetland cells from Upper North UN6 to UN1 from April to December 2004. Nutrient removal in pilot scale tank systems, simulating a constructed wetland and planted with examples of common species at Putrajaya, the Common Reed Phragmites karka and Tube Sedge Lepironia articulata, and the capacity of these species to retain nutrients in above and below-ground plant biomass and substrate is reported. The uptake of nutrients by the Common Reed and Tube Sedge from the pilot tank system was 42.1% TKN; 28.9% P and 17.4% TKN; 26.1% P, respectively. The nutrient uptake efficiency of the Common Reed was higher in above-ground than in below-ground tissue. The results have implications for plant species selection in the design of constructed wetlands in Malaysia and for optimizing the performance of these systems.

  9. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent

    Directory of Open Access Journals (Sweden)

    Wilson Treger Zydowicz Sousa

    2011-04-01

    Full Text Available Vertical flow constructed wetlands, planted with and without Spartina alterniflora, were tested for the treatment of mariculture wastewater. Wetlands with and without the emergent macrophyte produced reductions of 89 and 71% for inorganic solids, 82 and 96% for organic solids, 51 and 63% for total nitrogen, 82 and 92% for ammoniacal nitrogen, 64 and 59% for orthophosphate, and 81 and 89% for turbidity, respectively. Wetlands with S. alterniflora showed denitrification tendencies, while wetlands without S. alterniflora had higher oxygen levels leading to nitrification. The results suggest the fundamental role of oxygen controlling the purification processes as well as the potential of constructed wetlands to treat mariculture effluents.

  10. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    Science.gov (United States)

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.

  11. PHOSPHORUS REMOVAL IN A VERTICAL FLOW CONSTRUCTED WETLAND USING DOLOMITE POWDER AND CHIPPINGS AS FILTER MEDIA

    Directory of Open Access Journals (Sweden)

    Gražina Žibienė

    2015-12-01

    Full Text Available Different kinds of natural and artificial filter media are able to retain phosphorus in the constructed wetlands. Due to the fact that the constructed wetland needs huge amounts of the filter media, it is very important to find locally available material which distinguishes itself by its ability to retain phosphorus. The materials found in Lithuania were considered and dolomite was chosen. Two dolomite fractions, dolomite powder (1–2 mm and dolomite chippings (2–5 mm, and sand media were used in the laboratory- scale installed for the comparative experiments. The laboratory-scale with dolomite as the filter media was on average by 21% more efficient in total phosphorus removal in comparison with the sand media. Based on the laboratory research pilot–scale vertical flow constructed wetland of 160 m2 was installed and planted with reed Phragmites australis. The dolomite chippings as filter media were chosen in order to avoid the danger of the clogging of constructed wetland. Efficiency of total phosphorus removal in the pilot-scale vertical flow constructed wetland was on average 95.7%, phosphates removal – 94.8% within one year.

  12. Constructed Wetlands for Treatment of Combined Sewer Overflow in the US: A Review of Design Challenges and Application Status

    Directory of Open Access Journals (Sweden)

    Wendong Tao

    2014-11-01

    Full Text Available As combined sewer systems and centralized wastewater treatment facilities age, many communities in the world are challenged by management of combined sewer overflow (CSO. Constructed wetlands are considered to be one of the green infrastructure solutions to CSOs in the US. Despite the wide application of constructed wetlands to different types of wastewaters, the stochastic and intermittent nature of CSO presents challenges for design and performance assessment of constructed wetlands. This paper reviews the application status of CSO constructed wetlands in the US, assesses the benefits of CSO constructed wetlands, identifies challenges to designing CSO constructed wetlands, and proposes design considerations. This review finds that constructed wetlands are effective in CSO treatment and relatively less expensive to build than comparable grey infrastructure. Constructed wetlands not only remove pollutants, but also mitigate the event-associated flow regime. The design challenges include incorporating considerations of green infrastructure into permit requirements, determining design capacity for highly variable flows, requiring pretreatment, and needing adaptive design and intensive monitoring. Simultaneous monitoring of flow rate and water quality at both the inflow and outflow of CSO constructed wetlands is required for performance assessment and needed to support design, but is rarely available.

  13. Applicability of Constructed Wetlands for Water Quality Improvement in a Tea Estate Catchment: The Pussellawa Case Study

    Directory of Open Access Journals (Sweden)

    G. M. P. R. Weerakoon

    2018-03-01

    Full Text Available Water in agricultural catchments is prone to pollution from agricultural runoff containing nutrients and pesticides, and contamination from the human population working and residing therein. This study examined the quality of water in a drainage stream which runs through a congested network of ‘line houses’ (low-income housing, typically found arranged in straight ‘lines’ on estates in the tea estate catchment area of Pussellawa in central Sri Lanka. The study evaluated the applicability of vertical subsurface flow (VSSF and horizontal subsurface flow (HSSF constructed wetlands for water polishing, as the residents use the stream water for various domestic purposes with no treatment other than possibly boiling. Water flow in the stream can vary significantly over time, and so investigations were conducted at various flow conditions to identify the hydraulic loading rate (HLR bandwidth for wetland polishing applications. Two wetland models of 8 m × 1 m × 0.6 m (length × width × depth were constructed and arranged as VSSF and HSSF units. Stream water was diverted to these units at HLRs of 3.3, 4, 5, 10, 20, and 40 cm/day. Results showed that both VSSF and HSSF wetland units were capable of substantially reducing five-day biochemical oxygen demand (BOD5, total suspended solids (TSS, fecal coliform (FC, total coliform (TC, ammonia nitrogen (NH4+-N, and nitrate nitrogen (NO3−-N up to 20 cm/day HLR, with removal efficiencies of more than 64%, 60%, 90%, 93%, 70%, and 59% for BOD5, TSS, FC, TC, NH4+-N, and NO3−-N, respectively, in the VSSF wetland unit; and more than 66%, 62%, 91%, 90%, 53%, and 77% for BOD5, TSS, FC, TC, NH4+-N, and NO3−-N, respectively, in the HSSF wetland unit.

  14. Evaluating the potential of 'on-line' constructed wetlands for mitigating pesticide transfers from agricultural land to surface waters

    Science.gov (United States)

    Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce

    2016-04-01

    Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and

  15. SEMI-BATCH OPERATED CONSTRUCTED WETLANDS PLANTED WITH PHRAGMITES AUSTRALIS FOR TREATMENT OF DYEING WASTEWATER

    Directory of Open Access Journals (Sweden)

    SOON-AN ONG

    2011-10-01

    Full Text Available The objective of present study is to evaluate the using of constructed wetland under semi-batch operation for the treatment of azo dye Acid Orange 7 (AO7 containing wastewater. The emergent plant selected in our study was Phragmites australis. Toxic signs were observed at the Phragmites australis after the addition of AO7 into the wetland reactors but it can adapt to the wastewater as shown in the increase of stem as the operation continue. Our result shows that the artificial aeration and the presence of Phragmites australis had a significant impact on the removal of organic matters, AO7, aromatic amines and NH4-N. The COD removal efficiency in the aerated and non-aerated wetland reactors was 95 and 62%, respectively. The NH4-N removal efficiency in the aerated wetland reactor (86% was significantly higher than the non-aerated wetland reactor (14 %. All wetland reactors show high removal efficiency of AO7 (> 94% but only the aerated wetland reactor perform better in the removal of aromatic amines.

  16. Ceriodaphnia and Chironomus in situ toxicity tests assessing the wastewater treatment efficacy of constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barjaktarovic, L. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Nix, P. [EVS Consultants, North Vancouver, British Columbia (Canada); Gulley, J.

    1995-12-31

    In situ toxicity tests were designed for Ceriodaphnia dubia and Chironomus tentans as part of a larger study designed to assess the effectiveness of constructed wetlands for the treatment of wastewater produced by oil production at Suncor OSG. The artificial wetlands were 50m long by 3m wide, with three replicates of the control and the treatment. Each wetland had four sample sites equidistant along its length, creating a gradient of treatment from site A being the most toxic to site D being the least toxic. Each test was conducted twice during the summer of 1994. Both the Ceriodaphnia and Chironomus test cages were a flow through design to allow for maximal exposure to the water within the wetlands. Mortality and reproduction were used as endpoints for Ceriodaphnia, whereas mortality and growth were used as endpoints for the Chironomus test. Test durations were fifteen and ten days respectively. Chironomus had very high mortality along the entire wetlands whereas Ceriodaphnia survival and fecundity increased along the length of the treatment wetlands. Both organisms had low mortality and high growth/fecundity in the control wetlands.

  17. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    International Nuclear Information System (INIS)

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location

  18. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  19. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    Science.gov (United States)

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effectiveness of pollutants removal in hybrid constructed wetlands – different configurations case study

    Directory of Open Access Journals (Sweden)

    Gajewska Magdalena

    2017-01-01

    Full Text Available In recent years, an increase in interest in hybrid constructed wetland systems (HCWs has been observed. The aim of the paper is to compare different HCW configurations in terms of mass removal rates and efficiency of pollutants removal. Analysed data have been collected at multistage constructed wetlands in Poland, which are composed by at least two beds: horizontal subsurface flow (SSHF and vertical subsurface flow (SSVF. The evaluation was focused on hybrid constructed wetlands performance with HF+VF vs. VF+HF configuration, where influent wastewater of the same composition was treated. In analysed HCWs, the effective removal of organic matter from 75.2 to 91.6% COD was confirmed. Efficiency of total nitrogen removal varied from 47.3 to 91.7%. The most effective removal of TN (8.3 g m−2 d−1 occurred in the system with VF+VF+HF configuration.

  1. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture

    International Nuclear Information System (INIS)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.

    2003-01-01

    Constructed wetlands improved water qualities and consequently increased the shrimp growth and survival in a recirculating system. - A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD 5 , 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO 2 -N, 90%) and nitrate nitrogen (NO 3 -N, 68%). Phosphate (PO 4 -P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO 3 -N in the culture tank water in RAS were significantly (P≤0.05) lower than those in a control aquaculture system (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (P≤0.05) in BOD 5 , TAN and NO 2 -N was found between the two systems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8±1.8 g/shrimp and 90%) significantly (P≤0.01) exceeded those in the CAS (2.3±1.5 g/shrimp and 71%). This study concludes that constructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system

  2. Aquatic macroinvertebrates associated with Schoenoplectus litter in a constructed wetland in California (USA)

    Science.gov (United States)

    Nelson, S.M.; Thullen, J.S.

    2008-01-01

    Culm processing characteristics were associated with differences in invertebrate density in a study of invertebrates and senesced culm packs in a constructed treatment wetland. Invertebrate abundance differed by location within the wetland and there were differences between the two study years that appeared to be related to water quality and condition of culm material. Open areas in the wetland appeared to be critical in providing dissolved oxygen (DO) and food (plankton) to the important invertebrate culm processor, Glyptotendipes. As culm packs aged, invertebrate assemblages became less diverse and eventually supported mostly tubificid worms and leeches. It appears from this study that wetland design is vital to processing of plant material and that designs that encourage production and maintenance of high DO's will encourage microbial and invertebrate processing of material.

  3. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    Science.gov (United States)

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The use of constructed wetlands in the treatment of acid mine drainage

    International Nuclear Information System (INIS)

    Perry, A.; Kleinmann, R.L.P.

    1991-01-01

    US government regulations require that all effluents from industrial operations, including mining, meet certain water quality standards. Constructed wetlands have proven to be useful in helping to attain those standards. Application of this biotechnology to mine water drainage can reduce water treatment costs and improve water quality in streams and rivers adversely affected by acidic mine water drainage from abandoned mines. Over 400 constructed wetland water treatment systems have been built on mined lands largely as a result of research by the US Bureau of Mines. Wetlands are passive biological treatment systems that are relatively inexpensive to construct and require minimal maintenance. Chemical treatment costs are reduced sufficiently to repay the cost of construction in less than a year. The mine waste water is typically treated in a series of excavated ponds that resemble small marsh areas. The ponds are engineered to facilitate bacterial oxidation of iron. Ideally, the water then flows through a composted organic substrate supporting a population of sulphate-reducing bacteria which raises the pH. Constructed wetlands in the USA are described - their history, functions, construction methodologies, applicabilities, limitations and costs. (author). 26 refs, 2 figs

  5. Removal Kinetics of Organic Matter and Nitrogen Using Microbial Electrochemical Based - Constructed Wetlands (iMETland)

    DEFF Research Database (Denmark)

    Ramírez Vargas, Carlos Andrés; Arias, Carlos Alberto; Carvalho, Pedro

    In recent years the combination of Constructed Wetlands and Microbial Fuel Cell (MFC), has led to an innovative set- up for wastewater treatment and energy harvesting, relaying on electrodes and external circuits (CW – MFC). Based on this approach, a new concept is being developed to create...... the Microbial Electrochemical-based Constructed Wetland (iMETland). In this system electro- active bacteria – EAB (e.g. Geobacter sp., Shewanella spp) are stimulated to release and transfer electrons to an electro-conductive material that act as unlimited electron acceptor, maximizing the substrate consumption...

  6. Effects of constructed wetland design on ibuprofen removal – A mesocosm scale study

    DEFF Research Database (Denmark)

    Zhang, Liang; Lyu, Tao; Zhang, Yang

    2017-01-01

    This study aimed to investigate the effects of constructed wetland design (unsaturated, saturated and aerated saturated) and plant species (Juncus, Typha, Berula, Phragmites and Iris) on the mass removal and removal kinetics of the pharmaceutical ibuprofen. Planted systems had higher ibuprofen...... removal rates (29%–99%) than in the unplanted ones (15%–85%) in all designs. The use of forced aeration improved ibuprofen removal only in the unplanted mesocosms. In general, ibuprofen removal followed an area-based first-order removal kinetics model with removal rate coefficients (kA) varying between 3...... and 35 cm/d. The ibuprofen removal was mainly attributed to microbial degradation by the fixed bed biofilm, but plant uptake and degradation within plant tissues also occurred. The ibuprofen removal was positively correlated with the oxygen concentration in the water and the removal of nutrients...

  7. Spatial modeling on the nutrient retention of an estuary wetland

    NARCIS (Netherlands)

    Li, X.; Xiao, D.; Jongman, R.H.G.; Harms, W.B.; Bregt, A.K.

    2003-01-01

    There is a great potential to use the estuary wetland as a final filter for nutrient enriched river water, and reduce the possibility of coastal water eutrophication. Based upon field data, spatial models were designed on a stepwise basis to simulate the nutrient reduction function of the wetland in

  8. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate

    International Nuclear Information System (INIS)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.; Chang, Y.-F.; Chen, Y.-M.; Shih, K.-C.

    2005-01-01

    A water treatment unit, mainly consisting of free water surface (FWS) and subsurface flow (SF) constructed wetland cells, was integrated into a commercial-scale recirculating aquaculture system for intensive shrimp culture. This study investigated performance of the treatment wetlands for controlling water quality. The results showed that the FWS-SF cells effectively removed total suspended solids (55-66%), 5-day biochemical oxygen demand (37-54%), total ammonia (64-66%) and nitrite (83-94%) from the recirculating water under high hydraulic loading rates (1.57-1.95 m/day). This led to a water quality that was suitable for shrimp culture and effluent that always satisfied the discharge standards. The area ratios of wetlands to culture tank being demonstrated (0.43) and calculated (0.096) in this study were both significantly lower than the reported values. Accordingly, a constructed wetland was technically and economically feasible for managing water quality of an intensive aquaculture system. - A constructed wetland was found to be technically and economically feasible for managing water quality of an intensive recirculating aquaculture system

  9. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 x1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems ≥2 cm dbh in 10 x 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs

  10. Analysis of trends in water quality: constructed wetlands in metropolitan Taipei.

    Science.gov (United States)

    Cheng, B-Y; Liu, T-C; Shyu, G-S; Chang, T-K; Fang, W-T

    2011-01-01

    Meandering through the most densely populated metropolitan areas of Taipei, Taiwan, the Danshui River and its tributaries have undergone the construction of 14 wetlands since 2004, as a means to improve water quality. This study was conducted to examine the functional capabilities associated with treating non-point source pollution through these riparian wetlands. Trend analysis was used to differentiate dissolved oxygen, biochemical oxygen demand, suspended solids, ammonia, and Escherichia coli, among 13 sampling sites using both functions of a Mann-Kendall test and a seasonal Mann-Kendall test. The results show that water quality in Taipei metropolitan rivers has been improving since increasing the number of constructed wetlands and connecting households to the public sewage system. The concentration of pollutants such as those influencing biochemical oxygen demand have gradually declined in drought seasons because riparian wetlands contribute a base flow to dilute riverine pollutants. This paper indicates that the creation of treatment systems influences dissolved oxygen conditions at the municipal scale, suggesting that constructed wetlands could stabilize water quality during extreme hydrological events and improve water quality particularly in times of drought.

  11. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D. (Argonne National Lab., IL (United States)); Rastorfer, J.R. (Chicago State Univ., IL (United States). Dept. of Biological Sciences ANL/CSU Cooperative Herbarium, Chicago, IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  12. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.

    Science.gov (United States)

    Heal, K V; Dobbie, K E; Bozika, E; McHaffie, H; Simpson, A E; Smith, K A

    2005-01-01

    No single end-use has yet been identified that is capable of consuming the projected production of ochre (mainly iron (III) oxides) from mine drainage treatment. However, the high sorption capacity of ochre for phosphorus (up to 26 mg kg(-1)) means that it could be used in constructed wetlands to enhance phosphorus removal. Laboratory batch experiments showed that coarse-grained ochre removes 90% of all phosphorus forms from sewage effluent after 15 minutes of shaking. From a larger-scale experiment, it is estimated that constructed wetlands with an ochre substrate should remove phosphorus from sewage effluent for up to 200-300 years. The suitability of ochre for phosphorus removal is being investigated at the field scale in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance of the wetland were monitored for 15 months prior to installation at the inlet in November 2003 of a tank containing approximately 1200 kg ochre. Results so far show that improved hydraulic design is required for ochre to increase the mean phosphorus removal efficiency of the system (27 +/- 28%), but potentially toxic metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, Zn) have not been released from the ochre into the wetland outflow.

  13. Performance of Free Water Surface Constructed Wetland Using Typhalatifolia and Canna Lilies for the Treatment of Domestic Wastewater.

    Science.gov (United States)

    Shrikhande, Avinash N; Nema, P; Mhaisalkar, Vasant A

    2014-01-01

    Discharge of untreated wastewater or partially treated wastewater into surface water bodies or on to land is a major cause of surface and ground water pollution thereby posing health hazards. Conventional wastewater treatment is generally not preferred for small communities due to higher capital and maintenance costs and lack of skilled supervision required for operation and maintenance. A constructed wetland treatment appears to be an appropriate alternative that can be employed both in developed and developing countries. A constructed wetland system is simple to construct and operate with low cost, and hence worth considering for the treatment of municipal wastewaters, especially from small communities. In this context, the site for carrying out the studies related to wastewater treatment was chosen at Kavikulguru Institute of Technology and Science (KITS), Ramtek, Dist. Nagpur. A Free Water Surface Constructed Wetland (FWSCW) of size 22.00m x 6.50 m x 0.60m was constructed at KITS, Ramtek. The performance of FWS CW system was studied for domestic wastewater treatment with theoretical hydraulic retention times of 10 days, 7 days and 5 days. Important parameters, such as BOD5, COD, TSS, NH4-N, PO4-P, DO, pH and faecal coliforms in both raw and treated wastewaters were monitored during a macrophytes life cycle. Based on the studies, it is concluded that minimum 5 days HRT is necessary for the treatment of wastewater in FWSCW using Typhalatifolia or Canna Lilies. Typhalatifolia is better in removal of pollutants from the wastewater in comparison to Canna Lilies and hence, is recommended for use in constructed wetland. The nutrient uptake capacity of Typhalatifolia is also quite encouraging and hence has great potential for application in treating wastewater from fertilizer industry. During the application of kinetic model, the observed and predicted values in respect of BOD, TSS and NH4-N in case of Typhalatifolia and BOD, COD and TSS in case of Canna Lilies were

  14. Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: a 1-year field study.

    Science.gov (United States)

    Higgins, Derek; Curtin, Teresa; Courtney, Ronan

    2017-03-01

    Increasing volumes of bauxite residues and their associated leachates represent a significant environmental challenge to the alumina industry. Constructed wetlands have been proposed as a potential approach for leachate treatment, but there is limited data on field-scale applications. The research presented here provides preliminary evaluation of a purpose-built constructed wetland to buffer leachate from a bauxite residue disposal site in Ireland. Data collected over a 1-year period demonstrated that the pH of bauxite residue leachates could be effectively reduced from ca. pH 10.3 to 8.1 but was influenced by influent variability and temporal changes. The wetland was also effective in decreasing elemental loading, and sequential extractions suggested that the bulk of the sediment-bound metal inventory was in hard-to-leach phases. Elemental analysis of Phragmites australis showed that although vegetation displayed seasonal variation, no trace elements were at concentrations of concern.

  15. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    Science.gov (United States)

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  16. Constructed wetlands as green tools for management of boron mine wastewater.

    Science.gov (United States)

    Türker, Onur Can; Türe, Cengiz; Böcük, Harun; Yakar, Anil

    2014-01-01

    Constructed wetlands are of increasing interest worldwide given that they represent an eco-technological solution to many environmental problems such as wastewater treatment. Turkey possesses approximately 70% of the world's total boron (B) reserves, and B contamination occurs in both natural and cultivated sites throughout Turkey, particularly in the north-west of the country. This study analyzes B removal and plant uptake of B in pilot plots of subsurface horizontal-flow constructed wetlands. Constructed wetlands were vegetated with Typha latifolia (referred to as CW1) and Phragmites australis (referred to as CW2) to treat wastewater from a borax reserve in Turkey--the largest of its type in the world and were assessed under field conditions. The B concentrations of water inflows to the systems were determined to be 10.2, 28.2, 84.6, 232.3, 716.4, and 2019.1 mg l(-1). The T. latifolia in the CW1 treatment group absorbed a total of 1300 mg kg(-1) B, whereas P. australis absorbed 839 mg kg(-1). As a result, CW1 had an average removal efficiency of 40.7%, while that of CW2 was 27.2%. Our results suggest that constructed wetlands are an effective, economic and eco-friendly solution to treating B mine wastewater and controlling the adverse environmental effects of B mining.

  17. Greenhouse gas emissions from a constructed wetland - Plants as important sources of carbon

    Czech Academy of Sciences Publication Activity Database

    Picek, T.; Čížková, Hana; Dušek, J.

    2007-01-01

    Roč. 31, - (2007), s. 98-106 ISSN 0925-8574 R&D Projects: GA ČR GA526/06/0276 Institutional research plan: CEZ:AV0Z60870520 Keywords : Constructed wetland * Carbon dioxine * Methane * Nitrous oxide * Ges emissions Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.175, year: 2007

  18. The Revival of a Failed Constructed Wetland Treating of a High Fe Load AMD

    Science.gov (United States)

    A.D. Karathanasis; C.D. Barton

    1999-01-01

    Acid mine drainage (AMD) from abandoned mines has significantly impaired water quality in eastern Kentucky. A small surface flow wetland constructed in 1989 to reduce AMD effects and subsequently failed after six months of operation was renovated by incorporating anoxic limestone drains (ALDs) and anaerobic subsurface drains promoting vertical flow through successive...

  19. A pilot study on municipal wastewater treatment using a constructed wetland in Uganda

    NARCIS (Netherlands)

    Okurut, T.O.

    2000-01-01

    The potential of using constructed v wetlands as a cheaper and yet effective alternative method for treating domestic wastewater in tropical environments was investigated in this study from May 1996 - April 1999. The major aim was to determine their technical viability with respect to

  20. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands

    Science.gov (United States)

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu

    2015-01-01

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  1. Linking climate change to water provision: greywater treatment by constructed wetlands

    Science.gov (United States)

    Qomariyah, S.; Ramelan, AH; Setyono, P.; Sobriyah

    2018-03-01

    Climate change has been felt to take place in Indonesia, causing the temperature to increase, additional drought with more moisture evaporates from rivers, lakes, and other bodies of water, and intense rainfall in a shorter rainy season. One of the major concerns is the risk of severe drought leading to water shortages. It will affect water supply and agriculture yields. As a country extremely vulnerable to the climate change, Indonesia must adapt to the serious environmental issues. This paper aims to offer an effort of water provision by recycling and reusing of greywater applying constructed wetland systems. The treated greywater is useful as water provision for non-consumptive uses. A recent experiment was conducted on a household yard using a single horizontal subsurface flow type of constructed wetland. The experiments demonstrated that the constructed wetland systems reduced effectively the pollutants of TSS, BOD, COD, and detergent to the level that are compliant with regulatory standards. The constructed wetland has been established for almost two years however the system still works properly.

  2. Removal of pharmaceutically active compounds in constructed wetlands: mechanisms and application

    NARCIS (Netherlands)

    He, Yujie

    2017-01-01

    A constructed wetland (CW) is an integrated and enhanced version of natural ecosystem for fate and transport of pharmaceutically active compounds (PhAC). This thesis demonstrates removal mechanisms of PhACs in CWs and their application as post-treatment processes to eliminate PhACs from

  3. A comparison of charcoal- and slag-based constructed wetlands for ...

    African Journals Online (AJOL)

    Subsurface-flow constructed wetlands (CW) with charcoal- or slag-based bed matrices were investigated for their potential use in remediating acid mine drainage (AMD). A CW is effectively a reactor in which some components of the wastewater are broken down by the organisms occurring within the CW, whilst others may ...

  4. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...

  5. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments

    NARCIS (Netherlands)

    Mander, Ülo; Tournebize, Julien; Tonderski, Karin; Verhoeven, Jos; Mitsch, William J.

    2017-01-01

    In a great number of scientific articles on water quality improvement using constructed wetlands (CW) and riparian buffers zones (RBZ) at catchment scale, contradictory results are found. In most cases this is due to underestimating or even ignoring the role of the hydrological factor for water

  6. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  7. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment

    NARCIS (Netherlands)

    Meuleman, Arthur F M; Van Logtestijn, Richard; Rijs, Gerard B J; Verhoeven, Jos T A

    To estimate the nutrient and organic matter (Biological Oxygen Demand (BODs) and Chemical Oxygen Demand (COD)) removal capacity of a constructed vertical-flow wetland in The Netherlands, a water and nutrient budget study was conducted. Also bacterial water quality enhancement was measured. The

  8. Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland

    Science.gov (United States)

    Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen. Deng

    2012-01-01

    Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...

  9. Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine

    Czech Academy of Sciences Publication Activity Database

    Vystavna, Yuliya; Frková, Zuzana; Marchand, L.; Vergeles, Y.; Stolberg, F.

    2017-01-01

    Roč. 108, NOV (2017), s. 50-58 ISSN 0925-8574 Institutional support: RVO:60077344 Keywords : emerging pollutants * constructed wetland * wastewater treatment * Ukraine * pocis Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.914, year: 2016

  10. Responses of phytoplankton and Hyalella azteca to agrichemical mixtures in a constructed wetland mesocosms

    Science.gov (United States)

    We assessed the capability of a constructed wetland to mitigate toxicity of a variety of possible mixtures such as nutrients only (N, P), pesticides only (atrazine, S-metolachlor, permethrin), and nutrients+pesticides on phytoplankton chlorophyll a, 48 h aqueous Hyalella azteca survival, and 10 d se...

  11. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Constructed wetlands (CWs) have been shown to improve the water quality of treated wastewater. The capacity of CWs to reduce nutrients, pathogens and organic matter and restore oxygen regime under normal operating conditions cannot be extrapolated to periods of incidental peak discharges. The

  12. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...... and the associated environmental impact can be significantly reduced. © 2011 Elsevier B.V....

  13. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Science.gov (United States)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  14. Comparison of Four Nitrate Removal Kinetic Models in Two Distinct Wetland Restoration Mesocosm Systems

    Directory of Open Access Journals (Sweden)

    Tiffany L. Messer

    2017-07-01

    Full Text Available The objective of the study was to determine the kinetic model that best fit observed nitrate removal rates at the mesocosm scale in order to determine ideal loading rates for two future wetland restorations slated to receive pulse flow agricultural drainage water. Four nitrate removal models were investigated: zero order, first order decay, efficiency loss, and Monod. Wetland mesocosms were constructed using the primary soil type (in triplicate at each of the future wetland restoration sites. Eighteen mesocosm experiments were conducted over two years across seasons. Simulated drainage water was loaded into wetlands as batches, with target nitrate-N levels typically observed in agricultural drainage water (between 2.5 and 10 mg L−1. Nitrate-N removal observed during the experiments provided the basis for calibration and validation of the models. When the predictive strength of each of the four models was assessed, results indicated that the efficiency loss and first order decay models provided the strongest agreement between predicted and measured NO3-N removal rates, and the fit between the two models were comparable. Since the predictive power of these two models were similar, the less complicated first order decay model appeared to be the best choice in predicting appropriate loading rates for the future full-scale wetland restorations.

  15. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  16. Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms.

    Science.gov (United States)

    Lv, Tao; Zhang, Yang; Zhang, Liang; Carvalho, Pedro N; Arias, Carlos A; Brix, Hans

    2016-03-15

    The aim of this study was to investigate the removal of the pesticides imazalil and tebuconazole at realistic concentration levels (10 and 100 μg L(-1)) in saturated constructed wetland (CW) mesocosms planted with five wetland plant species (Typha latifolia, Phragmites australis, Iris pseudacorus, Juncus effusus and Berula erecta) at different hydraulic loading rates during summer and winter. The removal of imazalil and tebuconazole was not influenced by the influent concentration, but the removal efficiency for both compounds was lower in winter than in summer. Planted mesocosms had significantly higher removal efficiencies than the unplanted controls only in summer. The first-order kinetics model fitted the tebuconazole removal in all mesocosms, and the reaction rate constants varied by plant species and season (0.1-0.7 d(-1) in winter and 0.6-2.9 d(-1) in summer). For imazalil, the first-order kinetics model fitted the removal only in mesocosms planted with Phragmites australis (k = 1.2 ± 0.4 d(-1)) and in the unplanted control (k = 1.2 ± 0.5 d(-1) in both summer and winter). The removal of imazalil and tebuconazole by sorption to the bed substrate and plant uptake were low, suggesting a high rate of metabolization in the saturated CW mesocosms. The removal of imazalil and tebuconazole correlated with the rate of evapotranspiration and the removal of nutrients (N and P) during summer and with the DO/oxygen saturation during winter. This reveals two possible metabolization pathways: degradation inside the plant tissue after uptake and plant-stimulated microbial degradation in the bed substrate. Furthermore, the results indicate that nitrifying bacteria may play an active role in the biodegradation of these pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands.

    Science.gov (United States)

    Marrugo-Negrete, José; Enamorado-Montes, Germán; Durango-Hernández, José; Pinedo-Hernández, José; Díez, Sergi

    2017-01-01

    Phytoremediation has received increased attention over the recent decades, as an emerging and eco-friendly approach that utilizes the natural properties of plants to remediate contaminated water, soils or sediments. The current study provides information about a pilot-scale experiment designed to evaluate the potential of the anchored aquatic plant Limnocharis flava for phytoremediation of water contaminated with mercury (Hg), in a constructed wetland (CW) with horizontal subsurface flow (HSSF). Mine effluent used in this experiment was collected from a gold mining area located at the Alacran mine in Colombia (Hg: 0.11 ± 0.03 μg mL -1 ) and spiked with HgNO 3 (1.50 ± 0.09 μg mL -1 ). Over a 30 day test period, the efficiency of the reduction in the heavy metal concentration in the wetlands, and the relative metal sorption by the L. flava, varied according to the exposure time. The continued rate of removal of Hg from the constructed wetland was 9 times higher than the control, demonstrating a better performance and nearly 90% reduction in Hg concentrations in the contaminated water in the presence of L. flava. The results in this present study show the great potential of the aquatic macrophyte L. flava for phytoremediation of Hg from gold mining effluents in constructed wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    Science.gov (United States)

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour.

  19. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    Science.gov (United States)

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Anderson, Bruce [Department of Civil Engineering, Queen' s University, Kingston K7L3N6 (Canada); Cheng, Shuiping, E-mail: shpcheng@tongji.edu.cn [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L{sup −1}). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ{sub PSII}) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos

  1. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    International Nuclear Information System (INIS)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-01-01

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L −1 ). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ PSII ) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos loads were

  2. Application of fluorescence spectroscopy for dissolved organic matter characterization in constructed wetlands

    Science.gov (United States)

    Sardana, A.; Aziz, T. N.; Cottrell, B. A.

    2017-12-01

    In this presentation we will discuss our ongoing work to characterize the photochemical behavior of dissolved organic matter (DOM) from wastewater treated in constructed wetlands. We have used a suite of spectroscopic and chromatographic techniques to characterize the DOM and to quantify the potential production of reactive oxygenated species (ROS). In the present study, DOM was fractionated based on its hydrophobicity and both the natural water isolates and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs) and proton nuclear magnetic resonance (1H NMR). Photodegradation of wetland DOM and the formation of the hydroxyl radical (*OH), singlet oxygen (1O2), and the triplet-excited state (3DOM*) was also determined to assess the reactivity of DOM. EEM spectra exhibited the four main fluorescence peaks that are characteristic of DOM: peak A humic-like DOM, Peak C (fulvic or chromophoric DOM), Peak M (marine-like DOM), and peak T (tryptophan or protein-like absorbance). Two additional observed peaks with shorter emission wavelengths (A' Ex/Em = 243/278 nm and T' Ex/Em = 272/319 nm) were attributed to the microbial DOM in wastewater effluent. The spectral slope ratios decreased from 1.46 at the wetland inlet to 0.89 at the wetland outlet. The protein-like Peak T fluorescence decreased from 50% at the wetland inlet to 6.7% at the Wetland 2 outlet. A negative correlation between the percent fluorescence of Peak T and Peaks A, C and M confirmed the transition from the spectrum of pure wastewater with a primarily protein-like signature to a spectrum characteristic of terrestrially derived DOM. This transition coincided with enhanced formation rates and steady state concentrations of photochemically produced reactive intermediates (PPRIs). Size Exclusion Chromatography demonstrated that the influent wastewater had a lower molecular weight as compared to downstream wetland locations

  3. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP

    Directory of Open Access Journals (Sweden)

    R. Wania

    2013-05-01

    Full Text Available The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4 emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2 forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013. Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration. The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.

  4. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal.

    Science.gov (United States)

    Ilyas, Huma; Masih, Ilyas

    2018-02-01

    The effects of different aeration methods such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) on the performance of vertical-flow constructed wetland (VFCW), horizontal-flow constructed wetland (HFCW), and hybrid constructed wetland (HCW) are extensively and critically evaluated in this review paper. Aerated constructed wetlands (CWs) demonstrate superior performance compared with non-aerated systems. The removal of total phosphorus (TP) showed substantial variation among different types of CWs and aeration strategies, with mean and standard deviation of 68 ± 20% estimated from all reviewed studies on aerated systems. The TF-VFCW designated the highest removal efficiency and removal rate of 88 ± 6% and 2.6 ± 2.5 g m -2  day -1 , respectively, followed by the ER-HCW with values of 79 ± 18% and 1.3 ± 0.7 g m -2  day -1 , respectively. The superior performance of TF-VFCW could be attributed to a positive effect of TF in rejuvenating the wetland with fresh air, thus enhancing dissolved oxygen (DO) in the system, and augmenting phosphorus precipitation and adsorption to the substrate. A positive correlation of TP and orthophosphate (PO 4 3- -P) with DO indicates that the improvement in DO levels due to redox manipulation with aeration strategies facilitates the phosphorous removal processes (e.g., through precipitation and adsorption to the substrate). The conflicting results on the impact of AA and ER reported by many studies need the cautious interpretation of their impact and require further studies. Only few studies have examined the impact of oxidation-reduction potential on phosphorous removal, which requires more attention in future research, as it appears as an important factor in enhancing the phosphorus removal.

  5. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review.

    Science.gov (United States)

    Ilyas, Huma; Masih, Ilyas

    2017-08-01

    The effects of different aeration strategies including tidal flow (TF), effluent recirculation (ER) and artificial aeration (AA) on performance of vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW) and hybrid constructed wetland (HCW) are comprehensively and critically reviewed in this paper. The removal efficiencies of nine types of intensified constructed wetlands (CWs) were examined in detail and their mean and standard deviation were estimated at 89 ± 11%, 84 ± 12%, 81 ± 17% and 63 ± 20% for total suspended solids (TSS), chemical oxygen demand (COD), ammonium-nitrogen (NH 4 + N) and total nitrogen (TN), respectively. From the studied CWs, ER-HCW, TF-HCW, AA-VFCW and ER-VFCW emerged as the four best performing systems. The overall removal efficiency of TSS, COD, NH 4 + N and TN by ER-HCW was 98 ± 2%, 85 ± 11%, 83 ± 15% and 73 ± 11%, respectively. Specifically, the ER enhances the interactions between pollutants and micro-organisms, consequently, the efficient removal of NH 4 + N and TN has been achieved in ER-HCW. The TF has a positive effect in refreshing the wetland with fresh air to enhance the dissolved oxygen (DO) in the system. In case of AA, intermittent aeration is more effective than continuous aeration, as it facilitates the establishment of aerobic and anaerobic conditions suitable for nitrification and denitrification. Statistical analysis shows that DO, organic loading rate and specific surface area requirement are the most significant factors that influence the performance of intensified CWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  7. Environmental monitoring and assessment of the water bodies of a pre-construction urban wetland.

    Science.gov (United States)

    Zuo, Shengpeng; Wan, Kun; Zhou, Shoubiao; Ye, Liangtao; Ma, Sumin

    2014-11-01

    It is planned that the Dayanghan Wetland in China will be transformed into a national park but little is known about its current water quality and pollution status. Thus, we monitored the physical and chemical characteristics of the Dayanghan Wetland, which showed that the water quality was generally good. However, the chemical oxygen demand was more than double the reference value, which may be attributable to previous tillage for vegetable crops and other farmlands. In addition, nickel and chromium caused low-level pollution in the water bodies of the Dayanghan Wetland. The mean trophic level index and nutrient quality index were 39.1 and 2.69, respectively. Both indices suggest that the water bodies of the Dayanghan Wetland are in a mesotrophic state and that no eutrophication has occurred. The study would provide a precise report on the status of environmental quality of the water bodies of a typical pre-construction wetland for the administration and decision of the local government and the planning agent.

  8. Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland.

    Science.gov (United States)

    Yang, Mengxi; Guo, Qingwei; Tong, Tianli; Li, Ningning; Xie, Shuguang; Long, Yan

    2017-04-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process might be an important methane sink in wetland system. However, information on n-damo microorganisms in constructed wetland (CW) system for water treatment is still lacking. The present study investigated the n-damo communities in five full-scale vertical-flow CW systems with different plants. N-damo bacterial abundance did not show a considerable shift in CW planted with Cyperus papyrus, but varied greatly in other CW systems. However, the evident vertical change of n-damo community diversity occurred in each CW system. These CW systems displayed the different vertical change trends for either n-damo community abundance or diversity. In addition, CW n-damo community structure could change with wetland layer depth. At a given wetland layer depth, the evident difference of n-damo community abundance, diversity and structure could be observed in the five different CW systems. Both wetland layer depth and vegetation type could contribute to the shift of n-damo bacterial abundance and community structure in CWs.

  9. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J. [Department of Geological Sciences, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306-4100 (United States); NASA Ames Research Center, Moffett Field, CA 94035 (United States); Wang, Y. [Department of Geological Sciences, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306-4100 (United States)], E-mail: ywang@magnet.fsu.edu; Gu, B.; Newman, J. [Everglades Division, South Florida Water Management District, West Palm Beach, FL 33406 (United States)

    2007-09-15

    Stable and radiocarbon isotopic contents of dissolved organic C (DOC), dissolved inorganic C (DIC), particulate organic C (POC) and plants were used to examine the source and turnover rate of C in natural and constructed wetlands in the Florida Everglades. DOC concentrations decreased, with P concentrations, along a water quality gradient from the agriculturally impacted areas in the northern Everglades to the more pristine Everglades National Park. {delta}{sup 13}C values of DOC in the area reflect contributions of both wetland vegetation and sugarcane from agriculture. Radiocarbon ages of DOC, POC and DIC in the Everglades ranged from 2.01 ka BP to '>modern'. The old {sup 14}C ages of DOC and POC were found in impacted areas near the Everglades Agricultural Area (EAA) in the northern Everglades. In contrast, DOC and POC in pristine marsh areas had near modern or '>modern'{sup 14}C ages. These data indicate that a major source of POC and DOC in impacted areas is the degradation of historic peat deposits in the EAA. In the pristine areas of the marsh, DOC represents a mix of modern and historic C sources, whereas POC comes from modern primary production as indicated by positive {delta}{sup 14}C values, suggesting that DOC is transported farther away from its source than POC. High {delta}{sup 14}C values of DIC indicate that dissolution of limestone bedrock is not a significant source of DIC in the Everglades wetlands. As a restored wetland moves towards its 'original' or 'natural' state, the {sup 14}C signatures of DOC should approach that of modern atmosphere. In addition, measurements of concentration and C isotopic composition of DOC in two small constructed wetlands (i.e., test cells) indicate that these freshwater wetland systems contain a labile DOC pool with rapid turnover times of 26-39 days and that the test cells are overall net sinks of DOC.

  10. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands.

    Science.gov (United States)

    Hussein, Amjad; Scholz, Miklas

    2018-03-01

    The release of untreated dye textile wastewater into receiving streams is unacceptable not only for aesthetic reasons and its negative impacts on aquatic life but also because numerous dyes are toxic and carcinogenic to humans. Strategies, as of now, used for treating textile wastewaters have technical and economical restrictions. The greater part of the physico-chemical methods, which are used to treat this kind of wastewater, are costly, produce large amounts of sludge and are wasteful concerning some soluble dyes. In contrast, biological treatments such as constructed wetlands are cheaper than the traditional methods, environmental friendly and do not produce large amounts of sludge. Synthetic wastewater containing Acid Blue 113 (AB113) and Basic Red 46 (BR46) has been added to laboratory-scale vertical-flow construction wetland systems, which have been planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). The concentrations 7 and 208 mg/l were applied for each dye at the hydraulic contact times of 48 and 96 h. Concerning the low concentrations of BR46 and AB113, the unplanted wetlands are associated with significant (ρ wetlands concerning the removal of dyes. For the high concentrations of AB113, BR46 and a mixture of both of them, wetlands with long contact times were significantly (ρ wetlands that had short contact times in terms of dye, colour and chemical oxygen demand reductions. Regarding nitrate nitrogen (NO 3 -N), the reduction percentage rates of AB113, BR46 and a mixture dye of both of them were between 85 and 100%. For low and high inflow dye concentrations, best removals were generally recorded for spring and summer, respectively.

  11. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands.

    Science.gov (United States)

    Lim, P E; Tay, M G; Mak, K Y; Mohamed, N

    2003-01-01

    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Znnitrogen uptake by cattail plants as indicated by lower nitrogen uptake rates in comparison to rates recorded in wetland systems treating domestic wastewater only. Copyright 2002 Elsevier Science B.V.

  12. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades

    International Nuclear Information System (INIS)

    Stern, J.; Wang, Y.; Gu, B.; Newman, J.

    2007-01-01

    Stable and radiocarbon isotopic contents of dissolved organic C (DOC), dissolved inorganic C (DIC), particulate organic C (POC) and plants were used to examine the source and turnover rate of C in natural and constructed wetlands in the Florida Everglades. DOC concentrations decreased, with P concentrations, along a water quality gradient from the agriculturally impacted areas in the northern Everglades to the more pristine Everglades National Park. δ 13 C values of DOC in the area reflect contributions of both wetland vegetation and sugarcane from agriculture. Radiocarbon ages of DOC, POC and DIC in the Everglades ranged from 2.01 ka BP to '>modern'. The old 14 C ages of DOC and POC were found in impacted areas near the Everglades Agricultural Area (EAA) in the northern Everglades. In contrast, DOC and POC in pristine marsh areas had near modern or '>modern' 14 C ages. These data indicate that a major source of POC and DOC in impacted areas is the degradation of historic peat deposits in the EAA. In the pristine areas of the marsh, DOC represents a mix of modern and historic C sources, whereas POC comes from modern primary production as indicated by positive Δ 14 C values, suggesting that DOC is transported farther away from its source than POC. High Δ 14 C values of DIC indicate that dissolution of limestone bedrock is not a significant source of DIC in the Everglades wetlands. As a restored wetland moves towards its 'original' or 'natural' state, the 14 C signatures of DOC should approach that of modern atmosphere. In addition, measurements of concentration and C isotopic composition of DOC in two small constructed wetlands (i.e., test cells) indicate that these freshwater wetland systems contain a labile DOC pool with rapid turnover times of 26-39 days and that the test cells are overall net sinks of DOC

  13. General design, construction, and operation guidelines: Constructed wetlands wastewater treatment systems for small users including individual residences. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, G.R.; Watson, J.T.

    1993-05-01

    One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology in 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.

  14. Constructed wetlands targeting nitrogen removal in agricultural drainage discharge – a subcatchment scale mitigation strategy

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Bruun, Jacob Druedahl

    Despite substantial efforts, the leaching of nutrients from agricultural land is still a serious and costly environmental problem in Denmark and elsewhere. The quality goals of the European Water Framework Directive (WFD) for the aquatic environment require a substantial reduction of diffuse...... of recipients, drainage water nutrient loads have a major impact on water quality, and end-of-pipe drainage filter solution may offer the benefits of a targeted measure. This calls for a paradigm shift towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses...... drainage. These projects study different approaches of implementing site-specific drainage filter technologies including surface-flow constructed wetlands (SF-CW) and subsurface flow constructed wetlands (SSF-CW). A large number of CWs targeting nutrient losses in drainage water have been constructed...

  15. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  16. Effects of Misgurnus anguillicaudatus and Cipangopaludina cathayensis on Pollutant Removal and Microbial Community in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2015-05-01

    Full Text Available Aquatic animals play an important role in the energy flow and matter cycling in the wetland ecosystem. However, little is known about their effects on pollutant removal performance and microbial community in constructed wetlands. This work presents an initial attempt to investigate the effects of Misgurnus anguillicaudatus (loach and Cipangopaludina cathayensis (snail on nutrient removal performance and microbial community of constructed wetlands (CWs. Compared with a control group, CW microcosms with aquatic animals exhibited better pollutant removal performance. The removal efficiencies of total phosphorus (TP in the loach group were 13.1% higher than in the control group, and snails increased the ammonium removal most effectively. Moreover, the concentration of total organic carbon (TOC and TP in sediment significantly reduced with the addition of loaches and snails (p < 0.05, whereas the concentration of total nitrogen (TN showed an obvious increase with the addition of loaches. High-throughput sequencing showed a microbial community structure change. Loaches and snails in wetlands changed the microbial diversity, especially in the Proteobacteria and denitrifying community. Results suggested that benthic aquatic animals might play an important role in CW ecosystems.

  17. Seasonal and Spatial Changes of Microorganism Communities in Constructed Wetlands: A Community Level Physiological Profiling Analysis

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc

    2010-01-01

    Full Text Available In constructed wetlands, microorganisms associated with plants are assumed to play a major role. A one-year survey was conducted in five vertical flow constructed wetland systems that had been operating from 2 months to 8 years in small French villages (100–500 People Equivalent to provide a better understanding of microbiological activity. The objective of our study was to highlight the most important factor generating variability between microorganisms communities compared to treatment performances. Results of community level physiological profiling using Biolog Ecoplates were analyzed using principal component analysis. The greatest microbial activity was observed in the oldest wetland during summer. Profiles of fed and rest bed were differentiated by the nature of the main carbon source metabolized. Whereas carbohydrates and carboxylic acids appeared to be better assimilated with fed beds, it seemed that phosphate compounds as well as amines allowed better growth in the plates inoculated with samples of rest beds. In all fed beds, the most important parameters affecting the diversity were the season and the age of the wetlands. There were only slight profile differences between surface and subsurface samples and between the first and second stage samples.

  18. ASSESSING THE EFFECT OF ANTIBIOTICS ON THE RESISTANCE OF RESIDENT MICROBES IN WETLANDS CONSTRUCTED FOR WASTEWATER TREATMENT

    Science.gov (United States)

    The use of constructed wetlands as a cost effective and environmentally friendly option for wastewater treatment is becoming more prevalent. These systems are championed as combining many of the benefits of tertiary treatment while also providing high quality wetland habitat as...

  19. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    Energy Technology Data Exchange (ETDEWEB)

    Türker, Onur Can [Faculty of Science and Letters, Department of Biology, Aksaray University, Aksaray (Turkey); Böcük, Harun, E-mail: hbocuk@anadolu.edu.tr [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey); Yakar, Anıl [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey)

    2013-05-15

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l{sup −1} to 123 mg l{sup −1} (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg{sup −1} B and common reed accumulated 38 mg kg{sup −1} B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l{sup −1} (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg{sup −1} whereas P. australis in the PCW absorbed a total of 38 mg kg{sup −1} B during the research period.

  20. [Removal nitrogen of integrated vertical-flow constructed wetland under aeration condition].

    Science.gov (United States)

    Tao, Min; He, Feng; Xu, Dong; Zhou, Qiao-Hong; Liang, Wei; Chen, Shui-Ping; Wu, Zhen-Bin

    2011-03-01

    Oxygen is an important limit factor of nitrogen removal in constructed wetlands, so it is the key point for improving nitrogen removal efficiency of constructed wetlands that the optimization of oxygen distribution within wetlands. Therefore, oxygen status, nitrogen removal and purification mechanism of integrated vertical-flow constructed wetland (IVCW) under aeration condition in summer and winter have been studied. The results showed that both oxygen levels and aerobic zones were increased in the wetland substrates. The area of oxic zone I (expressing with depth) extended from 22 cm, 17 cm to 53 cm, 44 cm, in summer and winter, respectively. The electric potential (Eh) profiling demonstrated that artificial aeration maintained the pattern of sequential oxic-anoxic-oxic (O-A-O) redox zones within the aerated IVCW in winter, while only two oxic-anoxic (O-A) zones were present inside the non-aerated IVCW in the cold season. The decomposition of organic matter and nitrification were obviously enhanced by artificial aeration since the removal efficiency of COD, TN and NH4(+) -N were increased by 12.2%, 6.9% and 15.1% in winter, respectively. There was no significant accumulation of NO3(-) -N in the effluent with an aeration cycle of 8 h on and 16 h off in this experiment. Moreover, we found that oxic zone I was the main region of pollutants removal in IVCW system, and artificial aeration mainly acted to enhance the purification capacity of this oxic zone in the aerated IVCW. These results suggest that aeration is important for optimization and application of IVCW system.

  1. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    International Nuclear Information System (INIS)

    Türker, Onur Can; Böcük, Harun; Yakar, Anıl

    2013-01-01

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l −1 to 123 mg l −1 (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg −1 B and common reed accumulated 38 mg kg −1 B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l −1 (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg −1 whereas P. australis in the PCW absorbed a total of 38 mg kg −1 B during the research period

  2. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Directory of Open Access Journals (Sweden)

    Qingqing Cao

    Full Text Available Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types. However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  3. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  4. Using a Backpropagation Artificial Neural Network to Predict Nutrient Removal in Tidal Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available Nutrient removal in tidal flow constructed wetlands (TF-CW is a complex series of nonlinear multi-parameter interactions. We simulated three tidal flow systems and a continuous vertical flow system filled with synthetic wastewater and compared the influent and effluent concentrations to examine (1 nutrient removal in artificial TF-CWs, and (2 the ability of a backpropagation (BP artificial neural network to predict nutrient removal. The nutrient removal rates were higher under tidal flow when the idle/reaction time was two, and reached 90 ± 3%, 99 ± 1%, and 58 ± 13% for total nitrogen (TN, ammonium nitrogen (NH4+-N, and total phosphorus (TP, respectively. The main influences on nutrient removal for each scenario were identified by redundancy analysis and were input into the model to train and verify the pollutant effluent concentrations. Comparison of the actual and model-predicted effluent concentrations showed that the model predictions were good. The predicted and actual values were correlated and the margin of error was small. The BP neural network fitted best to TP, with an R2 of 0.90. The R2 values of TN, NH4+-N, and nitrate nitrogen (NO3−-N were 0.67, 0.73, and 0.69, respectively.

  5. Wetland biogeochemical processes and simulation modeling

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Jia, Jia; Wang, Xin

    2018-02-01

    As the important landscape with rich biodiversity and high productivity, wetlands can provide numerous ecological services including playing an important role in regulating global biogeochemical cycles, filteringpollutants from terrestrial runoff and atmospheric deposition, protecting and improving water quality, providing living habitats for plants and animals, controlling floodwaters, and retaining surface water flow during dry periods (Reddy and DeLaune, 2008; Qin and Mitsch, 2009; Zhao et al., 2016). However, more than 50% of the world's wetlands had been altered, degraded or lost through a wide range of human activities in the past 150 years, and only a small percentage of the original wetlands remained around the world after over two centuries of intensive development and urbanization (O'connell, 2003; Zhao et al., 2016).

  6. Candidate soil indicators for monitoring the progress of constructed wetlands toward a natural state: a statistical approach

    Science.gov (United States)

    Stapanian, Martin A.; Adams, Jean V.; Fennessy, M. Siobhan; Mack, John; Micacchion, Mick

    2013-01-01

    A persistent question among ecologists and environmental managers is whether constructed wetlands are structurally or functionally equivalent to naturally occurring wetlands. We examined 19 variables collected from 10 constructed and nine natural emergent wetlands in Ohio, USA. Our primary objective was to identify candidate indicators of wetland class (natural or constructed), based on measurements of soil properties and an index of vegetation integrity, that can be used to track the progress of constructed wetlands toward a natural state. The method of nearest shrunken centroids was used to find a subset of variables that would serve as the best classifiers of wetland class, and error rate was calculated using a five-fold cross-validation procedure. The shrunken differences of percent total organic carbon (% TOC) and percent dry weight of the soil exhibited the greatest distances from the overall centroid. Classification based on these two variables yielded a misclassification rate of 11% based on cross-validation. Our results indicate that % TOC and percent dry weight can be used as candidate indicators of the status of emergent, constructed wetlands in Ohio and for assessing the performance of mitigation. The method of nearest shrunken centroids has excellent potential for further applications in ecology.

  7. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  8. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021)

  9. Integrated wetland management: an analysis with group model building based on system dynamics model.

    Science.gov (United States)

    Chen, Hsin; Chang, Yang-Chi; Chen, Kung-Chen

    2014-12-15

    The wetland system possesses diverse functions such as preserving water sources, mediating flooding, providing habitats for wildlife and stabilizing coastlines. Nonetheless, rapid economic growth and the increasing population have significantly deteriorated the wetland environment. To secure the sustainability of the wetland, it is essential to introduce integrated and systematic management. This paper examines the resource management of the Jiading Wetland by applying group model building (GMB) and system dynamics (SD). We systematically identify local stakeholders' mental model regarding the impact brought by the yacht industry, and further establish a SD model to simulate the dynamic wetland environment. The GMB process improves the stakeholders' understanding about the interaction between the wetland environment and management policies. Differences between the stakeholders' perceptions and the behaviors shown by the SD model also suggest that our analysis would facilitate the stakeholders to broaden their horizons and achieve consensus on the wetland resource management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Forbes, Dean A; Reddy, G B; Hunt, Patrick G; Poach, M E; Ro, Kyoung S; Cyrus, Johnsely S

    2010-01-01

    Increased swine production in North Carolina has resulted in greater waste generation and is demanding some emerging new innovative technologies to effectively treat swine wastewater. One of the cost-effective and passive methods to treat swine wastewater is using constructed wetlands. The objective of this study was to evaluate the N removal under two N loads in 3 different wetland systems: aerated marsh-pond-marsh (M-P-M), aerated marsh-covered pond-marsh (M-FB-M), and continuous marsh (CM) with two days drain and five days flood cycle. Swine wastewater from an anaerobic lagoon was applied to the constructed wetland cells (11 m wide x 40 m length) at two N loading rates of 7 and 12 kg N ha(-1) day(-1)from June to July and August to September 2005, respectively. Weekly inflow and outflow samples were collected for N, P, TS, and COD analysis. Total N reductions (%) at low and high N loading rates were 85.8 and 51.8; 86.3 and 63.3; and 86.2 and 61.8 for M-P-M, M-FB-M, and CM, respectively. Aeration had no significant (P > 0.05) impact on N removal. However, significant (P 0.05) in N reduction was found among wetland systems. Vegetation uptake of N was negligible, ranging from 1.2 to 1.8 %. No significant (P > 0.05) differences in TS and COD removal were observed between the wetland systems.

  11. Multilayer Substrate Configuration Enhances Removal Efficiency of Pollutants in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Shaoyuan Bai

    2016-11-01

    Full Text Available This study aimed at optimizing horizontal subsurface flow constructed wetlands (CWs to improve hydraulic performance and pollutant removal efficiency. A groundwater modeling package (MODFLOW was used to optimize three design parameters (length-to-width ratio, inlet/outlet-to-length ratio, and substrate size configuration. Using the optimized parameters, three pilot-scale CWs were built to treat actual wastewater. For model validation, we used a tracer test to evaluate hydraulic performance, and investigated the pollutant spatial distributions and removal efficiencies. We conclude that MODFLOW is suitable for designing CWs, accurately predicting that increasing hydraulic conductivity from surface to bottom layers could improve performance. However, the effect of vegetation, which decreased the hydraulic conductivity of the surface layer, should be considered to improve simulation results. Multilayer substrate configuration, with increasing hydraulic conductivity from the surface to bottom layers, significantly increased pollutant removal compared with monolayer configuration. The spatial variation in pollutant transport and degradation through the filling substrate showed that the multilayer configuration was able to increase use of the available space and moderately reduced short-circuiting and dead zones. Thus, multilayer CWs had higher experimental retention times, effective volume fractions and hydraulic efficiencies, and lower short-circuiting compared with monolayer CWs operating under similar conditions.

  12. Effect of recirculation on organic matter removal in a hybrid constructed wetland system.

    Science.gov (United States)

    Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C

    2011-01-01

    This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

  13. Phosphate and ammonium removal from waste water, using constructed wetland systems

    OpenAIRE

    Drizo, Aleksandra

    1998-01-01

    Phosphorus and nitrogen in waste water from sewerage systems contribute to excessive nutrient enrichment of surface waters, presenting a threat to nature conservation, domestic and industrial water supplies, and recreation. The general objective of this research was to investigate phosphate and ammonium removal from waste water by constructed wetland systems (CWS), which are increasingly being used for low-cost water treatment. Phosphate (P) adsorption capacity and other prope...

  14. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea

    Czech Academy of Sciences Publication Activity Database

    Edwards, K.R.; Čížková, Hana; Zemanová, K.; Šantrůčková, H.

    2006-01-01

    Roč. 27, č. 2 (2006), s. 153-165 ISSN 0925-8574 R&D Projects: GA ČR(CZ) GA206/02/1036 Institutional research plan: CEZ:AV0Z60870520 Keywords : Constructed wetland * N mineralization * P mineralization * nutrient uptake * Phalaris arundinacea * non-structural carbohydrates * eutrophication Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.331, year: 2006

  15. Phytoremediation of explosives contaminated ground waters by plant enzyme systems in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.P. Jr. [Army Environmental Center, Aberdeen Proving Ground, MD (United States)

    1995-12-31

    A plant enzyme system has successfully degraded the explosives TNT, RDX, and HMX to environmentally acceptable products during laboratory studies. The process has been further studied in the field in batch systems. The field results have been consistent with the laboratory findings. An artificial wetlands will be constructed to remediate explosives contaminated ground water at an Army ammunition plant. An overview of the phytoremediation program will be presented.

  16. INFLUENCE OF BIO-PREPARATION ON WASTEWATER PURIFICATION PROCESS IN CONSTRUCTED WETLANDS

    Directory of Open Access Journals (Sweden)

    Monika Puchlik

    2014-12-01

    Full Text Available Technological system of analyzed wastewater treatment plant is in part a biological bed of soil-reed in parallel arrangement. Unusual application is the application of two independent purification lines where in the second line, a bio-preparation is additionally dosed. The constructed wetland provides high removal of organic compounds expressed as BOD5 and COD, as well as reducing the concentration of ammonia nitrogen and phosphates. This indicates a high performance of such a sewage treatment plant.

  17. INFLUENCE OF BIO-PREPARATION ON WASTEWATER PURIFICATION PROCESS IN CONSTRUCTED WETLANDS

    OpenAIRE

    Monika Puchlik; Katarzyna Ignatowicz; Wojciech Dąbrowski

    2014-01-01

    Technological system of analyzed wastewater treatment plant is in part a biological bed of soil-reed in parallel arrangement. Unusual application is the application of two independent purification lines where in the second line, a bio-preparation is additionally dosed. The constructed wetland provides high removal of organic compounds expressed as BOD5 and COD, as well as reducing the concentration of ammonia nitrogen and phosphates. This indicates a high performance of such a sewage treatmen...

  18. Pilot-scale comparison of constructed wetlands operated under high hydraulicloading rates and attached biofilm reactors for domestic wastewater treatment

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.

    2009-01-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a freewater surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor (......-conventional wastewater treatment system depends on the construction and operation cost, the area demand and the required quality of effluent.......Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a freewater surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor...... units) and higher in HSF and RBC (2.3 to 2.6 log units). HSF showed slightly lower but comparable effluent quality to that of RBC and PBF systems, but the construction cost and energy requirements for this system are significantly lower. Overall the final decision for the best non...

  19. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland

    International Nuclear Information System (INIS)

    Zhang Dongqing; Gersberg, Richard M.; Zhu, Junfei; Hua, Tao; Jinadasa, K.B.S.N.; Tan, Soon Keat

    2012-01-01

    This study evaluated the effect of continuous and batch feeding on the removal of 8 pharmaceuticals (carbamazepine, naproxen, diclofenac, ibuprofen, caffeine, salicylic acid, ketoprofen and clofibric acid) from synthetic wastewater in mesocosm-scale constructed wetlands (CWs). Both loading modes were operated at hydraulic application rates of 5.6 cm day −1 and 2.8 cm day −1 . Except for carbamazepine, clofibric acid and naproxen, removal in CWs was significantly (p ow ) and removal efficiencies of pharmaceutical compounds in the CWs, showed that pharmaceutical removal efficiency was significantly (p ow value, but not with log K ow value. - Highlights: ► Batch feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal. ► K values for the 8 pharmaceuticals were in the range of 0.01–0.1 m day −1 . ► The pharmaceutical removal efficiency was inversely correlated with log D ow value. - Batch (drain and fill) feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal.

  20. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    Science.gov (United States)

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bioremediation of endosulfan in laboratory-scale constructed wetlands: effect of bioaugmentation and biostimulation.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Mu, Yang; Xu, Xiaoli; Zhang, Jian; Liu, Cui; Liang, Shuang; Ngo, Huu Hao; Guo, Wenshan; Xu, Jingtao; Wang, Qian

    2014-11-01

    Bioremediation is widely used in organic pollutants disposal. However, very little has been known on its application in constructed wetlands contaminated with organochlorine pesticide, endosulfan in particular. To evaluate the effect of bioremediation on endosulfan removal and clarify the fate, bioaugmentation and biostimulation were studied in laboratory-scale vertical-flow constructed wetlands. After 20 days' experiment, endosulfan isomers removal efficiencies were increased to 89.24-97.62 % through bioremediation. In bacteria bioaugmentation (E-in) and sucrose biostimulation (E-C), peak concentrations of endosulfan in sediment were reduced by 31.02-76.77 %, and plant absorption were 347.45-576.65 μg kg(-1). By contrast, plant absorption in KH2PO4 biostimulation (E-P) was increased to 811.64 and 1,067.68 μg kg(-1). Degradation process was probably promoted in E-in and E-C, while plant absorption was enhanced in E-P. Consequently, E-in and E-C were effective for endosulfan removal in constructed wetlands, while adding KH2PO4 had potential to cause air pollution. Additionally, combined bioremediation was not recommended.

  2. Removal of chlorpyrifos insecticide in constructed wetlands with different plant species

    Directory of Open Access Journals (Sweden)

    Tamara D. de Souza

    Full Text Available ABSTRACT The objective of this study was to evaluate the remediation of water containing the insecticide chlorpyrifos by using constructed wetlands (CW cultivated with Polygonum punctatum, Cynodon spp. and Mentha aquatica, operated under different hydraulic retention times: 24, 48, 96, 144 and 192 h. The system efficiency was based on reduction of the initial concentration of chlorpyrifos and toxicity of the contaminated water. The results showed that constructed wetlands are an excellent alternative for remediation of the insecticide chlorpyrifos in aqueous medium. It was observed that the average overall removal efficiency of the insecticide was 98.6%, and in the first hydraulic retention time, 24 h, chlorpyrifos was removed to levels below the detection limit in all CW. This result is mainly attributed to adsorption and microbial degradation. For the qualitative standard acute toxicity tests with Daphnia similis, for most samples there was a reduction in toxicity greater than 80%. It was reported that the ecotoxicological tests with the effluents of the constructed wetland are a good option as an indicator of the effectiveness of treatments and a promising alternative to complement the physical and chemical analyses.

  3. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems

    International Nuclear Information System (INIS)

    Schmidt, Marie; Wolfram, Diana; Birkigt, Jan; Ahlheim, Jörg; Paschke, Heidrun; Richnow, Hans-Hermann; Nijenhuis, Ivonne

    2014-01-01

    Natural wetlands are transition zones between anoxic ground and oxic surface water which may enhance the (bio)transformation potential for recalcitrant chloro-organic contaminants due to the unique geochemical conditions and gradients. Monochlorobenzene (MCB) is a frequently detected groundwater contaminant which is toxic and was thought to be persistent under anoxic conditions. Furthermore, to date, no degradation pathways for anoxic MCB removal have been proven in the field. Hence, it is important to investigate MCB biodegradation in the environment, as groundwater is an important drinking water source in many European countries. Therefore, two pilot-scale horizontal subsurface-flow constructed wetlands, planted and unplanted, were used to investigate the processes in situ contributing to the biotransformation of MCB in these gradient systems. The wetlands were fed with anoxic MCB-contaminated groundwater from a nearby aquifer in Bitterfeld, Germany. An overall MCB removal was observed in both wetlands, whereas just 10% of the original MCB inflow concentration was detected in the ponds. In particular in the gravel bed of the planted wetland, MCB removal was highest in summer season with 73 ± 9% compared to the unplanted one with 40 ± 5%. Whereas the MCB concentrations rapidly decreased in the transition zone of unplanted gravel to the pond, a significant MCB removal was already determined in the anoxic gravel bed of the planted system. The investigation of hydro-geochemical parameters revealed that iron and sulphate reduction were relevant redox processes in both wetlands. In parallel, the addition of ferric iron or nitrate stimulated the mineralisation of MCB in laboratory microcosms with anoxic groundwater from the same source, indicating that the potential for anaerobic microbial degradation of MCB is present at the field site. - Highlights: • MCB removal in anoxic gravel bed of a planted and an unplanted constructed wetland was accompanied by iron

  4. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Marie; Wolfram, Diana; Birkigt, Jan [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Ahlheim, Jörg [Department of Groundwater Remediation, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Paschke, Heidrun [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Richnow, Hans-Hermann [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Nijenhuis, Ivonne, E-mail: ivonne.nijenhuis@ufz.de [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany)

    2014-02-01

    Natural wetlands are transition zones between anoxic ground and oxic surface water which may enhance the (bio)transformation potential for recalcitrant chloro-organic contaminants due to the unique geochemical conditions and gradients. Monochlorobenzene (MCB) is a frequently detected groundwater contaminant which is toxic and was thought to be persistent under anoxic conditions. Furthermore, to date, no degradation pathways for anoxic MCB removal have been proven in the field. Hence, it is important to investigate MCB biodegradation in the environment, as groundwater is an important drinking water source in many European countries. Therefore, two pilot-scale horizontal subsurface-flow constructed wetlands, planted and unplanted, were used to investigate the processes in situ contributing to the biotransformation of MCB in these gradient systems. The wetlands were fed with anoxic MCB-contaminated groundwater from a nearby aquifer in Bitterfeld, Germany. An overall MCB removal was observed in both wetlands, whereas just 10% of the original MCB inflow concentration was detected in the ponds. In particular in the gravel bed of the planted wetland, MCB removal was highest in summer season with 73 ± 9% compared to the unplanted one with 40 ± 5%. Whereas the MCB concentrations rapidly decreased in the transition zone of unplanted gravel to the pond, a significant MCB removal was already determined in the anoxic gravel bed of the planted system. The investigation of hydro-geochemical parameters revealed that iron and sulphate reduction were relevant redox processes in both wetlands. In parallel, the addition of ferric iron or nitrate stimulated the mineralisation of MCB in laboratory microcosms with anoxic groundwater from the same source, indicating that the potential for anaerobic microbial degradation of MCB is present at the field site. - Highlights: • MCB removal in anoxic gravel bed of a planted and an unplanted constructed wetland was accompanied by iron

  5. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    Science.gov (United States)

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    Science.gov (United States)

    Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo

    2013-01-01

    This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.

  7. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico

    Science.gov (United States)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry

    2007-12-01

    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  8. Constructed wetlands for treatment of combined sewer overflow in the US: a review of design challenges and application status

    OpenAIRE

    Tao, W.; Bays, J.S.; Meyer, D.; Smardon, R.C.; Levy, Z.F.

    2014-01-01

    International audience; As combined sewer systems and centralized wastewater treatment facilities age, many communities in the world are challenged by management of combined sewer overflow (CSO). Constructed wetlands are considered to be one of the green infrastructure solutions to CSOs in the US. Despite the wide application of constructed wetlands to different types of wastewaters, the stochastic and intermittent nature of CSO presents challenges for design and performance assessment of con...

  9. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    Science.gov (United States)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  10. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review.

    Science.gov (United States)

    Vymazal, Jan

    2005-01-01

    Domestic and municipal sewage contains various pathogenic or potentially pathogenic microorganisms which, depending on species concentration, pose a potential risk to human health and whose presence must therefore be reduced in the course of wastewater treatment. The removal of microbiological pollution is seldom a primary target for constructed treatment wetlands (CWs). However, wetlands are known to act as excellent biofilters through a complex of physical, chemical and biological factors which all participate in the reduction of the number of bacteria. Measurement of human pathogenic organisms in untreated and treated wastewater is expensive and technically challenging. Consequently, environmental engineers have sought indicator organisms that are (1) easy to monitor and (2) correlate with population of pathogenic organisms. The most frequently used indicators are total coliforms, fecal coliforms, fecal streptococci and Escherichia coli. The literature survey of 60 constructed wetlands with emergent vegetation around the world revealed that removal of total and fecal coliforms in constructed wetlands with emergent macrophytes is high, usually 95 to > 99% while removal of fecal streptococci is lower, usually 80-95%. Because bacterial removal efficiency is a function of inflow bacteria number, the high removal effects are achieved for untreated or mechanically pretreated wastewater. Therefore, the outflow numbers of bacteria are more important. For TC and FC the outflow concentrations are usually in the range of 10(2) to 10(5) CFU/ 100 ml while for FS the range is between 10(2) and 10(4) CFU/ 100 ml. Results from operating systems suggest that enteric microbe removal efficiency in CWs with emergent macrophytes is primarily influenced by hydraulic loading rate (HLR) and the resultant hydraulic residence time (HRT) and the presence of vegetation. Removal of enteric bacteria follows approximately a first-order relationship.

  11. Determination of the hydraulic residence time of two subsurface-flow constructed wetlands using radiotracers

    International Nuclear Information System (INIS)

    Debien, Bruno R.

    2013-01-01

    The adoption of constructed wetland systems (CW's) with subsuperficial drainage for sewage treatment is increasingly growing in places with low technological resources and available land. The efficient removal of pollutants depends on the internal flow characteristics in the CW and on its hydraulic residence time (HRT). In the present work 82 Br - a gamma radiation emitter, produced from soluble potassium bromide irradiated in the TRIGA reactor at the Centre for the Development of Nuclear Energy (CDTN) - was used as a pseudo-conservative tracer for the comparative study of aqueous phase flow dynamics in two CW's: one in which plants were grown (WP) whereas the other had no plants (WNP). Experimental hydraulic residence time values were found to be very close to the theoretical one, while dispersion numbers obtained for both CW's were quite small. Besides these measured hydrodynamic parameters, the residence time distribution (RTD) curves of the tracer test and the results of modeling of experimental data also demonstrate the tendency of the units to display a plug flow-like effluent hydraulic transport within their systems, as expected from their designs, considering the large length/width ratio (L/W=8). (author)

  12. Settling basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time.

    Science.gov (United States)

    Lee, Soyoung; Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2014-09-01

    Using total suspended solid (TSS) removal efficiency and hydraulic retention time (HRT) as design parameters a design guideline of a settling basin in a constructed wetland (CW) was suggested; as well as management of sediment and particle in the settling basin. The CW was designed to treat the piggery wastewater effluent from a wastewater treatment plant during dry days and stormwater runoff from the surrounding paved area during wet days. The first settling basin (FSB) in the CW was theoretically designed with a total storage volume (TSV) of 453m(3) and HRT of 5.5hr. The amount of sediment and particles settled at the FSB was high due to the sedimentation and interception of plants in the CW. Dredging of sediments was performed when the retention rate at the FSB decreased to approximately 80%. Findings showed that the mean flow rate was 21.8m(3)/hr less than the designed flow rate of 82.8m(3)/hr indicating that the FSB was oversize and operated with longer HRT (20.7hr) compared to the design HRT. An empirical model to estimate the length of the settling basin in the CW was developed as a function of HRT and desired TSS removal efficiency. Using the minimum tolerable TSS removal efficiency of 30%, the length of the FSB was estimated to be 31.2m with 11.8hr HRT. Copyright © 2014. Published by Elsevier B.V.

  13. Determination of the hydraulic residence time of two subsurface-flow constructed wetlands using radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Debien, Bruno R., E-mail: brunordebien@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept de Geografia. Lab. de Geomorfologia; Barreto, Alberto A.; Pinto, Amenonia M.F.; Moreira, Rubens M., E-mail: aab@cdtn.br, E-mail: amfp@cdtn.br, E-mail: rubens@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The adoption of constructed wetland systems (CW's) with subsuperficial drainage for sewage treatment is increasingly growing in places with low technological resources and available land. The efficient removal of pollutants depends on the internal flow characteristics in the CW and on its hydraulic residence time (HRT). In the present work {sup 82}Br - a gamma radiation emitter, produced from soluble potassium bromide irradiated in the TRIGA reactor at the Centre for the Development of Nuclear Energy (CDTN) - was used as a pseudo-conservative tracer for the comparative study of aqueous phase flow dynamics in two CW's: one in which plants were grown (WP) whereas the other had no plants (WNP). Experimental hydraulic residence time values were found to be very close to the theoretical one, while dispersion numbers obtained for both CW's were quite small. Besides these measured hydrodynamic parameters, the residence time distribution (RTD) curves of the tracer test and the results of modeling of experimental data also demonstrate the tendency of the units to display a plug flow-like effluent hydraulic transport within their systems, as expected from their designs, considering the large length/width ratio (L/W=8). (author)

  14. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    Science.gov (United States)

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes. Copyright © 2014 Elsevier B.V. All rights

  15. Comparative evaluation of low cost materials as constructed wetland filling media

    Science.gov (United States)

    Pinho, Henrique J. O.; Vaz, Mafalda M.; Mateus, Dina M. R.

    2017-11-01

    Three waste materials from civil construction activities were assessed as low cost alternative filling materials used in Constructed Wetlands (CW). CW are green processes for wastewater treatment, whose design includes an appropriate selection of vegetation and filling material. The sustainability of such processes may be incremented using recovered wastes as filling materials. The abilities of the materials to support plant growth and to contribute to pollutants removal from wastewater were assessed and compared to expanded clay, a filling usually used in CW design. Statistical analysis, using one-way ANOVA and Welch's ANOVA, demonstrate that limestone fragments are a better choice of filling material than brick fragments and basalt gravel.

  16. Sustainability of Constructed Wetland under the Impact of Aquatic Organisms Overloading

    Directory of Open Access Journals (Sweden)

    Shih-Chieh Chen

    2017-05-01

    Full Text Available Environmental impacts, such as earthquakes, chemical pollution and anthropogenic factors can affect the stability and sustainability of an ecosystem. In this study, a long-term (3.7 years investigation experiment was conducted to estimate the sustainability of a constructed wetland (CW under the impact of aquatic organisms overloading. The situation of aquatic organisms overloading in this study meant that around 27,000 kg of fishes had to be moved and accommodated in a 4 ha water area of wetland for six months. Experimental results indicated that the pH value of CW water was slightly acidic and the Dissolved Oxygen (DO level decreased under the impact. On the other hand, the levels of Electrical Conductivity (EC, Suspended Solids (SS, Chemical Oxygen Demand (COD, and Total Kjeldahl Nitrogen (TKN of CW water were increased under the impact. The pathogen analysis revealed that total coliforms, Salmonella spp., Enterococcus spp., and Escherichia coli, in the wetland water increased under the impact. The analyzed factors of water quality and amount of pathogens were all returned to their original statuses soon after the impact ended. Eventually, the results of microbial community structure analysis showed that overloading of aquatic organisms slightly increased the specific richness (R of wetland bacteria, whereas higher structural biodiversity (H of CW could stabilize the whole microbial community and prevent the pathogens or other bacteria from increasing to become the dominant strains. These results were novel and could be possible to conclude that a CW environment could not only stabilize the water quality and amount of pathogens resulting from the impact of aquatic organisms overloading, but also they could stabilize the microbial community structures, allowing the biogeochemical cycles of the CW to function. They could provide the useful information for wetland sustainability.

  17. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow

    Science.gov (United States)

    Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L.

    2018-05-01

    Urban runoff negatively impacts the receiving streams and different solutions have been proposed in literature to limit the effect of urbanization on the water balance. These solutions suggest to manage urban runoff in order to switch from a post-development river hydrograph (high peak and short duration) back again to a pre-development hydrograph (low peak and high duration). Combined sewer overflows (CSOs) represent severe pollutant sources for receiving streams due to the combination of first flush of roads and sewers and black water conveyed by combined sewer systems. Constructed wetlands for CSO treatment (CSO-CWs) are adopted with increasing frequency for reducing pollutant inputs to streams. Moreover, these systems exhibit the characteristic to behave similarly to ponds, wetlands, and bioretention systems that provide flood mitigation by decreasing the intensity of peak flows. This work aims to show the additional ecosystem service provided by CSO-CWs in term of limitation of the hydraulic impact of CSO on stream hydrograph. A mathematical model is developed to simulate the hydraulic behavior of a real case study situated in Gorla Maggiore (Italy), which includes vertical flow subsurface beds (VF) as first stage and a free water surface bed (FWS) as second stage. The model simulates the unsaturated flow within VF and the accumulation of water on the top of VF and within FWS. Results show a satisfactory lamination performance of the system for both single and up to 5 consecutive flood events, with a peak flow reduction ranging from 52.7% to 95.4%. Withdrawn of flow rate from the river in order to cope with long dry period does not significantly affect the lamination performances. The considered CSO-CW exhibits an excellent lamination efficiency also during more intense floods events, with a peak flow reduction of 86.2% for a CSO event with return period of 10 years. The flow rate frequency density function determined by the CSO-CW is more shifted towards

  18. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    National Research Council Canada - National Science Library

    Best, Elly P; Fredrickson, Herbert L; Hintelmann, Holger; Clarisse, Olivier; Dimock, Brian; Lutz, Charles H; Lotufo, Gui R; Millward, Rod N; Bednar, Anthony J; Furey, John S

    2007-01-01

    ...) is working with the San Francisco Basin Regional Water Board, California State Coastal Conservancy, and San Francisco Bay Conservation and Development Commission to reconstruct wetlands at the former...

  19. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff

    Directory of Open Access Journals (Sweden)

    Sarah A. White

    2017-12-01

    Full Text Available Constructed wetlands (CWs are used to remediate runoff from a variety of agricultural, industrial, and urban sources. CW remediation performance is often evaluated at the laboratory scale over durations less than one year. The purpose of this study was to characterize the effect of CW design (cell depth and residence time on nitrogen (N speciation and fate across season and years in two free water surface wetlands receiving runoff from irrigated plant production areas at an ornamental plant nursery. Water quality (mg·L−1 of nitrate, nitrite, and ammonium, dissolved oxygen and oxidation reduction potential was monitored at five sites within each of two CWs each month over four years. Nitrate-N was the dominant form of ionic N present in both CWs. Within CW1, a deep cell to shallow cell design, nitrate comprised 86% of ionic N in effluent. Within CW2, designed with three sequential deep cells, nitrate comprised only 66% of total N and ammonium comprised 27% of total N in CW2 effluent. Differences in ionic N removal efficacies and shifts in N speciation in CW1 and CW2 were controlled by constructed wetland design (depth and hydraulic retention time, the concentration of nutrients entering the CW, and plant species richness.

  20. Impacts of multiple stressors on ecosystem function: Leaf decomposition in constructed urban wetlands.

    Science.gov (United States)

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2016-01-01

    The impact of stormwater on stream biota is well documented, but less is known about the impacts on ecosystem processes, such as the breakdown of organic matter. This study sought to establish whether the degree of urbanisation affected rates of leaf-litter breakdown within constructed wetlands. A litter bag method was used to ascertain rate of decomposition along a gradient of urbanisation (total imperviousness, TI), in constructed wetlands in western and south-eastern Melbourne. A significant positive relationship between TI and breakdown rate was found in the south-eastern wetlands. The significant reduction in rate of invertebrate-mediated breakdown with increasing concentration of certain metals was consistent with other studies. However, overall there was an increase in rate of breakdown. Studies have shown that the effects of heavy metals can be negated if nutrient levels are high. Our results suggest that other parameters besides exposure to contaminants are likely to affect leaf litter breakdown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions.

    Science.gov (United States)

    Fuchs, Valerie J; Mihelcic, James R; Gierke, John S

    2011-02-01

    Life cycle assessment (LCA) is used to compare the environmental impacts of vertical flow constructed wetlands (VFCW) and horizontal flow constructed wetlands (HFCW). The LCAs include greenhouse gas (N(2)O, CO(2) and CH(4)) emissions. Baseline constructed wetland designs are compared to different treatment performance scenarios and to conventional wastewater treatment at the materials acquisition, assembly and operation life stages. The LCAs suggest that constructed wetlands have less environmental impact, in terms of resource consumption and greenhouse gas emissions. The VFCW is a less impactful configuration for removing total nitrogen from domestic wastewater. Both wetland designs have negligible impacts on respiratory organics, radiation and ozone. Gaseous emissions, often not included in wastewater LCAs because of lack of data or lack of agreement on impacts, have the largest impact on climate change. Nitrous oxide accounts for the increase in impact on respiratory inorganic, and the combined acidification/eutrophication category. The LCAs were used to assess the importance of nitrogen removal and recycling, and the potential for optimizing nitrogen removal in constructed wetlands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spatial Variation of Phosphorous Retention Capacity in Subsurface Flow Constructed Wetlands: Effect of Wetland Type and Inflow Loading.

    Directory of Open Access Journals (Sweden)

    Guangwei Yu

    Full Text Available For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs, two horizontal subsurface flow(HSSF CWs and two vertical subsurface flow(VSSF CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.

  3. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands.

    Science.gov (United States)

    Maltais-Landry, Gabriel; Maranger, Roxane; Brisson, Jacques; Chazarenc, Florent

    2009-03-01

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N(2)O), carbon dioxide (CO(2)) and methane (CH(4)) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH(4) was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH(4) fluxes. Plant presence also decreased CH(4) fluxes but favoured CO(2) production. Nitrous oxide had a minor contribution to global warming potential (GWPartificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.

  4. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    A pilot passive treatment plant (PPTP) was constructed to evaluate the potential of a composite wetland system to remediate acidic, metal-rich water draining the former Wheal Jane tin, in Cornwall, England. The treatment plant consists of three separate and controllable composite systems, each of which comprises a series of aerobic wetlands for iron oxidation and precipitation, a compost bioreactor for removing chalcophilic metals and to generate alkalinity, and rock filter ponds for removing soluble manganese and organic carbon. To understand the roles of microorganisms in remediating acid mine drainage (AMD) in constructed wetland ecosystems, populations of different groups of cultivatable acidophilic microbes in the various components of the Wheal Jane PPTP were enumerated over a 30-month period. Initially, moderately acidophilic iron-oxidising bacteria (related to Halothiobacillus neapolitanus) were found to be the major cultivatable microorganisms present in the untreated AMD, though later heterotrophic acidophiles emerged as the dominant group, on a numerical basis. Culturable microbes in the surface waters and sediments of the aerobic wetlands were similarly dominated by heterotrophic acidophiles, though both moderately and extremely acidophilic iron-oxidising bacteria were also present in significant numbers. The dominant microbial isolate in waters draining the anaerobic compost bioreactors was an iron- and sulfur-oxidising moderate acidophile that was closely related to Thiomonas intermedia. The acidophiles enumerated at the Wheal Jane PPTP accounted for 1% to 25% of the total microbial population. Phylogenetic analysis of 14 isolates from various components of the Wheal Jane PPTP showed that, whilst many of these bacteria were commonly encountered acidophiles, some of these had not been previously encountered in AMD and AMD-impacted environments.

  5. Carbon Dynamics and Export from Flooded Wetlands: A Modeling Approach

    Science.gov (United States)

    Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. ...

  6. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Science.gov (United States)

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  7. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.

    Science.gov (United States)

    Allende, K Lizama; Fletcher, T D; Sun, G

    2011-01-01

    The presence of arsenic and heavy metals in drinking water sources poses a serious health risk due to chronic toxicological effects. Constructed wetlands have the potential to remove arsenic and heavy metals, but little is known about pollutant removal efficiency and reliability of wetlands for this task. This lab-scale study investigated the use of vertical subsurface flow constructed wetlands for removing arsenic, boron, copper, zinc, iron and manganese from synthetic wastewater. Gravel, limestone, zeolite and cocopeat were employed as wetland media. Conventional gravel media only showed limited capability in removing arsenic, iron, copper and zinc; and it showed virtually no capability in removing manganese and boron. In contrast, alternative wetland media: cocopeat, zeolite and limestone, demonstrated significant efficiencies--in terms of percentage removal and mass rate per m3 of wetland volume--for removing arsenic, iron, manganese, copper and zinc; their ability to remove boron, in terms of mass removal rate, was also higher than that of the gravel media. The overall results demonstrated the potential of using vertical flow wetlands to remove arsenic and metals from contaminated water, having cocopeat, zeolite or limestone as supporting media.

  8. Constructed wetland attenuation of nitrogen exported in subsurface drainage from irrigated and rain-fed dairy pastures.

    Science.gov (United States)

    Tanner, C C; Nguyen, M L; Sukias, J P S

    2005-01-01

    Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.

  9. Carbon sequestration in a surface flow constructed wetland after 12 years of swine wastewater treatment.

    Science.gov (United States)

    Reddy, Gudigopuram B; Raczkowski, Charles W; Cyrus, Johnsely S; Szogi, Ariel

    2016-01-01

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in a marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbon content and organic matter turnover rate. To better understand system performance and carbon dynamics, we measured plant dry matter, decomposition rates and soil carbon fractions. Plant litter decomposition rate was 0.0052 g day(-1) (±0.00119 g day(-1)) with an estimated half-life of 133 days. The detritus layer accumulated over the soil surface had much more humin than other C fractions. In marsh areas, soil C extracted with NaOH had four to six times higher amounts of humic acid, fulvic acid and humin than soil C extracted by cold and hot water, HCl/HF, and Na pyruvate. In the pond area, humic acid, fulvic acid and humin content were two to four times lower than in the marsh area. More soil C and N was found in the marsh area than in the pond area. These wetlands proved to be large sinks for stable C forms.

  10. Integrated constructed wetland systems: design, operation, and performance of low-cost decentralized wastewater treatment systems.

    Science.gov (United States)

    Behrends, L L; Bailey, E; Jansen, P; Houke, L; Smith, S

    2007-01-01

    Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.

  11. Seasonal Variation of Nutrient Removal in a Full-Scale Artificial Aerated Hybrid Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Jun Zhai

    2016-11-01

    Full Text Available To improve nutrient removal, a full-scale hybrid constructed wetland (CW consisting of pre-treatment units, vertical-baffled flow wetlands (VBFWs, and horizontal subsurface flow wetlands (HSFWs was installed in August 2014 to treat sewage wastewater. Artificial aeration (AA was applied continuously in the VBFW stage to improve the aerobic condition in the hybrid CW. Water samples were collected and analyzed twice a month between the period of August 2015 and July 2016. The results suggest that this new hybrid CW can achieve a satisfactory reduction of chemical oxygen demand (COD, ammonium nitrogen (NH4+-N, total nitrogen (TN, and total phosphorus (TP with average removal rates of 85% ± 10% (35% ± 19 g/m2 per day, 76% ± 18% (7% ± 2 g/m2 per day, 65% ± 13% (8% ± 2 g/m2 per day, and 65% ± 21% (1 g/m2 per day, respectively. AA significantly improved the aerobic condition throughout the experimental period, and the positive influence of AA on nitrogen removal was found to be higher during summer that during winter. A significant positive correlation between water temperature and nutrient removal (p < 0.01 was observed in the system. Overall, this study demonstrates the application of AA in a full-scale hybrid CW with satisfactory nutrient removal rates. The hybrid CW system with artificial aeration can serve as a reference for future applications areas where land availability is limited.

  12. Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics.

    Science.gov (United States)

    Zhang, Dongqing; Luo, Jinxue; Lee, Zarraz May Ping; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2016-01-01

    The treatment performance of ibuprofen (IBP)-enriched wastewater by horizontal subsurface flow constructed wetlands planted with cattail (Typha angustifolia) and unplanted control mesocosms was investigated. Removal efficiencies of IBP were significantly (p fungal community in these wetland systems. The overall diversity of the fungal community was reduced under the IBP exposure. Taxonomic analysis revealed that 62.2% of the fungal sequences were affiliated with Basidiomycota, followed by Ascomycota (37.4%) at the phylum level. Uncultured fungus (48.2%), Chaetomium sp. (14.2%), Aspergillus sp. (12.4%), Trichoderma sp. (5.7%), Cladosporium sp. (5.4%), and Emericellopsis sp. (5.2%) were identified as dominant genera. At the genus level, a distinct profile of the fungal community in the IBP-enriched mesocosms was observed as compared to the control beds, and as well specific fungal genera were enhanced in the planted beds, regardless of IBP enrichment. However, despite these differences, the composition of the fungal community (as measured by Bray-Curtis similarity) was mostly unaffected by the significant IBP enrichment. On the other hand, a consistent similarity pattern of fungal community structure in the planted mesocosms suggests that the presence of higher macrophytes in the wetland systems may well help shape the fungal community structure.

  13. Removal of cypermethrin from cattle bath by using constructed wetland system

    Directory of Open Access Journals (Sweden)

    José Luis Marrugo Negrete

    2016-05-01

    Full Text Available Ectoparasite control in the livestock sector involves the use of chemicals to prevent production losses. In small farms that produce milk in the Córdoba department, the use of the pumping system for the cattle bath is common between farmers. In this work, cypermethrin degradation efficiency was evaluated in three lab-scale subsurface flow constructed wetland planted with Limnocharis flava, Cyperus papyrus and Alpinia purpurata sp., and one unplanted system, all of the beds were gravel based; then, total suspended solids and total phosphorus retention, and elimination of chemical oxygen demand were measured as water quality parameters. The wastewater was pretreated in a descending-ascending slow sand filter, and then was conducted to a wetland continuous flow fed at 7 ml/min. Limnocharis flavabed was higher for the degradation of organic compounds, with 97.9 ± 2.5 % and 69.1 ± 3.7 % for cypermethrin and chemical oxygen demand respectively, with statistically significant differences (p < 0,05 respect to unplanted bed. The higher SST removal were found in the Cyperus papyruswetland, with 62,0 %, however, no differences were observed with the other evaluated planted systems, as opposed these were significantly higher than unplanted wetlands.

  14. Impact of wetlands mapping on parameterization of hydrologic simulation models

    Science.gov (United States)

    Viger, R.

    2015-12-01

    Wetlands and other surface depressions can impact hydrologic response within the landscape in a number of ways, such as intercepting runoff and near-surface flows or changing the potential for evaporation and seepage into the soil. The role of these features is increasingly being integrated into hydrological simulation models, such as the USGS Precipitation-Runoff Modeling System (PRMS) and the Soil Water Assessment Tool (SWAT), and applied to landscapes where wetlands are dominating features. Because the extent of these features varies widely through time, many modeling applications rely on delineations of the maximum possible extent to define total capacity of a model's spatial response unit. This poster presents an evaluation of several wetland map delineations for the Pipestem River basin in the North Dakota Prairie-pothole region. The featured data sets include the US Fish and Wildlife Service National Wetlands Inventory (NWI), surface water bodies extracted from the US Geological Survey National Hydrography Dataset (NHD), and elevation depressions extracted from 1 meter LiDAR data for the area. In addition to characterizing differences in the quality of these datasets, the poster will assess the impact of these differences when parameters are derived from them for the spatial response units of the PRMS model.

  15. Nutrients removal by Typha latifolia and Cynodon spp. grown in constructed wetlands

    OpenAIRE

    Mateus Pimentel de Matos; Antonio Teixeira de Matos; Túlio Ferreira Lambert; Ronaldo Fia; Fátima Resende Luiz Fia

    2011-01-01

    The objective of this study was to evaluate the extraction capacity of two species when grown in constructed wetlands with subsurface horizontal flow (SACs) for the treatment of swine wastewater (ARS). To this end, were built 8 SACs of 2.0 m x 0.5 m x 0.6 m, fiber glass, filled with 0.55 m of fine gravels. In SAC2; SAC4; SAC6 and SAC8 was cultivated cattail (Typha latifolia) and in SAC3; SAC5; SAC7 and SAC9 was cultivated tifton-85 bermudagrass (Cynodon spp.). The SAC2 and SAC3, SAC4 and SAC5...

  16. Existing Soil Carbon Models Do Not Apply to Forested Wetlands

    Science.gov (United States)

    Carl C. Trettin; B. Song; M.F. Jurgensen; C. Li

    2001-01-01

    When assessing the biological,geological,and chemical cycling of nutrients and elements — or when assessing carbon dynamics with respect to global change — modeling and simulation are necessary. Although wetlands occupy a relatively small proportion of Earth’s terrestrial surface (

  17. An introduction to constructed wetlands (reed beds) sustainable low cost wastewater treatment plants

    International Nuclear Information System (INIS)

    Ahmad, M.I.

    2005-01-01

    The use of 'conventional' wastewater treatment technology (trickling filters and activated sludge) in developing countries has often been unsuccessful due to high cost, complex operating requirements and expensive maintenance procedures. Typical examples of such projects are wastewater plants in Islamabad and Karachi. Actually the conventional systems, such as trickling filters and activated sludge plants were developed to address the concerns about organic pollution of natural water bodies in western temperate climates, rather than the reduction of organic matter as well as pathogens which is often a priority in developing countries. Pakistan, being a developing country cannot and should not follow the western technology blindly but needs the use of a ppropriate technology . Appropriate technology is defined as a treatment system which meets the following criteria: Affordable: Total amount costs, including capital, operation, maintenance and depreciation are within the user's ability to pay. Operable: Operation of the system is possible with locally available labor and support. Reliable: Effluent quality requirements can be met consistently. Currently there are a limited number of appropriate technologies for small communities, which should be considered by a community and their designers. These include conventional and non-conventional systems such as stabilization ponds or lagoons, slow sand filters, land treatment systems, and wetlands (natural or constructed). The non-conventional systems often utilize 'ecological' treatment mechanism (such as aquatic systems or wetlands) and do not have the mechanical parts or energy requirements of conventional systems. Waste Stabilization Ponds are one such solution but sometimes are constrained by land availability, topography, and are not environment friendly. In such locations, natural or constructed wetlands (Reed Beds) could provide an alternative technology. It is what we call a LOW technology, rather than HI TECH

  18. Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands.

    Science.gov (United States)

    Zhang, Cuiping; Wang, Bei; Dai, Xiaoyan; Li, Shuying; Lu, Guangqiu; Zhou, Yuanqing

    2017-04-01

    Vertical flow constructed wetlands (VF CWs) are considered to be effective for treating organic pollutants. The rhizosphere of macrophytes such as Phragmites sp., Typha sp. serves as an active and dynamic zone for the microbial degradation of organic pollutants. However, it is still not clear how soil bacterial communities respond to macrophytes and pollutants during the process. For this purpose, the seedlings of Phragmites australis and Typha angustifolia were planted respectively in the VF CWs added with HCB at a dose of 2 mg/kg. During 96 days of cultivation, we monitored hexachlorobenzene (HCB) removal efficiency by GC/MS and the structure of the rhizosphere bacterial communities in the different VF CWs by denaturing gradient gel electrophoresis (DGGE), and constructed bacterial clone library based on PCR-amplified 16S rRNA gene. As expected, the rhizosphere bacterial communities also remained insensitive to HCB exposure in the wetland soil. The diversity of these microbes presented two stages, from the varied up and down to equilibrium in the entire experimental period. Molecular analysis revealed that the phylum Firmicutes dominated over the bacterial communities. The genera that increased under HCB stress included the well-known HCB-degrading bacteria (Pseudomonas sp. and Alcaligenes sp.) and other common bacteria found in contaminated soil but with lesser known practical functions (Burkholderia sp., Lysinibacillus fusiformis, and Bacillus cereus). Furthermore, there was a certain variance in the relative abundances of the bacterial phyla and HCB removal efficiency among different VF CW treatments. The degradation of HCB in T. angustifolia microcosms was faster than that in P. australis and unvegetated wetlands, and the highest bacterial diversity and richness was found in the VF CWs comprising T. angustifolia.

  19. Optimal conditions for chlorothalonil and dissolved organic carbon in horizontal subsurface flow constructed wetlands.

    Science.gov (United States)

    Rìos-Montes, Karina A; Casas-Zapata, Juan C; Briones-Gallardo, Roberto; Peñuela, Gustavo

    2017-04-03

    The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L -1 ) and one concentration of glucose (20 mg L -1 ) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18-6.35 mm), coarse gravel (12.70-25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%-85.31%) were found when using fine gravel (3.18-6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18-6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.

  20. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  1. Comparison of grey water treatment performance by a cascading sand filter and a constructed wetland.

    Science.gov (United States)

    Kadewa, W W; Le Corre, K; Pidou, M; Jeffrey, P J; Jefferson, B

    2010-01-01

    A novel unplanted vertical flow subsurface constructed wetland technology comprising three shallow beds (0.6 m length, 0.45 m width and 0.2 m depth) arranged in a cascading series and a standard single-pass Vertical Flow Planted Constructed Wetland (VFPCW, 6 m² and 0.7 m depth) were tested for grey water treatment. Particular focus was on meeting consent for published wastewater reuse parameters and removal of anionic surfactants. Treatment performance at two hydraulic loading rates (HLR) of 0.08, and 0.17 m³ m⁻² d⁻¹ were compared. Both technologies effectively removed more than 90% turbidity and more than 96% for organics with the prototype meeting the most stringent reuse standard of < 2 NTU and <10 mg/L. However, surfactant removal in the VFPCW was higher (76-85%) than in the prototype which only achieved more than 50% removal at higher loading rate. Generally, the prototype performed consistently better than the VFPCW except for surfactant removal. However, at higher loading rates, both systems did not meet the reuse standard of <1 mg L⁻¹ for anionic surfactants. This observation confirms that shallow beds provide a more oxidised environment leading to higher BOD₅ and COD removals. Presence of plants in the VFPCW led to higher anionic surfactant removal, through increased microbial and sorption processes.

  2. Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell

    Science.gov (United States)

    Yang, Qiao; Wu, Zhenxing; Liu, Lifen; Zhang, Fengxiang; Liang, Shengna

    2016-01-01

    Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemical oxygen demand (COD), oil removal, and output voltage generation were continuously monitored. The COD removals of three reactors were between 73% and 75%, and oil removals were over 95.7%. Compared with MFC, the CW-MFC with a MnO2 modified cathode produced higher power density and output voltage. Maximum power densities of CW-MFC and MFC were 3868 mW/m3 (102 mW/m2) and 3044 mW/m3 (80 mW/m2), respectively. The plants in CW-MFC play a positive role for reactor cathode potential. Both plants and cathode modification can improve reactor performance of electricity generation. PMID:28774005

  3. Characteristics and stabilities of residues from the Wheal Jane constructed wetlands.

    Science.gov (United States)

    Swash, P M; Monhemius, A J

    2005-02-01

    The characteristics and solubilities of residues formed during effluent treatment at the Wheal Jane constructed wetland facility in Cornwall, UK are described. The constructed wetland treats an acidic (pH 3 to 4) mine discharge enriched in iron (circuits. Solubility tests conducted on the materials from the aerobic and anaerobic cells attempt to simulate future possible leaching processes within landfill sites used for ultimate disposal. The tests used in the evaluation included TCLP, MARG, washing and column leaching. The aerobic solids overall have very low solubilities which are well below the TCLP thresholds for As, Cd and Pb. The TCLP results for these toxic elements are supported by the washing and column test work. The anaerobic substrates are carbonaceous in nature, composed of straw, wood pulp and manure. They contain minimal amounts of toxic compounds and are considered to be less of a disposal problem. Ochre precipitated at a pH of 3-4 in the aerobic cells contains significant concentrations of arsenic (>0.1%). This element is carcinogenic, and such residues are classified as hazardous waste under current UK landfill regulations. This classification does not take into consideration the solubility of the material but is based solely on the bulk chemical composition.

  4. Incorporation of oxygen contribution by plant roots into classical dissolved oxygen deficit model for a subsurface flow treatment wetland.

    Science.gov (United States)

    Bezbaruah, Achintya N; Zhang, Tian C

    2009-01-01

    It has been long established that plants play major roles in a treatment wetland. However, the role of plants has not been incorporated into wetland models. This study tries to incorporate wetland plants into a biochemical oxygen demand (BOD) model so that the relative contributions of the aerobic and anaerobic processes to meeting BOD can be quantitatively determined. The classical dissolved oxygen (DO) deficit model has been modified to simulate the DO curve for a field subsurface flow constructed wetland (SFCW) treating municipal wastewater. Sensitivities of model parameters have been analyzed. Based on the model it is predicted that in the SFCW under study about 64% BOD are degraded through aerobic routes and 36% is degraded anaerobically. While not exhaustive, this preliminary work should serve as a pointer for further research in wetland model development and to determine the values of some of the parameters used in the modified DO deficit and associated BOD model. It should be noted that nitrogen cycle and effects of temperature have not been addressed in these models for simplicity of model formulation. This paper should be read with this caveat in mind.

  5. Macroinvertebrate assemblages and biodiversity levels: ecological role of constructed wetlands and artificial ponds in a natural park

    Directory of Open Access Journals (Sweden)

    Laura Sartori

    2014-02-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Constructed wetlands play an important role in water supply, floodwater retention and nutrient removal, at the same time allowing the restoration of lost habitat and the preservation of biodiversity. There is little knowledge about the biodiversity that can be found in these artificial environments along time, especially at the invertebrate community level. Macroinvertebrate assemblages, water chemistry, morphology, and environmental characteristics of natural ponds, artificial pools and constructed wetlands in Parco Pineta (Northern Italy were studied to evaluate the effects of local factors on macroinvertebrate communities. The objective was to verify if each ecosystem could equally contribute to local biodiversity, regardless of its natural or artificial origin. Principal Components Analysis showed that ponds were divided into clusters, based on their morphology and their water quality, independently from their origin. The composition of macroinvertebrate communities was similar among natural wetlands and ponds artificially created to provide new habitats in the park, while it was different among natural wetlands and constructed wetlands created for wastewater treatment purposes. Biodiversity of natural ponds and constructed wetlands, evaluated using taxa richness, Shannon index, and Pielou index, was comparable. Canonical Correspondence Analysis highlighted differences in macroinvertebrate community composition and pointed out the relationships among macroinvertebrates and various environmental variables: habitat heterogeneity resulted as the most relevant factor that influences taxa richness. Water quality also affects the macroinvertebrate community structure. We determined that constructed wetlands with higher pollutant concentrations show different assemblage compositions but comparable overall macroinvertebrate biodiversity. Constructed wetlands became valuable ecological elements

  6. Removal kinetics of organic matter and nitrogen using Microbial Electrochemical based – Constructed Wetlands (iMETland)

    DEFF Research Database (Denmark)

    Ramírez Vargas, Carlos Andrés; Arias, Carlos Alberto; Carvalho, Pedro

    In recent years the combination of Constructed Wetlands and Microbial Fuel Cell (MFC), has led to an innovative set- up for wastewater treatment and energy harvesting, relaying on electrodes and external circuits (CW – MFC). Based on this approach, a new concept is being developed to create...... the Microbial Electrochemical-based Constructed Wetland (iMETland). In this system electro- active bacteria – EAB (e.g. Geobacter sp., Shewanella spp) are stimulated to release and transfer electrons to an electro-conductive material that act as unlimited electron acceptor, maximizing the substrate consumption...

  7. Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California.

    Science.gov (United States)

    Budd, Robert; O'Geen, Anthony; Goh, Kean S; Bondarenko, Svetlana; Gan, Jay

    2009-04-15

    Pollutants in agricultural irrigation return flow (tailwater) constitute a significant nonpoint source of pollution in intensive agricultural regions such as the Central Valley of California. Constructed wetlands (CWs) represent a feasible mitigation option to remove pollutants including pesticides in the tailwater. In this study, we evaluated two CWs in the Central Valley for their performance in removing pyrethroid and organophosphate insecticides under field-scale production conditions. Both CWs were found to be highly effective in reducing pyrethroid concentrations in the tailwater, with season-average concentration reductions ranging from 52 to 94%. The wetlands also reduced the flow volume by 68-87%, through percolation and evapotranspiration. When both concentration and volume reductions were considered, the season-average removal of pyrethroids ranged from 95 to 100%. The primary mechanism for pyrethroid removal was through sedimentation of pesticide-laden particles, which was influenced by hydraulic residence time and vegetation density. Temporal analysis indicates a potential efficiency threshold during high flow periods. The season-average removal of chlorpyrifos ranged 52-61%. The wetlands, however, were less effective at removing diazinon, likely due to its limited sorption to sediment particles. Analysis of pesticide partitioning showed that pyrethroids were enriched on suspended particles in the tailwater. Monitoring of pesticide association with suspended solids and bed sediments suggested an increased affinity of pyrethroids for lighter particles with the potential to move further downstream before subject to sedimentation. Results from this study show that flow-through CWs, when properly designed, are an effective practice for mitigating hydrophobic pesticides in the irrigation tailwater.

  8. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands.

    Science.gov (United States)

    Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis

    2017-06-15

    The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.

    Science.gov (United States)

    Greenway, M

    2003-01-01

    From a botanical perspective the major difference between waste stabilisation ponds and wetlands is the dominance of algae or floating plants in the former and emergent plants in the latter. Algae, floating and submerged plants remove nutrients directly from the water column whereas emergent species remove nutrients from the sediment. Water depth is a crucial factor in determining which plant types will become established. Surface flow constructed wetlands offer the greatest potential to grow a wide variety of different types of macrophytes. In assessing the suitability of plant species for nutrient removal, consideration must be given not only to nutrient uptake for growth but also storage of nutrients as plant biomass. A survey of macrophytes in 15 surface flow constructed wetlands treating secondary effluent was conducted in Queensland; 63 native species and 14 introduced species were found. Emergent species have been able to tolerate deeper water than in their natural environment and permanent waterlogging. All species grew well in the higher nutrient enriched wastewater. Submerged, floating leaved-attached and free floating species had the highest tissue nutrient content, followed by aquatic creepers. All these species remove nutrients from the water column. Emergent species had lower nutrient content but a greater biomass and were therefore able to store more nutrients per unit area of wetland. In order to maximise the efficiency of constructed wetlands for nutrient removal, a range of species should be used. Native species should be selected in preference to introduced/exotic species.

  10. Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model

    Science.gov (United States)

    Wester, Sjoerd J.; Grimson, Rafael; Minotti, Priscilla G.; Booija, Martijn J.; Brugnach, Marcela

    2018-04-01

    Knowledge about the hydrological regime of wetlands is key to understand their physical and biological properties. Modelling hydrological and hydrodynamic processes within a wetland is therefore becoming increasingly important. 3D models have successfully modelled wetland dynamics but depend on very detailed bathymetry and land topography. Many 1D and 2D models of river deltas highly simplify the interaction between the river and wetland area or simply neglect the wetland area. This study proposes an enhanced quasi-2D modelling strategy that captures the interaction between river discharge and moon tides and the resulting hydrodynamics, while using the scarce data available. The water flow equations are discretised with an interconnected irregular cell scheme, in which a simplification of the 1D Saint-Venant equations is used to define the water flow between cells. The spatial structure of wetlands is based on the ecogeomorphology in complex estuarine deltas. The islands within the delta are modelled with levee cells, creek cells and an interior cell representing a shallow marsh wetland. The model is calibrated for an average year and the model performance is evaluated for another average year and additionally an extreme dry three-month period and an extreme wet three-month period. The calibration and evaluation are done based on two water level measurement stations and two discharge measurement stations, all located in the main rivers. Additional calibration is carried out with field water level measurements in a wetland area. Accurate simulations are obtained for both calibration and evaluation with high correlations between observed and simulated water levels and simulated discharges in the same order of magnitude as observed discharges. Calibration against field measurements showed that the model can successfully simulate the overflow mechanism in wetland areas. A sensitivity analysis for several wetland parameters showed that these parameters are all

  11. Use of constructed wetland for the removal of heavy metals from industrial wastewater.

    Science.gov (United States)

    Khan, Sardar; Ahmad, Irshad; Shah, M Tahir; Rehman, Shafiqur; Khaliq, Abdul

    2009-08-01

    This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.

  12. Constructed Wetlands for Combined Sewer Overflow Treatment—Comparison of German, French and Italian Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Meyer

    2012-12-01

    Full Text Available Combined sewer systems are designed to transport stormwater surface run off in addition to the dry weather flows up to defined limits. In most European countries, hydraulic loads greater than the design flow are discharged directly into receiving water bodies, with minimal treatment (screening, sedimentation, or with no treatment at all. One feasible solution to prevent receiving waters from strong negative impacts seems to be the application of vertical flow constructed wetlands. In Germany, first attempts to use this ecological technology were recognized in early 1990s. Since then, further development continued until a high level of treatment performance was reached. During recent years the national “state-of-the-art” (defined in 2005 was adapted in other European countries, including France and Italy. Against the background of differing national requirements in combined sewer system design, substantial developmental steps were taken. The use of coarser filter media in combination with alternating loadings of separated filter beds allows direct feedings with untreated combined runoff. Permanent water storage in deep layers of the wetland improves the system’s robustness against extended dry periods, but contains operational risks. Besides similar functions (but different designs and layouts, correct dimensioning of all approaches suffers from uncertainties in long-term rainfall predictions as well as inside sewer system simulation tools.

  13. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    Science.gov (United States)

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth.

    Science.gov (United States)

    Higgins, D; Curtin, T; Pawlett, M; Courtney, R

    2016-12-01

    High alkalinity (pH > 12) of bauxite-residue leachates presents challenges for the long-term storage and managements of the residue. Recent evidence has highlighted the potential for constructed wetlands to effectively buffer the alkalinity, but there is limited evidence on the potential for wetland plants to establish and grow in soils inundated with residue leachate. A pot-based trial was conducted to investigate the potential for Phragmites australis to establish and grow in substrate treated with residue leachate over a pH range of 8.6-11.1. The trial ran for 3 months, after which plant growth and biomass were determined. Concentrations of soluble and exchangeable trace elements in the soil substrate and also in the aboveground and belowground biomass were determined. Residue leachate pH did not affect plant biomass or microbial biomass. With the exception of Na, there was no effect on exchangeable trace elements in the substrate; however, increases in soluble metals (As, Cd and Na) were observed with increasing leachate concentration. Furthermore, increases in Al, As and V were observed in belowground biomass and for Cd and Cr in aboveground biomass. Concentrations within the vegetation biomass were less than critical phytotoxic levels. Results demonstrate the ability for P. australis to grow in bauxite-residue leachate-inundated growth media without adverse effects.

  15. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of N:P ratio of influent on biomass, nutrient allocation, and recovery of Typha latifolia and Canna 'Bengal Tiger' in a laboratory-scale constructed wetland

    Science.gov (United States)

    Constructed wetlands (CWs) are an effective low-technology approach for treating agricultural, industrial, and municipal wastewater. Recovery of phosphorous by constructed wetland plants may be affected by wastewater nitrogen to phosphorous (N:P) ratios. Varying N:P ratios were supplied to Canna '...

  17. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    , this paper explored the economic feasibility of implementing a constructed wetland. Sensitivity analysis was conducted by varying the cost elements of the wetlands so as to establish the most cost effective scenario and a comparison with the existing nutrients reduction measures carried out. The analysis......Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...... show that cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio (CER) on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that, SFCW would be a better optimal nutrients...

  18. Urban wastewater process by aerobic constructed wetland; Depuracion de aguas residuales urbanas utilizando un humedal artificial aerobio

    Energy Technology Data Exchange (ETDEWEB)

    Gil Rodriguez, M.

    2007-07-01

    In this paper the experiences of urban wastewater treatment are shown in an aerobic constructed wetland, using phragmites australis.They were carried out changes on the design and operation of aerobic constructed wetlands of subsurface flow, in order to increase denitrification and biodegradation rate and to diminish the surface of the installation. the flow was channeled through a long and narrow channel to get bigger biodegradation rate to approach to the plug flow performance. the active space of process consists of two sites, one first anoxic in which denitrification takes place, and in the other one the wetland in oxygenated environment the organic matters of the wastewater are consumed by biodegradation and it takes place nitrification, and utilization of nitrates and phosphates by the vegetable culture. (Author) 14 refs.

  19. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate.

    Science.gov (United States)

    Li, Juan; Liu, Xinchun; Yu, Zhisheng; Yi, Xin; Ju, Yiwen; Huang, Jing; Liu, Ruyin

    2014-01-01

    This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.

  20. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants

    DEFF Research Database (Denmark)

    Calheirosa, C.S.C.; Silva, G.; Quitério, P.V.B.

    2012-01-01

    effluent caused a complete germination inhibition. Constructed wetlands (CWs) with Arundo donax or Sarcocornia fruticosa were envisaged to further polish this wastewater. Selection of plant species to use in CWs for industrial wastewater treatment is an important issue, since for a successful establishment......The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted...... they have to tolerate the often harsh wastewater composition. For that, the effects of this wastewater on the growth of Arundo and Sarcocornia were assessed in pot assays. Plants were subject to different wastewater contents (0/50/100%), and both were resilient to the imposed conditions. Arundo had higher...

  1. Effects of water flow on submerged macrophyte-biofilm systems in constructed wetlands.

    Science.gov (United States)

    Han, Bing; Zhang, Songhe; Wang, Peifang; Wang, Chao

    2018-02-08

    The effects of water flow on the leaf-biofilm interface of Vallisneria natans and Hydrilla verticillata were investigated using artificial plants as the control. Water flow inhibited the growth of two species of submerged macrophytes, reduced oxygen concentrations in plant leaves and changed oxygen profiles at the leaf-biofilm interface. The results from confocal laser scanning microscopy and multifractal analysis showed that water flow reduced biofilm thickness, changed biofilm topographic characterization and increased the percentages of single colony-like biofilm patches. A cluster analysis revealed that the bacterial compositions in biofilms were determined mainly by substrate types and were different from those in sediments. However, water flow increased the bacterial diversity in biofilms in terms of operational taxonomic unit numbers and Shannon Indices. Our results indicated that water flow can be used to regulate the biomass, distribution and bacterial diversities of epiphytic biofilms in constructed wetlands dominated by submerged macrophytes.

  2. Effects of bleaching wastewater irrigation on soil quality of constructed reed wetlands

    Directory of Open Access Journals (Sweden)

    Cheng Ding

    2016-10-01

    Full Text Available Constructed reed wetland microcosms (CRWs in a lab of east China have been irrigated with bleaching wastewater per month for a reed growth season. The soil physicochemical properties, enzyme activities (i.e. urease, invertase, polyphenol oxidase, alkaline phosphatase and cellulase and soil microbial diversity were assayed before and after the exposure experiment. Compared to the river water irrigated controls (CKs, bleaching wastewater application has no marked influence on soil pH, but significantly increased soil Na+, total halogen and absorbable organic halogen (AOX contents, which induced the increasing of soil electrical conductivity. Furthermore, soil enzyme activities displayed significant variation (except for polyphenol oxidase. Bleaching wastewater irrigation decreased Sorenson’s pairwise similarity coefficient (Cs, which indicated the changes of the structure of bacterial and fungal communities. However, only the diversity of bacterial community was inhibited and has no effect on the diversity of fungal community, as evidenced by the calculated Shannon–Wiener index (H.

  3. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S. [Cornell Univ., Ithaca, NY (United States)

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  4. Role of Plants in a Constructed Wetland: Current and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amit Gross

    2013-04-01

    Full Text Available The role of plants in the treatment of effluents by constructed wetland (CW systems is under debate. Here, we review ways in which plants can affect CW processes and suggest two novel functions for plants in CWs. The first is salt phytoremediation by halophytes. We have strong evidence that halophytic plants can reduce wastewater salinity by accumulating salts in their tissues. Our studies have shown that Bassia indica, a halophytic annual, is capable of salt phytoremediation, accumulating sodium to up to 10% of its dry weight. The second novel use of plants in CWs is as phytoindicators of water quality. We demonstrate that accumulation of H2O2, a marker for plant stress, is reduced in the in successive treatment stages, where water quality is improved. It is recommended that monitoring and management of CWs consider the potential of plants as phytoremediators and phytoindicators.

  5. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.

    Science.gov (United States)

    Usharani, B; Vasudevan, N

    2016-01-01

    The objective of this review is to throw light upon the global concern of heavy metal-contaminated sites and their remediation through an ecofriendly approach. Accumulated heavy metals in soil and water bodies gain entry through the food chain and pose serious threat to all forms of life. This has engendered interest in phytoremediation techniques where hyperaccumulators are used. Constructed wetland has a pivotal role and is a cost-effective technique in the remediation of heavy metals. Metal availability and mobility are influenced by the addition of chelating agents, which enhance the availability of metal uptake. This review helps in identifying the critical knowledge gaps and areas to enhance research in the future to develop strategies such as genetically engineered hyperaccumulators to attain an environment devoid of heavy metal contamination.

  6. Drainage filters and constructed wetlands to mitigate site-specific nutrient losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Iversen, Bo Vangsø

    Despite substantial efforts, the leaching of nutrients from agricultural land is still a serious and costly environmental problem in Denmark and elsewhere. The quality goals of the European Water Framework Directive (WFD) for the aquatic environment require a substantial reduction of diffuse...... nutrient loads from farmland in Denmark. Tile drains and ditches connect fields to receiving waters and act as subsurface highways for both soluble and particulate P and nitrogen. Hence, for a large number of recipients, drainage water nutrient loads has a major impact on water quality, however, mitigation...... drainage. The project studies different approaches of implementing the filter technologies including drainage well or drainage pipe filters as well as surface-flow and sub-surface flow constructed wetlands....

  7. Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater

    DEFF Research Database (Denmark)

    Braeckevelt, M.; Reiche, N.; Trapp, Stefan

    2011-01-01

    Low-chlorinated benzenes (CBs) are widespread groundwater contaminants and often threaten to contaminate surface waters. Constructed wetlands (CWs) in river floodplains are a promising technology for protecting sensitive surface water bodies from the impact of CBs. The efficiency and seasonal...... variability of monochlorobenzene (MCB), 1,4-dichlorobenzene (1,4-DCB) and 1,2-dichlorobenzene (1,2-DCB) removal, the impact of planting, and gaseous MCB emissions from the filter surface were investigated over the course of 1 year in both a vegetated pilot-scale CW and an unplanted reference plot (UR). Annual...... in the CW and UR. Microbial degradation was the dominating process. The observed positive impact of plants on MCB removal was caused by improved oxygen supply (due to root oxygen release into the rhizosphere and enhanced water table fluctuations), and direct plant uptake....

  8. Hydro-geochemistry and retention of phosphorus in drainage filters and constructed wetlands

    DEFF Research Database (Denmark)

    Canga, Eriona; Kjærgaard, Charlotte; Iversen, Bo Vangsø

    Despite substantial efforts, the leaching of nutrients from agricultural land is still a serious and costly environmental problem in Denmark and elsewhere. The quality goals of the European Water Framework Directive (WFD) for the aquatic environment require a substantial reduction of diffuse...... losses and 45-60% of total N losses. Hence, for a large number of recipients, drainage water nutrient loads has a major impact on water quality, however, mitigation options targeting subsurface drainage are lacking. An end-of-pipe drainage filter solution offers the benefits of a targeted measure...... as surface-flow and subsurface flow constructed wetlands. Various natural and industrial P filter substrates are tested towards P sorption properties, as well as hydraulic efficiency and P retention efficiency during variable flow regimes. A major challenge is to reduce comparatively low P concentrations...

  9. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.

    Science.gov (United States)

    Dordio, Ana; Carvalho, A J Palace; Teixeira, Dora Martins; Dias, Cristina Barrocas; Pinto, Ana Paula

    2010-02-01

    Microcosm constructed wetlands systems established with a matrix of light expanded clay aggregates (LECA) and planted with Typha spp. were used to evaluate their ability to remove pharmaceuticals ibuprofen, carbamazepine and clofibric acid from wastewaters. Seasonal variability of these systems' performances was also evaluated. Overall, removal efficiencies of 96%, 97% and 75% for ibuprofen, carbamazepine and clofibric acid, respectively, were achieved under summer conditions after a retention time of 7 days. In winter, a maximum loss of 26% in removal efficiency was observed for clofibric acid. Removal kinetics was characterized by a fast initial step (>50% removal within 6h) mainly due to adsorption on LECA but, on a larger timescale, plants also contributed significantly to the system's performance. Despite the fact that further tests using larger-scale systems are required, this study points to the possible application of these low-cost wastewater treatment systems for dealing with pharmaceuticals contaminated wastewater.

  11. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...

  12. Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal ans spatial fluctuations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Jiří; Picek, T.; Čížková, Hana

    2008-01-01

    Roč. 34, - (2008), s. 223-232 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z60870520 Keywords : Redox potential * Redox prosesses * Phragmites australis * Wastewater treatment s * Constructed wetlands * Contunuous measurement Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.836, year: 2008

  13. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland.

    Science.gov (United States)

    Zarate, Frederick M; Schulwitz, Sarah E; Stevens, Kevin J; Venables, Barney J

    2012-07-01

    Constructed wetlands are a potential method for the removal of two pharmaceutical and personal care products from wastewater effluent. Triclosan (TCS; 5-chloro-2-[2,4-dichlorophenoxy]phenol) and triclocarban (TCC; 3,4,4'-trichlorocarbanillide) are antimicrobial agents added to a variety of consumer products whose accumulation patterns in constructed wetlands are poorly understood. Here, we report the accumulation of TCS, its metabolite methyl-triclosan (MTCS; 5-chloro-2-[2,4-dichlorophenoxy]), and TCC in wetland plant tissues and sediments. Three wetland macrophytes: Typha latifolia, Pontederia cordata, and Sagittaria graminea were sampled from a constructed wetland in Denton, Texas, USA. MTCS concentrations were below the method detection limit (MDL) for all species. TCS root tissue concentrations in T. latifolia were significantly greater than root concentrations in P. cordata (mean±SE in ng g(-1): 40.3±11.3 vs. 15.0±1.9, respectively), while for TCC, shoot tissue concentrations in S. graminea were significantly greater than in T. latifolia (22.8±9.3 vs. 9.0 (MDL), respectively). For both TCS and TCC, T. latifolia root tissue concentrations were significantly greater than shoot concentrations (TCS: 40.3±11.3 vs. 17.2±0.2, TCC: 26.0±3.6 vs. 9.0, (MDL)). TCC concentrations in P. cordata roots were significantly greater than in shoots (34.4±5.3 vs. 15.4±2.8, respectively). TCS concentrations in T. latifolia roots and sediments and TCC concentrations in sediments generally decreased from wetland inflow to outflow. To our knowledge, this is the first study documenting species and tissue specific differences in the accumulation of TCS and TCC in plants from an operational constructed wetland. The species specific differences in bioaccumulation suggest TCS and TCC removal from constructed wetlands could be enhanced through targeted plantings. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng

    2003-01-01

    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  15. Regeneration of vegetation on wetland crossings for gas pipeline rights-of-way one year after construction

    International Nuclear Information System (INIS)

    Shem, L.M.; Zimmerman, R.E.; Zellmer, S.D.; Van Dyke, G.D.; Rastorfer, J.R.

    1993-01-01

    Four wetland crossings of gas pipeline rights-of-way (ROWs), located in Florida, Michigan, New Jersey, and New York, were surveyed for generation of vegetation roughly one year after pipeline construction was completed. Conventional trench-and-fill construction techniques were employed for all four sites. Estimated areal coverage of each species by vegetative strata within transect plots was recorded for plots on the ROW and in immediately adjacent wetlands undisturbed by construction activities. Relative success of regeneration was measured by percent exposed soil, species diversity, presence of native and introduced species, and hydric characteristics of the vegetation. Variable site factors included separation and replacement of topsoil, final grading of the soil, application of seed and fertilizer, and human disturbance unrelated to construction. Successful regeneration exhibited greater dependency on the first three factors listed

  16. Results of a modeling workshop concerning preservation and protection of wetlands in North Dakota

    Science.gov (United States)

    Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Hamilton, David B.; Roelle, James E.

    1981-01-01

    In a recently signed letter, the Governor of North Dakota and the Assistant Secretary of the Interior for Fish and Wildlife and Parks charged a joint state-federal study group with examination of two separate questions: 1) mitigation for the Garrison Diversion Project; and 2) planning for long-range protection and preservation of fish and wildlife habitat in North Dakota. The cochair for this study group (the Secretary of the Interior's Field Representative, Denver, Colorado, and the Natural Resources Coordinator for North Dakota) further articulated the charge concerning the second of these two questions to include three steps: 1) development of a general plan for preservation and protection of migratory waterfowl and their associated wetland habitat; 2) a comprehensive analysis of alternative strategies, including opportunities and constraints, for achieving the goals articulated in Step 1; and 3) design of a coordinated state-federal public information program to assist in plan implementation. In order to obtain input from a variety of interests, the joint study group initiated step 2 activities with a five-day workshop in Bismarck, N. D.; December 8-12, 1980. The objectives of the workshop were: 1) to identify alternative strategies for preserving and enhancing waterfowl production habitat in North Dakota; 2) to identify opportunities and constraints associated with those alternatives; and 3) to promote communication and understanding of the implications of those alternatives for all affected parties. To achieve these objectives, the workshop utilized a group of concepts and techniques collectively known as Adaptive Environmental Assessment (AEA). Developed by Dr. C. S. Holling and his co-workers at the University of British Columbia, the AEA process involves planners, managers, scientists, and other interested parties in a structures atmosphere whose focus is the construction and examination of a computerized simulation model of the resource system under

  17. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0

    Directory of Open Access Journals (Sweden)

    A. A. Bloom

    2017-06-01

    Full Text Available Wetland emissions remain one of the principal sources of uncertainty in the global atmospheric methane (CH4 budget, largely due to poorly constrained process controls on CH4 production in waterlogged soils. Process-based estimates of global wetland CH4 emissions and their associated uncertainties can provide crucial prior information for model-based top-down CH4 emission estimates. Here we construct a global wetland CH4 emission model ensemble for use in atmospheric chemical transport models (WetCHARTs version 1.0. Our 0.5°  ×  0.5° resolution model ensemble is based on satellite-derived surface water extent and precipitation reanalyses, nine heterotrophic respiration simulations (eight carbon cycle models and a data-constrained terrestrial carbon cycle analysis and three temperature dependence parameterizations for the period 2009–2010; an extended ensemble subset based solely on precipitation and the data-constrained terrestrial carbon cycle analysis is derived for the period 2001–2015. We incorporate the mean of the full and extended model ensembles into GEOS-Chem and compare the model against surface measurements of atmospheric CH4; the model performance (site-level and zonal mean anomaly residuals compares favourably against published wetland CH4 emissions scenarios. We find that uncertainties in carbon decomposition rates and the wetland extent together account for more than 80 % of the dominant uncertainty in the timing, magnitude and seasonal variability in wetland CH4 emissions, although uncertainty in the temperature CH4 : C dependence is a significant contributor to seasonal variations in mid-latitude wetland CH4 emissions. The combination of satellite, carbon cycle models and temperature dependence parameterizations provides a physically informed structural a priori uncertainty that is critical for top-down estimates of wetland CH4 fluxes. Specifically, our ensemble can provide enhanced information on the prior

  18. Group-based modeling of ecological trajectories in restored wetlands.

    Science.gov (United States)

    Matthews, Jeffrey W

    2015-03-01

    Repeated measures taken at the same restoration sites over time are used to describe restoration trajectories and identify sites that are trending toward unexpected outcomes. Analogously, social scientists use repeated measures of individuals to describe developmental trajectories of behaviors or other outcomes. Group-based trajectory modeling (GBTM) is one statistical method used in behavioral and health sciences for this purpose. I introduce the use of GBTM to identify clusters of similar restoration trajectories within a sample of sites. Data collected at 54 restored wetlands in Illinois for up to 15 years post-restoration were used to describe trajectories of six indicators: plant species richness, number of Carex (sedge) species, mean coefficient of conservatism (mean C), native plant cover, perennial plant cover, and planted species cover. For each indicator, I used GBTM to classify wetlands into three to four groups with distinct trajectories. In general, cover by native and planted species declined, while species richness and mean C increased over time or peaked then declined. Site context and management may explain trajectory group membership. Specifically, wetlands restored more recently and those restored within forested contexts were more likely to follow increasing trajectories. I show GBTM to be useful for identifying typical restoration trajectory patterns, developing hypotheses regarding factors driving those patterns and pinpointing critical times for intervention. Furthermore, GBTM might be applied more broadly in ecological research to identify common patterns of community assembly in large numbers of plots or sites.

  19. Modeling the hydrological patterns on Pantanal wetlands, Brazil

    Science.gov (United States)

    Castro, A. A.; Cuartas, A.; Coe, M. T.; Koumrouyan, A.; Panday, P. K.; Lefebvre, P.; Padovani, C.; Costa, M. H.; de Oliveira, G. S.

    2014-12-01

    The Pantanal of Brazil is one of the world's largest wetland regions. It is located within the 370,000 km2 Alto Paraguai Basin (BAP). In wet years almost 15% of the total area of the basin can be flooded (approximately 53,000 km2). The hydrological cycle is particularly important in the Pantanal in the transport of materials, and the transfer of energy between atmospheric, aquatic, and terrestrial systems. The INLAND (Integrated Land Surface Model) terrestrial ecosystem model is coupled with the THMB hydrological model to examine the hydrological balance and water dynamics for this region. The INLAND model is based on the IBIS dynamic vegetation model, while THMB represents the river, wetland and lake dynamics of the land surface. The modeled hydrological components are validated with surface and satellite-based estimates of precipitation (gridded observations from CRU v. 3.21, reanalysis data from ERA-interim, and TRMM estimates), evapotranspiration (MODIS and Land Flux-Eval dataset), total runoff (discharge data from ANA-Agência Nacional das Águas - Brazil), and terrestrial water storage (GRACE). Results show that the coupled hydrological model adequately represents the water cycle components, the river discharge and flooded areas. Model simulations are further used to study the influences of climatic variations on the hydrological components, river network, and the inundated areas in the Pantanal.

  20. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  1. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland

    International Nuclear Information System (INIS)

    Wiessner, A.; Kuschk, P.; Jechorek, M.; Seidel, H.; Kaestner, M.

    2008-01-01

    Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S 2- and S 0 in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands. - In an experimental constructed wetland a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability was observed

  2. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wiessner, A. [Department of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Kuschk, P. [Department of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany)], E-mail: peter.kuschk@ufz.de; Jechorek, M.; Seidel, H.; Kaestner, M. [Department of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany)

    2008-09-15

    Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S{sup 2-} and S{sup 0} in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands. - In an experimental constructed wetland a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability was observed.

  3. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system.

    Science.gov (United States)

    Sun, Guangzhi; Zhao, Yaqian; Allen, Stephen

    2005-01-26

    A tidal flow constructed wetland system was investigated for the removal of organic matter and ammoniacal-nitrogen from diluted piggery wastewater. The results demonstrated that the operation of tidal flow enhanced the transfer of oxygen into wetland matrices. The supply of oxygen by the operation (473 gO2/m2d) matched the demand for wastewater treatment. The overall oxygen consumption rate in the system was considerably higher than the typical rate obtainable in conventional wetlands; most oxygen being used for the decomposition of organic matter. Compared with conventional systems, the tidal flow system demonstrated greater efficiency in the removal of organic matter. Significant nitrification did not take place, although 27-48% ammonia was removed from the wastewater. Immobilization by microbial cells and adsorption were the likely routes to remove ammonia under the specific experiment conditions. Percentage removals of BOD5, NH4-N and SS increased after effluent recirculation at a ratio of 1:1 was employed.

  4. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.

    Science.gov (United States)

    Guittonny-Philippe, Anna; Petit, Marie-Eléonore; Masotti, Véronique; Monnier, Yogan; Malleret, Laure; Coulomb, Bruno; Combroux, Isabelle; Baumberger, Teddy; Viglione, Julien; Laffont-Schwob, Isabelle

    2015-01-01

    Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system. Wild plant species growing in aquatic bodies at industrial outfalls could constitute suitable tolerant species to use in CWs for industrial effluent treatment. To test this hypothesis, we assessed, under laboratory conditions (using an experimental design), the tolerance to mixtures of metals (Al, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Sn, Zn) or/and organic pollutants (THC, PHE, PYR, LAS) of five European sub-cosmopolitan native macrophytes (Alisma lanceolatum, Carex cuprina, Epilobium hirsutum, Iris pseudacorus and Juncus inflexus) that had been collected in a polluted Mediterranean wetland, after a field study (crossing ecological relevés and analyses of contaminant concentrations in water and sediments). Our results demonstrated that research on phytoremediation of industrial effluents should focus much more on the use of native macrophytes growing at short distances from industrial discharges (such as C. cuprina in this study), and that root/shoot ratio, aerial height and proportion of green leaves are good and cost-effective indicators of plant tolerance to metals and organic pollutant mixtures in laboratory studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore.

    Science.gov (United States)

    Sim, C H; Quek, B S; Shutes, R B E; Goh, K H

    2013-01-01

    Lorong Halus, Singapore's first landfill leachate treatment system, consists of a pre-treatment system (8,000 m(2)), five constructed reed beds (38,000 m(2)), five polishing ponds (13,000 m(2)), an education centre and a learning trail for visitors. Eight species of wetland plants (total 160,000 plants) were selected for their ability to uptake nutrients, tolerance to low phosphorus concentrations and resistance to pest infestations. The wetland was launched in March 2011 and water quality monitoring started in April 2011. The removal efficiencies of the pre-treatment system from April 2011 to August 2012 are biochemical oxygen demand (BOD5) 57.4%; chemical oxygen demand (COD) 23.6%; total suspended solids (TSS) 55.1%; ammoniacal nitrogen (NH4-N) 76.8%; total phosphorus (TP) 33.3% and total nitrogen (TN) 60.2%. Removal efficiencies of the reed beds are BOD5 47.0%; COD 42.2%; TSS 57.0%; NH4-N 82.5%; TP 29.3% and TN 83.9%. Plant growth is generally satisfactory, but the lower than designed volume of leachate has adversely affected some sections of plants and resulted in uneven flow distribution in reed beds. The plant management programme includes improving plant regrowth by harvesting of alternate strips of plants and replanting. The treated effluent meets water quality limits for discharge to the public sewer and is subsequently treated by the NEWater treatment system, which recycles water for industrial and indirect potable use.

  6. Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review

    Directory of Open Access Journals (Sweden)

    Eric R. Rozema

    2016-04-01

    Full Text Available Constructed wetlands (CW are a treatment option for agricultural wastewater. Their ability to adequately function in cold climates continues to be evaluated as they are biologically active systems that depend on microbial and plant activity. In order to assess their performance and to highlight regional specific design considerations, a review of CWs in Eastern Canada and the Northeastern USA was conducted. Here, we synthesize performance data from 21 studies, in which 25 full-scale wetlands were assessed. Where possible, data were separated seasonally to evaluate the climatic effects on treatment performance. The wastewater parameters considered were five-day biochemical oxygen demand (BOD5, total suspended solids (TSS, E. coli, fecal coliforms, total Kjeldahl nitrogen (TKN, ammonia/ammonium (NH3/NH4+-N, nitrate-nitrogen (NO3−-N, and total phosphorus (TP. Average concentration reductions were: BOD5 81%, TSS 83%, TKN 75%, NH4+-N 76%, NO3−-N 42%, and TP 64%. Average log reductions for E. coli and fecal coliforms were 1.63 and 1.93, respectively. Average first order areal rate constants (ka, m·y−1 were: BOD5 6.0 m·y−1, TSS 7.7 m·y−1, E. coli 7.0 m·y−1, fecal coliforms 9.7 m·y−1, TKN 3.1 m·y−1, NH4+-N 3.3 m·y−1, NO3−-N 2.5 m·y−1, and TP 2.9 m·y−1. In general, CWs effectively treated a variety of agricultural wastewaters, regardless of season.

  7. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil.

    Science.gov (United States)

    Machado, A I; Beretta, M; Fragoso, R; Duarte, E

    2017-02-01

    Conventional wastewater treatment plants (WWTPs) commonly require large capital investments as well as operation and maintenance costs. Constructed wetlands (CWs) appear as a cost-effective treatment, since they can remove a broad range of contaminants by a combination of physical, chemical and biological processes with a low cost. Therefore, CWs can be successfully applied for decentralized wastewater treatment in regions with low population density and/or with large land availability as Brazil. The present work provides a review of thirty nine studies developed on CWs implemented in Brazil to remove wastewater contaminants. Brazil current sanitation data is also considered to evaluate the potential role of CWs as decentralized wastewater treatment. Performance of CWs was evaluated according to (i) type of wetland system, (ii) different support matrix (iii) vegetation species and (iv) removal efficiency of chemical oxygen demand (COD), biological oxygen demand (BOD 5 ), nitrogen (N), and phosphorus (P). The reviewed CWs in overall presented good efficiencies, whereas H-CWs achieved the highest removals for P, while the higher results for N were attained on VF-CW and for COD and BOD 5 on HF-CW. Therefore, was concluded that CWs are an interesting solution for decentralized wastewater treatment in Brazil since it has warm temperatures, extensive radiation hours and available land. Additionally, the low percentage of population with access to the sewage network in the North and Northeast regions makes these systems especially suitable. Hence, the further implementation of CW is encouraged by the authors in regions with similar characteristics as Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Gas production, oxygen demand and microbial activity in sediments of wetlands constructed with oil sands mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Weisener, C.; Ciborowski, J.; Slama, C.; Costa, J. [Windsor Univ., ON (Canada); Goudey, S. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    Changes in sediment oxygen demand (SOD) in 2 reference and 9 oil sands process material (OSPM) impacted wetlands were evaluated. The wetlands were constructed in 1992. SOD was measured by determining the rate of O{sub 2} depletion in in-situ test chambers placed on the sediment surface within the test pond areas. The study showed that SOD measurements conducted in 2008-2009 showed a slower rate of oxygen consumption than measurements conducted in 1993. Results suggested that sediment-associated reducing compounds were depleted. Carbon dioxide (CO{sub 2}) was dominantly respired by methanogens using the carbon as a terminal electron acceptor in conjunction with hydrogen to produce methane (CH{sub 4}). Gases analyzed in situ from the wetland sediments suggested that OSPM-affected sediments promote the growth of methanogenic bacteria. Samples of evolved gas, pore water, and intact sediment cores were collected at each wetland site in order to determine if significant differences in biogeochemical composition have developed. Further research is being conducted to characterize the relationship between the microbes and the sediments of the reclaimed wetlands.

  9. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage.

    Science.gov (United States)

    Wiessner, A; Rahman, K Z; Kuschk, P; Kästner, M; Jechorek, M

    2010-12-01

    The knowledge regarding the dynamics of sulphur compounds inside constructed wetlands is still insufficient. Experiments in planted (Juncus effusus) and unplanted horizontal sub-surface-flow laboratory-scale constructed wetlands fed with artificial wastewater were carried out to evaluate the sulphate reduction, the composition and dynamics of generated sulphur compounds, as well as the influence of carbon load and plants on processes of sulphur transformation. In planted and unplanted wetlands, the addition of organic carbon (TOC of about 120 mg L(-1)) immediately affected the transformation of up to 90% of the incoming sulphate (150 mg L(-1)), directing it mainly towards elemental sulphur (30%) and sulphide (8%). During this experimental period, nearly 52% of the transformed sulphate-sulphur was calculated to be immobilized inside the planted wetland and 66% inside the unplanted one. In subsequent experiments, the deficiency of organic carbon inside the planted wetlands favoured the decrease of elemental sulphur in the pore water coupled to retransformation of depot-sulphur to dissolved sulphate. Nearly 90% of the deposited and reduced sulphur was found to be reoxidized. In principle, the results indicate a substantial improvement of this reoxidation of sulphur by oxygen released by the helophytes. Surplus of organic carbon promotes the ongoing sulphate reduction and the stability of deposed and dissolved reduced sulphur compounds. In contrast, inside the unplanted control wetland, a relative stability of the formed sulphur depots and the generated amount of dissolved sulphur compounds including elemental sulphur could be observed independently of the different loading conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing.

    Science.gov (United States)

    Bouldin, J L; Farris, J L; Moore, M T; Smith, S; Cooper, C M

    2007-08-01

    Constructed wetlands for mitigation of nonpoint agricultural runoff have been assessed for their ability to decrease potential toxicity from associated contaminants. After a simulated runoff event, constructed wetlands positioned in series were used to measure the effects of the organophosphate insecticide diazinon. Water, sediment, and plant samples from five sites were analyzed for diazinon concentrations from 0.5 hours to 26 days; peak concentrations were measured in sediment after 0.5 hours (268.7 microg/kg) and in water and plant tissue after 3 hours (121.71 microg/L and 300.7 microg/kg, respectively). Cholinesterase activity and changes in shell growth were measured from Corbicula fluminea deployed at corresponding sites. Water collected after 9 hours from all wetland sites contained diazinon concentrations sufficient to cause toxicity to Ceriodaphnia dubia, but not to Pimephales promelas. C. dubia survival was decreased in water sampled through 7 days from the site nearest runoff introduction, whereas C. fluminea deployed at this same site experienced 100% mortality after 26 days. Clams from lower sites survived wetland conditions, but growth and ChE activity were significantly decreased lower than that of clams from a control site. C. dubia exposed to water from these sites continued to have decreased survival throughout the 26-day sampling. Sediment sampled from 48 hours through 14 days at the lowest wetland site decreased the laboratory survival of Chironomus dilutus, and sediment from upper sites elicited an effect only on day 26. Although wetland concentrations of aqueous diazinon were decreased lower than toxic thresholds after 26 days, decreased ChE activity in deployed clams provided evidence of residual diazinon effects to deployed organisms.

  11. Evaluation of the hydrological flow paths in a gravel bed filter modeling a horizontal subsurface flow wetland by using a multi-tracer experiment.

    Science.gov (United States)

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Nijenhuis, Ivonne

    2018-04-15

    In recent years, constructed wetland systems have become into focus as means of cost-efficient organic contaminant management. Wetland systems provide a highly reactive environment in which several removal pathways of organic chemicals may be present at the same time; however, specific elimination processes and hydraulic conditions are usually separately investigated and thus not fully understood. The flow system in a three dimensional pilot-scale horizontal subsurface constructed wetland was investigated applying a multi-tracer test combined with a mathematical model to evaluate the flow and transport processes. The results indicate the existence of a multiple flow system with two distinct flow paths through the gravel bed and a preferential flow at the bottom transporting 68% of tracer mass resulting from the inflow design of the model wetland system. There the removal of main contaminant chlorobenzene was up to 52% based on different calculation approaches. Determined retention times in the range of 22d to 32.5d the wetland has a heterogeneous flow pattern. Differences between simulated and measured tracer concentrations in the upper sediment indicate diffusion dominated processes due to stagnant water zones. The tracer study combining experimental evaluation with mathematical modeling demonstrated the complexity of flow and transport processes in the constructed wetlands which need to be taken into account during interpretation of the determining attenuation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Qualitative models to predict impacts of human interventions in a wetland ecosystem

    Directory of Open Access Journals (Sweden)

    S. Loiselle

    2002-07-01

    Full Text Available The large shallow wetlands that dominate much of the South American continent are rich in biodiversity and complexity. Many of these undamaged ecosystems are presently being examined for their potential economic utility, putting pressure on local authorities and the conservation community to find ways of correctly utilising the available natural resources without compromising the ecosystem functioning and overall integrity. Contrary to many northern hemisphere ecosystems, there have been little long term ecological studies of these systems, leading to a lack of quantitative data on which to construct ecological or resource use models. As a result, decision makers, even well meaning ones, have difficulty in determining if particular economic activities can potentially cause significant damage to the ecosystem and how one should go about monitoring the impacts of such activities. While the direct impact of many activities is often known, the secondary indirect impacts are usually less clear and can depend on local ecological conditions.

    The use of qualitative models is a helpful tool to highlight potential feedback mechanisms and secondary effects of management action on ecosystem integrity. The harvesting of a single, apparently abundant, species can have indirect secondary effects on key trophic and abiotic compartments. In this paper, loop model analysis is used to qualitatively examine secondary effects of potential economic activities in a large wetland area in northeast Argentina, the Esteros del Ibera. Based on interaction with local actors together with observed ecological information, loop models were constructed to reflect relationships between biotic and abiotic compartments. A series of analyses were made to study the effect of different economic scenarios on key ecosystem compartments. Important impacts on key biotic compartments (phytoplankton, zooplankton, ichthyofauna, aquatic macrophytes and on the abiotic environment

  13. Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model

    Science.gov (United States)

    Zhang, Y.; Li, W.; Sun, G.

    2017-12-01

    Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.

  14. A simple procedure to model water level fluctuations in partially inundated wetlands

    NARCIS (Netherlands)

    Spieksma, JFM; Schouwenaars, JM

    When modelling groundwater behaviour in wetlands, there are specific problems related to the presence of open water in small-sized mosaic patterns. A simple quasi two-dimensional model to predict water level fluctuations in partially inundated wetlands is presented. In this model, the ratio between

  15. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands.

    Science.gov (United States)

    Corbella, Clara; Guivernau, Miriam; Viñas, Marc; Puigagut, Jaume

    2015-11-01

    This work aimed at determining the amount of energy that can be harvested by implementing microbial fuel cells (MFC) in horizontal subsurface constructed wetlands (HSSF CWs) during the treatment of real domestic wastewater. To this aim, MFC were implemented in a pilot plant based on two HSSF CW, one fed with primary settled wastewater (Settler line) and the other fed with the effluent of a hydrolytic up-flow sludge blanket reactor (HUSB line). The eubacterial and archaeal community was profiled on wetland gravel, MFC electrodes and primary treated wastewater by means of 16S rRNA gene-based 454-pyrosequencing and qPCR of 16S rRNA and mcrA genes. Maximum current (219 mA/m(2)) and power (36 mW/m(2)) densities were obtained for the HUSB line. Power production pattern correlated well with water level fluctuations within the wetlands, whereas the type of primary treatment implemented had a significant impact on the diversity and relative abundance of eubacteria communities colonizing MFC. It is worth noticing the high predominance (13-16% of relative abundance) of one OTU belonging to Geobacter on active MFC of the HUSB line that was absent for the settler line MFC. Hence, MFC show promise for power production in constructed wetlands receiving the effluent of a HUSB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Besse-Lototskaya, A.A.

    2013-01-01

    Society responds to changes in climate and land use via mitigation measures, including rainwater retention and storage in rewetted and newly constructed wetlands. Humans living close to these wetlands express concerns about future mosquito nuisance situations, and request the necessary distance

  17. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Besse-Lototskaya, A.A.

    2014-01-01

    Society responds to changes in climate and land use via mitigation measures, including rainwater retention and storage in rewetted and newly constructed wetlands. Humans living close to these wetlands express concerns about future mosquito nuisance situations, and request the necessary distance

  18. Using sorbent waste materials to enhance treatment of micro-point source effluents by constructed wetlands

    Science.gov (United States)

    Green, Verity; Surridge, Ben; Quinton, John; Matthews, Mike

    2014-05-01

    Sorbent materials are widely used in environmental settings as a means of enhancing pollution remediation. A key area of environmental concern is that of water pollution, including the need to treat micro-point sources of wastewater pollution, such as from caravan sites or visitor centres. Constructed wetlands (CWs) represent one means for effective treatment of wastewater from small wastewater producers, in part because they are believed to be economically viable and environmentally sustainable. Constructed wetlands have the potential to remove a range of pollutants found in wastewater, including nitrogen (N), phosphorus (P), biochemical oxygen demand (BOD) and carbon (C), whilst also reducing the total suspended solids (TSS) concentration in effluents. However, there remain particular challenges for P and N removal from wastewater in CWs, as well as the sometimes limited BOD removal within these treatment systems, particularly for micro-point sources of wastewater. It has been hypothesised that the amendment of CWs with sorbent materials can enhance their potential to treat wastewater, particularly through enhancing the removal of N and P. This paper focuses on data from batch and mesocosm studies that were conducted to identify and assess sorbent materials suitable for use within CWs. The aim in using sorbent material was to enhance the combined removal of phosphate (PO4-P) and ammonium (NH4-N). The key selection criteria for the sorbent materials were that they possess effective PO4-P, NH4-N or combined pollutant removal, come from low cost and sustainable sources, have potential for reuse, for example as a fertiliser or soil conditioner, and show limited potential for re-release of adsorbed nutrients. The sorbent materials selected for testing were alum sludge from water treatment works, ochre derived from minewater treatment, biochar derived from various feedstocks, plasterboard and zeolite. The performance of the individual sorbents was assessed through

  19. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  20. Introducing a boreal wetland model within the Earth System model framework

    Science.gov (United States)

    Getzieh, R. J.; Brovkin, V.; Reick, C.; Kleinen, T.; Raddatz, T.; Raivonen, M.; Sevanto, S.

    2009-04-01

    Wetlands of the northern high latitudes with their low temperatures and waterlogged conditions are prerequisite for peat accumulation. They store at least 25% of the global soil organic carbon and constitute currently the largest natural source of methane. These boreal and subarctic peat carbon pools are sensitive to climate change since the ratio of carbon sequestration and emission is closely dependent on hydrology and temperature. Global biogeochemistry models used for simulations of CO2 dynamics in the past and future climates usually ignore changes in the peat storages. Our approach aims at the evaluation of the boreal wetland feedback to climate through the CO2 and CH4 fluxes on decadal to millennial time scales. A generic model of organic matter accumulation and decay in boreal wetlands is under development in the MPI for Meteorology in cooperation with the University of Helsinki. Our approach is to develop a wetland model which is consistent with the physical and biogeochemical components of the land surface module JSBACH as a part of the Earth System model framework ECHAM5-MPIOM-JSBACH. As prototypes, we use modelling approach by Frolking et al. (2001) for the peat dynamics and the wetland model by Wania (2007) for vegetation cover and plant productivity. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). First results of the modelling approach will be presented. References: Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie and S. D. Muller (2001): Modeling Northern Peatland Decomposition and Peat Accumulation, Ecosystems, 4, 479-498. Lehner, B., Döll P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296 (1-4), 1-22. Wania, R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, 122 pp.

  1. Modeling the bathymetry of Catahoula Lake: Specialized technology for wetland management

    Science.gov (United States)

    Doyle, T.W.; Michot, T.C.; Wells, C.

    2002-01-01

    Catahoula Lake is the largest natural freshwater lake in Louisiana, covering more than 46 square miles (120 km2) (fig. 1). The lake is a principal stopover and wintering site for hundreds of thousands of migratory waterfowl and shorebirds. Scientists from the USGS National Wetlands Research Center are applying some of the research facility's specialties?wetland plant research, aerial and ground surveys, digital mapping, and computer modeling?to facilitate wetland management at Catahoula Lake.

  2. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds.

    Science.gov (United States)

    Schaller, Jörg; Headley, Tom; Prigent, Stephane; Breuer, Roman

    2014-09-15

    Shortages of resources (chemical elements) used by growing industrial activities require new techniques for their acquisition. A suitable technique could be the use of wetlands for the enrichment of elements from produced water of the oil industry. Oil industries produce very high amounts of water in the course of oil mining. These waters may contain high amounts of rare elements. To our best knowledge nothing is known about the economic potential regarding rare element mining from produced water. Therefore, we estimated the amount of harvestable rare elements remaining in the effluent of a constructed wetland-pond system which is being used to treat and evaporate vast quantities of produced waters. The examined wetland system is located in the desert of the south-eastern Arabian Peninsula. This system manages 95,000 m(3) per day within 350 ha of surface flow wetlands and 350 ha of evaporation ponds and is designed to be used for at least 20 years. We found a strong enrichment of some chemical elements in the water pathway of the system (e.g. lithium up to 896 μg L(-1) and beryllium up to 139 μg L(-1)). For this wetland, lithium and beryllium are the elements with the highest economic potential resulting from a high price and load. It is calculated that after 20 years retention period 131 t of lithium and 57 t of beryllium could be harvested. This technique may also be useful for acquisition of rare earth elements. Other elements (e.g. strontium) with a high calculated load of 4500 tons in 20 years are not efficiently harvestable due to a relatively low market value. In conclusion, wetland treated waters from the oil industry offer a promising new acquisition technique for elements like lithium and beryllium. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  4. Bioeconomic Modelling of Wetlands and Waterfowl in Western Canada: Accounting for Amenity Values

    NARCIS (Netherlands)

    Kooten, van G.C.; Whitey, P.; Wong, L.

    2011-01-01

    This study reexamines and updates an original bioeconomic model of optimal duck harvest and wetland retention by Hammack and Brown (1974, Waterfowl and Wetlands: Toward Bioeconomic Analysis. Washington, DC: Resources for the Future). It then extends the model to include the nonmarket (in situ) value

  5. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems

    Science.gov (United States)

    Yu Zhang; Changsheng Li; Carl C. Trettin; Harbin Li; Ge Sun

    2002-01-01

    Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global clinlate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model...

  6. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.

    Science.gov (United States)

    Arivoli, A; Mohanraj, R; Seenivasan, R

    2015-09-01

    The paper production is material intensive and generates enormous quantity of wastewater containing organic pollutants and heavy metals. Present study demonstrates the feasibility of constructed wetlands (CWs) to treat the heavy metals from pulp and paper industry effluent by using vertical flow constructed wetlands planted with commonly available macrophytes such as Typha angustifolia, Erianthus arundinaceus, and Phragmites australis. Results indicate that the removal efficiencies of the planted CWs for iron, copper, manganese, zinc, nickel, and cadmium were 74, 80, 60, 70, 71, and 70 %, respectively. On the other hand, the removal efficiency of the unplanted system was significantly lower ranging between 31 and 55 %. Among the macrophytes, T. angustifolia and E. arundinaceus exhibited comparatively higher bioconcentration factor (10(2) to 10(3)) than P. australis.

  7. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu

    2011-01-01

    Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...... of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...

  8. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland.

    Science.gov (United States)

    Shen, Zhiqiang; Zhou, Yuexi; Liu, Jia; Xiao, Yu; Cao, Rong; Wu, Fuping

    2015-01-01

    Cornstarch/polycaprolactone (SPCL) blends were prepared and used as external carbon source for biological denitrification in a constructed wetland. The denitrification performances, components of dissolved organic matter (DOM) and microbial diversity were investigated. The results showed that nitrate was removed mainly in the layer filled with SPCL, and the average denitrification rate was 0.069kg/m(3)d (nitrate removal efficiency was 98.23%). The major component of DOM was polysaccharides which mainly consisted of reducing sugar. Besides, the concentrations of polysaccharides and reducing sugar decreased along the height of the constructed wetland. Therefore, the dissolved organic carbon (DOC) of effluent decreased to 6.54mg/L. Denitrifying bacteria Bacillus (24.25%) and Thauera (9.36%) were the most abundant genera in the biofilm attached on the surface of SPCL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Science.gov (United States)

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater. PMID:24396832

  10. Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area

    Directory of Open Access Journals (Sweden)

    Abeer Albalawneh

    2016-02-01

    Full Text Available The main objective of this study was to evaluate the performance and treatment efficiency of the Horizontal Sub-Surface Flow Constructed Wetland treatment system (HSF-CW in an arid climate. Seventeen sub-surface, horizontal-flow HSF-CW units have been operated for approximately three years to improve the quality of partially-treated municipal wastewater. The studied design parameters included two sizes of volcanic tuff media (i.e., fine or coarse, two different bed dimensions (i.e., long and short, and three plantation types (i.e., reed, kenaf, or no vegetation as a control. The effluent Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, and phosphorus from all of the treatments were significantly lower as compared to the influent and demonstrated a removal efficiency of 55%, 51%, 67%, and 55%, respectively. There were significant increases in Electrical Conductivity (EC, sulfate, and calcium in the effluent of most HSF-CWs due to evaporative concentration and mineral dissolution from the media. The study suggests that unplanted beds with either fine or coarse media are the most suitable combinations among all of the studied designs based on their treatment efficiency and less water loss in arid conditions.

  11. Stormwater Treatment Evaluation of a Constructed Floating Wetland after Two Years Operation in an Urban Catchment

    Directory of Open Access Journals (Sweden)

    Christopher Walker

    2017-09-01

    Full Text Available Constructed Floating Wetlands (CFW for stormwater treatment are increasingly used to treat urban runoff. However, studies of large-scale systems and the long-term evaluation of their treatment efficiency are scarce. This article presents the final results of a two-year study of the pollutant removal performance of a CFW in a stormwater pond capturing runoff from a low-residential catchment in South-East Queensland (Australia under subtropical conditions. Although the CFW treatment area to catchment ratio was only 0.14%, the results demonstrated a significant removal of both Total Suspended Solids (TSS and Total Phosphorus (TP from the stormwater inflows by the CFW. The efficiency ratios for TSS and TP were 81% and 52%, respectively. While the removal rate for total nitrogen was not significant for the CFW evaluated in this study, the ER was still 17%. However, the ERs for nitrate and nitrogen oxide were both 47%. The study results suggest that it may be possible to increase the pollution removal performance of the CFW by upsizing the system and including intermittent re-aeration zones in the surrounding stormwater pond. The results of this research study clearly demonstrate that CFW can be an effective treatment solution for the removal of pollution from urban stormwater runoff.

  12. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal.

    Science.gov (United States)

    Zhu, Hui; Zhou, Qing-Wei; Yan, Bai-Xing; Liang, Yin-Xiu; Yu, Xiang-Fei; Gerchman, Yoram; Cheng, Xian-Wei

    2018-02-01

    In this study, the influence of vegetation type and environmental temperature on performance of constructed wetlands (CWs) was investigated. Results of vegetation types indicated that the removal of most nutrients in polyculture was greater than those in monoculture and unplanted control. The greatest removal percentages of NH 4 + -N, total nitrogen (TN) and total phosphorus (TP) in polyculture were 98.7%, 98.5%, and 92.6%, respectively. In experiments of different temperatures, the removal percentages of NH 4 + -N, NO 3 - -N, TN and TP in all CWs tended to decrease with the decline of temperature. Especially, a sharp decline in the removal percentages of NO 3 - -N (decreased by above 13.8%) and TN (decreased by above 7.9%) of all CWs was observed at low temperature (average temperature of 8.9 °C). Overall, the performance of CWs was obviously influenced by temperature, and the polyculture still showed best performance in the removal of nitrogen when the average temperature dropped to 19.8 °C. Additionally, the variations of urease activities in rhizosphere soil tended to decrease with the decreasing temperature. Overall, a substantial enhancement for nitrogen and TP removal in polyculture (Canna indica + Lythrum salicaria) was observed. In conclusion, CW cultivated with polyculture was a good strategy for enhancing nutrient removal when temperature was above 19.8 °C.

  13. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates.

    Science.gov (United States)

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat

    2012-04-01

    Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (pcaffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding.

    Science.gov (United States)

    Li, Fengmin; Lu, Lun; Zheng, Xiang; Ngo, Huu Hao; Liang, Shuang; Guo, Wenshan; Zhang, Xiuwen

    2014-10-01

    Four horizontal subsurface flow constructed wetlands (HSFCWs), named HSFCW1 (three-stage, without step-feeding), HSFCW2 (three-stage, with step-feeding), HSFCW3 (five-stage, without step-feeding) and HSFCW4 (five-stage, with step-feeding) were designed to investigate the effects of dissolved oxygen (DO) and step-feeding on nitrogen removal. High removal of 90.9% COD, 99.1% ammonium nitrogen and 88.1% total nitrogen (TN) were obtained simultaneously in HSFCW4 compared with HSFCW1-3. The excellent TN removal of HSFCW4 was due to artificial aeration provided sufficient DO for nitrification and the favorable anoxic environment created for denitrification. Step-feeding was a crucial factor because it provided sufficient carbon source (high COD: nitrate ratio of 14.3) for the denitrification process. Microbial activities and microbial abundance in HSFCW4 was found to be influenced by DO distribution and step-feeding, and thus improve TN removal. These results suggest that artificial aeration combined with step-feeding could achieve high nitrogen removal in HSFCWs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.

    Science.gov (United States)

    Maltais-Landry, Gabriel; Maranger, Roxane; Brisson, Jacques; Chazarenc, Florent

    2009-02-01

    Nitrogen (N) processing in constructed wetlands (CWs) is often variable, and the contribution to N loss and retention by various pathways (nitrification/denitrification, plant uptake and sediment storage) remains unclear. We studied the seasonal variation of the effects of artificial aeration and three different macrophyte species (Phragmites australis, Typha angustifolia and Phalaris arundinacea) on N processing (removal rates, transformations and export) using experimental CW mesocosms. Removal of total nitrogen (TN) was higher in summer and in planted and aerated units, with the highest mean removal in units planted with T. angustifolia. Export of ammonium (NH(4)(+)), a proxy for nitrification limitation, was higher in winter, and in unplanted and non-aerated units. Planted and aerated units had the highest export of oxidized nitrogen (NO(y)), a proxy for reduced denitrification. Redox potential, evapotranspiration (ETP) rates and hydraulic retention times (HRT) were all predictors of TN, NH(4)(+) and NO(y) export, and significantly affected by plants. Denitrification was the main N sink in most treatments accounting for 47-62% of TN removal, while sediment storage was dominant in unplanted non-aerated units and units planted with P. arundinacea. Plant uptake accounted for less than 20% of the removal. Uncertainties about the long-term fate of the N stored in sediments suggest that the fraction attributed to denitrification losses could be underestimated in this study.

  16. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    Science.gov (United States)

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cyanobacterial Nitrogen Fixation Influences the Nitrogen Removal Efficiency in a Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2017-11-01

    Full Text Available Nitrogen removal efficiency in constructed wetlands (CW is influenced by multiple environmental factors. However, little is known about the role of cyanobacterial nitrogen fixation in affecting nitrogen removal efficiency. This study investigated how cyanobacterial nitrogen fixation affects the efficiency, at which a CW removes nitrogen from an associated artificial lake (AL in Beijing. For this purpose, we measured cell densities of N-fixing and non-N-fixing cyanobacteria, the aquatic nitrogen fixation rate (RNfix, and the concentration of various nitrogen fractions over the growing season (April–November of 2014 in both AL and CW. We found that the removal of particulate organic nitrogen (PON contributed to >90% of the total nitrogen removal in the CW. The removal efficiency of PON was lower during August–October (55.45 ± 27.49% than during April–July (68.86 ± 8.83%. Phytoplankton proliferation in summer, as one of the main sources of PON, may have exceeded the capacity of the CW and led to declines in PON removal efficiency. RNfix peaked in July–October (3–169 ng N·L−1·h−1 and was positively correlated with both PON concentration and the cell density of N-fixing Anabaena sp. over the growing season, suggesting that aquatic nitrogen fixation (primarily in the AL may increase PON and thereby reduce the its removal efficiency in the CW.

  18. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands.

    Science.gov (United States)

    Madera-Parra, C A; Peña-Salamanca, E J; Peña, M R; Rousseau, D P L; Lens, P N L

    2015-01-01

    This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH4+, TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH4+-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 10(0) -10(2). The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg(-1)) for Gs and He respectively; whilst Cd (II) had the highest (130-135 L kg(-1)) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs>1 for Pb (II), Cr (T) and Hg (II) and 0.4-0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators.

  19. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater.

    Science.gov (United States)

    Xu, Jingcheng; Zhao, Gang; Huang, Xiangfeng; Guo, Haobo; Liu, Wei

    2017-03-04

    According to the characteristics of the reverse osmosis concentrate (ROC) generated from iron and steel company, we used three sets of parallel horizontal subsurface flow (HSF) constructed wetlands (CWs) with different plants and substrate layouts to treat the high-salinity wastewater. The plant growth and removal efficiencies under saline condition were evaluated. The evaluation was based entirely on routinely collected water quality data and the physical and chemical characteristics of the plants (Phragmites australis, Typha latifolia, Iris wilsonii, and Scirpus planiculmis). The principal parameters of concern in the effluent were chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The results showed that the CWs were able to remove COD, TN, and TP from ROC. S. planiculmis was not suitable for the treatment of high-saline wastewater. The sequence of metals accumulated in CW plants was K>Ca>Na>Mg>Zn>Cu. More than 70% of metals were accumulated in the aboveground of P. australis. The CW filled with gravel and manganese ore and planted with P. australis and T. latifolia had the best performance of pollutant removal, with average removal of 49.96%, 39.45%, and 72.01% for COD, TN, and TP, respectively. The effluent water quality met the regulation in China. These results suggested that HSF CW planted with P. australis and T. latifolia can be applied for ROC pollutants removal.

  20. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    Science.gov (United States)

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  1. TiO2-Based Photocatalytic Treatment of Raw and Constructed-Wetland Pretreated Textile Wastewater

    Directory of Open Access Journals (Sweden)

    Dunja Mahne

    2012-01-01

    Full Text Available Approximately, 15% of the total textile colorant production is estimated to be lost during dyeing and processing of textile fibres. If left untreated, these wastewaters can represent a serious environmental threat. In the present paper a combination of photocatalytic and biological degradation of prepared textile wastewaters (simulation of real textile effluent is presented. Samples have been monitored through the course of photocatalytic experiments: change in UV-VIS absorbance spectra and complete decolouration were achieved for all three tested dyed wastewaters; however, only partial COD removal was achieved with photocatalytic oxidation (PCOx and photocatalytic ozonation (PCOz. Toxicity test (Vibrio fischeri of untreated and pretreated (constructed wetland, CW samples showed a decrease in toxicity values only for the red-dyed wastewater. Comparison of efficiency of PCOx and PCOz for decolouration and mineralization of three structurally different dyes (anthraquinone and two azo dyes has been done. CW pretreatment caused faster decolouration and substantial COD removal in PCOx (up to 45%. Pretreatment also accelerated decolouration during PCOz, but it accelerated COD removal only in the case of red-dyed wastewater due to short irradiation times applied.

  2. Agronomic performance of black oat (Avena strigosa Schreb., cultivated in constructed wetlands

    Directory of Open Access Journals (Sweden)

    Alisson Carraro Borges

    2010-04-01

    Full Text Available This work aimed to evaluate the agronomic performance of black oat (Avena strigosa Schreb., when cultived in constructed wetlands (CWs in the treatment of domestic wastewater. The experiment was conducted in four CWs for secondary/tertiary treatment of domestic wastewater. The black oats were sown in the CWs at a density of 80 kg ha-1 of seeds. The organic loading rates (OLRs applied in the CWs were 100, 200, 400 and 600 kg ha-1 d-1 of biochemical oxygen demand (BOD. The OLRs were obtained from results of analysis of BOD influent the CWs. The variables evaluated in influent and effluent of CWs were biochemical oxygen demand, chemical oxygen demand, total nitrogen, total phosphorus, potassium, sodium and electrical conductivity. In plant tissue the productivity of dry matter and the content of crude protein were evaluated. The productivity of dry matter for black oats were independent of OLRs applied. The highest yield of dry matter was obtained by applying 400 kg.ha-1 d-1 BOD. There was an average productivity of crude protein of 15.38 dag kg-1 in the black oat. The domestic wastewater can be a suitable nutritional solution for production of black oats in the CWs.

  3. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Bibi Saima Zeb

    2013-01-01

    Full Text Available Constructed wetland (CW with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80 and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7% > Ni (79% > Pb (85%. Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater.

  4. Performance assessment of a vertical flow constructed wetland treating unsettled combined sewer overflow.

    Science.gov (United States)

    Pálfy, T G; Gerodolle, M; Gourdon, R; Meyer, D; Troesch, S; Molle, P

    2017-06-01

    The performance of a vertical flow constructed wetland for combined sewer overflow treatment (CSO CW) has been evaluated. The full-scale site has been monitored for 3 years for major pollutants and for two load events for a range of micropollutants (metals, metalloids and polycyclic aromatic hydrocarbons (PAHs)). Performance were predominantly high (97% for total suspended solids (TSS), 80% for chemical oxygen demand (COD), 72% for NH 4 -N), even if several loads were extremely voluminous, pushing the filter to its limits. Two different filter materials (a 4:1 mixture of sand and zeolite and natural pozzolana) showed similar treatment performance. Furthermore, environmental factors were correlated with COD removal efficiency. The greatest influencers of COD removal efficiency were the inlet dissolved COD concentrations and the duration and potential evapotranspiration during inter-event periods. Furthermore, sludge was analysed for quality and a sludge depth map was created. The map, and calculating the changes in sludge volume, helped to understand solid accumulation dynamics.

  5. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    Science.gov (United States)

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Potential of Constructed Wetlands for Removal of Antibiotics from Saline Aquaculture Effluents

    Directory of Open Access Journals (Sweden)

    Maria Bôto

    2016-10-01

    Full Text Available This work aimed to evaluate the potential of constructed wetlands (CWs for removal of antibiotics (enrofloxacin and oxytetracycline and antibiotic resistant bacteria from saline aquaculture wastewaters. Removal of other contaminants (nutrients, organic matter and metals and toxicity reduction and the influence of antibiotics with these processes were evaluated. Thus, nine CWs microcosms, divided into three treatments, were assembled and used to treat wastewater (doped or not with the selected antibiotics between October and December of 2015. Each week treated wastewater was removed and new wastewater (doped or not was introduced in CWs. Results showed >99% of each antibiotic was removed in CWs. After three weeks of adaptation, removal percentages >95% were also obtained for total bacteria and for antibiotic resistant bacteria. Nutrients, organic matter and metal removal percentages in CWs treated wastewater were identical in the absence and in the presence of each antibiotic. Toxicity in treated wastewaters was significantly lower than in initial wastewaters, independently of antibiotics presence. Results showed CWs have a high efficiency for removing enrofloxacin or oxytetracycline as well as antibiotic resistant bacteria from saline aquaculture wastewaters. CWs can also remove other contaminants independently of drug presence, making the aquaculture wastewater possible to be reutilized and/or recirculated.

  7. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene

    Directory of Open Access Journals (Sweden)

    Florencio Ballesteros, Jr.

    2016-03-01

    Full Text Available Leaking underground petroleum storage poses human and environmental health risks as it contaminates the soil and the groundwater. Of the many contaminants, benzene – a major constituent of gasoline, is of primary concern. It is an identified carcinogen with a permissible limit set at a low level of 0.005 mg L−1. This poses technical and regulatory challenge to remediation of contaminated sites. Various specialized treatment methods are available, but despite of the high removal efficiencies of sophisticated treatments, the residual level still poses health risks. Thus, additional alternative ways that are cost effective and require minimum technical expertise are necessary, and a constructed wetland (CW is a potential alternative. This study evaluates the performance of a surface flow type CW for the removal of benzene from the contaminated water. It further determines the efficacy of a common reed plant Phragmites karka in treating benzene. Planted and unplanted CW were acclimated with benzene for 16 wk and tested for an 8-d hydraulic retention time at benzene levels of 66 and 45 mg L−1. Results indicate that the planted CW performed better and gave reliable and stable results.

  8. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Eleanor Butterworth

    2016-08-01

    Full Text Available A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia loading rates not yet reported in the literature. Performance was assessed in terms of ammonia and solids removal, hydraulic conductivity and mixing patterns. The capability of systems to produce ammonium effluent concentrations <3 mgNH4+-N/L was observed across all sites in systems receiving variable loadings between 0.1 and 13.0 gNH4+-N/m2/d. Potential resilience issues were observed in relation to response to spike loadings posited to be due to an insufficient nitrifying population within the beds. Hydraulic conductivity and flow mixing patterns observed suggested deterioration of the reactor effective volume over time. Overall, the study demonstrates the efficacy of the technology where ammonium removal is required on small sites receiving high and variable flow rates, with adequate removal of organics and solids, but no significant benefit to the long term hydraulics of the system.

  9. Removal of nitrogen and phosphorus from dairy wastewater using constructed wetlands systems operating in batch

    Directory of Open Access Journals (Sweden)

    Ronaldo Rocha Bastos

    2012-08-01

    Full Text Available This work presents the results of a study conducted for a period of seven months on the effectiveness of constructed wetland systems for the treatment of dairy wastewater aiming at removing, nitrogen and phosphorus. Six experimental systems were assembled with a net volume of 115 L using HDPE tanks, with length/width ratio of 2:1. In three of the systems, gravel 0 was used as substrate, while gravel 0 and sand was used in the three others, in the percentage of 80% and 20%, respectively. The systems were operated in batch cycles of 48 hours, applying 7.5 L of influent per cycle. Four of the experimental units were cultivated, and two kept as controls. The selected species chosen were the macrophytes, Typha domingensis and Hedychium coronarium. The removal efficiency concerning nitrogen compounds showed to be quite promising with values ranging from 29.4 to 73.4%, while phosphorus removal from the beds was lower, reaching efficiencies between 18.61 and 34.3%, considered good values, since the removal of these substances is quite difficult through conventional treatment.

  10. Experiment Research on Purifying Domestic Sewage by Duplex Subsurface Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    SHANG Ping

    2014-04-01

    Full Text Available The purification effect on domestic sewage were researched in the new-type of duplex subsurface flow constructed wetlands, of which pollutants were analyzed through the small scale test on the purification effect under different conditions of hydraulic loading, season,aeration pattern. The results showed that water quality of the system was stabilized, which could reach the 1 class A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918-2002.The removal rate of COD,NH3-N could reach up to 87.2%, 68.9% under the conditions of the hydraulic load being 184 mm·d-1.And there were still more than 20% removal efficien-cy of various pollutants on the conditions of low temperature in winter. Orthogonal test showed that the optimum operating conditions was 28.6℃for the temperature, 0.184 m3·m-2·d-1 for hydraulic loading, and 2.4 d for hydraulic retention time. The experimental research showed that pre-aeration was significantly better than the anaerobic treatment on purifying effect.

  11. Decolorization and mineralization of Amaranth dye using multiple zoned aerobic and anaerobic baffled constructed wetland.

    Science.gov (United States)

    Lehl, Harvinder Kaur; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Saad, Farah Naemah Mohd; Oon, Yoong-Ling; Oon, Yoong-Sin; Thung, Wei-Eng; Yong, Chin-Yii

    2017-08-03

    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.

  12. Influence of flow velocity on the removal of faecal coliforms in horizontal subsurface flow constructed wetland.

    Science.gov (United States)

    Lohay, W S; Lyimo, T J; Njau, K N

    2012-01-01

    In order to determine the influence of flow velocity on the removal of faecal coliforms (FC) in constructed wetlands (CWs), removal rate constants of FC (k(FC)) were studied at various flow velocities (u). Membrane filtration technique was used during analysis. Values of k(FC) were determined using Reed's equation of pathogen removal; the results were compared with the plug flow equation. According to Reed's equation, k(FC) values ranged from 1.6 day⁻¹ at a velocity of 4 m/day to 34.5 day⁻¹ at a velocity of 42.9 m/day. The removal rates correlated positively with flow velocity (r = 0.84, p < 0.05). On assuming a plug flow equation, removal rates constants ranged from 0.77 to 11.69 day⁻¹; a more positive correlation (r = 0.93, p < 0.05) was observed. Optimum removal rate constants were observed for the velocity ranging 36 to 43 m/day. Generally, the increase of flow velocity improved FC removal rate constants: implying that pathogen removals are influenced by diffusion of the microorganisms into the biofilms on CW media. The velocity dependent approach together with the plug flow equation is therefore proposed for incorporation in the design of CW in a tropical climate where temperature variations are minor.

  13. Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System

    Directory of Open Access Journals (Sweden)

    Shentan Liu

    2013-01-01

    Full Text Available In the present study, a new technology that coupled constructed wetland (CW with microbial fuel cell (MFC (CW-MFC was developed to convert solar energy into electricity on the principles of photosynthetic MFC by utilizing root exudates of Ipomoea aquatica as part of fuel. The maximum power density of 12.42 mW m−2 produced from the CW-MFC planted with Ipomoea aquatica was 142% higher than that of 5.13 mW m−2 obtained from the unplanted CW-MFC. The maximum power output for the planted CW-MFC could be divided into two parts: the maximum power yield from in the water body was 66.05 KJ Kg−1  , and the maximum power transformation from plant photosynthesis was 2.31 GJ ha−1 year−1. The average COD removal efficiencies were 92.1% and 94.8% in the unplanted CW-MFC and planted CW-MFC, respectively; the average TN removal efficiencies amounted to 54.4% and 90.8% in the unplanted CW-MFC and planted CW-MFC. This research demonstrates that planting Ipomoea aquatica in the CW-MFC achieved a higher power density and nutrient removal of nitrogen simultaneously.

  14. Swine Farm Wastewater Treatment by Constructed Wetland Planted with Vetiver Grass

    Directory of Open Access Journals (Sweden)

    Supaporn Pongthornpruek

    2017-05-01

    Full Text Available This research investigated the pollutant removal efficiencies in swine farm wastewater with Vetiveria zizanioides (L. Nash (Sri Lanka ecotype in a surface flow constructed wetland (SFCW. The SFCW units were set up to 3 treatments at 10, 15 and 30 cm water levels to find the proper depth for vetiver grass in wastewater treatment. The water quality indicator such as pH, temperature (T, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total kjeldahl nitrogen (TKN, total phosphorus (TP and heavy metals (Cu, Fe, Pb, Zn were analyzed and compared with terms of removal efficiency. The 30 cm water depth has a better removal efficiency of organic substance treatment (BOD and COD. The BOD, COD, TKN and TP removal efficiency had no statistically significant differences between the water depths. TP has the best removal efficiency with average 95.18-96.53%. The treatment of heavy metals such as Cu, Pb, Fe and Zn with vetiver grass in different water depths was showed no statistical significance since it can reduce only a small number of these metals. However, the results showed that the effluent from all the treatment units contained averages of BOD, COD, TKN and pH that followed Thailand’s swine wastewater quality standard.

  15. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland.

    Science.gov (United States)

    Fu, Guiping; Huangshen, Linkun; Guo, Zhipeng; Zhou, Qiaohong; Wu, Zhenbin

    2017-01-01

    The effects of supplementing plant-based carbon sources, fermented tissues of Arundo donax and Pontederia cordata, and a combination of the two plants, on the nitrogen removal efficiency and microbial composition in a vertical flow constructed wetland (VFCW) were examined. The results showed that the addition of the composite carbon source produced the highest removal efficiencies of NH 4 + -N 91.5%, NO 3 - -N 94.5% and TN 92.8% in VFCW. The detected abundance of amoA, nirS, and nxrA genes indicated that ammonia oxidation bacteria and denitrifying bacteria were more abundant than the nitrite oxidation bacteria. Furthermore, the addition of the composite carbon source significantly promoted the growth of the denitrifying bacteria in VFCW. The results indicated that supplementing the system with plant-based carbon sources achieved partial nitrification and denitrification, as well as classic denitrification in VFCWs. The study suggested that multiple nitrogen removal pathways were required to feasibly and efficiently remove nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    Science.gov (United States)

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P carbon by airborne microbes was different. Summer had a significant difference from other seasons (P carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  17. Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development.

    Science.gov (United States)

    Hang, Qianyu; Wang, Haiyan; Chu, Zhaosheng; Ye, Bibi; Li, Chunmei; Hou, Zeying

    2016-05-01

    Water quality standard for nitrate becomes more and more strict, and the plant carbon source is widely used for denitrification by constructed wetland (CW) and bioreactor. However, the nitrate removal efficiency by different types of plant carbon source are not evaluated comprehensively. Denitrification performance of different plant carbon sources, and the influence of dosing method and pretreatment are thoroughly reviewed in this paper, which aims to investigate the accurate utilization of plant carbon source for nitrogen (as nitrate) removal. It is concluded that plant carbon source addition for all types of CWs and bioreactors can improve the nitrate removal efficiency to some extent, and the dosing method of plant carbon source for denitrification should be further studied and optimized in the future. The popular carbon sources for CW and bioreactor denitrification enhancement are woodchip, chopped macrophytes, crop plants, macrophytes litters, etc. The recommended optimum C:N ratios for CW and bioreactor are 4.0:5.0 and 1.8:3.0, respectively. The physical and biological pretreatments are selected to supply organic carbon for long-term denitrification.

  18. Trace metal accumulation in sediments and benthic macroinvertebrates before and after maintenance of a constructed wetland.

    Science.gov (United States)

    O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William

    2012-04-01

    Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.

  19. Estimating greenhouse gas fluxes from constructed wetlands used for water quality improvement

    Directory of Open Access Journals (Sweden)

    Sukanda Chuersuwan

    2014-06-01

    Full Text Available Methane (CH4 , nitrous oxide (N2O and carbon dioxide (CO2 fluxes were evaluated from constructed wetlands (CWs used to improve domestic wastewater quality. Experiments employed subsurface flow (SF and free water surface flow (FWS CWs planted with Cyperus spp. Results showed seasonal fluctuations of greenhouse gas fluxes. Greenhouse gas fluxes from SF-CWs and FWS-CWS were significantly different (p<0.05 while pollutant removal efficiencies of both CWs were not significantly different. The average CH4 , N2O and CO2 fluxes from SF-CWs were 2.9±3.5, 1.0±1.7, and 15.2±12.3 mg/m2 /hr, respectively, corresponding to the average global warming potential (GWP of 392 mg CO2 equivalents/m2 /hr. For FWS-CWs, the average CH4 , N2O and CO2 fluxes were 5.9±4.8, 1.8±1.0, and 29.6±20.2 mg/m2 /hr, respectively, having an average GWP of 698 mg CO2 equivalents/m2 /hr. Thus, FWS-CWs have a higher GWP than SF-CWs when they were used as a system for domestic water improvement.

  20. Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment.

    Science.gov (United States)

    Dordio, A; Carvalho, A J P

    2013-10-01

    Constructed wetlands (CWs) are receiving a renewed attention as a viable phytotechnology for treating agricultural wastewaters and for the removal of more specific pollutants, in particular recalcitrant ones. In this work, the performance of CW mesocosms using light expanded clay aggregates (LECA) as the bed's substrate and planted with Phragmites australis was investigated for treatment of olive mill wastewater (OMW), swine wastewater (SW) contaminated with oxytetracycline and water contaminated with herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid). Both wastewaters (OMW and SW) initially presented high organic matter content and total suspended solids which were removed by the system with efficiencies higher than 80%. Removal of polyphenols in OMW and nitrogen compounds in SW also showed similar or higher efficiencies in comparison with other treatment systems reported in the literature. The antibiotic oxytetracycline was completely removed from SW within the assay period in unplanted LECA beds, but planted beds allowed a significantly faster removal. In regard to water contaminated with MCPA, the results showed that LECA has a large sorption capacity for this herbicide (removal efficiencies of 56-97%). In general, considerably higher pollutant removal efficiencies were obtained when plants were used (up to 28% higher). The results obtained are indicative that CWs with LECA as substrate may be an adequate option for agricultural wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Performance of the constructed wetland systems in pollutants removal from hog wastewater

    Directory of Open Access Journals (Sweden)

    Wallison da Silva Freitas

    2010-08-01

    Full Text Available The main objective of this work was to evaluate the efficiency of a constructed wetland systems (CWS for pollutants removal, in mono crop and multi crop with three different species of plants, originated from hog wastewater treatment (HW. Therefore, 5 CWS of 24.0 m x 1.1 m x 0.7 m were constructed, sealed with a membrane of polyvinyl chloride (PVC and filled with 0.4 m of small gravel. In CWS1, CWS2 and CWS3 grown to cattail (Typha latifolia L., Alternanthera philoxeroides (Mart. Griseb. and Tifton 85 grass (Cynodon dactylon Pers., respectively. In the bed of CWS4 was planted at 1st third Alternanthera, cattail, in the 2nd third and tifton-85 grass and in the 3rd third of. The CWS5 was not planted and it was used as control. After passing through a filter filled with crushed bagasse of sugar cane, the HW was applied to the CWS in a flow of 0.8 m3 d-1, which corresponded to a hydraulic detention time of 4.8 days. According to the results it was shown that the five CWS(s had statistically nearly the same removal of pollutants, and the average removal efficiency of TSS, COD, BOD and Zn, were 91, 89, 86 and 94%, respectively. Also high removals were obtained concerning the ST, N-total, NH4+ and P-total, with average values of 62, 59, 52 and 50%, respectively. The plants in all planted CWS worked in a similar way maintaining the system efficiency and the non cultivated CWS presented analogous capacity of pollutants removal when compared to the cultivated CWS(s.

  2. The Use of Constructed Wetlands to Phytoremediate Explosives-Contaminated Groundwater at the Milan Army Ammunition Plant, Milan, Tennessee. Cost and Performance Report

    National Research Council Canada - National Science Library

    1999-01-01

    .... To help address this problem, the USAEC and TVA initiated a field demonstration program to evaluate the technical feasibility of using constructed wetlands for remediating explosives-contaminated groundwater...

  3. pH, Redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater.

    Science.gov (United States)

    Bezbaruah, Achintya N; Zhang, Tian C

    2004-10-05

    Microenvironmental studies regarding plant oxygen release in a wastewater environment are important to understand the principles of constructed wetlands for wastewater treatment. pH, oxidation reduction potential (ORP), and dissolved oxygen (DO) microprofiles for the lateral and main roots of the bulrush (Scirpus validus) in a vertical flow constructed wetland fed with municipal wastewater were measured using microelectrode techniques. pH was found to be low (6.91-6.98) near the lateral root surface, indicating possible nitrification or H(+) extrusion. The ORP at the lateral root surface was between +250 and +317 mV and gradually reached the bulk solution ORP (+14 to -54 mV) at a radial distance of approximately 4,750 microm. DO values at the lateral root surface varied from 0.64-2.04 mg L(-1) as bulk biochemical oxygen demand (BOD) changed from 24 to 1,267 mg L(-1). DO at the lateral root surface and the thickness of the oxygen layer around the root marginally increased with an increase in bulk BOD, while ORP at the lateral and main root surface decreased. pH and DO values did not change near the main root and had the bulk solution values. The results of this study provide insights into root-induced microenvironments and would be helpful for the quantification of the total amount of oxygen contributed by plants in constructed wetlands.

  4. Back to the roots: the integration of a constructed wetland into a recirculating hatchery - a case study.

    Directory of Open Access Journals (Sweden)

    Miloš Buřič

    Full Text Available Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW into a recirculating hatchery (RHS was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations.

  5. Demonstration of constructed wetlands for treatment of municipal wastewaters, monitoring report for the period, March 1988--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    Choate, K.D.; Watson, J.T.; Steiner, G.R.

    1990-08-01

    To evaluate the constructed wetland technology, the Tennessee Valley Authority (TVA) implemented a municipal wastewater demonstration project in western Kentucky. Using combined city, State, and TVA appropriated funds, three constructed wetland systems were built at Benton, Hardin, and Pembroke, Kentucky. Demonstration objectives include evaluating relative advantages and disadvantages of these types of systems; determining permit compliance ability; developing, evaluating, and improving basic design and operation criteria; evaluating cost effectiveness; and transferring technology to users and regulators. A demonstration monitoring project was implemented with a partnership of funds from the Environmental Protection Agency (EPA) Region IV, other EPA funds through the National Small Flows Clearinghouse (NSFC), and TVA appropriations. TVA is managing the project in cooperation with an interagency team consisting of EPA, Kentucky Division of Water and NSFC. This report, which supersedes the first monitoring report (Choate, et. al., 1989) of these demonstration projects, describes each constructed wetland system, its status, and summarizes monitoring data and plans for each system. 5 refs., 30 figs., 26 tabs.

  6. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    Science.gov (United States)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  7. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context.

    Science.gov (United States)

    De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela

    2016-05-01

    Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.

  8. Back to the Roots: The Integration of a Constructed Wetland into a Recirculating Hatchery - A Case Study

    Science.gov (United States)

    Buřič, Miloš; Bláhovec, Josef; Kouřil, Jan

    2015-01-01

    Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations. PMID:25853416

  9. Linking a Large-Watershed Hydrogeochemical Model to a Wetland Community-Ecosystem Model to Estimate Plant Invasion Risk in the Coastal Great Lakes Region, USA

    Science.gov (United States)

    Currie, W. S.; Bourgeau-Chavez, L. L.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hart, S.; Hyndman, D. W.; Kendall, A. D.; Martin, S. L.; Martina, J. P.

    2014-12-01

    In the Laurentian Great Lakes region of the Upper Midwest, USA, agricultural and urban land uses together with high N deposition are contributing to elevated flows of N in rivers and groundwater to coastal wetlands. The functioning of coastal wetlands, which provide a vital link between land and water, are imperative to maintaining the health of the entire Great Lakes Basin. Elevated N inflows are believed to facilitate the spread of large-stature invasive plants (cattails and Phragmites) that reduce biodiversity and have complex effects on other ecosystem services including wetland N retention and C accretion. We enhanced the ILHM (Integrated Landscape Hydrology Model) to simulate the effects of land use on N flows in streams, rivers, and groundwater throughout the Lower Peninsula of Michigan. We used the hydroperiods and N loading rates simulated by ILHM as inputs to the Mondrian model of wetland community-ecosystem processes to estimate invasion risk and other ecosystem services in coastal wetlands around the Michigan coast. Our linked models produced threshold behavior in the success of invasive plants in response to N loading, with the threshold ranging from ca. 8 to 12 g N/m2 y, depending on hydroperiod. Plant invasions increased wetland productivity 3-fold over historically oligotrophic native communities, decreased biodiversity but slightly increased wetland N retention. Regardless of invasion, elevated N loading resulted in significantly enhanced rates of C accretion, providing an important region-wide mechanism of C storage. The linked models predicted a general pattern of greater invasion risk in the southern basins of lakes Michigan and Huron relative to northern areas. The basic mechanisms of invasion have been partially validated in our field mesocosms constructed for this project. The general regional patterns of increased invasion risk have been validated through our field campaigns and remote sensing conducted for this project.

  10. Modeling the hydrological significance of wetland restoration scenarios.

    Science.gov (United States)

    Martinez-Martinez, Edwin; Nejadhashemi, A Pouyan; Woznicki, Sean A; Love, Bradley J

    2014-01-15

    Wetlands provide multiple socio-economic benefits, among them mitigating flood through short- and long-term water storage functions and assisting with reduction of downstream flood peaks. However, their effectiveness in controlling floods is dictated by wetland size and distribution within a watershed. Due to the complexity of wetland hydrological processes at the watershed scale, the Soil and Water Assessment Tool (SWAT) was used to study the impact of wetland restoration on streamflow rates and peaks in the Shiawassee River watershed of Michigan. Wetland restoration scenarios were developed based on combinations of wetland area (50, 100, 250, and 500 ha) and wetland depth (15, 30, 61, and 91 cm). Increasing wetland area, rather than depth, had a greater impact on long-term average daily streamflow. Wetland implementation resulted in negligible reductions in daily peak flow rates and frequency of peak flow events at the watershed outlet. In developing high impact areas for wetland restoration, similar locations were identified for reduction of subbasin and watershed outlet streamflow. However, the best combinations of area/depth differed depending on the goal of the restoration plan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Efficiency of a constructed wetland for wastewaters treatment Eficiência de um "wetland" construído no tratamento de efluentes

    Directory of Open Access Journals (Sweden)

    Fernanda Travaini-Lima

    2012-01-01

    Full Text Available AIM: The limnological characteristics of three different inlets water of the constructed wetland were compared in terms of concentration data and loading rate data and evaluated the removal efficiencies of nutrients, solids, BOD5, chlorophyll-a and thermotolerant coliforms (TC by the treatment system; METHODS: The constructed wetland, measuring 82.8 m² and with detention time of 1 hour and 58 minutes in the rainy season and 2 hours and 42 minutes in the dry one, was provided with four species, Cyperus giganteus Vahl, Typha domingensis Pers., Pontederia cordata L. e Eichhornia crassipes (Mart. Solms. The sampling sites evaluated in the dry (D and rainy (R seasons were: inlet water from aquaculture farm = IA; inlet channel of rainwater runoff = IR; inlet from UASB wastewater = IB; outlet wetland = OUT. The conductivity, pH, temperature, dissolved oxygen, alkalinity, BOD5, total soluble and dissolved solids, nitrogen, phosphorus, chlorophyll-a and TC were analyzed. Multivariate analyses, such as Cluster and Principal Components Analysis (PCA, were carried out to group sampling sites with similar limnological characteristics; RESULTS: In the PCA with the concentration data was retained 90.52% variability of data, correlating the inlet IB with high concentrations of conductivity, alkalinity, pH, TC, nutrients and solids. Regarding loading rate data, the PCA was retained 80.9% of the data's total variability and correlated the sampling sites IA D, IA R and OUT R with higher BOD5, chlorophyll-a, TDS, nitrate, nitrite, total-P, temperature, oxygen and water flow. The highest removal efficiencies rates occurred in the dry season, mainly in concentration, with 78% of ammonia, 95.5% of SRP, 94.9% of TSS and 99.9% of TC; CONCLUSIONS: The wetland was highly efficacious in the removal of nutrients, solids, BOD5, chlorophyll-a and TC, mainly during the dry season. The system restructuring to increase the detention time during the rainy season and a pre

  12. Efficiency of a constructed wetland for wastewaters treatment Eficiência de um "wetland" construído no tratamento de efluentes

    Directory of Open Access Journals (Sweden)

    Fernanda Travaini-Lima

    2012-09-01

    Full Text Available AIM: The limnological characteristics of three different inlets water of the constructed wetland were compared in terms of concentration data and loading rate data and evaluated the removal efficiencies of nutrients, solids, BOD5, chlorophyll-a and thermotolerant coliforms (TC by the treatment system; METHODS: The constructed wetland, measuring 82.8 m² and with detention time of 1 hour and 58 minutes in the rainy season and 2 hours and 42 minutes in the dry one, was provided with four species, Cyperus giganteus Vahl, Typha domingensis Pers., Pontederia cordata L. e Eichhornia crassipes (Mart. Solms. The sampling sites evaluated in the dry (D and rainy (R seasons were: inlet water from aquaculture farm = IA; inlet channel of rainwater runoff = IR; inlet from UASB wastewater = IB; outlet wetland = OUT. The conductivity, pH, temperature, dissolved oxygen, alkalinity, BOD5, total soluble and dissolved solids, nitrogen, phosphorus, chlorophyll-a and TC were analyzed. Multivariate analyses, such as Cluster and Principal Components Analysis (PCA, were carried out to group sampling sites with similar limnological characteristics; RESULTS: In the PCA with the concentration data was retained 90.52% variability of data, correlating the inlet IB with high concentrations of conductivity, alkalinity, pH, TC, nutrients and solids. Regarding loading rate data, the PCA was retained 80.9% of the data's total variability and correlated the sampling sites IA D, IA R and OUT R with higher BOD5, chlorophyll-a, TDS, nitrate, nitrite, total-P, temperature, oxygen and water flow. The highest removal efficiencies rates occurred in the dry season, mainly in concentration, with 78% of ammonia, 95.5% of SRP, 94.9% of TSS and 99.9% of TC; CONCLUSIONS: The wetland was highly efficacious in the removal of nutrients, solids, BOD5, chlorophyll-a and TC, mainly during the dry season. The system restructuring to increase the detention time during the rainy season and a pre

  13. A network model framework for prioritizing wetland conservation in the Great Plains

    Science.gov (United States)

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  14. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore.

    Science.gov (United States)

    Wang, Qian; Kelly, Barry C

    2017-09-01

    This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log K OW ). Translocation factors (log TFs) were negatively correlated with log K OW . The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modeling the effects of tile drain placement on the hydrologic function of farmed prairie wetlands

    Science.gov (United States)

    Werner, Brett; Tracy, John; Johnson, W. Carter; Voldseth, Richard A.; Guntenspergen, Glenn R.; Millett, Bruce

    2016-01-01

    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.

  16. Establishment and Applied Research on a Wetland Ecosystem Evaluation Model in Taiwan

    Directory of Open Access Journals (Sweden)

    Han-Shen Chen

    2015-11-01

    Full Text Available There is rich biodiversity and biomass in wetlands and these areas are important in ecosystems. Assessment of the environment of wetlands is critical in the management of pivotal ecosystems. The energy ecological footprint (EEF is an improved form of the ecological footprint method based on the theory of energy value. EEF can be a useful tool for comparing and monitoring environmental impacts. EEF was used to investigate a national coastal wetland in Taiwan; i.e., Gaomei Wetlands. We created a wetland ecosystem evaluation model to quantify the EEF, ecological safety of the GaomeiWetlands, and energy ecological carrying capacity to assess the current environmental situation of the area between 2007 and 2013. The research results provide a reference for environmental policy execution, strategy, and planning and suggestions for sustainable development of the Gaomei Wetlands. Our study showed that the per capita ecological carrying capacity of the Gaomei Wetlands experienced fluctuations during the time of the study. However, the per capita EF had substantial growth. The per capita ecological carrying capacity of the Gaomei Wetlands was influenced by the EFs of the fossil energy land, meadows, and croplands.

  17. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Science.gov (United States)

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  18. Constructed Wetlands for Wastewater Treatment and Wildlife Habitat: 17 Case Studies

    Science.gov (United States)

    This document provides brief descriptions of 17 wetland treatment systems from across the country that are providing significant water quality benefits while demonstrating additional benefits such as wildlife habitat.

  19. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model

    Science.gov (United States)

    Zhu, Qing; Liu, Jinxun; Peng, C.; Chen, H.; Fang, X.; Jiang, H.; Yang, G.; Zhu, D.; Wang, W.; Zhou, X.

    2014-01-01

    A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH4) biogeochemistry module (incorporating CH4 production, oxidation, and transportation processes) and a water table module to investigate CH4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH4 emission processes from wetlands are r (defined as the CH4 to CO2 release ratio) and Q10 in the CH4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q10 for CH4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.

  20. Dynamics of arsenic species in laboratory-scale horizontal subsurface-flow constructed wetlands treating an artificial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, K.Z. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Umweltbiotechnologisches Zentrum (UbZ), Leipzig (Germany)]|[Institut fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Arbeitsbereich Wasserguetewirtschaft und Wasserversorgung (ISWA), Stuttgart (Germany); Wiessner, A.; Kaestner, M. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Bioremediation (Germany); Mattusch, J. [Department Analytische Umweltchemie, UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Leipzig (Germany); Mueller, R.A. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Umweltbiotechnologisches Zentrum (UbZ), Leipzig (Germany); Kuschk, P.

    2008-12-15

    Knowledge regarding the dynamics of arsenic species and their interactions under gradient redox conditions in treatment wetlands is still insufficient. The aim of this investigation was to gain more information on the biotransformation of As and the dynamics of As species in horizontal subsurface-flow constructed wetlands. Experiments were carried out in laboratory-scale wetland systems, two planted with Juncus effusus and one unplanted, using an As-containing artificial wastewater under defined organic C- and SO{sub 4}{sup 2-}-loading conditions. Immobilization of As was found in all systems under conditions of limited C, mainly due to adsorption and/or co-precipitation. The removal efficiencies were substantially higher in the planted systems (60-70%) as compared to the unplanted system (37% on average). Immobilization under the conditions mentioned above appeared to decrease over time in all systems. At the beginning, the dosage of organic carbon immediately caused intensive microbial dissimilatory sulfate reduction in all systems (in the range of 85-95%) and highly efficient removal of total arsenic (81-96% on average). Later on, in this operation period, the intensity of sulfate reduction and simultaneous removal of As decreased, particularly in the planted wetlands (ranging from 30-46%). One reason could be the re-oxidation of reduced compounds due to oxygenation of the rhizosphere by the emergent wetland plants (helophytes). A significant amount of reduced As [As(III)] was found in the planted systems (>75% of total As) during the period of efficient microbial sulfate reduction, compared to the unplanted system (>25% of total As). The immobilization of arsenic was found to behave more stably in the planted beds than in the unplanted bed. Both systems (planted and unplanted) were suitable to treat wastewater containing As, particularly under sulfate reducing conditions. The unplanted system seemed to be more efficient regarding the immobilization of As, but

  1. Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka.

    Science.gov (United States)

    Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika

    2017-12-01

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K + , Ca +2 , Mg +2 , etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  2. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Meng Jin

    2017-11-01

    Full Text Available With the recent development of constructed wetland technology, it has become a mainstream treatment technology for the mitigation of a variety of wastewaters. This study reports on the treatment performance and pH attenuation capacity of three different configurations of small-scale on-site surface flow constructed wetlands (SFCW: T1 (Peat + Typha latifolia, T2 (T. latifolia alone, and T3 (Peat alone treating secondary effluent from the Amherstview Water Pollution Control Plant (WPCP for two treatment periods (start-up period and operational period. The aim of this study was to compare the nutrients removal efficiencies between the different treatments, as well as to evaluate the effects of substrate and vegetation on the wetland system. For a hydraulic retention time of 2.5 days, the results showed that all treatment systems could attenuate the pH level during both the start-up and operational periods, while significant nutrient removal performance could only be observed during the operational period. Peat was noted to be a better SFCW substrate in promoting the removal of nitrate (NO3-N, total nitrogen (TN, and phosphorus. The addition of T. latifolia further enhanced NO3-N and TN removal efficiencies, but employing T. latifolia alone did not yield effluents that could meet the regulatory discharge limit (1.0 mg/L for phosphorus.

  3. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands.

    Science.gov (United States)

    Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu

    2013-05-01

    This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nitrogen nutrition of the sedge Cyperus laevigatus-A candidate species for use in constructed wetlands in hot and dry regions

    DEFF Research Database (Denmark)

    Piwpuan, Narumol; Brix, Hans

    2011-01-01

    Polluted waters and waste water often contain elevated levels of salt in hot and dry regions because of the inherent high evapotranspiration rates. Constructed wetlands must therefore be planted with species that tolerate saline water. The perennial sedge, Cyperus laevigatus L., is predominantly...... be expected based on the species’ natural distribution on alkaline and mineral-rich soils. A preference for NO3- over NH4+ would suggest that the species is less suitable for use in constructed wetland systems because the predominant form of nitrogen in waste water is NH4+. The growth, N-uptake kinetics...... growing in brackish wetlands and on wet alkaline and mineral-rich soils. Hence, this species may be a candidate species for use in constructed wetland systems in hot and dry regions. We studied the nitrogen nutrition of C. laevigatus in order to determine if the plant prefers NO3- over NH4+, which could...

  5. Amending soils with sediment material from constructed wetlands increases phosphorus sorption

    Science.gov (United States)

    Laakso, Johanna; Uusitalo, Risto; Leppänen, Janette; Yli-Halla, Markku

    2017-04-01

    Sediment of agricultural constructed wetlands (CWs) is comprised of matter eroded from surrounding fields. This material is rich in aluminium (Al) and iron (Fe) (hydr)oxides that have a high affinity for phosphorus (P). Sediment material returned to fields could therefore affect soil P retention characteristics. We incubated a clay soil with a high soil test P (STP, 24 mg PAc l-1; extracted with pH 4.65 ammonium acetate buffer) and a sandy loam with excessive STP (210 mg PAc l-1) for three weeks with increasing amounts of CW sediment: 0, 2, 5, 10 and 50% of the sample volume. After incubation, the soil-sediment mixtures were studied with the quantity/intensity (Q/I) technique, using chemical extractions and by exposing the mixtures to simulated rainfall. Sorption affinity for P regularly increased with increasing the sediment share of the mixtures, the 0% sediment content having the lowest and 50% sediment content the highest P sorption. With 0% sediment application, the value of equilibrium P concentration (EPC0) determined by Q/I technique, was 0.69 and 44.3 mg l-1 for clay soil and sandy loam, respectively. With 2-5% sediment amendment, the EPC0 decreased 13-36% for clay soil and 13-54% for sandy loam. The 50% sediment mixtures had EPC0 of 0.05 mg l-1 for both soils. At a practically feasible sediment addition rate of 5%, dissolved reactive P (DRP) in percolating water from simulated rainfall decreased by 55% in the clay soil and 54% in sandy loam (psoils with sediment material would decrease P solubility and might at large application rates hamper P uptake by plants or, on the other hand, the sediment amendment in the soil might reduce P losses by runoff.

  6. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.H.; Zhu, X.Z.; Ma, M.; Ouyang, Y.; Dong, M.; Zhu, W.L.; Luo, S.M. [South China Agricultural University, Guangdong (China)

    2008-08-15

    Constructed wetland (CW) is a promising technique for removal of pollutants from wastewater and agricultural runoff. The performance of a CW to remove pollutants, however, hinges on the use of suitable substrate materials. This study examined the physicochemical properties and phosphorus (P) sorption capacities of nine different CW substrate materials using both batch experiments and the Freundlich as well as the Langmuir isotherm. The nine substrate materials used in this study were turf, topsoil, gravel, midsized sand (MSS), blast furnace slag (BFS), coal burn slag (CBS), blast furnace artificial slag (BFAS), coal burn artificial slag (CBAS), and midsized artificial sand (MSAS). Experimental data showed that sorption of P increased with initial solution P concentrations for all nine substrate materials. The maximum P sorption capacity of the substrate materials estimated by Langmuir isotherm was in the following order: turf (4243 mg/kg substrate) > BFAS (2116 mg/kg substrate) > BFS (1598 mg/kg substrate) > CBS (1449 mg/kg substrate) > top soil (1396 mg/kg substrate) > CBAS (1194 mg/kg substrate) > MSAS (519 mg/kg substrate) > gravel (494 mg/kg substrate) > MSS (403 mg/kg substrate). The specific gravity of eight substrate materials (except gravel) had very significant negative correlations with the P sorption, whereas the particle diameter of D-60 and uniformity coefficient (K-60) had positive correlations with the P sorption. The cation exchange capacity, organic matter, available ferrous, and exchangeable aluminum of the eight substrate materials also had very significant positive correlations with the P sorption, while the pH of the substrate materials showed a very significant negative correlation with the P sorption. Our study further suggests that turf and CBAS are the two relatively ideal substrate materials suitable for removal of P from a CW system.

  7. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands].

    Science.gov (United States)

    Li, Feng-Min; Shan, Shi; Wang, Hao-Yun; Song, Ni; Wang, Zhen-Yu

    2011-01-01

    In order to adjust the dissolved oxygen in the traditional subsurface flow constructed wetlands (SFCWs) and increase the purification efficiency of sewage water, the traditional SFCWs were divided into different sections with enhanced functions. Different kinds of aerobic/anaerobic SFCWs were designed to study the influence of ratio and location of aerobic/anaerobic, artificial aeration and other factors on the nitrogen in effluent. The purification efficiency of the water in this study was compared with that in traditional SFCWs. The results showed that the removal efficiencies of NH4(+)-N and TN in traditional SFCWs were 18.4% and 40.6% but 99.7% and 50.7% in aerobic/anaerobic/aerobic SFCWs with aeration (O-A-O SFCWs with aeration) treatment. Aeration in the front and in the rear, and anaerobic treatment in the middle was used in this treatment. Removal efficiency of NH4(+)-N in O-A-O SFCWs with aeration treatment was 100%, while that of O-A-O SFCWs without aeration was about 50%. The removal efficiencies of NH4(+) -N in new SFCWs with aeration in the front and in the rear were increased by 82.81% and 17.91% but 73.16% in the middle. It shows that aeration can significantly improve the removal efficiency of nitrogen, especially NH4(+)-N. Aeration in the front and back can greatly improve the removal efficiency NH4(+)-N and TN. But aeration resulting to oxygen-rich environment is not conducive to the denitrification, which will be an important factor of limiting the TN removal efficiency.

  8. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  9. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  10. Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage.

    Science.gov (United States)

    de la Varga, D; Ruiz, I; Álvarez, J A; Soto, M

    2015-12-15

    The aim of this research was to determine methane and carbon dioxide emissions from a hybrid constructed wetland (CW) treating anaerobically pre-treated sewage. The CW was constituted of two horizontal flow (free water surface followed by a subsurface) units. A long-term study was carried out as both CW units were monitored for three campaigns in Period 1 (0.9-1.5years after start-up), and four campaigns in Period 2 (4.5-5.8years after start-up). The closed chamber method with collecting surfaces of 1810cm(2) was used. For this system, variability due to position in the transverse section of CW, plant presence or absence and recommended sampling period was determined. Overall methane emissions ranged from 96 to 966mgCH4m(-2) d(-1), depending on several factors as the operation time, the season of the year and the position in the system. Methane emissions increased from 267±188mgCH4m(-2)d(-1) during the second year of operation to 543±161mgCH4m(-2)d(-1) in the sixth year of operation. Methane emissions were related to the age of the CW and the season of the year, being high in spring and becoming lower from spring to winter. Total CO2 emissions ranged mostly from 3500 to 5800mgCO2m(-2)d(-1) during the sixth year of operation, while nitrous oxide emissions were below the detection limit of the method. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effectiveness of leachate remediation in the implementation of unvegetated constructed wetland

    Science.gov (United States)

    Laily, Sophia; Retnaningdyah, Catur; Yanuwiadi, Bagyo

    2017-11-01

    The objective of this research was to examine the effectiveness of leachate remediation that is performed through the implementation of a free water surface (FWS) unvegetated constructed wetland system (UCW). The abovementioned remediation was conducted in a glass house with complete randomized design and using a small-scale UCW referred to as UCW reactor. The reactor was designed to replicate a large-scale FWS UCW and was filled with sand and gravel in a 3:5 ratio. The measurements of the leachate quality throughout the remediation experiment were based on hydraulic retention time (HRT) calculation and carried out on the 1st, 5th, 10th, 15th, 21th and 30th days. Subsequently, the resulted homogenous measurements were analyzed using One-way ANOVA while the non-homogenous ones were analyzed using the Brown-Forsythe test. For further analyses on the resulted statistical data, Turkey-HSD or Games Howell test and Euclidean-distance clustering and biplot were applied. The data representing value decreases in the physicochemical leachate parameters suggest the improvement of the leachate quality throughout the treatment. It was proven that FWS UCW is effective in reducing conductivity, total dissolved solids (TDS), nitrate and orthophosphate contents by 51.31%, 32.94%, 52.25% and 36.24%, respectively on the 5th day. On the 30th day, the leachate quality was further improved as the decreases of the four substances reached 79.64%, 56.28%, 80.58% and 90.39%, respectively.

  12. Removal of nitrogen and phosphorus from wastewater in a constructed wetland system using vetiver grass

    Directory of Open Access Journals (Sweden)

    Rogério de Araújo Almeida

    2012-12-01

    Full Text Available This study aimed to evaluate the Vetiver grass (Vetiveria zizanioides L. Nash efficiency in removing nitrogen and phosphorus from the wastewater in a constructed wetlands treatment system. The experimental unit had twelve treatment modules, filled with layers of substrate. From the bottom to the surface, the following materials were placed: 0.15 m of gravel # 3; 0.10 m of gravel # 1; 0.20 m of washed sand and 0.05 m of gravel # 1. Inside the modules, the wastewater was maintained at 0.05 m or 0.25 m below the substrate surface, resulting in hydraulic retention times of 3.4 days and 1.9 days, respectively. The influent wastewater was captured in the entrance of a facultative pond, and it was applied to the surface of each treatment module, automatically, on a surface application rate of 51 L.m-2.d-1. The sewage percolated vertically in the system, in a sub-surface flow downward until it was captured in a drain pipe at the bottom of the module. The wastewater concentrations of total phosphorus and ammonium were analyzed before and after passing through the treatment modules. Evapotranspiration rates were measured and the efficiencies in removing the contaminant load were calculated. The results were submitted to F and Tukey tests, at 5% of probability. Treatment with the presence of the plant and sewage at 0.05 m from the surface had higher efficiency in the removal of nutrients reaching 90.5% of phosphorus removal and 93.9% for ammonia.

  13. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters.

    Science.gov (United States)

    Hernández-Crespo, C; Gargallo, S; Benedito-Durá, V; Nácher-Rodríguez, Beatriz; Rodrigo-Alacreu, M A; Martín, M

    2017-10-01

    Three medium size constructed wetlands (CWs) with a total surface of 90ha are working since 2009 in the Albufera de Valencia Natural Park (Spain). Two of them are fed with eutrophic waters from l'Albufera Lake. Their objectives are both reduce the phytoplankton biomass and increase the biodiversity; consequently, improved water quality is returned to the lake. A "science based governance" of these CWs is ongoing inside the LIFE+12 Albufera Project to demonstrate the environmental benefits of these features. In this paper, results and relationships among hydraulic operation, physicochemical variables and plankton in two different CWs typologies, five free water surface CW (FWSCW) and one horizontal subsurface flow CW (HSSFCW), were analysed showing that CWs were capable of improving the water quality and biodiversity but showing clear differences depending on the CW type. The CWs worked under different hydraulic load rates (HLR) from <0.12 to 54.75myr -1 . Inflow water quality was typical from eutrophic waters with mean values of chlorophyll a (Chl a) about 22-90μgChlal -1 and mean total phosphorus (TP) between 0.122 and 0.337mgl -1 . The main conclusion is that HSSFCW was much more efficient than FWSCW in the removal of organic matter, suspended solids and nutrients. The biological role of several shallow lagoons located at the end of the CWs has also been evaluated, showing that they contribute to increase the zooplankton biomass, a key factor to control the phytoplankton blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.

    Science.gov (United States)

    Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato

    2015-10-01

    One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume; Garfí, Marianna

    2017-04-15

    The aim of this study was to assess the environmental impact of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs). To this aim a life cycle assessment (LCA) was carried out comparing three scenarios: 1) a conventional CW system (without MFC implementation); 2) a CW system coupled with a gravel-based anode MFC, and 3) a CW system coupled with a graphite-based anode MFC. All systems served a population equivalent of 1500 p.e. They were designed to meet the same effluent quality. Since MFCs implemented in CWs improve treatment efficiency, the CWs coupled with MFCs had lower specific area requirement compared to the conventional CW system. The functional unit was 1m 3 of wastewater. The LCA was performed with the software SimaPro® 8, using the CML-IA baseline method. The three scenarios considered showed similar environmental performance in all the categories considered, with the exception of Abiotic Depletion Potential. In this impact category, the potential environmental impact of the CW system coupled with a gravel-based anode MFC was around 2 times higher than that generated by the conventional CW system and the CW system coupled with a graphite-based anode MFC. It was attributed to the large amount of less environmentally friendly materials (e.g. metals, graphite) for MFCs implementation, especially in the case of gravel-based anode MFCs. Therefore, the CW system coupled with graphite-based anode MFC appeared as the most environmentally friendly solution which can replace conventional CWs reducing system footprint by up to 20%. An economic assessment showed that this system was around 1.5 times more expensive than the conventional CW system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.

  17. The use of vertical constructed wetland and ultrasound in aquaponic systems.

    Science.gov (United States)

    Krivograd Klemenčič, A; Griessler Bulc, T

    2015-01-01

    Treatment performance, fish production, crop plant biomass production, water consumption, and water use efficiency of a pilot aquaponic system for small-scale land-based cyprinid fish farms were evaluated. The system consisted of a 36 m(3) Pond A with an initial carp load of 0.6 kg/m(3); of a treatment chain with a lamellar settler, a roughing filter, a vertical constructed wetland filled with expanded clay and planted with tomatoes; and of a low power ultrasound unit installed in the corner of the pond. The average circulation of the water in the system was 1.2 times per day. Pond A was compared with Pond B of the same dimensions and fish load but with no treatment chain or ultrasound. The treatment chain was efficient in mass removal of total suspended solids , biochemical oxygen demand, chemical oxygen demand, NH4-N, total nitrogen, and total phosphorous (57, 49, 35, 42, 31, and 25 %, respectively). Negative removal of NO3-N, NO2-N, and PO4-P indicated the need for the introduction of additional hydroponic beds in the system. Pond A had markedly lower nutrient concentrations compared with Pond B. Fish body weight increase and specific growth rate in Pond A were higher than in Pond B (102.6 %, 72.1 %; 0.19 %/day, 0.14 %/day, respectively) indicating better rearing conditions in Pond A. Tomato biomass production was high. Water use efficiency was higher in Pond A compared with Pond B (0.31 kg of produced fish/m(3) inflow water and 0.22 kg of produced fish/m(3) inflow water, respectively). The presented aquaponic system could be useful for semi-natural fish farming with fish loads up to 2 kg/m(3).

  18. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  19. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  20. [Effect of intermittent artificial aeration on nitrogen and phosphorus removal in subsurface vertical-flow constructed wetlands].

    Science.gov (United States)

    Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang

    2008-04-01

    Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed.

  1. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    Science.gov (United States)

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  2. Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Jacob A. Fleck

    2007-05-01

    Full Text Available Wetland restoration on peat islands in the Sacramento-San Joaquin Delta will change the quality of island drainage waters entering the Delta, a primary source of drinking water in California. Peat island drainage waters contain high concentrations of dissolved and particulate organic carbon (DOC and POC and organic precursors to drinking water disinfection byproducts, such as trihalomethanes (THMs. We quantified the net loads of DOC, POC, and THM-precursors from a constructed subsidence mitigation wetland on Twitchell Island in the Delta to determine the change in drainage water quality that may be caused by conversion of agricultural land on peat islands to permanently flooded, non-tidal wetlands. Creation of permanently flooded wetlands halts oxidative loss of the peat soils and thereby may mitigate the extensive land-surface subsidence of the islands that threatens levee stability in the Delta. Net loads from the wetland were dominated by DOC flushed from the oxidized shallow peat soil layer by seepage flow out of the wetland. The permanently flooded conditions in the overlying wetland resulted in a gradual evolution to anaerobic conditions in the shallow soil layer and a concomitant decrease in the flow could be minimized by reducing the hydraulic gradient between the wetland and the adjacent drainage ditch. Estimates of net loads from the wetland assuming efflux of surface water only were comparable in magnitude to net loads from nearby agricultural fields, but the wetland and agricultural net loads had opposite seasonal variations. Wetland surface water net loads of DOC, POC, and THM-precursors were lower during the winter months when the greatest amounts of water are available for diversion from the Delta to drinking water reservoirs.

  3. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater.

    Science.gov (United States)

    Ro, Kyoung S; Hunt, Patrick G; Johnson, Melvin H; Matheny, Terry A; Forbes, Dean; Reddy, Gudigopuram B

    2010-01-01

    Oxygen transfer efficiencies of various components of the marsh-pond-marsh (M-P-M) and marsh-floating bed-marsh (M-FB-M) wetlands treating swine wastewater were determined by performing oxygen mass balance around the wetlands. Biological oxygen demand (BOD) and total nitrogen (TN) loading and escaping rates from each wetland were used to calculate carbonaceous and nitrogenous oxygen demands. Ammonia emissions were measured using a wind tunnel. Oxygen transfer efficiencies of the aerated ponds were estimated by conducting the ASCE standard oxygen transfer test in a tank using the same aeration device. Covering pond water surface with the floating bed slightly decreased oxygen transfer efficiency. The diffused membrane aeration (26.7 kg O2 ha-1 d-1) of M-P-M was surprisingly not as effective as plant aeration in the marsh (38.9 to 42.0 kg O2 ha-1 d-1). This unusually low oxygen transfer efficiency of the diffused aeration was attributed to its low submergence depth of 0.8 m compared to typical depth of 4.5 m. The wetlands consisting entirely of marsh removed similar amounts of C and N without investing additional equipment and energy costs of aerating ponds in the middle of wetlands.

  4. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands.

    Science.gov (United States)

    Morató, Jordi; Codony, Francesc; Sánchez, Olga; Pérez, Leonardo Martín; García, Joan; Mas, Jordi

    2014-05-15

    Constructed wetlands constitute an interesting option for wastewater reuse since high concentrations of contaminants and pathogenic microorganisms can be removed with these natural treatment systems. In this work, the role of key design factors which could affect microbial removal and wetland performance, such as granular media, water depth and season effect was evaluated in a pilot system consisting of eight parallel horizontal subsurface flow (HSSF) constructed wetlands treating urban wastewater from Les Franqueses del Vallès (Barcelona, Spain). Gravel biofilm as well as influent and effluent water samples of these systems were taken in order to detect the presence of bacterial indicators such as total coliforms (TC), Escherichia coli, fecal enterococci (FE), Clostridium perfringens, and other microbial groups such as Pseudomonas and Aeromonas. The overall microbial inactivation ratio ranged between 1.4 and 2.9 log-units for heterotrophic plate counts (HPC), from 1.2 to 2.2 log units for total coliforms (TC) and from 1.4 to 2.3 log units for E. coli. The presence of fine granulometry strongly influenced the removal of all the bacterial groups analyzed. This effect was significant for TC (p=0.009), E. coli (p=0.004), and FE (p=0.012). Shallow HSSF constructed wetlands were more effective for removing Clostridium spores (p=0.039), and were also more efficient for removing TC (p=0.011) and E. coli (p=0.013) when fine granulometry was used. On the other hand, changes in the total bacterial community from gravel biofilm were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of polymerase chain reaction (PCR)-amplified fragments of the 16S rRNA gene recovered from DGGE bands. Cluster analysis of the DGGE banding pattern from the different wetlands showed that microbial assemblages separated according to water depth, and sequences of different phylogenetic groups, such as Alpha, Beta and Delta-Proteobacteria, Nitrospirae, Bacteroidetes

  5. Modeling the climatic and subsurface stratigraphy controls on the hydrology of a Carolina Bay wetland in South Carolina, USA

    Science.gov (United States)

    Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin

    2006-01-01

    Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...

  6. Twenty years experience with constructed wetland systems in Denmark - what did we learn?

    DEFF Research Database (Denmark)

    Brix, Hans; Schierup, Hans-Henrik; Arias, Carlos Alberto

    2007-01-01

    wetland systems are either compact vertical flow systems which provide good nitrification, willow systems with no discharge or restored wetland systems for nitrate removal. If efficient removal of phosphorus is required, this is achieved by chemical precipitation in the sedimentation tank......., the reeds do not increase the hydraulic conductivity of cohesive soils as much as necessary to secure sub-surface flow. Operation needs of soil-based reed beds are low and normally restricted to emptying of the sedimentation tank, cleaning of the distribution system and mowing of the grass around the system...

  7. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control.

    Science.gov (United States)

    Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie

    2014-10-01

    Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessment of Constructed Wetland in Nutrient Reduction, in the Commercial Scale Experiment Ponds of Freshwater Prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    Mahmood, Tariq; Zhang, Jing; Zhang, Guosen

    2016-03-01

    A free water surface constructed wetland (CW) was integrated into two commercial ponds of Macrobrachium rosenbergii, to evaluate the role of CW in reducing the excess nutrient concentration and other pollutants produced from the aquaculture waste. Hydraulic residence time was kept constant (24 h). There was a significant (p < 0.05) decrease in total suspended solids (TSS, 73.2 ± 15.4 %) and total nitrogen (TN, 39.6 ± 44.2 %) between wetland inflow and wetland outflow. The performance of the CW was highly impacted by the low concentration of dissolved nutrients at the inflow of CW. Results showed about 43.8 ± 24.6 % NO3 (-), 25.7 ± 23.0 % NH4 (+), 14.3 ± 1.0 % NO2 (-), 28.4 ± 18.8 % DIN and 13.1 ± 10.0 % PO4 (3-) were removed. In agreement with previous published investigations, comparing values of pollutants before and after recirculation, this study concludes that a CW system can provide good water quality and minimize external water input.

  9. Application of constructed wetlands for wastewater treatment in developing countries--a review of recent developments (2000-2013).

    Science.gov (United States)

    Zhang, Dong Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Ng, Wun Jern; Tan, Soon Keat

    2014-08-01

    Inadequate access to clean water and sanitation has become one of the most pervasive problems afflicting people throughout the developing world. Replication of centralized water-, energy- and cost-intensive technologies has proved ineffective in resolving the complex water-related problems resulting from rapid urbanization in the developing countries. Instead constructed wetlands (CWs) have emerged and become a viable option for wastewater treatment, and are currently being recognized as attractive alternatives to conventional wastewater treatment methods. The primary objective of this review is to present a comprehensive overview of the diverse range of practice, applications and researches of CW systems for removing various contaminants from wastewater in developing countries, placing them in the overall context of the need for low-cost and sustainable wastewater treatment systems. Emphasis of this review is placed on the treatment performance of various types of CWs including: (i) free water surface flow CW; (ii) subsurface flow CW; (iii) hybrid systems; and, (iv) floating treatment wetland. The impacts of different wetland design and pertinent operational variables (e.g., hydraulic loading rate, vegetation species, physical configurations, and seasonal variation) on contaminant removal in CW systems are also summarized and highlighted. Finally, the cost and land requirements for CW systems are critically evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rastorfer, J.R. [Chicago State Univ., IL (United States). Dept. of Biological Sciences; Van Dyke, G.D.; Zellmer, S.D.; Wilkey, P.L. [Argonne National Lab., IL (United States)

    1995-04-01

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats. Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.

  11. Methodological application so as to obtain digital elevation models DEM in wetland areas

    International Nuclear Information System (INIS)

    Quintero, Deiby A; Montoya V, Diana M; Betancur, Teresita

    2009-01-01

    In order to understand hydrological systems and the description of flow processes that occur among its components it is essential to have a physiographic description that morphometric and relief characteristics. When local studies are performed, the basic cartography available, in the best case 1:25,000 scale, tends not to obey the needs required to represent the water dynamics that characterize the interactions between streams, aquifers and lenticular water bodies in flat zones particularly in those where there are wetlands localized in ancient F100D plains of rivers. A lack of financial resources is the principal obstacle to acquiring; information that is current and sufficient for the scale of the project. Geomorphologic conditions of flat relief zones are a good alternative for the construction of the new data. Using the basic cartography available and the new data, it is possible to obtain DEMs that are improved and consistent with the dynamics of surface and groundwater flows in the hydrological system. To accomplish this one must use spatial modeling tools coupled with Geographic Information System - GIS. This article present a methodological application for the region surrounding the catchment of wetland Cienaga Colombia in the Bajo Cauca region of Antioquia.

  12. Constructing a Business Model Taxonomy

    DEFF Research Database (Denmark)

    Groth, Pernille; Nielsen, Christian

    2015-01-01

    Abstract Purpose: The paper proposes a research design recipe capable of leading to future business model taxonomies and discusses the potential benefits and implications of achieving this goal. Design/Methodology/Approach: The paper provides a review of relevant scholarly literature about business...... the quality of business model taxonomy studies in the future are identified. Originality/Value: The paper highlights the benefits and potential implications of designing business model taxonomy studies and makes the case for ensuring the quality of future studies relating to e.g. performance. Reviewing...... models to clarify the subject as well as highlighting the importance of past studies of business model classifications. In addition it reviews the scholarly literature on relevant methodological approaches, such as cluster analysis and latent class analysis, for constructing a business model taxonomy...

  13. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    Science.gov (United States)

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  14. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].

    Science.gov (United States)

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang

    2008-12-01

    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs.

  15. Role of C3 plant species on carbon dioxide and methane emissions in Mediterranean constructed wetland

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2014-08-01

    Full Text Available C3 plant species are widely used to vegetate constructed wetlands (CW, but so far no information is available on their effect on CW CO2(eq balance in the Mediterranean climate. The aim of this research was to study carbon dioxide (CO2 and methane (CH4 emissions and CO2(eq budgets of CW horizontal sub-surface flow pilot-plant beds vegetated with Arundo donax L. and Phragmites australis (Cav. Trin. ex Steud. compared with an unvegetated bed in Sicily. The highest total plant biomass production was measured in the bed vegetated with A. donax (17.0 kg m–2, whereas P. australis produced 7.6 kg m–2. CO2 and CH4 emissions and showed significant correlation with average air temperature and solar radiation for each bed. The CO2 emission values ranged from 0.8±0.1 g m–2 d–1, for the unvegetated bed in April, to 24.9±0.6 g m–2 d–1 for the bed with P. australis in August. The average CO2 emissions of the whole monitored period were 15.5±7.2, 15.1±7.1 and 3.6±2.4 g m–2 d–1 for A. donax, P. australis and unvegetated beds respectively. The CH4 fluxes differed significantly over the monitored seasons, with the highest median value being measured during spring (0.963 g m–2 d–1. No statistical differences were found for CH4 flux among the studied beds. Cumulative estimated CH4 emissions during the study period (from April to December were 159.5, 134.1 and 114.7 g m–2 for A. donax, P. australis and unvegetated beds respectively. CO2(eq balance showed that the two vegetated beds act as CO2(eq sinks, while the unvegetated bed, as expected, acts as a CO2(eq source. Considering only the above-ground plant biomass in the CO2(eq budgets, P. australis and A. donax determined uptakes of 1.30 and 8.35 kg CO2(eq m–2 respectively.

  16. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements

    Science.gov (United States)

    Xiao, Z. X. Z.

    2015-12-01

    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  17. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species.

    Science.gov (United States)

    Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo

    2015-02-01

    This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth.

  18. Characterizing the Surface Connectivity of Depressional Wetlands: Linking Remote Sensing and Hydrologic Modeling Approaches

    Science.gov (United States)

    Christensen, J.; Evenson, G. R.; Vanderhoof, M.; Wu, Q.; Golden, H. E.; Lane, C.

    2017-12-01

    Surface connectivity of wetlands in the 700,000 km2 Prairie Pothole Region of North America (PPR) can occur through fill-spill and fill-merge mechanisms, with some wetlands eventually spilling into stream/river systems. These wetland-to-wetland and wetland-to-stream connections vary both spatially and temporally in PPR watersheds and are important to understanding hydrologic and biogeochemical processes in the landscape. To explore how to best characterize spatial and temporal variability in aquatic connectivity, we compared three approaches, 1) hydrological modeling alone, 2) remotely-sensed data alone, and 3) integrating remotely-sensed data into a hydrological model. These approaches were tested in the Pipestem Creek Watershed, North Dakota across a drought to deluge cycle (1990-2011). A Soil and Water Assessment Tool (SWAT) model was modified to include the water storage capacity of individual non-floodplain wetlands identified in the National Wetland Inventory (NWI) dataset. The SWAT-NWI model simulated the water balance and storage of each wetland and the temporal variability of their hydrologic connections between wetlands during the 21-year study period. However, SWAT-NWI only accounted for fill-spill, and did not allow for the expansion and merging of wetlands situated within larger depressions. Alternatively, we assessed the occurrence of fill-merge mechanisms using inundation maps derived from Landsat images on 19 cloud-free days during the 21 years. We found fill-merge mechanisms to be prevalent across the Pipestem watershed during times of deluge. The SWAT-NWI model was then modified to use LiDAR-derived depressions that account for the potential maximum depression extent, including the merging of smaller wetlands. The inundation maps were used to evaluate the ability of the SWAT-depression model to simulate fill-merge dynamics in addition to fill-spill dynamics throughout the study watershed. Ultimately, using remote sensing to inform and validate

  19. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  20. Wetland assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio, site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the

  1. Carbon, Nitrogen and Phosphorus Tranformations are Related to Age of a Constructe Wetland

    Czech Academy of Sciences Publication Activity Database

    Zemanová, K.; Picek, T.; Dušek, Jiří; Edwards, K.; Šantrůčková, H.

    2010-01-01

    Roč. 207, 1-4 (2010), s. 39-48 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z60870520 Keywords : constucted wetlands * carbon * nitrogen * phosphorus * mineralization * microbial processes * greenhouse gasses Subject RIV: EH - Ecology, Behaviour Impact factor: 1.765, year: 2010 http://www.springerlink.com/content/l3g88621603934r0/

  2. Delineating wetland catchments and modeling hydrologic connectivity using LiDAR data and aerial imagery

    OpenAIRE

    Wu, Qiusheng; Lane, Charles R.

    2017-01-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to perman...

  3. Jiangsu coastal highland reclamation and its wetland ecological construction-a case analysis of the Tiaozini reclamation project

    Science.gov (United States)

    Yu, Meixiu; Xu, Xianghong

    2017-04-01

    ,developing more suitable water bird habitats by reserving natural ecological wetland and restoring affected wetland. The TRP is attempting to be built as an ecological cultivation demonstration integrated with ecological restoration, science research and education, and ecological leisure respectively. To better protecting and restoring tidal wetland, and for sustainable utilization and management of wetland resource, Jiangsu coast development group CO., Ltd (it is in charge of the TRP reclamation and development), Hohai University and Deltares signed a triple cooperation strategic framework agreement, co-building the Jiangsu Province coastal development and ecological construction engineering center. Besides, routine surveys in ecological, hydrological, topographic data in/around the TRP are also carrying out as well as the ecological compensations.

  4. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Caselles-Osorio, Aracelly [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain); Department of Biology, Atlantic University, Km 7 Higway Old Colombia Port, Barranquilla (Colombia); Garcia, Joan [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain)]. E-mail: joan.garcia@upc.edu

    2007-03-15

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands.

  5. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    International Nuclear Information System (INIS)

    Caselles-Osorio, Aracelly; Garcia, Joan

    2007-01-01

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands

  6. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    Science.gov (United States)

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian

    2015-12-01

    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajesh

    2017-05-01

    The present study demonstrated the understating of municipal wastewater treatment in five types of CWs operated under semi continuous vertical flow mode. All CWs treatment conditions show the significantly lower pollutants concentrations. The average NH 4 + -N, TN, NO 2 - -N, NO 3 - -N, SO 4 2- , and PO 4 3- removal efficiency in the ISs-CWs were 83.60%, 82.43%, 15.61%, 48.93%, 80.45%, and 78.94% respectively. The average NO 2 - -N removal efficiency shows that highest nitrite accumulation occurred in the Cont-CWs followed by C-CWs. The lowest increase in the biomass (127.5%) was observed in the Eichhornia crassipes planted in the ISs-CWs. The ISs filtration barrier created in the constructed wetlands was sufficient enough to remove all the pollutants. Principal components EFA 2D deformation plots show the distribution of the various nitrogenous species in the constructed wetlands along different components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO 3 - -N and TN in winter; and in summer with NH 4 + N, NO 3 - -N, NO 2 - -N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Penurunan Logam Timbal (Pb pada Limbah Cair TPA Piyungan Yogyakarta dengan Constructed Wetlands Menggunakan Tumbuhan Eceng Gondok (Eichornia Crassipes

    Directory of Open Access Journals (Sweden)

    Eko Siswoyo

    2015-10-01

    Full Text Available Salah satu permasalahan lingkungan yang ditimbulkan dari adanya lindi di TPA Piyungan yaitu pencemaran pada badan air, sungai dan air tanah. Untuk mengatasi permasalahan ini salah satunya dengan sistem Constructed Wetlands dengan menggunakan tumbuhah eceng gondok. Tujuan dari penelitian ini adalah untuk mengetahui tingkat penurunan konsentrasi Timbal (Pb yang terdapat dalam limbah cair TPA Piyungan dengan Constructed Wetlands menggunakan tumbuhan eceng gondok dan untuk mengetahui seberapa besar kapasitas serapan tumbuhan eceng gondok terhadap kandungan Timbal (Pb dalam limbah cair TPA Piyungan.Dalam penelitian ini digunakan reaktor yang terbuat dari kayu yang dilapisi plastik dengan ukuran 0,5 m x 1,0 m. Setiap reaktor diberi media tanah 5 cm, dan diberi tumbuhan sebanyak 14 buah. Reaktor tersebut diberi perlakuan dengan konsentrasi limbah yang bervariasi (100%, 75%, 50%, 25%, dan 0%, dan waktu pengambilan sampel (0, 3, 6, 9, 12 hari. Dengan menggunakan metode SSA (Spektrofotometri Serapan Atom.Berdasarkan pengujian diperoleh bahwa penurunan logam Pb pada limbah cair TPA Piyungan hari ke- 12, yaitu sebesar 0.0501mg/L pada konsentrasi 100%, 0.0295mg/L pada konsentrasi 75%, 0.0267mg/L pada konsentrasi 50% dan 0.0041 mg/L pada konsentrasi 25%.

  11. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.

    Science.gov (United States)

    Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei

    2016-09-15

    In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Science.gov (United States)

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  13. The Influence of the Ratio of Nitrate to Ammonium Nitrogen on Nitrogen Removal in the Economical Growth of Vegetation in Hybrid Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-03-01

    Full Text Available Growing vegetables economically in the use of constructed wetland for wastewater treatment can play a role in overcoming water and food scarcity. Allium porrum L., Solanum melongena L., Ipomoea aquatica Forsk., and Capsicum annuum L. plants were selected to grow in hybrid constructed wetland (CW under natural conditions. The impact of the ratio of nitrate to ammonium nitrogen on ammonium and nitrate nitrogen removal and on total nitrogen were studied in wastewater. Constructed wetland planted with Ipomoea aquatica Forsk. and Solanum melongena L. showed higher removal efficiency for ammonium nitrogen under higher ammonium concentration, whereas Allium porrum L.-planted CW showed higher nitrate nitrogen removal when NO3–N concentration was high in wastewater. Capsicum annuum L.-planted CW showed little efficiency for both nitrogen sources compared to other vegetables.

  14. Hydrologic, soil, and vegetation gradients in remnant and constructed riparian wetlands in west-central Missouri, 2001-04

    Science.gov (United States)

    Heimann, David C.; Mettler-Cherry, Paige A.

    2004-01-01

    A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has

  15. Dynamics of nitrobenzene degradation and interactions with nitrogen transformations in laboratory-scale constructed wetlands.

    Science.gov (United States)

    Lv, Tao; Wu, Shubiao; Hong, Hao; Chen, Li; Dong, Renjie

    2013-04-01

    Three laboratory-scale CWs (i.e., tidal flow CW as well as planted and unplanted horizontal subsurface flow CWs) were set up to treat artificial nitrobenzene (NB) industry effluents in this study. An inflow NB load equal to or less than 70 mg/L achieved approximately 95% NB removal regardless of wetland type. When NB influent load increased to 160 mg/L, NB removal efficiency decreased to 57%, 46%, and 33% in planted and unplanted horizontal CWs as well as tidal flow CWs, respectively. Higher NB degradation efficiency in planted horizontal CW highlighted the positive effect of wetland plants. Moreover, strong inhibition of nitrogen removal was initiated in CWs with an increase of NB loads to 160 mg/L, which was probably caused by NB toxicity. The investigation indicated not only the potential application of treatment wetlands as a secondary ecological treatment system for NB-containing wastewater, but also the interactions with nitrogen transformations in CWs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Efficiency of sewage treatment with septic tanks followed by constructed wetlands with different support materials

    Directory of Open Access Journals (Sweden)

    Delvio Sandri

    2013-04-01

    Full Text Available This study seeks to assess the efficiency of a sewage treatment plant comprised of three compartmentalized septic tanks installed in series followed by three parallel wetlands and seeded with species Typha sp. with subsurface flow, filled with support material of natural gravel, gravel # 2 and washed gravel, respectively. The station treats sewage generated at Unity University for Science and Technology, State University of Goiás – UnUCET/UEG. A total of 20 sewage samples were collected in order to evaluate treatment efficiency from November to December 2010 and March to April 2011. The points of analysis were at the input of the first tank (raw sewage, the output of the third septic tank and the outputs of each of the three wetlands. The total removal efficiencies were: 65.40% for chemical oxygen demand; 79.01% for biochemical oxygen demand; 59.79% for total solids; 87.12% for the total suspended solids; 92.00% for total coliforms; 95.71% for E. coli and 82.54% for turbidity. The system was effective for the treatment of sewage, within the current legislative parameters for pH, turbidity, total solids and biochemical oxygen demand. No significant difference was observed between the three different means of support, suggesting that gravel, natural gravel and washed gravel may potentially be used to fill wetlands.

  17. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal.

    Science.gov (United States)

    Yıldırım, Kubilay; Kasım, Gözde Çıtır

    2018-03-01

    Boron (B) pollution is an expanding environmental problem throughout the world due to intensive mining practices and extensive usage of B in agricultural chemicals and industrial products in recent years. The purpose of this study was to investigate B removal performance of four poplar and four willow species in small scale Constructed Wetland (CW). Rooted cuttings of tested species were treated with simulated wastewater having five elevated B concentrations (0.5, 5, 10, 20 and 40 ppm). All the tested species could resist up to 20 ppm wastewater B supply and could regrow from their roots in the soil having maximum 15 mg/kg B content. The result of the study indicated that 65% ± 5.3 of B was removed from the wastewater in 5 ppm B treatment while the same efficiency decreased to 45% ± 4.6 at 40 ppm B supply. The average effect of sediment on B removal was found to be approximately 20% for all B treatments while the remaining part of the loaded B was removed from the CW within effluent (35-54%). Therefore, actual effects of plant species on B removal was ranged from 45% to 25% between 5 and 40 ppm B treatments. Mass B removal within plant body (phytextraction) comprised the 13-10% of total loaded B in CW while the remaining part of the loaded B (31-15%) was stabilized into the sediment with the effects of poplar and willow roots. These results presented clear understanding of effective B purification mechanisms in CWs. Boron phytextraction capacity of a plant species was less effective than its phytstabilization efficiency which increase filtering capacity of the sediment and stabilization of more B around the rhizosphere. In terms of their B removal ability, P.nigra and S.anatolica had the highest B removal capacities with phytextraction (20-11%) while S.alba, P.alba and S.babylonica had more phytstabilizaiton performance (40-15%) in CW. Disposal of B loaded plant material create another environmental costs for CW applications. Therefore, B loaded

  18. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    Science.gov (United States)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  19. The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands.

    Science.gov (United States)

    Wang, Yuhui; Wang, Junfeng; Zhao, Xiaoxiang; Song, Xinshan; Gong, Juan

    2016-02-01

    Four plant species, Typha orientalis, Scirpus validus, Canna indica and Iris tectorum were selected to assess their physiological response and effects on nitrogen and COD removal to high total ammoniacal nitrogen (TAN) in constructed wetlands. Results showed that high TAN caused decreased relative growth rate, net photosynthetic rate, and leaf transpiration. C. indica and T. orientalis showed higher TAN adaptability than S. validus and I. tectorum. Below TAN of 200 mg L(-1), growth of C. indica and T. orientalis was less affected or even stimulated at TAN range 100-200 mg L(-1). However, S. validus and I. tectorum was obviously suppressed when TAN was above 100 mg L(-1). High TAN generated obvious oxidative stress showing increased proline and malondialdehyde contents, and superoxide dismutase was inhibited. It indicated that the threshold for plant self-bioremediation against high TAN was 200 mg L(-1). What's more, planted CWs showed higher nitrogen and COD removal. Removal rate of C. indica and T. orientalis was higher than S. validus and I. tectorum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents.

    Science.gov (United States)

    Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C

    2011-01-01

    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.

  1. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  2. Systems modeling to improve the hydro-ecological performance of diked wetlands

    Science.gov (United States)

    Alminagorta, Omar; Rosenberg, David E.; Kettenring, Karin M.

    2016-09-01

    Water scarcity and invasive vegetation threaten arid-region wetlands and wetland managers seek ways to enhance wetland ecosystem services with limited water, labor, and financial resources. While prior systems modeling efforts have focused on water management to improve flow-based ecosystem and habitat objectives, here we consider water allocation and invasive vegetation management that jointly target the concurrent hydrologic and vegetation habitat needs of priority wetland bird species. We formulate a composite weighted usable area for wetlands (WU) objective function that represents the wetland surface area that provides suitable water level and vegetation cover conditions for priority bird species. Maximizing the WU is subject to constraints such as water balance, hydraulic infrastructure capacity, invasive vegetation growth and control, and a limited financial budget to control vegetation. We apply the model at the Bear River Migratory Bird Refuge on the Great Salt Lake, Utah, compare model-recommended management actions to past Refuge water and vegetation control activities, and find that managers can almost double the area of suitable habitat by more dynamically managing water levels and managing invasive vegetation in August at the beginning of the window for control operations. Scenario and sensitivity analyses show the importance to jointly consider hydrology and vegetation system components rather than only the hydrological component.

  3. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  4. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    Science.gov (United States)

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.

  5. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands.

    Science.gov (United States)

    Yan, Liying; Zhang, Songhe; Lin, Da; Guo, Chuan; Yan, Lingling; Wang, Supeng; He, Zhenli

    2018-05-01

    Submerged macrophytes and biofilms are important components of wetlands. However, little is known about the changes of microbes in biofilms attached to submerged macrophytes upon nitrogen loading. This study investigated the changes of microbes, algae, nitrifiers and denitrifiers in biofilms attached to the leaves of artificial plants (AP), Potamogeton malaianus (PM), Vallisneria natans (VN) and Hydrilla verticillata (HV) under varied initial concentrations of total nitrogen (TN). Nitrogen addition increased biofilm biomass and changed dissolved oxygen concentrations and pH values in overlaying water. Epiphytic algal densities showed the same trend at the same N level:AP>PM>VN>HV. As revealed by cluster analysis at phylum level, algae compositions in biofilm from four plants showed some host-specific at 2 and 12mgL -1 TN, but was clustered in the same group at 22mgL -1 TN regardless of plant species. Submerged macrophytes had better performance in total N removal than AP. In general, N application significantly increased the abundance of amoA, nirK, nirS, napA and cnorB in biofilm. The abundance of the denitrification genes (nirK, nirS, napA, narG and cnorB) was positively correlated with nitrogen application, while amoA was correlated with concentration of dissolved oxygen. These results indicate that N loadings stimulated the growth of biofilms attached to submerged macrophyte and the removal of total N can be partially ascribed to the synergistic interactions of submerged macrophyte and biofilms in wetlands. These results highlight the ecological role of submerged macrophyte-biofilm system in nitrogen removal in wetlands. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia

    Directory of Open Access Journals (Sweden)

    T. J. Bohn

    2015-06-01

    Full Text Available Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP, focused on the West Siberian Lowland (WETCHIMP-WSL. We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr−1, inversions (6.06 ± 1.22 Tg CH4 yr−1, and in situ observations (3.91 ± 1.29 Tg CH4 yr−1 largely agreed; (b forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver

  7. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  8. Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate.

    Science.gov (United States)

    Lavrova, Silviya; Koumanova, Bogdana

    2010-03-01

    Landfill leachate taken from a landfill situated in the north-western region of Bulgaria has been treated in a laboratory scale vertical flow constructed wetland (VF-CW) at different flow rates (40, 60 and 82 ml min(-1)) and recirculation ratios (time of water running through wetland to time of quiet water - 1:1; 1:2; 1:3). Young Phragmites australis was planted on the top layer of the reactor. The low flow rate (40 ml min(-1)) and recirculation ratio of 1:3 allowed removal efficiencies of 96% for COD (in 8 days), 92% for BOD(5) (in 3 days), 100% for ammonia (in 5 days) and 100% for total phosphorus (in 2 days). At the highest flow rate studied (82 ml min(-1)) and shorter quiet period (recirculation ratio 1:1) the water needs longer period of treatment (2 days more according to COD). The results of this study indicate that both flow rate and recirculation ratio should be taken into account for proper design of VF-CW. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. The Efficacy of Constructed Stream-Wetland Complexes at Reducing the Flux of Suspended Solids to Chesapeake Bay.

    Science.gov (United States)

    Filoso, Solange; Smith, Sean M C; Williams, Michael R; Palmer, Margaret A

    2015-08-04

    Studies documenting the capacity of restored streams to reduce pollutant loads indicate that they are relatively ineffective when principal watershed stressors remain intact. Novel restorations are being designed to increase the hydraulic connectivity between stream channels and floodplains to enhance pollutant removal, and their popularity has increased the need for measurements of potential load reductions. Herein we summarize input-output budgets of total suspended solids (TSS) in two Coastal Plain lowland valleys modified to create stream-wetland complexes located above the head-of-tide on the western shore of Chesapeake Bay. Loads entering (input) and exiting (output) the reconfigured valleys over three years were 103 ± 26 and 85 ± 21 tons, respectively, and 41 ± 10 and 46 ± 9 tons, respectively. In both cases, changes in loads within the reconfigured valleys were insignificant relative to cumulative errors. High variability of TSS retention among stormflow events suggests that the capacity of these systems to trap and retain solids and their sustainability depend on the magnitude of TSS loads originating upstream, design characteristics, and the frequency and magnitude of large storms. Constructed stream-wetland complexes receiving relatively high TSS loads may experience progressive physical and chemical changes that limit their sustainability.

  10. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    Science.gov (United States)

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment. Published by Oxford University Press on behalf of FEMS 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration.

    Science.gov (United States)

    Vera, I; Araya, F; Andrés, E; Sáez, K; Vidal, G

    2014-08-01

    Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency.

  12. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    Science.gov (United States)

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Response of removal rates to various organic carbon and ammonium loads in laboratory-scale constructed wetlands treating artificial wastewater.

    Science.gov (United States)

    Wu, Shubiao; Kuschk, Peter; Wiessner, Arndt; Kästner, Matthias; Pang, Changle; Dong, Renjie

    2013-01-01

    High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, which further inhibited the denitrification process. An increase in carbon load, however, was associated with a significant elevation of pH to 6.0. In general, sulfate and nitrate reduction were relatively high, with mean levels of 87 and 90%, respectively. However, inhibition of nitrification was initiated with an increase in carbon loads. This effect was probably a result of competition for oxygen by heterotrophic bacteria and an inhibitory effect of sulfide (S2) toxicity (concentration approximately 3 mg/L). In addition, numbers of healthy stalks of Juncus effusus (common rush) decreased from 14 000 to 10 000/m2 with an increase of sulfide concentration, indicating the negative effect of sulfide toxicity on the wetland plants.

  14. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  15. Cost-effectiveness analysis of surface flow constructed wetlands (SFCW) for nutrient reduction in drainage discharge from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjærgaard, Charlotte

    2015-01-01

    , this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients......Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies...... reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW...

  16. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    Science.gov (United States)

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  17. A mass balance study on nitrification and deammonification in vertical flow constructed wetlands treating landfill leachate.

    Science.gov (United States)

    Sun, G; Austin, D

    2007-01-01

    A laboratory-scale, mass-balance study was carried out on the transformation of nitrogenous pollutants in four vertical flow wetland columns. Landfill leachate containing low organic matter, but a high concentration of ammoniacal-nitrogen, was treated under dissolved oxygen concentrations close to saturation. Influent total nitrogen (TN) comprised ammoniacal-nitrogen with less than 1% nitrate and nitrite, negligible organic nitrogen, and very low BOD. Nitrification occurred in three of the four columns. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (Nitrogen loss under study conditions was unexpected. Two hypotheses are proposed to account for it: (1) either the loss of TN is attributed to nitrogen transformation into a form (provisionally termed alpha-nitrogen) that is undetectable by the analytical methods used; or (2) the loss is caused by microbial denitrification or deammonification. By elimination and stoichiometric mass balance calculations, completely autotrophic nitrogen-removal over nitrite (CANON) deammonification is confirmed as responsible for nitrogen loss in one column. This result reveals that CANON can be native to aerobic engineered wetland systems treating high ammonia, low organic content wastewater.

  18. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

    Directory of Open Access Journals (Sweden)

    L. Meng

    2012-07-01

    Full Text Available Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011 into the Community Land Model 4.0 (CLM4CN in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1 in predicted global methane emissions (excluding emissions from rice paddies. The large range is

  19. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    Science.gov (United States)

    Wu, Qiusheng; Lane, Charles R.

    2017-07-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  20. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    Science.gov (United States)

    Potter, C.; Melack, J.; Hess, L.; Forsberg, B.; Novo, E. M.; Klooster, S.

    2004-12-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA-CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes -- flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  1. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    Science.gov (United States)

    Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven

    2004-01-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  2. Effects of aeration and natural zeolite on ammonium removal during the treatment of sewage by mesocosm-scale constructed wetlands.

    Science.gov (United States)

    Araya, F; Vera, I; Sáez, K; Vidal, G

    2016-01-01

    The objective was to evaluate the effects of intermittent artificial aeration cycles and natural zeolite as a support medium, in addition to the contribution of plants (Schoenoplectus californicus) on NH4(+)-N removal during sewage treatment by Constructed Wetlands (CW). Two lines of Mesocosm Constructed Wetland (MCW) were installed: (a) gravel line (i.e. G-Line) and (b) zeolite line (i.e. Z-Line). Aeration increased the NH4(+)-N removal efficiency by 20-45% in the G-Line. Natural zeolite increased the NH4(+)-N removal efficiency by up to 60% in the Z-Line. Plants contributed 15-30% of the NH4(+)-N removal efficiency and no difference between the G-Line and the Z-Line. Conversely, the NH4(+)-N removal rate was shown to only increase with the use of natural zeolite. However, the MCW with natural zeolite, the NH4(+)-N removal rate showed a direct relationship only with the NH4(+)-N influent concentration. Additionally, relationship between the oxygen, energy and area regarding the NH4(+)-N removal efficiency was established for 2.5-12.5 gO2/(kWh-m(2)) in the G-Line and 0.1-2.6 gO2/(kWh-m(2)) in the Z-Line. Finally, it was established that a combination of natural zeolite as a support medium and the aeration strategy in a single CW could regenerate the zeolite's adsorption sites and maintain a given NH4(+)-N removal efficiency over time.

  3. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of vegetations and temperature on nutrient removal and microbiology in horizontal subsurface low constructed wetland for treatment of domestic sewage

    Science.gov (United States)

    The direct discharge of untreated domestic wastewater represents a major source of nutrients entering into aquatic environments, which may cause serious ecological problems, e.g., eutrophication. In this regard, low-cost and easily managed technologies such as constructed wetlands (CWs) provide a go...

  5. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  6. The flower and the butterfly constructed wetland system at Koh Phi Phi - system design and lessons learned during implementation and operation

    DEFF Research Database (Denmark)

    Brix, Hans; Koottatep, Thammarat; Fryd, Ole

    2011-01-01

    is an international lighthouse project showing the potential for aesthetical integration of constructed wetland systems in the built environment. The system comprises a wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe system to the treatment...

  7. Environmental Modeling, The Natural Filter Wetland Priority layers identify priority wetland restoration sites by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank opportunities with high nutrient removal potential., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Natural Filter Wetland Priority layers identify priority wetland restoration sites by subwatershed. Land use,...

  8. Conceptual model for invasive bivalve control on wetland productivity

    Science.gov (United States)

    Hartman, Rosemary; Brown, Larry R.; Thompson, Janet K.; Parchaso, Francis

    2017-01-01

    Tidal wetlands were the historically dominant features of many coastal regions around the world, including the San Francisco Estuary (Callaway et al. 2011; Whipple et al. 2012). These mosaics of varied interconnected habitats (Mitsch and Gosselink 1993) provide a host of ecosystem services, including biodiversity maintenance, fish and wildlife habitat, water quality improvement, flood abatement, and carbon sequestration (Rabenhorst 1995; Costanza et al. 1997; Bottom et al. 2005; Zedler and Kercher 2005; Barbier et al. 2010). They also support human activities and values such as recreation and aesthetic appreciation (Barbier et al. 2010; Milligan and Kraus-Polk 2016). Despite their critical functions, many wetland landscapes have been destroyed or irreparably altered, either incidentally or intentionally, by human activities (Holland et al. 2004; Zedler and Kercher 2005; Callaway et al. 2011; Cloern and Jassby 2012; Whipple et al. 2012; Schile et al. 2014). San Francisco Estuary (SFE) (see Figure 1) tidal wetlands were largely converted to other land uses in the late 1800s and early 1900s, with the extent of loss and new use varying by region. Wetland losses in the North, Central, and South San Francisco bays and Suisun Bay ranged from 70 percent to 93 percent to accommodate agricultural uses, salt production, managed waterfowl habitat, and urban development (Callaway et al. 2011). Landscape transformation within the most inland portion of the SFE, the Sacramento-San Joaquin Delta (Delta), was even more dramatic. Overall, today’s Delta contains 97 percent less freshwater tidal wetland than its historical state and nearly double the open water area (Whipple et al. 2012). The majority of the modern Delta consists of agricultural tracts protected from tidal waters by human-made dikes or levees, which are commonly armored with riprap. The de-watered, rich peat soils of these created islands have supported abundant agricultural production, but have oxidized, compacted

  9. The Utilisation of Digital Elevation Models in the Monitoring of Global Wetlands

    Science.gov (United States)

    Smith, R. G.; Berry, P. A. M.

    2009-11-01

    Wetlands are one of the planets most vital hydrological systems, but also one of its most fragile, with slight changes in elevation dramatically affecting surface water flow. These sites require constant monitoring in order for fully informed water management decisions; however they are often located in the most remote areas making in-situ measurements hard to obtain. Satellite based observation systems are therefore vital in monitoring the changes taking place within these sites.ACE2 is the new Global Digital Elevation model derived from merging over 100 million altimeter data points with the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). This new dataset has improved the orthometric heights currently available over numerous wetlands globally. This paper presents results over a selection of the largest wetlands including the Okavango Delta and the Sudd marshes.This paper also examines the impact of DEMs on the monitoring capability of wetlands by Satellite Radar Altimetry. Accurate masks derived from the DEMs enable results to be obtained from within the wetlands and also facilitate the generation of inflow/outflow water heights. Furthermore the ability of the Radar Altimeter to obtain a signal representing the "brightness" of the ground (Sigma0), coupled with an accurate DEM, can allow an estimate of those areas seasonally inundated.

  10. Modeling methane fluxes in wetlands with gas-transporting plants. 3. Plot scale.

    NARCIS (Netherlands)

    Segers, R.; Leffelaar, P.A.

    2001-01-01

    A process model based on kinetic principles was developed for methane fluxes from wetlands with gas-transporting plants and a fluctuating water table. Water dynamics are modeled with the 1-D Richards equation. For temperature a standard diffusion equation is used. The depth-dependent dynamics of

  11. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  12. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-12-01

    and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  13. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and

  14. Evaluation and Comparison of Ecological Models Simulating Nitrogen Processes in Treatment Wetlands,Implemented in Modelica

    OpenAIRE

    Edelfeldt, Stina

    2005-01-01

    Two ecological models of nitrogen processes in treatment wetlands have been evaluated and compared. These models have been implemented, simulated, and visualized in the Modelica language. The differences and similarities between the Modelica modeling environment used in this thesis and other environments or tools for ecological modeling have been evaluated. The modeling tools evaluated are PowerSim, Simile, Stella, the MathModelica Model Editor, and WEST. The evaluation and the analysis have...

  15. Performance and behaviour of planted and unplanted units of a horizontal subsurface flow constructed wetland system treating municipal effluent from a UASB reactor.

    Science.gov (United States)

    da Costa, Jocilene Ferreira; de Paoli, André Cordeiro; Seidl, Martin; von Sperling, Marcos

    2013-01-01

    A system composed of two horizontal subsurface flow constructed wetlands operating in parallel was evaluated for the post-treatment of UASB (upflow anaerobic sludge blanket) reactor effluent, for a population equivalent of 50 inhabitants per unit. One unit was planted with cattail (Typha latifolia) and the other was unplanted. The study was undertaken over a period of 4 years, comprising monitoring of influent and effluent constituents together with a full characterization of the behaviour of the units (tracer studies, mathematical modelling of chemical oxygen demand (COD) decay, characterization of solids in the filter medium). The mean value of the surface hydraulic load was 0.11 m(3)m(-2)d(-1), and the theoretical hydraulic retention time was 1.1 d in each unit. Using tracer tests with (82)Br, dispersion number (d) values of 0.084 and 0.079 for the planted and unplanted units were obtained, indicating low to moderate dispersion. The final effluent had excellent quality in terms of organic matter and suspended solids, but the system showed low capacity for nitrogen removal. Four-year mean effluent concentration values from the planted and unplanted units were, respectively: biochemical oxygen demand (BOD(5)): 25 and 23 mg L(-1); COD: 50 and 55 mg L(-1); total suspended solids (TSS): 9 and 9 mg L(-1); N-ammonia: 27 and 28 mg L(-1). The COD decay coefficient K for the traditional plug-flow model was 0.81 and 0.84 d(-1) for the planted and unplanted units. Around 80% of the total solids present in the filter medium were inorganic, and most of them were present in the interstices rather than attached to the support medium. As an overall conclusion, horizontal subsurface flow wetlands can be a very suitable post-treatment method for municipal effluents from anaerobic reactors.

  16. A review of models and micrometeorological methods used to estimate wetland evapotranspiration

    Science.gov (United States)

    Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw, U.K.T.

    2004-01-01

    Within the past decade or so, the accuracy of evapotranspiration (ET) estimates has improved due to new and increasingly sophisticated methods. Yet despite a plethora of choices concerning methods, estimation of wetland ET remains insufficiently characterized due to the complexity of surface characteristics and the diversity of wetland types. In this review, we present models and micrometeorological methods that have been used to estimate wetland ET and discuss their suitability for particular wetland types. Hydrological, soil monitoring and lysimetric methods to determine ET are not discussed. Our review shows that, due to the variability and complexity of wetlands, there is no single approach that is the best for estimating wetland ET. Furthermore, there is no single foolproof method to obtain an accurate, independent measure of wetland ET. Because all of the methods reviewed, with the exception of eddy covariance and LIDAR, require measurements of net radiation (Rn) and soil heat flux (G), highly accurate measurements of these energy components are key to improving measurements of wetland ET. Many of the major methods used to determine ET can be applied successfully to wetlands of uniform vegetation and adequate fetch, however, certain caveats apply. For example, with accurate Rn and G data and small Bowen ratio (??) values, the Bowen ratio energy balance method can give accurate estimates of wetland ET. However, large errors in latent heat flux density can occur near sunrise and sunset when the Bowen ratio ?? ??? - 1??0. The eddy covariance method provides a direct measurement of latent heat flux density (??E) and sensible heat flux density (II), yet this method requires considerable expertise and expensive instrumentation to implement. A clear advantage of using the eddy covariance method is that ??E can be compared with Rn-G H, thereby allowing for an independent test of accuracy. The surface renewal method is inexpensive to replicate and, therefore, shows

  17. Partnering models in Nordic construction

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    Traditionally, procurement and contractual policies adopted by building and construction clients produce a system in which clients procure design services separately from construction services, while operation and maintenance have been subject to further, separate procurement actions....... These fragmented structures have in recent years been criticised for leading to lack of co-ordination and conflict and ensuing litigation among parties to the construction project, and overall inefficiency in delivery. As a consequence there have been moves to promote more integrated collaborative forms of project...... delivery, often in combination with the introduction of private finance in hitherto publicly funded buildings and infrastructure works (PPP, PFI). Some construction clients have taken this a step further and adopted a much more collaborative approach towards project delivery, often known as partnering...

  18. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments.

    Science.gov (United States)

    Bateganya, Najib Lukooya; Kazibwe, Alex; Langergraber, Guenter; Okot-Okumu, James; Hein, Thomas

    2016-01-01

    Nutrient-rich effluents from municipal wastewater treatment plants (WWTPs) have significantly contributed to eutrophication of surface waters in East Africa. We used vertical (VF, 0.2 m(2)) and horizontal (HF, 0.45 m(2)) subsurface flow (SSF) constructed wetland (CW) configurations to design single-stage mesocosms planted with Cyperus papyrus, and operating under batch hydraulic loading regime (at a mean organic loading rate of 20 g COD m(-2) d(-1) for HF and 77 g COD m(-2) d(-1) for VF beds). The aim of the investigation was to assess the performance of SSF CWs as hotspots of nutrient transformation and removal processes between the WWTP and the receiving natural urban wetland environment in Kampala, Uganda. C. papyrus coupled with batch loading enhanced aerobic conditions and high efficiency regarding the elimination of suspended solids, organic matter, and nutrients with significant performance (P rates (g m(-2) d(-1)) were 9.16 N and 5.41 P in planted VF, and 1.97 N and 1.02 P in planted HF mesocosms, respectively. The lowest mean nutrient elimination rate (g m(-2) d(-1)) was 1.10 N and 0.62 P found in unplanted HF controls. Nutrient accumulation in plants and sediment retention were found to be essential processes. It can be concluded that whereas the SSF CWs may not function as independent treatment systems, they could be easily adopted as flexible and technologically less intensive options at a local scale, to increase the resilience of receiving environments by buffering peak loads from WWTPs.

  19. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year

  20. Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond.

    Science.gov (United States)

    McAndrew, Br