WorldWideScience

Sample records for constrained optimization based

  1. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  2. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  3. A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-01-01

    Full Text Available This paper develops a particle swarm optimization (PSO based framework for constrained optimization problems (COPs. Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011 algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs.

  4. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...

  5. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  6. Constrained Quadratic Programming and Neurodynamics-Based Solver for Energy Optimization of Biped Walking Robots

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2017-01-01

    Full Text Available The application of biped robots is always trapped by their high energy consumption. This paper makes a contribution by optimizing the joint torques to decrease the energy consumption without changing the biped gaits. In this work, a constrained quadratic programming (QP problem for energy optimization is formulated. A neurodynamics-based solver is presented to solve the QP problem. Differing from the existing literatures, the proposed neurodynamics-based energy optimization (NEO strategy minimizes the energy consumption and guarantees the following three important constraints simultaneously: (i the force-moment equilibrium equation of biped robots, (ii frictions applied by each leg on the ground to hold the biped robot without slippage and tipping over, and (iii physical limits of the motors. Simulations demonstrate that the proposed strategy is effective for energy-efficient biped walking.

  7. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  8. Constrained Optimal Transport

    Science.gov (United States)

    Ekren, Ibrahim; Soner, H. Mete

    2018-03-01

    The classical duality theory of Kantorovich (C R (Doklady) Acad Sci URSS (NS) 37:199-201, 1942) and Kellerer (Z Wahrsch Verw Gebiete 67(4):399-432, 1984) for classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice X with an order unit. The problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of X and the dual problem is defined on the bi-dual of X. These results are then applied to several extensions of the classical optimal transport.

  9. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  10. Slope constrained Topology Optimization

    DEFF Research Database (Denmark)

    Petersson, J.; Sigmund, Ole

    1998-01-01

    The problem of minimum compliance topology optimization of an elastic continuum is considered. A general continuous density-energy relation is assumed, including variable thickness sheet models and artificial power laws. To ensure existence of solutions, the design set is restricted by enforcing...

  11. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  12. OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2016-01-01

    Full Text Available Cloud Computing is a dominant way of sharing of computing resources that can be configured and provisioned easily. Task scheduling in Hybrid cloud is a challenge as it suffers from producing the best QoS (Quality of Service when there is a high demand. In this paper a new resource allocation algorithm, to find the best External Cloud provider when the intermediate provider’s resources aren’t enough to satisfy the customer’s demand is proposed. The proposed algorithm called Optimized Particle Swarm Optimization (OPSO combines the two metaheuristic algorithms namely Particle Swarm Optimization and Ant Colony Optimization (ACO. These metaheuristic algorithms are used for the purpose of optimization in the search space of the required solution, to find the best resource from the pool of resources and to obtain maximum profit even when the number of tasks submitted for execution is very high. This optimization is performed to allocate job requests to internal and external cloud providers to obtain maximum profit. It helps to improve the system performance by improving the CPU utilization, and handle multiple requests at the same time. The simulation result shows that an OPSO yields 0.1% - 5% profit to the intermediate cloud provider compared with standard PSO and ACO algorithms and it also increases the CPU utilization by 0.1%.

  13. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  14. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Order-constrained linear optimization.

    Science.gov (United States)

    Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P

    2017-11-01

    Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.

  16. Neuroevolutionary Constrained Optimization for Content Creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2011-01-01

    and thruster types and topologies) independently of game physics and steering strategies. According to the proposed framework, the designer picks a set of requirements for the spaceship that a constrained optimizer attempts to satisfy. The constraint satisfaction approach followed is based on neuroevolution...... and survival tasks and are also visually appealing....

  17. Racing Sampling Based Microimmune Optimization Approach Solving Constrained Expected Value Programming

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-01-01

    Full Text Available This work investigates a bioinspired microimmune optimization algorithm to solve a general kind of single-objective nonlinear constrained expected value programming without any prior distribution. In the study of algorithm, two lower bound sample estimates of random variables are theoretically developed to estimate the empirical values of individuals. Two adaptive racing sampling schemes are designed to identify those competitive individuals in a given population, by which high-quality individuals can obtain large sampling size. An immune evolutionary mechanism, along with a local search approach, is constructed to evolve the current population. The comparative experiments have showed that the proposed algorithm can effectively solve higher-dimensional benchmark problems and is of potential for further applications.

  18. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier

    Directory of Open Access Journals (Sweden)

    Yuan Ni

    2015-07-01

    Full Text Available The optimizing design for enhancement of the micro performance of manipulator based on analytical models is investigated in this paper. By utilizing the established uncanonical linear homogeneous equations, the quasi-static analytical model of the micro-manipulator is built, and the theoretical calculation results are tested by FEA simulations. To provide a theoretical basis for a micro-manipulator being used in high-precision engineering applications, this paper investigates the modal property based on the analytical model. Based on the finite element method, with multipoint constraint equations, the model is built and the results have a good match with the simulation. The following parametric influences studied show that the influences of other objectives on one objective are complicated.  Consequently, the multi-objective optimization by the derived analytical models is carried out to find out the optimal solutions of the manipulator. Besides the inner relationships among these design objectives during the optimization process are discussed.

  19. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  20. Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods

    Directory of Open Access Journals (Sweden)

    Dayong Zhou

    2008-12-01

    Full Text Available Tsatsanis and Xu have applied the constrained minimum output variance (CMOV principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.

  1. Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems

    Science.gov (United States)

    Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang

    2014-11-01

    In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.

  2. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  3. Robust optimization methods for chance constrained, simulation-based, and bilevel problems

    NARCIS (Netherlands)

    Yanikoglu, I.

    2014-01-01

    The objective of robust optimization is to find solutions that are immune to the uncertainty of the parameters in a mathematical optimization problem. It requires that the constraints of a given problem should be satisfied for all realizations of the uncertain parameters in a so-called uncertainty

  4. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.

    2015-01-01

    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  5. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...

  6. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems.

    Science.gov (United States)

    Xu, Y; Li, N

    2014-09-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.

  7. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems

    International Nuclear Information System (INIS)

    Xu, Y; Li, N

    2014-01-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)

  8. Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Optimization

    Directory of Open Access Journals (Sweden)

    Maciej Malawski

    2015-01-01

    Full Text Available This paper presents a cost optimization model for scheduling scientific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL and allows us to minimize the cost of workflow execution under deadline constraints. We present results obtained using our model and the benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that require resource planning for scientific workflows and their ensembles.

  9. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  10. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    International Nuclear Information System (INIS)

    Wei, J; Chao, M

    2016-01-01

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  11. Constrained Optimization and Optimal Control for Partial Differential Equations

    CERN Document Server

    Leugering, Günter; Griewank, Andreas

    2012-01-01

    This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont

  12. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  13. Superalloy design - A Monte Carlo constrained optimization method

    CSIR Research Space (South Africa)

    Stander, CM

    1996-01-01

    Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...

  14. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  15. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco

    OpenAIRE

    Kerschke, Pascal

    2017-01-01

    Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be expensive. In the case of continuous single-objective optimization problems, Exploratory Landscape Analysis (ELA) - a sophisticated and effective approach for characterizing the landscapes of such problems by means of numeric...

  16. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  17. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems.

    Science.gov (United States)

    Krohling, Renato A; Coelho, Leandro dos Santos

    2006-12-01

    In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.

  18. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    2001-01-01

    A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  19. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    1997-01-01

    A model for constrained computerized adaptive testing is proposed in which the information in the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  20. Chance constrained uncertain classification via robust optimization

    NARCIS (Netherlands)

    Ben-Tal, A.; Bhadra, S.; Bhattacharayya, C.; Saketha Nat, J.

    2011-01-01

    This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out

  1. Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems

    National Research Council Canada - National Science Library

    Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E

    2004-01-01

    .... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...

  2. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...

  3. Constrained Dynamic Optimality and Binomial Terminal Wealth

    DEFF Research Database (Denmark)

    Pedersen, J. L.; Peskir, G.

    2018-01-01

    with interest rate $r \\in {R}$). Letting $P_{t,x}$ denote a probability measure under which $X^u$ takes value $x$ at time $t,$ we study the dynamic version of the nonlinear optimal control problem $\\inf_u\\, Var{t,X_t^u}(X_T^u)$ where the infimum is taken over admissible controls $u$ subject to $X_t^u \\ge e...... a martingale method combined with Lagrange multipliers, we derive the dynamically optimal control $u_*^d$ in closed form and prove that the dynamically optimal terminal wealth $X_T^d$ can only take two values $g$ and $\\beta$. This binomial nature of the dynamically optimal strategy stands in sharp contrast...... with other known portfolio selection strategies encountered in the literature. A direct comparison shows that the dynamically optimal (time-consistent) strategy outperforms the statically optimal (time-inconsistent) strategy in the problem....

  4. Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research focuses on optimal design of different types of magnetorheological brakes (MRBs), from which an optimal selection of MRB types is identified. In the optimization, common types of MRB such as disc-type, drum-type, hybrid-types, and T-shaped type are considered. The optimization problem is to find the optimal value of significant geometric dimensions of the MRB that can produce a maximum braking torque. The MRB is constrained in a cylindrical volume of a specific radius and length. After a brief description of the configuration of MRB types, the braking torques of the MRBs are derived based on the Herschel–Bulkley model of the MR fluid. The optimal design of MRBs constrained in a specific cylindrical volume is then analysed. The objective of the optimization is to maximize the braking torque while the torque ratio (the ratio of maximum braking torque and the zero-field friction torque) is constrained to be greater than a certain value. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions of the MRBs. Optimal solutions of MRBs constrained in different volumes are obtained based on the proposed optimization procedure. From the results, discussions on the optimal selection of MRB types depending on constrained volumes are given. (paper)

  5. Constrained Optimization of MIMO Training Sequences

    Directory of Open Access Journals (Sweden)

    Coon Justin P

    2007-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems have shown a huge potential for increased spectral efficiency and throughput. With an increasing number of transmitting antennas comes the burden of providing training for channel estimation for coherent detection. In some special cases optimal, in the sense of mean-squared error (MSE, training sequences have been designed. However, in many practical systems it is not feasible to analytically find optimal solutions and numerical techniques must be used. In this paper, two systems (unique word (UW single carrier and OFDM with nulled subcarriers are considered and a method of designing near-optimal training sequences using nonlinear optimization techniques is proposed. In particular, interior-point (IP algorithms such as the barrier method are discussed. Although the two systems seem unrelated, the cost function, which is the MSE of the channel estimate, is shown to be effectively the same for each scenario. Also, additional constraints, such as peak-to-average power ratio (PAPR, are considered and shown to be easily included in the optimization process. Numerical examples illustrate the effectiveness of the designed training sequences, both in terms of MSE and bit-error rate (BER.

  6. Fast optimization of statistical potentials for structurally constrained phylogenetic models

    Directory of Open Access Journals (Sweden)

    Rodrigue Nicolas

    2009-09-01

    Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.

  7. Chance-constrained optimization of demand response to price signals

    DEFF Research Database (Denmark)

    Dorini, Gianluca Fabio; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    within a recursive least squares (RLS) framework using data measurable at the grid level, in an adaptive fashion. Optimal price signals are generated by embedding the FIR models within a chance-constrained optimization framework. The objective is to keep the price signal as unchanged as possible from...

  8. Effective Teaching of Economics: A Constrained Optimization Problem?

    Science.gov (United States)

    Hultberg, Patrik T.; Calonge, David Santandreu

    2017-01-01

    One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…

  9. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  10. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  11. Constrained ripple optimization of Tokamak bundle divertors

    International Nuclear Information System (INIS)

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ω B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple ( 0 ) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded

  12. Pareto-optimal estimates that constrain mean California precipitation change

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2017-12-01

    Global climate model (GCM) projections of greenhouse gas-induced precipitation change can exhibit notable uncertainty at the regional scale, particularly in regions where the mean change is small compared to internal variability. This is especially true for California, which is located in a transition zone between robust precipitation increases to the north and decreases to the south, and where GCMs from the Climate Model Intercomparison Project phase 5 (CMIP5) archive show no consensus on mean change (in either magnitude or sign) across the central and southern parts of the state. With the goal of constraining this uncertainty, we apply a multiobjective approach to a large set of subensembles (subsets of models from the full CMIP5 ensemble). These constraints are based on subensemble performance in three fields important to California precipitation: tropical Pacific sea surface temperatures, upper-level zonal winds in the midlatitude Pacific, and precipitation over the state. An evolutionary algorithm is used to sort through and identify the set of Pareto-optimal subensembles across these three measures in the historical climatology, and we use this information to constrain end-of-century California wet season precipitation change. This technique narrows the range of projections throughout the state and increases confidence in estimates of positive mean change. Furthermore, these methods complement and generalize emergent constraint approaches that aim to restrict uncertainty in end-of-century projections, and they have applications to even broader aspects of uncertainty quantification, including parameter sensitivity and model calibration.

  13. The Regularized Fast Hartley Transform Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments

    CERN Document Server

    Jones, Keith

    2010-01-01

    The Regularized Fast Hartley Transform provides the reader with the tools necessary to both understand the proposed new formulation and to implement simple design variations that offer clear implementational advantages, both practical and theoretical, over more conventional complex-data solutions to the problem. The highly-parallel formulation described is shown to lead to scalable and device-independent solutions to the latency-constrained version of the problem which are able to optimize the use of the available silicon resources, and thus to maximize the achievable computational density, th

  14. A New Interpolation Approach for Linearly Constrained Convex Optimization

    KAUST Repository

    Espinoza, Francisco

    2012-08-01

    In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.

  15. A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.

    Science.gov (United States)

    Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen

    2018-03-01

    In this paper, based on calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.

  16. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.

  17. Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators

    International Nuclear Information System (INIS)

    Khalili, N; Naguib, H E; Kwon, R H

    2014-01-01

    Polypyrrole (PPy) conducting polymers have shown a great potential for the fabrication of conjugated polymer-based actuating devices. Consequently, they have been a key point in developing many advanced emerging applications such as biomedical devices and biomimetic robotics. When designing an actuator, taking all of the related decision variables, their roles and relationships into consideration is of pivotal importance to determine the actuator’s final performance. Therefore, the central focus of this study is to develop an electrochemomechanical constrained multiobjective optimization model of a PPy/MWCNTs trilayer actuator. For this purpose, the objective functions are designed to capture the three main characteristics of these actuators, namely their tip vertical displacement, blocking force and response time. To obtain the optimum range of the designated decision variables within the feasible domain, a multiobjective optimization algorithm is applied while appropriate constraints are imposed. The optimum points form a Pareto surface on which they are consistently spread. The numerical results are presented; these results enable one to design an actuator with consideration to the desired output performances. For the experimental analysis, a multilayer bending-type actuator is fabricated, which is composed of a PVDF layer and two layers of PPy with an incorporated layer of multi-walled carbon nanotubes deposited on each side of the PVDF membrane. The numerical results are experimentally verified; in order to determine the performance of the fabricated actuator, its outputs are compared with a neat PPy actuator’s experimental and numerical counterparts. (paper)

  18. Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel

    Directory of Open Access Journals (Sweden)

    Zhiwen Hu

    2015-01-01

    Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.

  19. Application of the EGM Method to a LED-Based Spotlight: A Constrained Pseudo-Optimization Design Process Based on the Analysis of the Local Entropy Generation Maps

    Directory of Open Access Journals (Sweden)

    Enrico Sciubba

    2011-06-01

    Full Text Available In this paper, the entropy generation minimization (EGM method is applied to an industrial heat transfer problem: the forced convective cooling of a LED-based spotlight. The design specification calls for eighteen diodes arranged on a circular copper plate of 35 mm diameter. Every diode dissipates 3 W and the maximum allowedtemperature of the plate is 80 °C. The cooling relies on the forced convection driven by a jet of air impinging on the plate. An initial complex geometry of plate fins is presented and analyzed with a commercial CFD code that computes the entropy generation rate. A pseudo-optimization process is carried out via a successive series of design modifications based on a careful analysis of the entropy generation maps. One of the advantages of the EGM method is that the rationale behind each step of the design process can be justified on a physical basis. It is found that the best performance is attained when the fins are periodically spaced in the radial direction.

  20. Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 170, č. 2 (2016), s. 419-436 ISSN 0022-3239 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Chance constrained programming * Optimality conditions * Regularization * Algorithms * Free MATLAB codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.289, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0460909.pdf

  1. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  2. Stress-constrained topology optimization for compliant mechanism design

    DEFF Research Database (Denmark)

    de Leon, Daniel M.; Alexandersen, Joe; Jun, Jun S.

    2015-01-01

    This article presents an application of stress-constrained topology optimization to compliant mechanism design. An output displacement maximization formulation is used, together with the SIMP approach and a projection method to ensure convergence to nearly discrete designs. The maximum stress...... is approximated using a normalized version of the commonly-used p-norm of the effective von Mises stresses. The usual problems associated with topology optimization for compliant mechanism design: one-node and/or intermediate density hinges are alleviated by the stress constraint. However, it is also shown...

  3. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Science.gov (United States)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  4. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  5. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Directory of Open Access Journals (Sweden)

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  6. A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities

    International Nuclear Information System (INIS)

    Facchinei, F.; Fischer, A.; Kanzow, C.; Peng, J.-M.

    1999-01-01

    The Karush-Kuhn-Tucker (KKT) conditions can be regarded as optimality conditions for both variational inequalities and constrained optimization problems. In order to overcome some drawbacks of recently proposed reformulations of KKT systems, we propose casting KKT systems as a minimization problem with nonnegativity constraints on some of the variables. We prove that, under fairly mild assumptions, every stationary point of this constrained minimization problem is a solution of the KKT conditions. Based on this reformulation, a new algorithm for the solution of the KKT conditions is suggested and shown to have some strong global and local convergence properties

  7. Constrained optimization of test intervals using a steady-state genetic algorithm

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.

    2000-01-01

    There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper

  8. A one-layer recurrent neural network for constrained nonsmooth invex optimization.

    Science.gov (United States)

    Li, Guocheng; Yan, Zheng; Wang, Jun

    2014-02-01

    Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Adaptive Multi-Agent Systems for Constrained Optimization

    Science.gov (United States)

    Macready, William; Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.

  10. Depletion mapping and constrained optimization to support managing groundwater extraction

    Science.gov (United States)

    Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.

    2018-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.

  11. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  12. Online constrained model-based reinforcement learning

    CSIR Research Space (South Africa)

    Van Niekerk, B

    2017-08-01

    Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Amazon.com Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...

  13. Constrained convex minimization via model-based excessive gap

    OpenAIRE

    Tran Dinh, Quoc; Cevher, Volkan

    2014-01-01

    We introduce a model-based excessive gap technique to analyze first-order primal- dual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented Lagrangian, and alternating methods as special cases, where our rates apply.

  14. Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

    International Nuclear Information System (INIS)

    Zhang Xiaomeng; Wang Jing; Xing Lei

    2011-01-01

    Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.

  15. Block-triangular preconditioners for PDE-constrained optimization

    KAUST Repository

    Rees, Tyrone; Stoll, Martin

    2010-01-01

    In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Block-triangular preconditioners for PDE-constrained optimization

    KAUST Repository

    Rees, Tyrone

    2010-11-26

    In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Optimal dispatch in dynamic security constrained open power market

    International Nuclear Information System (INIS)

    Singh, S.N.; David, A.K.

    2002-01-01

    Power system security is a new concern in the competitive power market operation, because the integration of the system controller and the generation owner has been broken. This paper presents an approach for dynamic security constrained optimal dispatch in restructured power market environment. The transient energy margin using transient energy function (TEF) approach has been used to calculate the stability margin of the system and a hybrid method is applied to calculate the approximate unstable equilibrium point (UEP) that is used to calculate the exact UEP and thus, the energy margin using TEF. The case study results illustrated on two systems shows that the operating mechanisms are compatible with the new business environment. (author)

  18. A penalty method for PDE-constrained optimization in inverse problems

    International Nuclear Information System (INIS)

    Leeuwen, T van; Herrmann, F J

    2016-01-01

    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the parameters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the nonlinearity of the problem and is less sensitive to the initial iterate. (paper)

  19. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  20. Constrained optimal motion planning for autonomous vehicles using PRONTO

    NARCIS (Netherlands)

    Aguiar, A.P.; Bayer, F.A.; Hauser, J.; Häusler, A.J.; Notarstefano, G.; Pascoal, A.M.; Rucco, A.; Saccon, A.

    2017-01-01

    This chapter provides an overview of the authors’ efforts in vehicle trajectory exploration and motion planning based on PRONTO, a numerical method for solving optimal control problems developed over the last two decades. The chapter reviews the basics of PRONTO, providing the appropriate references

  1. Constrained Burn Optimization for the International Space Station

    Science.gov (United States)

    Brown, Aaron J.; Jones, Brandon A.

    2017-01-01

    In long-term trajectory planning for the International Space Station (ISS), translational burns are currently targeted sequentially to meet the immediate trajectory constraints, rather than simultaneously to meet all constraints, do not employ gradient-based search techniques, and are not optimized for a minimum total deltav (v) solution. An analytic formulation of the constraint gradients is developed and used in an optimization solver to overcome these obstacles. Two trajectory examples are explored, highlighting the advantage of the proposed method over the current approach, as well as the potential v and propellant savings in the event of propellant shortages.

  2. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  3. Efficient relaxations for joint chance constrained AC optimal power flow

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kyri; Toomey, Bridget

    2017-07-01

    Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.

  4. Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle

    International Nuclear Information System (INIS)

    Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian

    2016-01-01

    In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.

  5. Constrained Fuzzy Predictive Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Oussama Ait Sahed

    2015-01-01

    Full Text Available A fuzzy predictive controller using particle swarm optimization (PSO approach is proposed. The aim is to develop an efficient algorithm that is able to handle the relatively complex optimization problem with minimal computational time. This can be achieved using reduced population size and small number of iterations. In this algorithm, instead of using the uniform distribution as in the conventional PSO algorithm, the initial particles positions are distributed according to the normal distribution law, within the area around the best position. The radius limiting this area is adaptively changed according to the tracking error values. Moreover, the choice of the initial best position is based on prior knowledge about the search space landscape and the fact that in most practical applications the dynamic optimization problem changes are gradual. The efficiency of the proposed control algorithm is evaluated by considering the control of the model of a 4 × 4 Multi-Input Multi-Output industrial boiler. This model is characterized by being nonlinear with high interactions between its inputs and outputs, having a nonminimum phase behaviour, and containing instabilities and time delays. The obtained results are compared to those of the control algorithms based on the conventional PSO and the linear approach.

  6. Generation and reserve dispatch in a competitive market using constrained particle swarm optimization

    International Nuclear Information System (INIS)

    Azadani, E. Nasr; Hosseinian, S.H.; Moradzadeh, B.

    2010-01-01

    Competitive bidding for energy and ancillary services is increasingly recognized as an important part of electricity markets. In addition, the transmission capacity limits should be considered to optimize the total market cost. In this paper, a new approach based on constrained particle swarm optimization (CPSO) is developed to deal with the multi-product (energy and reserve) and multi-area electricity market dispatch problem. Constraint handling is based on particle ranking and uniform distribution. CPSO method offers a new solution for optimizing the total market cost in a multi-area competitive electricity market considering the system constraints. The proposed technique shows promising performance for smooth and non smooth cost function as well. Three different systems are examined to demonstrate the effectiveness and the accuracy of the proposed algorithm. (author)

  7. Kinetic Constrained Optimization of the Golf Swing Hub Path

    Directory of Open Access Journals (Sweden)

    Steven M. Nesbit

    2014-12-01

    Full Text Available This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study.

  8. A First-order Prediction-Correction Algorithm for Time-varying (Constrained) Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simonetto, Andrea [Universite catholique de Louvain

    2017-07-25

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are established to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.

  9. Kinetic constrained optimization of the golf swing hub path.

    Science.gov (United States)

    Nesbit, Steven M; McGinnis, Ryan S

    2014-12-01

    This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.

  10. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2016-01-01

    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  12. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  13. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.

    Science.gov (United States)

    Quan, Quan; Cai, Kai-Yuan

    2016-02-01

    In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.

  14. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Science.gov (United States)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  15. Constraining neutron guide optimizations with phase-space considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen, Mads, E-mail: mads.bertelsen@gmail.com; Lefmann, Kim

    2016-09-11

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  16. A simple two stage optimization algorithm for constrained power economic dispatch

    International Nuclear Information System (INIS)

    Huang, G.; Song, K.

    1994-01-01

    A simple two stage optimization algorithm is proposed and investigated for fast computation of constrained power economic dispatch control problems. The method is a simple demonstration of the hierarchical aggregation-disaggregation (HAD) concept. The algorithm first solves an aggregated problem to obtain an initial solution. This aggregated problem turns out to be classical economic dispatch formulation, and it can be solved in 1% of overall computation time. In the second stage, linear programming method finds optimal solution which satisfies power balance constraints, generation and transmission inequality constraints and security constraints. Implementation of the algorithm for IEEE systems and EPRI Scenario systems shows that the two stage method obtains average speedup ratio 10.64 as compared to classical LP-based method

  17. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2015-01-01

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols

  18. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V; Zhang, J [University of Kentucky, Lexington, KY (United States)

    2015-06-15

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.

  19. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    Science.gov (United States)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  20. Adaptively Constrained Stochastic Model Predictive Control for the Optimal Dispatch of Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaogang Guo

    2018-01-01

    Full Text Available In this paper, an adaptively constrained stochastic model predictive control (MPC is proposed to achieve less-conservative coordination between energy storage units and uncertain renewable energy sources (RESs in a microgrid (MG. Besides the economic objective of MG operation, the limits of state-of-charge (SOC and discharging/charging power of the energy storage unit are formulated as chance constraints when accommodating uncertainties of RESs, considering mild violations of these constraints are allowed during long-term operation, and a closed-loop online update strategy is performed to adaptively tighten or relax constraints according to the actual deviation probability of violation level from the desired one as well as the current change rate of deviation probability. Numerical studies show that the proposed adaptively constrained stochastic MPC for MG optimal operation is much less conservative compared with the scenario optimization based robust MPC, and also presents a better convergence performance to the desired constraint violation level than other online update strategies.

  1. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  2. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    Science.gov (United States)

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  3. Human fetal growth is constrained below optimal for perinatal survival

    NARCIS (Netherlands)

    Vasak, B.; Koenen, S. V.; Koster, M. P. H.; Hukkelhoven, C. W. P. M.; Franx, A.; Hanson, M. A.; Visser, GHA

    ObjectiveThe use of fetal growth charts assumes that the optimal size at birth is at the 50(th) birth-weight centile, but interaction between maternal constraints on fetal growth and the risks associated with small and large fetal size at birth may indicate that this assumption is not valid for

  4. Improved Sensitivity Relations in State Constrained Optimal Control

    International Nuclear Information System (INIS)

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-01-01

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  5. Preconditioning for partial differential equation constrained optimization with control constraints

    KAUST Repository

    Stoll, Martin; Wathen, Andy

    2011-01-01

    Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal-dual active set method is used. We also show for this method that the same saddle point system can be derived when the method is considered as a semismooth Newton method. In addition, the projected gradient method can be employed to solve optimization problems with simple bounds, and we discuss the efficient solution of the linear systems in question. In the case when an acceleration technique is employed for the projected gradient method, this again yields a semismooth Newton method that is equivalent to the primal-dual active set method. We also consider the Moreau-Yosida regularization method for control constraints and efficient preconditioners for this technique. Numerical results illustrate the competitiveness of these approaches. © 2011 John Wiley & Sons, Ltd.

  6. Preconditioning for partial differential equation constrained optimization with control constraints

    KAUST Repository

    Stoll, Martin

    2011-10-18

    Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal-dual active set method is used. We also show for this method that the same saddle point system can be derived when the method is considered as a semismooth Newton method. In addition, the projected gradient method can be employed to solve optimization problems with simple bounds, and we discuss the efficient solution of the linear systems in question. In the case when an acceleration technique is employed for the projected gradient method, this again yields a semismooth Newton method that is equivalent to the primal-dual active set method. We also consider the Moreau-Yosida regularization method for control constraints and efficient preconditioners for this technique. Numerical results illustrate the competitiveness of these approaches. © 2011 John Wiley & Sons, Ltd.

  7. Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes

    Directory of Open Access Journals (Sweden)

    Xi Wu

    2017-08-01

    Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.

  8. Topology Optimization of Constrained Layer Damping on Plates Using Method of Moving Asymptote (MMA Approach

    Directory of Open Access Journals (Sweden)

    Zheng Ling

    2011-01-01

    Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an

  9. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    International Nuclear Information System (INIS)

    Haghi, Rad; Molenaar, David P; Ashuri, Turaj; Van der Valk, Paul L C

    2014-01-01

    In the current offshore wind turbine support structure design method, the tower and foundation, which form the support structure are designed separately by the turbine and foundation designer. This method yields a suboptimal design and it results in a heavy, overdesigned and expensive support structure. This paper presents an integrated multidisciplinary approach to design the tower and foundation simultaneously. Aerodynamics, hydrodynamics, structure and soil mechanics are the modeled disciplines to capture the full dynamic behavior of the foundation and tower under different environmental conditions. The objective function to be minimized is the mass of the support structure. The model includes various design constraints: local and global buckling, modal frequencies, and fatigue damage along different stations of the structure. To show the usefulness of the method, an existing SWT-3.6-107 offshore wind turbine where its tower and foundation are designed separately is used as a case study. The result of the integrated multidisciplinary design optimization shows 12.1% reduction in the mass of the support structure, while satisfying all the design constraints

  10. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    International Nuclear Information System (INIS)

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  11. Convex Relaxations of Chance Constrained AC Optimal Power Flow

    DEFF Research Database (Denmark)

    Venzke, Andreas; Halilbasic, Lejla; Markovic, Uros

    2017-01-01

    , reactive power, and voltage. We state a tractable formulation for two types of uncertainty sets. Using a scenario-based approach and making no prior assumptions about the probability distribution of the forecast errors, we obtain a robust formulation for a rectangular uncertainty set. Alternatively...

  12. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    Science.gov (United States)

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open

  13. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution method s * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

  14. Mixed Integer PDE Constrained Optimization for the Control of a Wildfire Hazard

    Science.gov (United States)

    2017-01-01

    Constrained Optimization for the Control of a Wildfire Hazard Herausgegeben von der Professor fur Angewandte Mathematik Professor Dr. rer. nat. Armin...and H.H. Tan . Finite difference methods for solving the two-dimensional advection-diffusion equation. Int. J. Numer. Meth. Fluids, 9:75-98, 1989. 6

  15. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

  16. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers

    Science.gov (United States)

    Rosenfeld, Nicholas C.; Wereley, Norman M.

    2004-12-01

    This paper presents a case study of magnetorheological (MR) and electrorheological (ER) valve design within a constrained cylindrical volume. The primary purpose of this study is to establish general design guidelines for volume-constrained MR valves. Additionally, this study compares the performance of volume-constrained MR valves against similarly constrained ER valves. Starting from basic design guidelines for an MR valve, a method for constructing candidate volume-constrained valve geometries is presented. A magnetic FEM program is then used to evaluate the magnetic properties of the candidate valves. An optimized MR valve is chosen by evaluating non-dimensional parameters describing the candidate valves' damping performance. A derivation of the non-dimensional damping coefficient for valves with both active and passive volumes is presented to allow comparison of valves with differing proportions of active and passive volumes. The performance of the optimized MR valve is then compared to that of a geometrically similar ER valve using both analytical and numerical techniques. An analytical equation relating the damping performances of geometrically similar MR and ER valves in as a function of fluid yield stresses and relative active fluid volume, and numerical calculations are provided to calculate each valve's damping performance and to validate the analytical calculations.

  17. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los; Schö nlieb, Carola-Bibiane

    2013-01-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  18. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los

    2013-11-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  19. Evaluating potentialities and constrains of Problem Based Learning curriculum

    DEFF Research Database (Denmark)

    Guerra, Aida

    2013-01-01

    This paper presents a research design to evaluate Problem Based Learning (PBL) curriculum potentialities and constrains for future changes. PBL literature lacks examples of how to evaluate and analyse established PBL learning environments to address new challenges posed. The research design......) in the curriculum and a mean to choose cases for further case study (third phase)....

  20. Subspace Barzilai-Borwein Gradient Method for Large-Scale Bound Constrained Optimization

    International Nuclear Information System (INIS)

    Xiao Yunhai; Hu Qingjie

    2008-01-01

    An active set subspace Barzilai-Borwein gradient algorithm for large-scale bound constrained optimization is proposed. The active sets are estimated by an identification technique. The search direction consists of two parts: some of the components are simply defined; the other components are determined by the Barzilai-Borwein gradient method. In this work, a nonmonotone line search strategy that guarantees global convergence is used. Preliminary numerical results show that the proposed method is promising, and competitive with the well-known method SPG on a subset of bound constrained problems from CUTEr collection

  1. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2016-01-01

    Full Text Available The teaching-learning-based optimization (TLBO algorithm is finding a large number of applications in different fields of engineering and science since its introduction in 2011. The major applications are found in electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, chemistry, biotechnology and economics. This paper presents a review of applications of TLBO algorithm and a tutorial for solving the unconstrained and constrained optimization problems. The tutorial is expected to be useful to the beginners.

  2. An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks

    International Nuclear Information System (INIS)

    Leizarowitz, Arie; Rubinstein, Jacob

    2003-01-01

    Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set

  3. SmartFix: Indoor Locating Optimization Algorithm for Energy-Constrained Wearable Devices

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-01-01

    Full Text Available Indoor localization technology based on Wi-Fi has long been a hot research topic in the past decade. Despite numerous solutions, new challenges have arisen along with the trend of smart home and wearable computing. For example, power efficiency needs to be significantly improved for resource-constrained wearable devices, such as smart watch and wristband. For a Wi-Fi-based locating system, most of the energy consumption can be attributed to real-time radio scan; however, simply reducing radio data collection will cause a serious loss of locating accuracy because of unstable Wi-Fi signals. In this paper, we present SmartFix, an optimization algorithm for indoor locating based on Wi-Fi RSS. SmartFix utilizes user motion features, extracts characteristic value from history trajectory, and corrects deviation caused by unstable Wi-Fi signals. We implemented a prototype of SmartFix both on Moto 360 2nd-generation Smartwatch and on HTC One Smartphone. We conducted experiments both in a large open area and in an office hall. Experiment results demonstrate that average locating error is less than 2 meters for more than 80% cases, and energy consumption is only 30% of Wi-Fi fingerprinting method under the same experiment circumstances.

  4. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    Science.gov (United States)

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-05-01

    Application of the multi-arm space robot will be more effective than single arm especially when the target is tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics singularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for coordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for coordinated trajectory planning of two kinematically redundant manipulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  6. On meeting capital requirements with a chance-constrained optimization model.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan

    2016-01-01

    This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.

  7. A first-order multigrid method for bound-constrained convex optimization

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Mohammed, S.

    2016-01-01

    Roč. 31, č. 3 (2016), s. 622-644 ISSN 1055-6788 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : bound-constrained optimization * multigrid methods * linear complementarity problems Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf

  8. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  9. Constraint-Based Local Search for Constrained Optimum Paths Problems

    Science.gov (United States)

    Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal

    Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.

  10. Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes

    Directory of Open Access Journals (Sweden)

    Zunaira Nadeem

    2018-04-01

    Full Text Available In this paper, we design a controller for home energy management based on following meta-heuristic algorithms: teaching learning-based optimization (TLBO, genetic algorithm (GA, firefly algorithm (FA and optimal stopping rule (OSR theory. The principal goal of designing this controller is to reduce the energy consumption of residential sectors while reducing consumer’s electricity bill and maximizing user comfort. Additionally, we propose three hybrid schemes OSR-GA, OSR-TLBO and OSR-FA, by combining the best features of existing algorithms. We have also optimized the desired parameters: peak to average ratio, energy consumption, cost, and user comfort (appliance waiting time for 20, 50, 100 and 200 heterogeneous homes in two steps. In the first step, we obtain the optimal scheduling of home appliances implementing our aforementioned hybrid schemes for single and multiple homes while considering user preferences and threshold base policy. In the second step, we formulate our problem through chance constrained optimization. Simulation results show that proposed hybrid scheduling schemes outperformed for single and multiple homes and they shift the consumer load demand exceeding a predefined threshold to the hours where the electricity price is low thus following the threshold base policy. This helps to reduce electricity cost while considering the comfort of a user by minimizing delay and peak to average ratio. In addition, chance-constrained optimization is used to ensure the scheduling of appliances while considering the uncertainties of a load hence smoothing the load curtailment. The major focus is to keep the appliances power consumption within the power constraint, while keeping power consumption below a pre-defined acceptable level. Moreover, the feasible regions of appliances electricity consumption are calculated which show the relationship between cost and energy consumption and cost and waiting time.

  11. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  12. On the optimal identification of tag sets in time-constrained RFID configurations.

    Science.gov (United States)

    Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel

    2011-01-01

    In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.

  13. SU-F-T-195: Systematic Constraining of Contralateral Parotid Gland Led to Improved Dosimetric Outcomes for Multi-Field Optimization with Scanning Beam Proton Therapy: Promising Results From a Pilot Study in Patients with Base of Tongue Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R; Liu, A; Poenisch, F; Palmer, M; Gillin, M; Zhu, X [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Crowford, C; Georges, R; Amin, M [Department of Medical Dosimetry, MD Anderson Cancer Ctr, Houston, TX (United States); Sio, T; Gunn, B; Frank, S [Radiation Oncology Department MD Anderson Cancer Ctr, Houston, TX (United States)

    2016-06-15

    Purpose: Treatment planning for Intensity Modulated Proton Therapy (IMPT) for head and neck cancer is time-consuming due to the large number of organs-at-risk (OAR) to be considered. As there are many competing objectives and also wide range of acceptable OAR constraints, the final approved plan may not be most optimal for the given structures. We evaluated the dose reduction to the contralateral parotid by implementing standardized constraints during optimization for scanning beam proton therapy planning. Methods: Twenty-four (24) consecutive patients previously treated for base of tongue carcinoma were retrospectively selected. The doses were 70Gy, 63Gy and 57Gy (SIB in 33 fractions) for high-, intermediate-, and standard-risk clinical target volumes (CTV), respectively; the treatment included bilateral neck. Scanning beams using MFO with standardized bilateral anterior oblique and PA fields were applied. New plans where then developed and optimized by employing additional contralateral parotid constraints at multiple defined dose levels. Using a step-wise iterative process, the volume-based constraints at each level were then further reduced until known target coverages were compromised. The newly developed plans were then compared to the original clinically approved plans using paired student t-testing. Results: All 24 newly optimized treatment plans maintained initial plan quality as compared to the approved plans, and the 98% prescription dose coverage to the CTV’s were not compromised. Representative DVH comparison is shown in FIGURE 1. The contralateral parotid doses were reduced at all levels of interest when systematic constraints were applied to V10, V20, V30 and V40Gy (All P<0.0001; TABLE 1). Overall, the mean contralateral parotid doses were reduced by 2.26 Gy on average, a ∼13% relative improvement. Conclusion: Applying systematic and volume-based contralateral parotid constraints for IMPT planning significantly reduced the dose at all dosimetric

  14. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  15. Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem

    Directory of Open Access Journals (Sweden)

    Sengupta Raghu Nandan

    2017-02-01

    Full Text Available We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.

  16. Solving Multi-Resource Constrained Project Scheduling Problem using Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Hsiang-Hsi Huang

    2015-01-01

    Full Text Available This paper applied Ant Colony Optimization (ACO to develop a resource constraints scheduling model to achieve the resource allocation optimization and the shortest completion time of a project under resource constraints and the activities precedence requirement for projects. Resource leveling is also discussed and has to be achieved under the resource allocation optimization in this research. Testing cases and examples adopted from the international test bank were studied for verifying the effectiveness of the proposed model. The results showed that the solutions of different cases all have a better performance within a reasonable time. These can be obtained through ACO algorithm under the same constrained conditions. A program was written for the proposed model that is able to automatically produce the project resource requirement figure after the project duration is solved.

  17. Topology Optimization for Minimizing the Resonant Response of Plates with Constrained Layer Damping Treatment

    Directory of Open Access Journals (Sweden)

    Zhanpeng Fang

    2015-01-01

    Full Text Available A topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD treatment under specified broadband harmonic excitations. The topology optimization problem is formulated and the square of displacement resonant response in frequency domain at the specified point is considered as the objective function. Two sensitivity analysis methods are investigated and discussed. The derivative of modal damp ratio is not considered in the conventional sensitivity analysis method. An improved sensitivity analysis method considering the derivative of modal damp ratio is developed to improve the computational accuracy of the sensitivity. The evolutionary structural optimization (ESO method is used to search the optimal layout of CLD material on plates. Numerical examples and experimental results show that the optimal layout of CLD treatment on the plate from the proposed topology optimization using the conventional sensitivity analysis or the improved sensitivity analysis can reduce the displacement resonant response. However, the optimization method using the improved sensitivity analysis can produce a higher modal damping ratio than that using the conventional sensitivity analysis and develop a smaller displacement resonant response.

  18. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  19. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Science.gov (United States)

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  20. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    Science.gov (United States)

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  1. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  2. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  3. Constrained Optimization Methods in Health Services Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force.

    Science.gov (United States)

    Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S

    2017-03-01

    Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. GA based CNC turning center exploitation process parameters optimization

    Directory of Open Access Journals (Sweden)

    Z. Car

    2009-01-01

    Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.

  5. Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems

    Directory of Open Access Journals (Sweden)

    Man Hong

    2013-01-01

    Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.

  6. A Variant of the Topkis-Veinott Method for Solving Inequality Constrained Optimization Problems

    International Nuclear Information System (INIS)

    Birge, J. R.; Qi, L.; Wei, Z.

    2000-01-01

    In this paper we give a variant of the Topkis-Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz-John point of the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) if an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y element of N(z) {z } , f 0 (y) ≠ f 0 (z) , where f 0 is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm

  7. Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Yakai Xu

    2017-01-01

    Full Text Available Dynamic stiffness and damping of the headstock, which is a critical component of precision horizontal machining center, are two main factors that influence machining accuracy and surface finish quality. Constrained Layer Damping (CLD structure is proved to be effective in raising damping capacity for the thin plate and shell structures. In this paper, one kind of high damping material is utilized on the headstock to improve damping capacity. The dynamic characteristic of the hybrid headstock is investigated analytically and experimentally. The results demonstrate that the resonant response amplitudes of the headstock with damping material can decrease significantly compared to original cast structure. To obtain the optimal configuration of damping material, a topology optimization method based on the Evolutionary Structural Optimization (ESO is implemented. Modal Strain Energy (MSE method is employed to analyze the damping and to derive the sensitivity of the modal loss factor. The optimization results indicate that the added weight of damping material decreases by 50%; meanwhile the first two orders of modal loss factor decrease by less than 23.5% compared to the original structure.

  8. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    Science.gov (United States)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  9. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality

    Science.gov (United States)

    Cheung, KW; So, HC; Ma, W.-K.; Chan, YT

    2006-12-01

    The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.

  10. Optimal Financing Decisions of Two Cash-Constrained Supply Chains with Complementary Products

    Directory of Open Access Journals (Sweden)

    Yuting Li

    2016-04-01

    Full Text Available In recent years; financing difficulties have been obsessed small and medium enterprises (SMEs; especially emerging SMEs. Inter-members’ joint financing within a supply chain is one of solutions for SMEs. How about members’ joint financing of inter-supply chains? In order to answer the question, we firstly employ the Stackelberg game to propose three kinds of financing decision models of two cash-constrained supply chains with complementary products. Secondly, we analyze qualitatively these models and find the joint financing decision of the two supply chains is the most optimal one. Lastly, we conduct some numerical simulations not only to illustrate above results but also to find that the larger are cross-price sensitivity coefficients; the higher is the motivation for participants to make joint financing decisions; and the more are profits for them to gain.

  11. Multivariate constrained shape optimization: Application to extrusion bell shape for pasta production

    Science.gov (United States)

    Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco

    2017-10-01

    Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.

  12. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    Science.gov (United States)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  14. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    Science.gov (United States)

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.

  15. Thermodynamic optimization of mixed refrigerant Joule- Thomson systems constrained by heat transfer considerations

    International Nuclear Information System (INIS)

    Hinze, J F; Klein, S A; Nellis, G F

    2015-01-01

    Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR. (paper)

  16. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks

    Science.gov (United States)

    Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz

    2016-01-01

    Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...

  17. A non-penalty recurrent neural network for solving a class of constrained optimization problems.

    Science.gov (United States)

    Hosseini, Alireza

    2016-01-01

    In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mini-batch optimized full waveform inversion with geological constrained gradient filtering

    Science.gov (United States)

    Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai

    2018-05-01

    High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.

  19. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  20. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  1. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  2. Pricing and lot sizing optimization in a two-echelon supply chain with a constrained Logit demand function

    Directory of Open Access Journals (Sweden)

    Yeison Díaz-Mateus

    2017-07-01

    Full Text Available Decision making in supply chains is influenced by demand variations, and hence sales, purchase orders and inventory levels are therefore concerned. This paper presents a non-linear optimization model for a two-echelon supply chain, for a unique product. In addition, the model includes the consumers’ maximum willingness to pay, taking socioeconomic differences into account. To do so, the constrained multinomial logit for discrete choices is used to estimate demand levels. Then, a metaheuristic approach based on particle swarm optimization is proposed to determine the optimal product sales price and inventory coordination variables. To validate the proposed model, a supply chain of a technological product was chosen and three scenarios are analyzed: discounts, demand segmentation and demand overestimation. Results are analyzed on the basis of profits, lotsizing and inventory turnover and market share. It can be concluded that the maximum willingness to pay must be taken into consideration, otherwise fictitious profits may mislead decision making, and although the market share would seem to improve, overall profits are not in fact necessarily better.

  3. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W.T.; Siebers, J.V. [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  4. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Watkins, W.T.; Siebers, J.V.

    2016-01-01

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  5. Incorporating a Constrained Optimization Algorithm into Remote- Sensing/Precision Agriculture Methodology

    Science.gov (United States)

    Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo

    with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing

  6. Incorporating a constrained optimization algorithm into remote sensing/precision agriculture methodology

    Science.gov (United States)

    Moreenthaler, George W.; Khatib, Nader; Kim, Byoungsoo

    2003-08-01

    For two decades now, the use of Remote Sensing/Precision Agriculture to improve farm yields while reducing the use of polluting chemicals and the limited water supply has been a major goal. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, farm efficiency must increase to meet future food requirements and to make farming a sustainable, profitable occupation. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The real goal is to increase farm profitability by identifying the additional treatments of chemicals and water that increase revenues more than they increase costs and do no exceed pollution standards (constrained optimization). Even though the economic and environmental benefits appear to be great, Remote Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now in place, but other needed factors have been missing. Commercial satellite systems can now image the Earth (multi-spectrally) with a resolution as fine as 2.5 m. Precision variable dispensing systems using GPS are now available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been developed. Personal computers and internet access are now in place in most farm homes and can provide a mechanism for periodically disseminating advice on what quantities of water and chemicals are needed in specific regions of each field. Several processes have been selected that fuse the disparate sources of information on the current and historic states of the crop and soil, and the remaining resource levels available, with the critical decisions that farmers are required to make. These are done in a way that is easy for the farmer to understand and profitable to implement. A "Constrained

  7. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  8. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    Science.gov (United States)

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  9. Automatic analog IC sizing and optimization constrained with PVT corners and layout effects

    CERN Document Server

    Lourenço, Nuno; Horta, Nuno

    2017-01-01

    This book introduces readers to a variety of tools for automatic analog integrated circuit (IC) sizing and optimization. The authors provide a historical perspective on the early methods proposed to tackle automatic analog circuit sizing, with emphasis on the methodologies to size and optimize the circuit, and on the methodologies to estimate the circuit’s performance. The discussion also includes robust circuit design and optimization and the most recent advances in layout-aware analog sizing approaches. The authors describe a methodology for an automatic flow for analog IC design, including details of the inputs and interfaces, multi-objective optimization techniques, and the enhancements made in the base implementation by using machine leaning techniques. The Gradient model is discussed in detail, along with the methods to include layout effects in the circuit sizing. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the qual...

  10. A one-layer recurrent neural network for constrained nonconvex optimization.

    Science.gov (United States)

    Li, Guocheng; Yan, Zheng; Wang, Jun

    2015-01-01

    In this paper, a one-layer recurrent neural network is proposed for solving nonconvex optimization problems subject to general inequality constraints, designed based on an exact penalty function method. It is proved herein that any neuron state of the proposed neural network is convergent to the feasible region in finite time and stays there thereafter, provided that the penalty parameter is sufficiently large. The lower bounds of the penalty parameter and convergence time are also estimated. In addition, any neural state of the proposed neural network is convergent to its equilibrium point set which satisfies the Karush-Kuhn-Tucker conditions of the optimization problem. Moreover, the equilibrium point set is equivalent to the optimal solution to the nonconvex optimization problem if the objective function and constraints satisfy given conditions. Four numerical examples are provided to illustrate the performances of the proposed neural network.

  11. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the ... the research focus in the fields of space geodesy and ... ment of GNSS such as GPS, Glonass, Galileo and. Compass, as these ...

  12. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them ...

  13. 3Es System Optimization under Uncertainty Using Hybrid Intelligent Algorithm: A Fuzzy Chance-Constrained Programming Model

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2016-01-01

    Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.

  14. A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation

    International Nuclear Information System (INIS)

    Sankaran, Sethuraman; Audet, Charles; Marsden, Alison L.

    2010-01-01

    Recent advances in coupling novel optimization methods to large-scale computing problems have opened the door to tackling a diverse set of physically realistic engineering design problems. A large computational overhead is associated with computing the cost function for most practical problems involving complex physical phenomena. Such problems are also plagued with uncertainties in a diverse set of parameters. We present a novel stochastic derivative-free optimization approach for tackling such problems. Our method extends the previously developed surrogate management framework (SMF) to allow for uncertainties in both simulation parameters and design variables. The stochastic collocation scheme is employed for stochastic variables whereas Kriging based surrogate functions are employed for the cost function. This approach is tested on four numerical optimization problems and is shown to have significant improvement in efficiency over traditional Monte-Carlo schemes. Problems with multiple probabilistic constraints are also discussed.

  15. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    Science.gov (United States)

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  16. Risk Based Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.; Kroon, I.B.

    1992-01-01

    Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value...

  17. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems - Poisson and convection-diffusion control

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2016-01-01

    Roč. 73, č. 3 (2016), s. 631-633 ISSN 1017-1398 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods Subject RIV: BA - General Mathematics Impact factor: 1.241, year: 2016 http://link.springer.com/article/10.1007%2Fs11075-016-0111-1

  18. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    Directory of Open Access Journals (Sweden)

    Charles Tatkeu

    2008-12-01

    Full Text Available We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  19. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    Science.gov (United States)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  20. A Constrained Algorithm Based NMFα for Image Representation

    Directory of Open Access Journals (Sweden)

    Chenxue Yang

    2014-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets.

  1. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  2. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    Science.gov (United States)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  3. Modeling Oil Exploration and Production: Resource-Constrained and Agent-Based Approaches

    International Nuclear Information System (INIS)

    Jakobsson, Kristofer

    2010-05-01

    Energy is essential to the functioning of society, and oil is the single largest commercial energy source. Some analysts have concluded that the peak in oil production is soon about to happen on the global scale, while others disagree. Such incompatible views can persist because the issue of 'peak oil' cuts through the established scientific disciplines. The question is: what characterizes the modeling approaches that are available today, and how can they be further developed to improve a trans-disciplinary understanding of oil depletion? The objective of this thesis is to present long-term scenarios of oil production (Paper I) using a resource-constrained model; and an agent-based model of the oil exploration process (Paper II). It is also an objective to assess the strengths, limitations, and future development potentials of resource-constrained modeling, analytical economic modeling, and agent-based modeling. Resource-constrained models are only suitable when the time frame is measured in decades, but they can give a rough indication of which production scenarios are reasonable given the size of the resource. However, the models are comprehensible, transparent and the only feasible long-term forecasting tools at present. It is certainly possible to distinguish between reasonable scenarios, based on historically observed parameter values, and unreasonable scenarios with parameter values obtained through flawed analogy. The economic subfield of optimal depletion theory is founded on the notion of rational economic agents, and there is a causal relation between decisions made at the micro-level and the macro-result. In terms of future improvements, however, the analytical form considerably restricts the versatility of the approach. Agent-based modeling makes it feasible to combine economically motivated agents with a physical environment. An example relating to oil exploration is given in Paper II, where it is shown that the exploratory activities of individual

  4. Path-Constrained Motion Planning for Robotics Based on Kinematic Constraints

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Wouw, van de N.; Pancras, W.C.M.; Nijmeijer, H.

    2007-01-01

    Common robotic tracking tasks consist of motions along predefined paths. The design of time-optimal path-constrained trajectories for robotic applications is discussed in this paper. To increase industrial applicability, the proposed method accounts for robot kinematics together with actuator

  5. Design of a Circularly Polarized Galileo E6-Band Textile Antenna by Dedicated Multiobjective Constrained Pareto Optimization

    Directory of Open Access Journals (Sweden)

    Arnaut Dierck

    2015-01-01

    Full Text Available Designing textile antennas for real-life applications requires a design strategy that is able to produce antennas that are optimized over a wide bandwidth for often conflicting characteristics, such as impedance matching, axial ratio, efficiency, and gain, and, moreover, that is able to account for the variations that apply for the characteristics of the unconventional materials used in smart textile systems. In this paper, such a strategy, incorporating a multiobjective constrained Pareto optimization, is presented and applied to the design of a Galileo E6-band antenna with optimal return loss and wide-band axial ratio characteristics. Subsequently, different prototypes of the optimized antenna are fabricated and measured to validate the proposed design strategy.

  6. Optimization of a constrained linear monochromator design for neutral atom beams

    International Nuclear Information System (INIS)

    Kaltenbacher, Thomas

    2016-01-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  7. Optimization of a constrained linear monochromator design for neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas

    2016-04-15

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  8. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging through Chance Constrained Mixed-Integer Programming

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.

    2017-01-01

    This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...

  9. Constrained motion estimation-based error resilient coding for HEVC

    Science.gov (United States)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  10. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  11. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-12-01

    Full Text Available Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.

  12. Modified Covariance Matrix Adaptation – Evolution Strategy algorithm for constrained optimization under uncertainty, application to rocket design

    Directory of Open Access Journals (Sweden)

    Chocat Rudy

    2015-01-01

    Full Text Available The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.

  13. Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function

    KAUST Repository

    Pearson, John W.; Stoll, Martin; Wathen, Andrew J.

    2012-01-01

    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here

  14. A constrained tracking algorithm to optimize plug patterns in multiple isocenter Gamma Knife radiosurgery planning

    International Nuclear Information System (INIS)

    Li Kaile; Ma Lijun

    2005-01-01

    We developed a source blocking optimization algorithm for Gamma Knife radiosurgery, which is based on tracking individual source contributions to arbitrarily shaped target and critical structure volumes. A scalar objective function and a direct search algorithm were used to produce near real-time calculation results. The algorithm allows the user to set and vary the total number of plugs for each shot to limit the total beam-on time. We implemented and tested the algorithm for several multiple-isocenter Gamma Knife cases. It was found that the use of limited number of plugs significantly lowered the integral dose to the critical structures such as an optical chiasm in pituitary adenoma cases. The main effect of the source blocking is the faster dose falloff in the junction area between the target and the critical structure. In summary, we demonstrated a useful source-plugging algorithm for improving complex multi-isocenter Gamma Knife treatment planning cases

  15. Design Optimization of Mixed-Criticality Real-Time Applications on Cost-Constrained Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2011-01-01

    In this paper we are interested to implement mixed-criticality hard real-time applications on a given heterogeneous distributed architecture. Applications have different criticality levels, captured by their Safety-Integrity Level (SIL), and are scheduled using static-cyclic scheduling. Mixed......-criticality tasks can be integrated onto the same architecture only if there is enough spatial and temporal separation among them. We consider that the separation is provided by partitioning, such that applications run in separate partitions, and each partition is allocated several time slots on a processor. Tasks...... slots on each processor and (iv) the schedule tables, such that all the applications are schedulable and the development costs are minimized. We have proposed a Tabu Search-based approach to solve this optimization problem. The proposed algorithm has been evaluated using several synthetic and real...

  16. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Directory of Open Access Journals (Sweden)

    Nebojsa Bacanin

    2014-01-01

    portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  18. SU-E-T-574: Novel Chance-Constrained Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    International Nuclear Information System (INIS)

    An, Y; Liang, J; Liu, W

    2015-01-01

    Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios with certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with

  19. Complementarity of flux- and biometric-based data to constrain parameters in a terrestrial carbon model

    Directory of Open Access Journals (Sweden)

    Zhenggang Du

    2015-03-01

    Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also

  20. A multi-fidelity analysis selection method using a constrained discrete optimization formulation

    Science.gov (United States)

    Stults, Ian C.

    The purpose of this research is to develop a method for selecting the fidelity of contributing analyses in computer simulations. Model uncertainty is a significant component of result validity, yet it is neglected in most conceptual design studies. When it is considered, it is done so in only a limited fashion, and therefore brings the validity of selections made based on these results into question. Neglecting model uncertainty can potentially cause costly redesigns of concepts later in the design process or can even cause program cancellation. Rather than neglecting it, if one were to instead not only realize the model uncertainty in tools being used but also use this information to select the tools for a contributing analysis, studies could be conducted more efficiently and trust in results could be quantified. Methods for performing this are generally not rigorous or traceable, and in many cases the improvement and additional time spent performing enhanced calculations are washed out by less accurate calculations performed downstream. The intent of this research is to resolve this issue by providing a method which will minimize the amount of time spent conducting computer simulations while meeting accuracy and concept resolution requirements for results. In many conceptual design programs, only limited data is available for quantifying model uncertainty. Because of this data sparsity, traditional probabilistic means for quantifying uncertainty should be reconsidered. This research proposes to instead quantify model uncertainty using an evidence theory formulation (also referred to as Dempster-Shafer theory) in lieu of the traditional probabilistic approach. Specific weaknesses in using evidence theory for quantifying model uncertainty are identified and addressed for the purposes of the Fidelity Selection Problem. A series of experiments was conducted to address these weaknesses using n-dimensional optimization test functions. These experiments found that model

  1. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...

  2. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  3. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  4. Effective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring

    Directory of Open Access Journals (Sweden)

    Naixue Xiong

    2017-01-01

    Full Text Available Single-image blind deblurring for imaging sensors in the Internet of Things (IoT is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

  5. Extended Information Ratio for Portfolio Optimization Using Simulated Annealing with Constrained Neighborhood

    Science.gov (United States)

    Orito, Yukiko; Yamamoto, Hisashi; Tsujimura, Yasuhiro; Kambayashi, Yasushi

    The portfolio optimizations are to determine the proportion-weighted combination in the portfolio in order to achieve investment targets. This optimization is one of the multi-dimensional combinatorial optimizations and it is difficult for the portfolio constructed in the past period to keep its performance in the future period. In order to keep the good performances of portfolios, we propose the extended information ratio as an objective function, using the information ratio, beta, prime beta, or correlation coefficient in this paper. We apply the simulated annealing (SA) to optimize the portfolio employing the proposed ratio. For the SA, we make the neighbor by the operation that changes the structure of the weights in the portfolio. In the numerical experiments, we show that our portfolios keep the good performances when the market trend of the future period becomes different from that of the past period.

  6. A one-layer recurrent neural network for constrained nonsmooth optimization.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-10-01

    This paper presents a novel one-layer recurrent neural network modeled by means of a differential inclusion for solving nonsmooth optimization problems, in which the number of neurons in the proposed neural network is the same as the number of decision variables of optimization problems. Compared with existing neural networks for nonsmooth optimization problems, the global convexity condition on the objective functions and constraints is relaxed, which allows the objective functions and constraints to be nonconvex. It is proven that the state variables of the proposed neural network are convergent to optimal solutions if a single design parameter in the model is larger than a derived lower bound. Numerical examples with simulation results substantiate the effectiveness and illustrate the characteristics of the proposed neural network.

  7. Optimization of the box-girder of overhead crane with constrained ...

    African Journals Online (AJOL)

    haroun

    Keywords: Overhead crane - Box-girder - New bat algorithm - level of ... much more efficiency and robustness compared to the genetic algorithm (GA) and PSO ...... optimization: developments, applications and resources," in Evolutionary.

  8. Reserve-Constrained Multiarea Environmental/Economic Dispatch Using Enhanced Particle Swarm Optimization

    OpenAIRE

    Wang, Lingfeng; Singh, Chanan

    2007-01-01

    Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

  9. Titan TTCN-3 Based Test Framework for Resource Constrained Systems

    Directory of Open Access Journals (Sweden)

    Yushev Artem

    2016-01-01

    Full Text Available Wireless communication systems more and more become part of our daily live. Especially with the Internet of Things (IoT the overall connectivity increases rapidly since everyday objects become part of the global network. For this purpose several new wireless protocols have arisen, whereas 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks can be seen as one of the most important protocols within this sector. Originally designed on top of the IEEE802.15.4 standard it is a subject to various adaptions that will allow to use 6LoWPAN over different technologies; e.g. DECT Ultra Low Energy (ULE. Although this high connectivity offers a lot of new possibilities, there are several requirements and pitfalls coming along with such new systems. With an increasing number of connected devices the interoperability between different providers is one of the biggest challenges, which makes it necessary to verify the functionality and stability of the devices and the network. Therefore testing becomes one of the key components that decides on success or failure of such a system. Although there are several protocol implementations commonly available; e.g., for IoT based systems, there is still a lack of according tools and environments as well as for functional and conformance testing. This article describes the architecture and functioning of the proposed test framework based on Testing and Test Control Notation Version 3 (TTCN-3 for 6LoWPAN over ULE networks.

  10. Direct Speed Control of PMSM Drive Using SDRE and Convex Constrained Optimization

    Czech Academy of Sciences Publication Activity Database

    Šmídl, V.; Janouš, Š.; Adam, Lukáš; Peroutka, Z.

    2018-01-01

    Roč. 65, č. 1 (2018), s. 532-542 ISSN 1932-4529 Grant - others:GA MŠk(CZ) LO1607 Institutional support: RVO:67985556 Keywords : Velocity control * Optimization * Stators * Voltage control * Predictive control * Optimal control * Rotors Subject RIV: BD - Theory of Information Impact factor: 10.710, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/smidl-0481225.pdf

  11. Constrained Optimization via Stochastic approximation with a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman

    1997-01-01

    This paper deals with a projection algorithm for stochastic approximation using simultaneous perturbation gradient approximation for optimization under inequality constraints where no direct gradient of the loss function is available and the inequality constraints are given as explicit functions...... of the optimization parameters. It is shown that, under application of the projection algorithm, the parameter iterate converges almost surely to a Kuhn-Tucker point, The procedure is illustrated by a numerical example, (C) 1997 Elsevier Science Ltd....

  12. Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids

    Energy Technology Data Exchange (ETDEWEB)

    Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-07-01

    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints. We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.

  13. Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration

    Science.gov (United States)

    Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.

    2011-02-01

    This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.

  14. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    International Nuclear Information System (INIS)

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-01-01

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  15. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2005-01-01

    In this paper we present an approach to the design optimization of fault-tolerant embedded systems for safety-critical applications. Processes are statically scheduled and communications are performed using the time-triggered protocol. We use process re-execution and replication for tolerating...... transient faults. Our design optimization approach decides the mapping of processes to processors and the assignment of fault-tolerant policies to processes such that transient faults are tolerated and the timing constraints of the application are satisfied. We present several heuristics which are able...

  16. Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function

    KAUST Repository

    Pearson, John W.

    2012-11-21

    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared with other approaches. In this paper, we develop robust preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach. © 2012 John Wiley & Sons, Ltd.

  17. Constrained Optimization Problems in Cost and Managerial Accounting--Spreadsheet Tools

    Science.gov (United States)

    Amlie, Thomas T.

    2009-01-01

    A common problem addressed in Managerial and Cost Accounting classes is that of selecting an optimal production mix given scarce resources. That is, if a firm produces a number of different products, and is faced with scarce resources (e.g., limitations on labor, materials, or machine time), what combination of products yields the greatest profit…

  18. Affording and Constraining Local Moral Orders in Teacher-Led Ability-Based Mathematics Groups

    Science.gov (United States)

    Tait-McCutcheon, Sandi; Shuker, Mary Jane; Higgins, Joanna; Loveridge, Judith

    2015-01-01

    How teachers position themselves and their students can influence the development of afforded or constrained local moral orders in ability-based teacher-led mathematics lessons. Local moral orders are the negotiated discursive practices and interactions of participants in the group. In this article, the developing local moral orders of 12 teachers…

  19. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  20. A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www. science direct.com/ science /article/pii/S0377042716302631?via%3Dihub

  1. A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0377042716302631?via%3Dihub

  2. Constraining Influence Diagram Structure by Generative Planning: An Application to the Optimization of Oil Spill Response

    OpenAIRE

    Agosta, John Mark

    2013-01-01

    This paper works through the optimization of a real world planning problem, with a combination of a generative planning tool and an influence diagram solver. The problem is taken from an existing application in the domain of oil spill emergency response. The planning agent manages constraints that order sets of feasible equipment employment actions. This is mapped at an intermediate level of abstraction onto an influence diagram. In addition, the planner can apply a surveillance operator that...

  3. Stress-constrained truss topology optimization problems that can be solved by linear programming

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Svanberg, Krister

    2004-01-01

    We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....

  4. Distributed Constrained Stochastic Subgradient Algorithms Based on Random Projection and Asynchronous Broadcast over Networks

    Directory of Open Access Journals (Sweden)

    Junlong Zhu

    2017-01-01

    Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.

  5. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    Science.gov (United States)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  6. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  7. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2015-01-01

    Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence

  8. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- put parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.

  9. Adaptive near-optimal neuro controller for continuous-time nonaffine nonlinear systems with constrained input.

    Science.gov (United States)

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2017-09-01

    In this paper, an identifier-critic structure is introduced to find an online near-optimal controller for continuous-time nonaffine nonlinear systems having saturated control signal. By employing two Neural Networks (NNs), the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with the cost function is derived without requiring a priori knowledge about system dynamics. Weights of the identifier and critic NNs are tuned online and simultaneously such that unknown terms are approximated accurately and the control signal is kept between the saturation bounds. The convergence of NNs' weights, identification error, and system states is guaranteed using Lyapunov's direct method. Finally, simulation results are performed on two nonlinear systems to confirm the effectiveness of the proposed control strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  11. Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation

    NARCIS (Netherlands)

    F. Cong (Fei); C.W. Oosterlee (Kees)

    2016-01-01

    htmlabstractWe propose a simulation-based approach for solving the constrained dynamic mean– variance portfolio managemen tproblem. For this dynamic optimization problem, we first consider a sub-optimal strategy, called the multi-stage strategy, which can be utilized in a forward fashion. Then,

  12. A Discrete Constrained Optimization Using Genetic Algorithms for A Bookstore Layout

    Directory of Open Access Journals (Sweden)

    Tuncay Ozcan

    2013-04-01

    Full Text Available In retail industry, one of the most important decisions of shelf space management is the shelf location decision for products and product categories to be displayed in-store. The shelf location that products are displayed has a significant impact on product sales. At the same time, displaying complementary products close to each other increases the possibility of cross-selling of products. In this study, firstly, for a bookstore retailer, a mathematical model is developed based on association rule mining for store layout problem which includes the determination of the position of products and product categories which are displayed in-store shelves. Then, because of the NP-hard nature of the developed model, an original heuristic approach is developed based on genetic algorithms for solving large-scale real-life problems. In order to compare the performance of the genetic algorithm based heuristic with other methods, another heuristic approach based on tabu search and a simple heuristic that is commonly used by retailers are proposed. Finally, the effectiveness and applicability of the developed approaches are illustrated with numerical examples and a case study with data taken from a bookstore.

  13. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  14. Heuristic algorithm for single resource constrained project scheduling problem based on the dynamic programming

    Directory of Open Access Journals (Sweden)

    Stanimirović Ivan

    2009-01-01

    Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.

  15. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  16. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    Science.gov (United States)

    Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.

    1991-01-01

    This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  17. Assessment of electricity demand-supply in health facilities in resource-constrained settings : optimization and evaluation of energy systems for a case in Rwanda

    NARCIS (Netherlands)

    Palacios, S.G.

    2015-01-01

    In health facilities in resource-constrained settings, a lack of access to sustainable and reliable electricity can result on a sub-optimal delivery of healthcare services, as they do not have lighting for medical procedures and power to run essential equipment and devices to treat their patients.

  18. Solution of Constrained Optimal Control Problems Using Multiple Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Jørgensen, John Bagterp

    2012-01-01

    of this paper is the use of ESDIRK integration methods for solution of the initial value problems and the corresponding sensitivity equations arising in the multiple shooting algorithm. Compared to BDF-methods, ESDIRK-methods are advantageous in multiple shooting algorithms in which restarts and frequent...... algorithm. As we consider stiff systems, implicit solvers with sensitivity computation capabilities for initial value problems must be used in the multiple shooting algorithm. Traditionally, multi-step methods based on the BDF algorithm have been used for such problems. The main novel contribution...... discontinuities on each shooting interval are present. The ESDIRK methods are implemented using an inexact Newton method that reuses the factorization of the iteration matrix for the integration as well as the sensitivity computation. Numerical experiments are provided to demonstrate the algorithm....

  19. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    Science.gov (United States)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  20. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Kyungsung An

    2017-05-01

    Full Text Available This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs; EVs interact with the grid through grid-to-vehicle (G2V and vehicle-to-grid (V2G services to ensure reliable and cost-effective grid operation. This research provides a computational framework for this decision-making process. Charging and discharging strategies of EV aggregators are incorporated into a security-constrained optimal power flow (SCOPF problem such that overall energy cost is minimized and operation within acceptable reliability criteria is ensured. Particularly, this SCOPF problem has been formulated for Jeju Island in South Korea, in order to lower carbon emissions toward a zero-carbon island by, for example, integrating large-scale renewable energy and EVs. On top of conventional constraints on the generators and line flows, a unique constraint on the system inertia constant, interpreted as the minimum synchronous generation, is considered to ensure grid security at high renewable penetration. The available energy constraint of the participating EV associated with the state-of-charge (SOC of the battery and market price-responsive behavior of the EV aggregators are also explored. Case studies for the Jeju electric power system in 2030 under various operational scenarios demonstrate the effectiveness of the proposed method and improved operational flexibility via controllable EVs.

  1. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  2. An inexact log-normal distribution-based stochastic chance-constrained model for agricultural water quality management

    Science.gov (United States)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2018-05-01

    In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.

  3. Transmission tariffs based on optimal power flow

    International Nuclear Information System (INIS)

    Wangensteen, Ivar; Gjelsvik, Anders

    1998-01-01

    This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs

  4. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  5. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    Science.gov (United States)

    Hu, Yu-Chen

    2018-01-01

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  6. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    Directory of Open Access Journals (Sweden)

    Yu-Hsiu Lin

    2018-04-01

    Full Text Available The emergence of smart Internet of Things (IoT devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power

  7. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing.

    Science.gov (United States)

    Lin, Yu-Hsiu; Hu, Yu-Chen

    2018-04-27

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  8. The Ontology of Knowledge Based Optimization

    OpenAIRE

    Nasution, Mahyuddin K. M.

    2012-01-01

    Optimization has been becoming a central of studies in mathematic and has many areas with different applications. However, many themes of optimization came from different area have not ties closing to origin concepts. This paper is to address some variants of optimization problems using ontology in order to building basic of knowledge about optimization, and then using it to enhance strategy to achieve knowledge based optimization.

  9. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    Science.gov (United States)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  10. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    Science.gov (United States)

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  11. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    Directory of Open Access Journals (Sweden)

    Jianzhong Wang

    Full Text Available Recently, Sparse Representation-based Classification (SRC has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW demonstrate the effectiveness of LCJDSRC.

  12. A RSSI-based parameter tracking strategy for constrained position localization

    Science.gov (United States)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  13. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,

    2010-01-25

    Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end-effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot\\'s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot\\'s degrees of freedom. In addition to supporting efficient sampling of configurations, we show that the RD-space formulation naturally supports planning and, in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end-effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1,000 links in time comparable to open chain sampling, and we can generate samples for 1,000-link multi-loop systems of varying topologies in less than a second. © 2010 The Author(s).

  14. Efficient non-negative constrained model-based inversion in optoacoustic tomography

    International Nuclear Information System (INIS)

    Ding, Lu; Luís Deán-Ben, X; Lutzweiler, Christian; Razansky, Daniel; Ntziachristos, Vasilis

    2015-01-01

    The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency. (paper)

  15. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  16. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    Science.gov (United States)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M

  17. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  18. Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Bezerra, Marcos, E-mail: mbezerra47@yahoo.com.br [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, 45200-190, Jequie, Bahia (Brazil); Teixeira Castro, Jacira [Universidade Federal do Reconcavo da Bahia, Centro de Ciencias Exatas e Tecnologicas, 44380-000, Cruz das Almas, Bahia (Brazil); Coelho Macedo, Reinaldo; Goncalves da Silva, Douglas [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, 45200-190, Jequie, Bahia (Brazil)

    2010-06-18

    A slurry suspension sampling technique has been developed for manganese and zinc determination in tea leaves by using flame atomic absorption spectrometry. The proportions of liquid-phase of the slurries composed by HCl, HNO{sub 3} and Triton X-100 solutions have been optimized applying a constrained mixture design. The optimized conditions were 200 mg of sample ground in a tungsten carbide balls mill (particle size < 100 {mu}m), dilution in a liquid-phase composed by 2.0 mol L{sup -1} nitric, 2.0 mol L{sup -1} hydrochloric acid and 2.5% Triton X-100 solutions (in the proportions of 50%, 12% and 38% respectively), sonication time of 10 min and final slurry volume of 50.0 mL. This method allowed the determination of manganese and zinc by FAAS, with detection limits of 0.46 and 0.66 {mu}g g{sup -1}, respectively. The precisions, expressed as relative standard deviation (RSD), are 6.9 and 5.5% (n = 10), for concentrations of manganese and zinc of 20 and 40 {mu}g g{sup -1}, respectively. The accuracy of the method was confirmed by analysis of the certified apple leaves (NIST 1515) and spinach leaves (NIST 1570a). The proposed method was applied for the determination of manganese and zinc in tea leaves used for the preparation of infusions. The obtained concentrations varied between 42 and 118 {mu}g g{sup -1} and 18.6 and 90 {mu}g g{sup -1}, respectively, for manganese and zinc. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  19. A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise.

    Science.gov (United States)

    Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G

    2017-09-06

    This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Distance Constrained Based Adaptive Flocking Control for Multiagent Networks with Time Delay

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2015-01-01

    Full Text Available The flocking control of multiagent system is a new type of decentralized control method, which has aroused great attention. The paper includes a detailed research in terms of distance constrained based adaptive flocking control for multiagent system with time delay. Firstly, the program on the adaptive flocking with time delay of multiagent is proposed. Secondly, a kind of adaptive controllers and updating laws are presented. According to the Lyapunov stability theory, it is proved that the distance between agents can be larger than a constant during the motion evolution. What is more, velocities of each agent come to the same asymptotically. Finally, the analytical results can be verified by a numerical example.

  1. Sufficient Descent Polak-Ribière-Polyak Conjugate Gradient Algorithm for Large-Scale Box-Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2014-01-01

    descent method at first finite number of steps and then by conjugate gradient method subsequently. Under some appropriate conditions, we show that the algorithm converges globally. Numerical experiments and comparisons by using some box-constrained problems from CUTEr library are reported. Numerical comparisons illustrate that the proposed method is promising and competitive with the well-known method—L-BFGS-B.

  2. Optimization of offshore wind turbine support structures using analytical gradient-based method

    OpenAIRE

    Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael

    2015-01-01

    Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...

  3. Improved solution for ill-posed linear systems using a constrained optimization ruled by a penalty: evaluation in nuclear medicine tomography

    International Nuclear Information System (INIS)

    Walrand, Stephan; Jamar, François; Pauwels, Stanislas

    2009-01-01

    Ill-posed linear systems occur in many different fields. A class of regularization methods, called constrained optimization, aims to determine the extremum of a penalty function whilst constraining an objective function to a likely value. We propose here a novel heuristic way to screen the local extrema satisfying the discrepancy principle. A modified version of the Landweber algorithm is used for the iteration process. After finding a local extremum, a bound is performed to the 'farthest' estimate in the data space still satisfying the discrepancy principle. Afterwards, the modified Landweber algorithm is again applied to find a new local extremum. This bound-iteration process is repeated until a satisfying solution is reached. For evaluation in nuclear medicine tomography, a novel penalty function that preserves the edge steps in the reconstructed solution was evaluated on Monte Carlo simulations and using real SPECT acquisitions as well. Surprisingly, the first bound always provided a significantly better solution in a wide range of statistics

  4. A Time-constrained Network Voronoi Construction and Accessibility Analysis in Location-based Service Technology

    Science.gov (United States)

    Yu, W.; Ai, T.

    2014-11-01

    Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.

  5. Second-Order Necessary Optimality Conditions for Some State-Constrained Control Problems of Semilinear Elliptic Equations

    International Nuclear Information System (INIS)

    Casas, E.; Troeltzsch, F.

    1999-01-01

    In this paper we are concerned with some optimal control problems governed by semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise constraints on the control and a finite number of equality and inequality constraints on the state. The goal is to derive first- and second-order optimality conditions satisfied by locally optimal solutions of the problem

  6. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    Science.gov (United States)

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  7. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha

    2013-11-25

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  8. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  9. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Qingyang Zhang

    2015-02-01

    Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.

  10. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  11. Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-05-01

    Full Text Available Segmentation, which is usually the first step in object-based image analysis (OBIA, greatly influences the quality of final OBIA results. In many existing multi-scale segmentation algorithms, a common problem is that under-segmentation and over-segmentation always coexist at any scale. To address this issue, we propose a new method that integrates the newly developed constrained spectral variance difference (CSVD and the edge penalty (EP. First, initial segments are produced by a fast scan. Second, the generated segments are merged via a global mutual best-fitting strategy using the CSVD and EP as merging criteria. Finally, very small objects are merged with their nearest neighbors to eliminate the remaining noise. A series of experiments based on three sets of remote sensing images, each with different spatial resolutions, were conducted to evaluate the effectiveness of the proposed method. Both visual and quantitative assessments were performed, and the results show that large objects were better preserved as integral entities while small objects were also still effectively delineated. The results were also found to be superior to those from eCongnition’s multi-scale segmentation.

  12. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,; Thomas, S.; Coleman, P.; Amato, N. M.

    2010-01-01

    reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot's degrees of freedom

  13. Reliability Based Optimization of Fire Protection

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    fire protection (PFP) of firewalls and structural members. The paper is partly based on research performed within the EU supported research project B/E-4359 "Optimized Fire Safety of Offshore Structures" and partly on research supported by the Danish Technical Research Council (see Thoft-Christensen [1......]). Special emphasis is put on the optimization software developed within the project.......It is well known that fire is one of the major risks of serious damage or total loss of several types of structures such as nuclear installations, buildings, offshore platforms/topsides etc. This paper presents a methodology and software for reliability based optimization of the layout of passive...

  14. Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices.

    Science.gov (United States)

    Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli

    2017-09-12

    Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.

  15. Application of a Double-Sided Chance-Constrained Integer Linear Program for Optimization of the Incremental Value of Ecosystem Services in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Baofeng Cai

    2017-08-01

    Full Text Available The Interconnected River System Network Project (IRSNP is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 × 109 ¥ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services.

  16. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Choi, S B

    2015-01-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass. (technical note)

  17. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications

    International Nuclear Information System (INIS)

    Maraver, Daniel; Royo, Javier; Lemort, Vincent; Quoilin, Sylvain

    2014-01-01

    Highlights: • ORC optimization for different target applications. • Model developed to allow computation in subcritical and transcritical operation. • Regenerative and non-regenerative cycles evaluated through second law efficiency. • Common working fluids: R134a, R245fa, Solkatherm, n-Pentane, MDM, Toluene. • Thermodynamic and technological approaches lead to optimal design guidelines. - Abstract: The present work is focused on the thermodynamic optimization of organic Rankine cycles (ORCs) for power generation and CHP from different average heat source profiles (waste heat recovery, thermal oil for cogeneration and geothermal). The general goal is to provide optimization guidelines for a wide range of operating conditions, for subcritical and transcritical, regenerative and non-regenerative cycles. A parameter assessment of the main equipment in the cycle (expander, heat exchangers and feed pump) was also carried out. An optimization model of the ORC (available as an electronic annex) is proposed to predict the best cycle performance (subcritical or transcritical), in terms of its exergy efficiency, with different working fluids. The working fluids considered are those most commonly used in commercial ORC units (R134a, R245fa, Solkatherm, n-Pentane, Octamethyltrisiloxane and Toluene). The optimal working fluid and operating conditions from a purely thermodynamic approach are limited by the technological constraints of the expander, the heat exchangers and the feed pump. Hence, a complementary assessment of both approaches is more adequate to obtain some preliminary design guidelines for ORC units

  18. Development of GPT-based optimization algorithm

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  19. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    Science.gov (United States)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  20. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can...

  1. Statistical mechanics of budget-constrained auctions

    OpenAIRE

    Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.

    2009-01-01

    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). Based on the cavity method of statistical mechanics, we introduce a message passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution,...

  2. Measurement model and calibration experiment of over-constrained parallel six-dimensional force sensor based on stiffness characteristics analysis

    International Nuclear Information System (INIS)

    Niu, Zhi; Zhao, Yanzhi; Zhao, Tieshi; Cao, Yachao; Liu, Menghua

    2017-01-01

    An over-constrained, parallel six-dimensional force sensor has various advantages, including its ability to bear heavy loads and provide redundant force measurement information. These advantages render the sensor valuable in important applications in the field of aerospace (space docking tests, etc). The stiffness of each component in the over-constrained structure has a considerable influence on the internal force distribution of the structure. Thus, the measurement model changes when the measurement branches of the sensor are under tensile or compressive force. This study establishes a general measurement model for an over-constrained parallel six-dimensional force sensor considering the different branch tensions and compression stiffness values. Numerical calculations and analyses are performed using practical examples. Based on the parallel mechanism, an over-constrained, orthogonal structure is proposed for a six-dimensional force sensor. Hence, a prototype is designed and developed, and a calibration experiment is conducted. The measurement accuracy of the sensor is improved based on the measurement model under different branch tensions and compression stiffness values. Moreover, the largest class I error is reduced from 5.81 to 2.23% full scale (FS), and the largest class II error is reduced from 3.425 to 1.871% FS. (paper)

  3. An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.

  4. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  5. Coverage-based constraints for IMRT optimization

    Science.gov (United States)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  6. Pilot signal design via constrained optimization with application to delay-Doppler shift estimation in OFDM systems

    DEFF Research Database (Denmark)

    Jing, Lishuai; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    for which we propose a genetic algorithm that computes close-to-optimal solutions. Simulation results demonstrate that the proposed algorithm can efficiently find pilot signals that outperform the state-of-the-art pilot signals in both single-path and multipath propagation scenarios. In addition, we...

  7. Cost-constrained optimal sampling for system identification in pharmacokinetics applications with population priors and nuisance parameters.

    Science.gov (United States)

    Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar

    2015-06-01

    Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. CFD-based optimization in plastics extrusion

    Science.gov (United States)

    Eusterholz, Sebastian; Elgeti, Stefanie

    2018-05-01

    This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.

  9. Constrained non-linear optimization in 3D reflexion tomography; Problemes d'optimisation non-lineaire avec contraintes en tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Delbos, F.

    2004-11-01

    Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)

  10. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  11. Constrained non-linear optimization in 3D reflexion tomography; Problemes d'optimisation non-lineaire avec contraintes en tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Delbos, F

    2004-11-01

    Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)

  12. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  14. Asynchronous Gossip-Based Gradient-Free Method for Multiagent Optimization

    OpenAIRE

    Deming Yuan

    2014-01-01

    This paper considers the constrained multiagent optimization problem. The objective function of the problem is a sum of convex functions, each of which is known by a specific agent only. For solving this problem, we propose an asynchronous distributed method that is based on gradient-free oracles and gossip algorithm. In contrast to the existing work, we do not require that agents be capable of computing the subgradients of their objective functions and coordinating their...

  15. Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

    Czech Academy of Sciences Publication Activity Database

    Branda, Martin; Bucher, M.; Červinka, Michal; Schwartz, A.

    2018-01-01

    Roč. 70, č. 2 (2018), s. 503-530 ISSN 0926-6003 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Cardinality constraints * Regularization method * Scholtes regularization * Strong stationarity * Sparse portfolio optimization * Robust portfolio optimization Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 1.520, year: 2016 http://library.utia.cas.cz/separaty/2018/MTR/branda-0489264.pdf

  16. Constraining atmospheric ammonia emissions through new observations with an open-path, laser-based sensor

    Science.gov (United States)

    Sun, Kang

    As the third most abundant nitrogen species in the atmosphere, ammonia (NH3) is a key component of the global nitrogen cycle. Since the industrial revolution, humans have more than doubled the emissions of NH3 to the atmosphere by industrial nitrogen fixation, revolutionizing agricultural practices, and burning fossil fuels. NH3 is a major precursor to fine particulate matter (PM2.5), which has adverse impacts on air quality and human health. The direct and indirect aerosol radiative forcings currently constitute the largest uncertainties for future climate change predictions. Gas and particle phase NH3 eventually deposits back to the Earth's surface as reactive nitrogen, leading to the exceedance of ecosystem critical loads and perturbation of ecosystem productivity. Large uncertainties still remain in estimating the magnitude and spatiotemporal patterns of NH3 emissions from all sources and over a range of scales. These uncertainties in emissions also propagate to the deposition of reactive nitrogen. To improve our understanding of NH3 emissions, observational constraints are needed from local to global scales. The first part of this thesis is to provide quality-controlled, reliable NH3 measurements in the field using an open-path, quantum cascade laser-based NH3 sensor. As the second and third part of my research, NH3 emissions were quantified from a cattle feedlot using eddy covariance (EC) flux measurements, and the similarities between NH3 turbulent fluxes and those of other scalars (temperature, water vapor, and CO2) were investigated. The fourth part involves applying a mobile laboratory equipped with the open-path NH3 sensor and other important chemical/meteorological measurements to quantify fleet-integrated NH3 emissions from on-road vehicles. In the fifth part, the on-road measurements were extended to multiple major urban areas in both the US and China in the context of five observation campaigns. The results significantly improved current urban NH3

  17. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  18. Performance-based Pareto optimal design

    NARCIS (Netherlands)

    Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.

    2008-01-01

    A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are

  19. Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru; Hong, Fan; Peterka, Tom

    2018-01-01

    Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the new assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.

  20. Iris recognition in less constrained environments: a video-based approach

    OpenAIRE

    Mahadeo, Nitin Kumar

    2017-01-01

    This dissertation focuses on iris biometrics. Although the iris is the most accurate biometric, its adoption has been relatively slow. Conventional iris recognition systems utilize still eye images captured in ideal environments and require highly constrained subject presentation. A drop in recognition performance is observed when these constraints are removed as the quality of the data acquired is affected by heterogeneous factors. For iris recognition to be widely adopted, it can therefore ...

  1. Splines and polynomial tools for flatness-based constrained motion planning

    Science.gov (United States)

    Suryawan, Fajar; De Doná, José; Seron, María

    2012-08-01

    This article addresses the problem of trajectory planning for flat systems with constraints. Flat systems have the useful property that the input and the state can be completely characterised by the so-called flat output. We propose a spline parametrisation for the flat output, the performance output, the states and the inputs. Using this parametrisation the problem of constrained trajectory planning can be cast into a simple quadratic programming problem. An important result is that the B-spline parametrisation used gives exact results for constrained linear continuous-time system. The result is exact in the sense that the constrained signal can be made arbitrarily close to the boundary without having intersampling issues (as one would have in sampled-data systems). Simulation examples are presented, involving the generation of rest-to-rest trajectories. In addition, an experimental result of the method is also presented, where two methods to generate trajectories for a magnetic-levitation (maglev) system in the presence of constraints are compared and each method's performance is discussed. The first method uses the nonlinear model of the plant, which turns out to belong to the class of flat systems. The second method uses a linearised version of the plant model around an operating point. In every case, a continuous-time description is used. The experimental results on a real maglev system reported here show that, in most scenarios, the nonlinear and linearised models produce almost similar, indistinguishable trajectories.

  2. The Incompatibility of Pareto Optimality and Dominant-Strategy Incentive Compatibility in Sufficiently-Anonymous Budget-Constrained Quasilinear Settings

    Directory of Open Access Journals (Sweden)

    Rica Gonen

    2013-11-01

    Full Text Available We analyze the space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal combinatorial auctions. We examine a model with multidimensional types, nonidentical items, private values and quasilinear preferences for the players with one relaxation; the players are subject to publicly-known budget constraints. We show that the space includes dictatorial mechanisms and that if dictatorial mechanisms are ruled out by a natural anonymity property, then an impossibility of design is revealed. The same impossibility naturally extends to other abstract mechanisms with an arbitrary outcome set if one maintains the original assumptions of players with quasilinear utilities, public budgets and nonnegative prices.

  3. Parameter optimization toward optimal microneedle-based dermal vaccination.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40).

    Science.gov (United States)

    Yahi, Nouara; Aulas, Anaïs; Fantini, Jacques

    2010-02-05

    Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta) peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs) on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40) and chemically defined GSLs (GalCer, LacCer, GM1, GM3). Using the Langmuir monolayer technique, we show that Abeta(1-40) selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs). In contrast, Abeta(1-40) did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs). Cholesterol inhibited the interaction of Abeta(1-40) with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40) binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40) with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40). We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the influence

  5. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40.

    Directory of Open Access Journals (Sweden)

    Nouara Yahi

    Full Text Available Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40 and chemically defined GSLs (GalCer, LacCer, GM1, GM3. Using the Langmuir monolayer technique, we show that Abeta(1-40 selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs. In contrast, Abeta(1-40 did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs. Cholesterol inhibited the interaction of Abeta(1-40 with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40 binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40 with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40. We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the

  6. Sensor Networks for Optimal Target Localization with Bearings-Only Measurements in Constrained Three-Dimensional Scenarios

    Directory of Open Access Journals (Sweden)

    Joaquin Aranda

    2013-08-01

    Full Text Available In this paper, we address the problem of determining the optimal geometric configuration of an acoustic sensor network that will maximize the angle-related information available for underwater target positioning. In the set-up adopted, a set of autonomous vehicles carries a network of acoustic units that measure the elevation and azimuth angles between a target and each of the receivers on board the vehicles. It is assumed that the angle measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent. Using tools from estimation theory, the problem is converted into that of minimizing, by proper choice of the sensor positions, the trace of the inverse of the Fisher Information Matrix (also called the Cramer-Rao Bound matrix to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. It is shown that the optimal configuration of the sensors depends explicitly on the intensity of the measurement noise, the constraints imposed on the sensor configuration, the target depth and the probabilistic distribution that defines the prior uncertainty in the target position. Simulation examples illustrate the key results derived.

  7. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios.

    Science.gov (United States)

    Moreno-Salinas, David; Pascoal, Antonio; Aranda, Joaquin

    2013-08-12

    In this paper, we address the problem of determining the optimal geometric configuration of an acoustic sensor network that will maximize the angle-related information available for underwater target positioning. In the set-up adopted, a set of autonomous vehicles carries a network of acoustic units that measure the elevation and azimuth angles between a target and each of the receivers on board the vehicles. It is assumed that the angle measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent. Using tools from estimation theory, the problem is converted into that of minimizing, by proper choice of the sensor positions, the trace of the inverse of the Fisher Information Matrix (also called the Cramer-Rao Bound matrix) to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. It is shown that the optimal configuration of the sensors depends explicitly on the intensity of the measurement noise, the constraints imposed on the sensor configuration, the target depth and the probabilistic distribution that defines the prior uncertainty in the target position. Simulation examples illustrate the key results derived.

  8. PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt), along with some of the responses of the system, are used to investigate the controller performance and formulate...... the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade......PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads...

  9. Biogeography-Based Optimization with Orthogonal Crossover

    Directory of Open Access Journals (Sweden)

    Quanxi Feng

    2013-01-01

    Full Text Available Biogeography-based optimization (BBO is a new biogeography inspired, population-based algorithm, which mainly uses migration operator to share information among solutions. Similar to crossover operator in genetic algorithm, migration operator is a probabilistic operator and only generates the vertex of a hyperrectangle defined by the emigration and immigration vectors. Therefore, the exploration ability of BBO may be limited. Orthogonal crossover operator with quantization technique (QOX is based on orthogonal design and can generate representative solution in solution space. In this paper, a BBO variant is presented through embedding the QOX operator in BBO algorithm. Additionally, a modified migration equation is used to improve the population diversity. Several experiments are conducted on 23 benchmark functions. Experimental results show that the proposed algorithm is capable of locating the optimal or closed-to-optimal solution. Comparisons with other variants of BBO algorithms and state-of-the-art orthogonal-based evolutionary algorithms demonstrate that our proposed algorithm possesses faster global convergence rate, high-precision solution, and stronger robustness. Finally, the analysis result of the performance of QOX indicates that QOX plays a key role in the proposed algorithm.

  10. Revising the retrieval technique of a long-term stratospheric HNO{sub 3} data set. From a constrained matrix inversion to the optimal estimation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, I.; Muscari, G. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); De Zafra, R.L. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2011-07-01

    The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O{sub 3}, HNO{sub 3}, CO and N{sub 2}O at polar and mid-latitudes. Its HNO{sub 3} data set shed light on HNO{sub 3} annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO{sub 3} data sets from 1993 South Pole observations to date, in order to produce HNO{sub 3} version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100{+-}20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1{sigma} uncertainty on HNO{sub 3} v2 mixing ratio vertical profiles depends on altitude and is estimated at {proportional_to}15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO{sub 3} vertical profiles

  11. Optimal depth-based regional frequency analysis

    Directory of Open Access Journals (Sweden)

    H. Wazneh

    2013-06-01

    Full Text Available Classical methods of regional frequency analysis (RFA of hydrological variables face two drawbacks: (1 the restriction to a particular region which can lead to a loss of some information and (2 the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors. In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  12. Optimal depth-based regional frequency analysis

    Science.gov (United States)

    Wazneh, H.; Chebana, F.; Ouarda, T. B. M. J.

    2013-06-01

    Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can lead to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors). In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  13. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  14. Price-based Optimal Control of Electrical Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jokic, A.

    2007-09-10

    The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to

  15. Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States

    Science.gov (United States)

    Sousan, Sinan Dhia Jameel

    This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that

  16. PSO Based Optimization of Testing and Maintenance Cost in NPPs

    Directory of Open Access Journals (Sweden)

    Qiang Chou

    2014-01-01

    Full Text Available Testing and maintenance activities of safety equipment have drawn much attention in Nuclear Power Plant (NPP to risk and cost control. The testing and maintenance activities are often implemented in compliance with the technical specification and maintenance requirements. Technical specification and maintenance-related parameters, that is, allowed outage time (AOT, maintenance period and duration, and so forth, in NPP are associated with controlling risk level and operating cost which need to be minimized. The above problems can be formulated by a constrained multiobjective optimization model, which is widely used in many other engineering problems. Particle swarm optimizations (PSOs have proved their capability to solve these kinds of problems. In this paper, we adopt PSO as an optimizer to optimize the multiobjective optimization problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Numerical results have demonstrated the efficiency of our proposed algorithm.

  17. Risk-based optimization of land reclamation

    International Nuclear Information System (INIS)

    Lendering, K.T.; Jonkman, S.N.; Gelder, P.H.A.J.M. van; Peters, D.J.

    2015-01-01

    Large-scale land reclamations are generally constructed by means of a landfill well above mean sea level. This can be costly in areas where good quality fill material is scarce. An alternative to save materials and costs is a ‘polder terminal’. The quay wall acts as a flood defense and the terminal level is well below the level of the quay wall. Compared with a conventional terminal, the costs are lower, but an additional flood risk is introduced. In this paper, a risk-based optimization is developed for a conventional and a polder terminal. It considers the investment and residual flood risk. The method takes into account both the quay wall and terminal level, which determine the probability and damage of flooding. The optimal quay wall level is found by solving a Lambert function numerically. The terminal level is bounded by engineering boundary conditions, i.e. piping and uplift of the cover layer of the terminal yard. It is found that, for a representative case study, the saving of reclamation costs for a polder terminal is larger than the increase of flood risk. The model is applicable to other cases of land reclamation and to similar optimization problems in flood risk management. - Highlights: • A polder terminal can be an attractive alternative for a conventional terminal. • A polder terminal is feasible at locations with high reclamation cost. • A risk-based approach is required to determine the optimal protection levels. • The depth of the polder terminal yard is bounded by uplifting of the cover layer. • This paper can support decisions regarding alternatives for port expansions.

  18. A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn [Institute of Natural Sciences, Department of Mathematics, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China); Lin, Guang, E-mail: lin491@purdue.edu [Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Yang, Xu, E-mail: xuyang@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)

    2015-09-01

    In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by three steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.

  19. A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization

    National Research Council Canada - National Science Library

    Dennis, John E; El-Alem, Mahmoud; Maciel, Maria C

    1995-01-01

    .... The tangential component then must satisfy a fraction of Cauchy decrease condition of a quadratic model of the Lagrasigian function in the translated tangent space of the constraints determined by the quasi-normal component.

  20. A Memetic Differential Evolution Algorithm Based on Dynamic Preference for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Ning Dong

    2014-01-01

    functions are executed, and comparisons with five state-of-the-art algorithms are made. The results illustrate that the proposed algorithm is competitive with and in some cases superior to the compared ones in terms of the quality, efficiency, and the robustness of the obtained results.

  1. A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization

    National Research Council Canada - National Science Library

    Dennis, John E; El-Alem, Mahmoud; Maciel, Maria C

    1995-01-01

    .... The normal Component need not be computed accurately. The theory requires a quasi-normal component to satisfy a fraction of Cauchy decrease condition on the quadratic model of the linearized constraints...

  2. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  3. Pixel-based OPC optimization based on conjugate gradients.

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  4. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  5. Need for denser geodetic network to get real constrain on the fault behavior along the Main Marmara Sea segments of the NAF, toward an optimized GPS network.

    Science.gov (United States)

    Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.

    2016-12-01

    Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.

  6. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  7. Robust optimization based upon statistical theory.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose

  8. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  9. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Directory of Open Access Journals (Sweden)

    José Luis Torres-Moreno

    2016-03-01

    Full Text Available This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs. Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF and the unscented Kalman filter (UKF, in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics.

  10. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Science.gov (United States)

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  11. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  12. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  13. Characteristics and critical success factors for implementing problem-based learning in a human resource-constrained country.

    Science.gov (United States)

    Giva, Karen R N; Duma, Sinegugu E

    2015-08-31

    Problem-based learning (PBL) was introduced in Malawi in 2002 in order to improve the nursing education system and respond to the acute nursing human resources shortage. However, its implementation has been very slow throughout the country. The objectives of the study were to explore and describe the goals that were identified by the college to facilitate the implementation of PBL, the resources of the organisation that facilitated the implementation of PBL, the factors related to sources of students that facilitated the implementation of PBL, and the influence of the external system of the organisation on facilitating the implementation of PBL, and to identify critical success factors that could guide the implementation of PBL in nursing education in Malawi. This is an ethnographic, exploratory and descriptive qualitative case study. Purposive sampling was employed to select the nursing college, participants and documents for review.Three data collection methods, including semi-structured interviews, participant observation and document reviews, were used to collect data. The four steps of thematic analysis were used to analyse data from all three sources. Four themes and related subthemes emerged from the triangulated data sources. The first three themes and their subthemes are related to the characteristics related to successful implementation of PBL in a human resource-constrained nursing college, whilst the last theme is related to critical success factors that contribute to successful implementation of PBL in a human resource-constrained country like Malawi. This article shows that implementation of PBL is possible in a human resource-constrained country if there is political commitment and support.

  14. Identification of Multiple-Mode Linear Models Based on Particle Swarm Optimizer with Cyclic Network Mechanism

    Directory of Open Access Journals (Sweden)

    Tae-Hyoung Kim

    2017-01-01

    Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.

  15. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  16. Optimization of the Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Intrusion Detection System (IDS) have a great importance in saving the authority of the information widely spread all over the world through the networks. Many Case Based Systems concerned on the different methods of the unauthorized users/hackers that face the developers of the IDS. The proposed system introduces a new hybrid system that uses the genetic algorithm to optimize an IDS - case based system. It can detect the new anomalies appeared through the network and use the cases in the case library to determine the suitable solution for their behavior. The suggested system can solve the problem either by using an old identical solution or adapt the optimum one till have the targeted solution. The proposed system has been applied to block unauthorized users / hackers from attach the medical images for radiotherapy of the cancer diseases during their transmission through web. The proposed system can prove its accepted performance in this manner

  17. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    Science.gov (United States)

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  20. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  1. Analysis in nuclear power accident emergency based on random network and particle swarm optimization

    International Nuclear Information System (INIS)

    Gong Dichen; Fang Fang; Ding Weicheng; Chen Zhi

    2014-01-01

    The GERT random network model of nuclear power accident emergency was built in this paper, and the intelligent computation was combined with the random network based on the analysis of Fukushima nuclear accident in Japan. The emergency process was divided into the series link and parallel link, and the parallel link was the part of series link. The overall allocation of resources was firstly optimized, and then the parallel link was analyzed. The effect of the resources for emergency used in different links was analyzed, and it was put forward that the corresponding particle velocity vector was limited under the condition of limited emergency resources. The resource-constrained particle swarm optimization was obtained by using velocity projection matrix to correct the motion of particles. The optimized allocation of resources in emergency process was obtained and the time consumption of nuclear power accident emergency was reduced. (authors)

  2. An Optimization-Based Impedance Approach for Robot Force Regulation with Prescribed Force Limits

    Directory of Open Access Journals (Sweden)

    R. de J. Portillo-Vélez

    2015-01-01

    Full Text Available An optimization based approach for the regulation of excessive or insufficient forces at the end-effector level is introduced. The objective is to minimize the interaction force error at the robot end effector, while constraining undesired interaction forces. To that end, a dynamic optimization problem (DOP is formulated considering a dynamic robot impedance model. Penalty functions are considered in the DOP to handle the constraints on the interaction force. The optimization problem is online solved through the gradient flow approach. Convergence properties are presented and the stability is drawn when the force limits are considered in the analysis. The effectiveness of our proposal is validated via experimental results for a robotic grasping task.

  3. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    International Nuclear Information System (INIS)

    Chen, L; Zhou, Z; Wang, J

    2016-01-01

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directly connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.

  4. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L; Zhou, Z; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directly connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.

  5. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara

    2017-12-25

    Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.

  6. Optimal truss and frame design from projected homogenization-based topology optimization

    DEFF Research Database (Denmark)

    Larsen, S. D.; Sigmund, O.; Groen, J. P.

    2018-01-01

    In this article, we propose a novel method to obtain a near-optimal frame structure, based on the solution of a homogenization-based topology optimization model. The presented approach exploits the equivalence between Michell’s problem of least-weight trusses and a compliance minimization problem...... using optimal rank-2 laminates in the low volume fraction limit. In a fully automated procedure, a discrete structure is extracted from the homogenization-based continuum model. This near-optimal structure is post-optimized as a frame, where the bending stiffness is continuously decreased, to allow...

  7. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  8. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  9. Production Decision Based on Discounted Price and Delivery Frequency for Garment Original Equipment Manufacturer with Constrained Capacity

    Institute of Scientific and Technical Information of China (English)

    HUO Yanfang; GU Yajie; HAN Lin; WANG Xize

    2017-01-01

    Original equipment manufacturers (OEM) have never been so important and powerful as it is today in garment manufacturing industry.The OEM supplier's production decisions always have a great impact on the market performance and the profits of a garment brand manufacturer.With constrained capacity and multiply buyers,how to make reasonable production decisions is an urgent problem for OEM suppliers.A price discount model with a single OEM supplier and two buyers is proposed to deal with the problem.Based on this model,the OEM supplier could satisfy buyers' demands and guarantee their profits as well through adjusting price and delivery frequency.A numerical example validates the validity of the model.

  10. CFD based draft tube hydraulic design optimization

    International Nuclear Information System (INIS)

    McNabb, J; Murry, N; Mullins, B F; Devals, C; Kyriacou, S A

    2014-01-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis

  11. CFD based draft tube hydraulic design optimization

    Science.gov (United States)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a

  12. Logic-based methods for optimization combining optimization and constraint satisfaction

    CERN Document Server

    Hooker, John

    2011-01-01

    A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible

  13. Optimizing a Water Simulation based on Wavefront Parameter Optimization

    OpenAIRE

    Lundgren, Martin

    2017-01-01

    DICE, a Swedish game company, wanted a more realistic water simulation. Currently, most large scale water simulations used in games are based upon ocean simulation technology. These techniques falter when used in other scenarios, such as coastlines. In order to produce a more realistic simulation, a new one was created based upon the water simulation technique "Wavefront Parameter Interpolation". This technique involves a rather extensive preprocess that enables ocean simulations to have inte...

  14. Guidance Trades for Interceptors Not Constrained by Ground-Based Radar

    National Research Council Canada - National Science Library

    Deutsch, Owen

    2000-01-01

    .... New space-based sensor systems such as SBIRS-low are seen as an adjunct that can be used to achieve range extension by cueing of radars and in some concepts, kinematic range extension of interceptors...

  15. Optimization Strategies for Hardware-Based Cofactorization

    Science.gov (United States)

    Loebenberger, Daniel; Putzka, Jens

    We use the specific structure of the inputs to the cofactorization step in the general number field sieve (GNFS) in order to optimize the runtime for the cofactorization step on a hardware cluster. An optimal distribution of bitlength-specific ECM modules is proposed and compared to existing ones. With our optimizations we obtain a speedup between 17% and 33% of the cofactorization step of the GNFS when compared to the runtime of an unoptimized cluster.

  16. A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke.

    Science.gov (United States)

    Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A

    2016-01-15

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; preliability for all metrics in callosal fibers (0.85-1.00; preliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes

    NARCIS (Netherlands)

    Aydiner, E.; Brunner, F.D.; Heemels, W.P.M.H.; Allgower, F.

    2015-01-01

    In this paper we present a robust self-triggered model predictive control (MPC) scheme for discrete-time linear time-invariant systems subject to input and state constraints and additive disturbances. In self-triggered model predictive control, at every sampling instant an optimization problem based

  18. A CLASS OF NONMONOTONE TRUST REGION ALGORITHMS FOR LINEARLY CONSTRAINED OPTIMIZATION%线性约束优化的一类非单调信赖域算法

    Institute of Scientific and Technical Information of China (English)

    葛恒武; 陈中文

    2002-01-01

    We present a class of nonmonotone trust region algorithms for linearly constrained optimization in this paper.The algorithm may adjust automatically the scope of the monotonicity by the degree that the quadratic model is "trusted".Under the suitable conditions,it is proved that any limit point of the infinite sequence generated by the algorithm is the Kuhn-Tucker point of the primal problem.Finally,some numerical results show that the new algorithm is very effective.

  19. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy

    NARCIS (Netherlands)

    Ven, W.J.M. van de; Hu, Y.; Barentsz, J.O.; Karssemeijer, N.; Barratt, D.; Huisman, H.J.

    2015-01-01

    Adding magnetic resonance (MR)-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound (US) by using MR-US registration. A common approach is to use surface-based

  20. Architecture Synthesis for Cost-Constrained Fault-Tolerant Flow-based Biochips

    DEFF Research Database (Denmark)

    Eskesen, Morten Chabert; Pop, Paul; Potluri, Seetal

    2016-01-01

    . This increase in fabrication complexity has led to an increase in defect rates during the manufacturing, thereby motivating the need to improve the yield, by designing these biochips such that they are fault tolerant. We propose an approach based on a Greedy Randomized Adaptive Search Procedure (GRASP...

  1. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  2. The effect of feature-based attention on flanker interference processing: An fMRI-constrained source analysis.

    Science.gov (United States)

    Siemann, Julia; Herrmann, Manfred; Galashan, Daniela

    2018-01-25

    The present study examined whether feature-based cueing affects early or late stages of flanker conflict processing using EEG and fMRI. Feature cues either directed participants' attention to the upcoming colour of the target or were neutral. Validity-specific modulations during interference processing were investigated using the N200 event-related potential (ERP) component and BOLD signal differences. Additionally, both data sets were integrated using an fMRI-constrained source analysis. Finally, the results were compared with a previous study in which spatial instead of feature-based cueing was applied to an otherwise identical flanker task. Feature-based and spatial attention recruited a common fronto-parietal network during conflict processing. Irrespective of attention type (feature-based; spatial), this network responded to focussed attention (valid cueing) as well as context updating (invalid cueing), hinting at domain-general mechanisms. However, spatially and non-spatially directed attention also demonstrated domain-specific activation patterns for conflict processing that were observable in distinct EEG and fMRI data patterns as well as in the respective source analyses. Conflict-specific activity in visual brain regions was comparable between both attention types. We assume that the distinction between spatially and non-spatially directed attention types primarily applies to temporal differences (domain-specific dynamics) between signals originating in the same brain regions (domain-general localization).

  3. Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-05-01

    Full Text Available The tracking control problem of a flexible air-breathing hypersonic vehicle subjects to aerodynamic parameter uncertainty and input constraint is investigated by combining nonlinear disturbance observer and dynamic surface control. To design controller simply, a control-oriented model is firstly derived and divided into two subsystems, velocity subsystem and altitude subsystem based on the engineering backgrounds of flexible air-breathing hypersonic vehicle. In every subsystem, compounded disturbances are included to consider aerodynamic uncertainty and the effect of the flexible modes. Then, disturbance observer is not only used to handle the compounded disturbance but also to handle the input constraint, where the estimation error converges to a random small region through appropriately choosing the observer parameters. To sequel, the disturbance observer–based robust control scheme and the disturbance observer-based dynamic surface control scheme are developed for the velocity subsystem and altitude subsystem, respectively. Besides, novel filters are designed to alleviate the problem of “explosion of terms” induced by backstepping method. On the basis of Lyapunov stability theory, the presented control scheme can assure that tracking error converges to an arbitrarily small neighborhood around zero by rigorous theoretical analysis. At last, simulation result shows the effectiveness of the presented control method.

  4. Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index

    International Nuclear Information System (INIS)

    Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad

    2012-01-01

    Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.

  5. Build-up of macroscopic eigenstates in a memory-based constrained system

    International Nuclear Information System (INIS)

    Labousse, M; Perrard, S; Couder, Y; Fort, E

    2014-01-01

    A bouncing drop and its associated accompanying wave forms a walker. Based on previous works, we show in this article that it is possible to formulate a simple theoretical framework for the walker dynamics. It relies on a time scale decomposition corresponding to the effects successively generated when the memory effects increase. While the short time scale effect is simply responsible for the walker's propulsion, the intermediate scale generates spontaneously pivotal structures endowed with angular momentum. At an even larger memory scale, if the walker is spatially confined, the pivots become the building blocks of a self-organization into a global structure. This new theoretical framework is applied in the presence of an external harmonic potential, and reveals the underlying mechanisms leading to the emergence of the macroscopic spatial organization reported by Perrard et al (2014 Nature Commun. 5 3219). (paper)

  6. Projection-based circular constrained state estimation and fusion over long-haul links

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang [ORNL; Rao, Nageswara S. [ORNL

    2017-07-01

    In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance of these methods in the long-haul tracking environment using a simple example.

  7. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...

  8. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...

  9. Constrained paths based on the Farey sequence in learning to juggle.

    Science.gov (United States)

    Yamamoto, Kota; Tsutsui, Seijiro; Yamamoto, Yuji

    2015-12-01

    In this article we report the results of a study conducted to investigate the learning dynamics of three-ball juggling from the perspective of frequency locking. Based on the Farey sequence, we predicted that four stable coordination patterns, corresponding to dwell ratios of 0.83, 0.75, 0.67, and 0.50, would appear in the learning process. We examined the learning process in terms of task performance, taking into account individual differences in the amount of learning. We observed that the participants acquired individual-specific coordination patterns in a relatively early stage of learning, and that those coordination patterns were preserved in subsequent learning, even though performance in terms of number of successful consecutive throws increased substantially. This increase appeared to be related to a reduction in spatial variability of the juggling movements. Finally, the observed coordination patterns were in agreement with the predicted patterns, with the proviso that the pattern corresponding to a dwell ratio of 0.50 was not realized and only a hint of evidence was found for the dwell ratio of 0.67. This implies that the dwell ratios of 0.83 and 0.75 in particular exhibited a stable coordination structure due to strong frequency locking between the temporal variables of juggling. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM ...

    African Journals Online (AJOL)

    2010-06-30

    Jun 30, 2010 ... Keywords: Particle Swarm Optimization (PSO), photovoltaic system, MPOP, ... systems from one hand and because of the instantaneous change of ..... Because of the P-V characteristics this heuristic method is used to seek ...

  11. Product portfolio optimization based on substitution

    DEFF Research Database (Denmark)

    Myrodia, Anna; Moseley, A.; Hvam, Lars

    2017-01-01

    The development of production capabilities has led to proliferation of the product variety offered to the customer. Yet this fact does not directly imply increase of manufacturers' profitability, nor customers' satisfaction. Consequently, recent research focuses on portfolio optimization through...... substitution and standardization techniques. However when re-defining the strategic market decisions are characterized by uncertainty due to several parameters. In this study, by using a GAMS optimization model we present a method for supporting strategic decisions on substitution, by quantifying the impact...

  12. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained.

    Science.gov (United States)

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar

    2017-11-27

    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  13. Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

    International Nuclear Information System (INIS)

    Qi Pei-Han; Zheng Shi-Lian; Yang Xiao-Niu; Zhao Zhi-Jin

    2016-01-01

    Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. (paper)

  14. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  15. Reliability based topology optimization for continuum structures with local failure constraints

    DEFF Research Database (Denmark)

    Luo, Yangjun; Zhou, Mingdong; Wang, Michael Yu

    2014-01-01

    This paper presents an effective method for stress constrained topology optimization problems under load and material uncertainties. Based on the Performance Measure Approach (PMA), the optimization problem is formulated as to minimize the objective function under a large number of (stress......-related) target performance constraints. In order to overcome the stress singularity phenomenon caused by the combined stress and reliability constraints, a reduction strategy on target reliability index is proposed and utilized together with the ε-relaxation approach. Meanwhile, an enhanced aggregation method...... is employed to aggregate the selected active constraints using a general K–S function, which avoids expensive computational cost from the large-scale nature of local failure constraints. Several numerical examples are given to demonstrate the validity of the present method....

  16. Practical mathematical optimization basic optimization theory and gradient-based algorithms

    CERN Document Server

    Snyman, Jan A

    2018-01-01

    This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and dir...

  17. Topology optimization based on the harmony search method

    International Nuclear Information System (INIS)

    Lee, Seung-Min; Han, Seog-Young

    2017-01-01

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  18. Topology optimization based on the harmony search method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min; Han, Seog-Young [Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  19. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  20. A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer

    International Nuclear Information System (INIS)

    Kim, Hyun Keol; Hielscher, Andreas H

    2009-01-01

    It is well acknowledged that transport-theory-based reconstruction algorithm can provide the most accurate reconstruction results especially when small tissue volumes or high absorbing media are considered. However, these codes have a high computational burden and are often only slowly converging. Therefore, methods that accelerate the computation are highly desirable. To this end, we introduce in this work a partial-differential-equation (PDE) constrained approach to optical tomography that makes use of an all-at-once reduced Hessian sequential quadratic programming (rSQP) scheme. The proposed scheme treats the forward and inverse variables independently, which makes it possible to update the radiation intensities and the optical coefficients simultaneously by solving the forward and inverse problems, all at once. We evaluate the performance of the proposed scheme with numerical and experimental data, and find that the rSQP scheme can reduce the computation time by a factor of 10–25, as compared to the commonly employed limited memory BFGS method. At the same time accuracy and robustness even in the presence of noise are not compromised

  1. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1984-10-01

    Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

  2. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    International Nuclear Information System (INIS)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-01-01

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  3. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  4. Geometrically based optimization for extracranial radiosurgery

    International Nuclear Information System (INIS)

    Liu Ruiguo; Wagner, Thomas H; Buatti, John M; Modrick, Joseph; Dill, John; Meeks, Sanford L

    2004-01-01

    For static beam conformal intracranial radiosurgery, geometry of the beam arrangement dominates overall dose distribution. Maximizing beam separation in three dimensions decreases beam overlap, thus maximizing dose conformality and gradient outside of the target volume. Webb proposed arrangements of isotropically convergent beams that could be used as the starting point for a radiotherapy optimization process. We have developed an extracranial radiosurgery optimization method by extending Webb's isotropic beam arrangements to deliverable beam arrangements. This method uses an arrangement of N maximally separated converging vectors within the space available for beam delivery. Each bouquet of isotropic beam vectors is generated by a random sampling process that iteratively maximizes beam separation. Next, beam arrangement is optimized for critical structure avoidance while maintaining minimal overlap between beam entrance and exit pathways. This geometrically optimized beam set can then be used as a template for either conformal beam or intensity modulated extracranial radiosurgery. Preliminary results suggest that using this technique with conformal beam planning provides high plan conformality, a steep dose gradient outside of the tumour volume and acceptable critical structure avoidance in the majority of clinical cases

  5. Optimal separable bases and molecular collisions

    International Nuclear Information System (INIS)

    Poirier, L.W.

    1997-12-01

    A new methodology is proposed for the efficient determination of Green's functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR's) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H 2 → H 2 + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes

  6. The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm-Particle Swarm Optimization

    Science.gov (United States)

    Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng

    2018-03-01

    To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

  7. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Directory of Open Access Journals (Sweden)

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  8. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  9. Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland

    Science.gov (United States)

    Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea

    2018-01-01

    Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.

  10. Physical bases for diffusion welding processes optimization

    International Nuclear Information System (INIS)

    Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.

    1999-01-01

    One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint

  11. Interleaver Optimization using Population-Based Metaheuristics

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Abraham, A.; Ouddane, N.; Húsek, Dušan

    2010-01-01

    Roč. 20, č. 5 (2010), s. 591-608 ISSN 1210-0552 R&D Projects: GA ČR GA205/09/1079 Grant - others:GA ČR(CZ) GA102/09/1494 Institutional research plan: CEZ:AV0Z10300504 Keywords : turbo codes * global optimization * genetic algorithms * differential evolution * noisy communication channel Subject RIV: IN - Informatics, Computer Science Impact factor: 0.511, year: 2010

  12. Defining a region of optimization based on engine usage data

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  13. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  14. Empty tracks optimization based on Z-Map model

    Science.gov (United States)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  15. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  16. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    Science.gov (United States)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  17. Point-based warping with optimized weighting factors of displacement vectors

    Science.gov (United States)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  18. Elitism set based particle swarm optimization and its application

    Directory of Open Access Journals (Sweden)

    Yanxia Sun

    2017-01-01

    Full Text Available Topology plays an important role for Particle Swarm Optimization (PSO to achieve good optimization performance. It is difficult to find one topology structure for the particles to achieve better optimization performance than the others since the optimization performance not only depends on the searching abilities of the particles, also depends on the type of the optimization problems. Three elitist set based PSO algorithm without using explicit topology structure is proposed in this paper. An elitist set, which is based on the individual best experience, is used to communicate among the particles. Moreover, to avoid the premature of the particles, different statistical methods have been used in these three proposed methods. The performance of the proposed PSOs is compared with the results of the standard PSO 2011 and several PSO with different topologies, and the simulation results and comparisons demonstrate that the proposed PSO with adaptive probabilistic preference can achieve good optimization performance.

  19. Shape signature based on Ricci flow and optimal mass transportation

    Science.gov (United States)

    Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng

    2014-11-01

    A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.

  20. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    Science.gov (United States)

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2017-08-07

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  1. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2002-01-01

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... of reliability based code calibration of LRFD based design codes....

  2. Deployment-based lifetime optimization model for homogeneous Wireless Sensor Network under retransmission.

    Science.gov (United States)

    Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning

    2014-12-10

    Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.

  3. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  4. Optimal design of RTCs in digital circuit fault self-repair based on global signal optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Junbin; Cai Jinyan; Meng Yafeng

    2016-01-01

    Since digital circuits have been widely and thoroughly applied in various fields, electronic systems are increasingly more complicated and require greater reliability. Faults may occur in elec-tronic systems in complicated environments. If immediate field repairs are not made on the faults, elec-tronic systems will not run normally, and this will lead to serious losses. The traditional method for improving system reliability based on redundant fault-tolerant technique has been unable to meet the requirements. Therefore, on the basis of (evolvable hardware)-based and (reparation balance technology)-based electronic circuit fault self-repair strategy proposed in our preliminary work, the optimal design of rectification circuits (RTCs) in electronic circuit fault self-repair based on global sig-nal optimization is deeply researched in this paper. First of all, the basic theory of RTC optimal design based on global signal optimization is proposed. Secondly, relevant considerations and suitable ranges are analyzed. Then, the basic flow of RTC optimal design is researched. Eventually, a typical circuit is selected for simulation verification, and detailed simulated analysis is made on five circumstances that occur during RTC evolution. The simulation results prove that compared with the conventional design method based RTC, the global signal optimization design method based RTC is lower in hardware cost, faster in circuit evolution, higher in convergent precision, and higher in circuit evolution success rate. Therefore, the global signal optimization based RTC optimal design method applied in the elec-tronic circuit fault self-repair technology is proven to be feasible, effective, and advantageous.

  5. Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme

    International Nuclear Information System (INIS)

    Smeets, Niels

    2017-01-01

    In 2009, the Russian government set its first quantitative renewable energy target at 4.5% of the total electricity produced and consumed by 2020. In 2013, the Government launched its capacity-based renewable energy support scheme (CRESS), however, the expects it will merely add 0.3% to the current 0.67% share of renewables (Ministry of Energy, 2016c). This raises the question what factors might explain this implementation gap. On the basis of field research in Moscow, the article offers an in-depth policy analysis of resource-geographic, financial, institutional and ecologic enabling and constraining factors of Russia's CRESS between 2009 and 2015. To avoid the trap that policy intentions remain on paper, the entire policy cycle – from goal setting to implementation – has been covered. The article concludes that wind energy, which would have contributed the lion's share of new renewable energy capacity, lags behind, jeopardizing the quantitative renewable energy target. The depreciation of the rouble decreased return on investment, and the Local Content Requirement discouraged investors given the lack of Russian wind production facilities. Contrary to resource-geographic and financial expectations, solar projects have been commissioned more accurately, benefitting from access to major business groups and existing production facilities. - Highlights: • The support scheme is focused on the oversupplied integrated electricity market. • The scheme disregards the technical and economic potential in isolated areas. • The solar industry develops at the fastest rate, wind and small hydro lag behind. • Access to business groups and production facilities condition implementation. • The devaluation of the rouble necessitated a revision of the policy design.

  6. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  7. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  8. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  9. Optimal separable bases and series expansions

    International Nuclear Information System (INIS)

    Poirier, B.

    1997-01-01

    A method is proposed for the efficient calculation of the Green close-quote s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for instance, all of the first-order energy corrections are zero. In the Green close-quote s function case, we have a distorted-wave Born series with optimized convergence properties. This series may converge even when the usual Born series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic-oscillator system, in the course of which the quantum tanh 2 potential problem is solved exactly. The universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such resonances. copyright 1997 The American Physical Society

  10. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  11. An integrated reliability-based design optimization of offshore towers

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, Halil [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)], E-mail: h.karadeniz@tudelft.nl; Togan, Vedat [Department of Civil Engineering, Karadeniz Technical University, Trabzon (Turkey); Vrouwenvelder, Ton [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)

    2009-10-15

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  12. OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation

    Directory of Open Access Journals (Sweden)

    Mehdi Abolfazli

    2013-04-01

    Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.

  13. Optimizing block-based maintenance under random machine usage

    NARCIS (Netherlands)

    de Jonge, Bram; Jakobsons, Edgars

    Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization

  14. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  15. Optimization of microgrids based on controller designing for ...

    African Journals Online (AJOL)

    The power quality of microgrid during islanded operation is strongly related with the controller performance of DGs. Therefore a new optimal control strategy for distributed generation based inverter to connect to the generalized microgrid is proposed. This work shows developing optimal control algorithms for the DG ...

  16. Security-Constrained Unit Commitment in AC Microgrids Considering Stochastic Price-Based Demand Response and Renewable Generation

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Najafi, Hamid Reza; Anvari-Moghaddam, Amjad

    2018-01-01

    In this paper, a stochastic model for scheduling of AC security‐constrained unit commitment associated with demand response (DR) actions is developed in an islanded residential microgrid. The proposed model maximizes the expected profit of microgrid operator and minimizes the total customers...

  17. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  18. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  19. Optimization Research of Generation Investment Based on Linear Programming Model

    Science.gov (United States)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  20. Exact methods for time constrained routing and related scheduling problems

    DEFF Research Database (Denmark)

    Kohl, Niklas

    1995-01-01

    of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...

  1. Novel Verification Method for Timing Optimization Based on DPSO

    Directory of Open Access Journals (Sweden)

    Chuandong Chen

    2018-01-01

    Full Text Available Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM logic circuit. Second, the Design Compiler (DC algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.

  2. A comparison of physically and radiobiologically based optimization for IMRT

    International Nuclear Information System (INIS)

    Jones, Lois; Hoban, Peter

    2002-01-01

    Many optimization techniques for intensity modulated radiotherapy have now been developed. The majority of these techniques including all the commercial systems that are available are based on physical dose methods of assessment. Some techniques have also been based on radiobiological models. None of the radiobiological optimization techniques however have assessed the clinically realistic situation of considering both tumor and normal cells within the target volume. This study considers a ratio-based fluence optimizing technique to compare a dose-based optimization method described previously and two biologically based models. The biologically based methods use the values of equivalent uniform dose calculated for the tumor cells and integral biological effective dose for normal cells. The first biologically based method includes only tumor cells in the target volume while the second considers both tumor and normal cells in the target volume. All three methods achieve good conformation to the target volume. The biologically based optimization without the normal tissue in the target volume shows a high dose region in the center of the target volume while this is reduced when the normal tissues are also considered in the target volume. This effect occurs because the normal tissues in the target volume require the optimization to reduce the dose and therefore limit the maximum dose to that volume

  3. TH-CD-209-06: LET-Based Adjustment of IMPT Plans Using Prioritized Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J; Giantsoudi, D; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States); Botas, P [Massachusetts General Hospital, Boston, MA (United States); Heidelberg University, Heidelberg, DE (Germany); Qin, N; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vitro experiments suggest an increase in proton relative biological effectiveness (RBE) towards the end of range. However, proton treatment planning and dose reporting for clinical outcome assessment has been based on physical dose and constant RBE. Therefore, treatment planning for intensity-modulated proton therapy (IMPT) is unlikely to transition radically to pure RBE-based planning. We suggest a hybrid approach where treatment plans are initially created based on physical dose constraints and prescriptions, and are subsequently altered to avoid high linear energy transfer (LET) in critical structures while limiting the degradation of the physical dose distribution. Methods: To allow fast optimization based on dose and LET we extended a GPU-based Monte-Carlo code towards providing dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of physical dose and LET (LETxD). To first approximation, LETxD represents a measure of the additional biological dose that is caused by high LET. Regarding optimization techniques, LETxD has the advantage of being a linear function of the pencil beam intensities. Results: The method is applicable to treatments where serial critical structures with maximum dose constraint are located in or near the target. We studied intra-cranial tumors (high-grade meningiomas, base-of-skull chordomas) where the target (CTV) overlaps with the brainstem and optic structures. Often, high LETxD in critical structures can be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based re-optimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based

  4. Intelligent fault recognition strategy based on adaptive optimized multiple centers

    Science.gov (United States)

    Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong

    2018-06-01

    For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.

  5. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  6. Topology Optimization of Passive Micromixers Based on Lagrangian Mapping Method

    Directory of Open Access Journals (Sweden)

    Yuchen Guo

    2018-03-01

    Full Text Available This paper presents an optimization-based design method of passive micromixers for immiscible fluids, which means that the Peclet number infinitely large. Based on topology optimization method, an optimization model is constructed to find the optimal layout of the passive micromixers. Being different from the topology optimization methods with Eulerian description of the convection-diffusion dynamics, this proposed method considers the extreme case, where the mixing is dominated completely by the convection with negligible diffusion. In this method, the mixing dynamics is modeled by the mapping method, a Lagrangian description that can deal with the case with convection-dominance. Several numerical examples have been presented to demonstrate the validity of the proposed method.

  7. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  8. optimization of object tracking based on enhanced imperialist ...

    African Journals Online (AJOL)

    Damuut and Dogara

    A typical example is the Roman Empire which had influence or control over ... the Enhance Imperialist Competitive Algorithm (EICA) in optimizing the generated ... segment the video frame into a number of regions based on visual features like ...

  9. Workshop on Computational Optimization

    CERN Document Server

    2015-01-01

    Our everyday life is unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many real world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2013. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, resource constrained project scheduling, problems arising in transport services, error correcting codes, optimal system performance and energy consumption and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others.

  10. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  11. Optimizing ring-based CSR sources

    International Nuclear Information System (INIS)

    Byrd, J.M.; De Santis, S.; Hao, Z.; Martin, M.C.; Munson, D.V.; Li, D.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Schoenlein, R.; Jung, J.Y.; Venturini, M.; Wan, W.; Zholents, A.A.; Zolotorev, M.

    2004-01-01

    Coherent synchrotron radiation (CSR) is a fascinating phenomenon recently observed in electron storage rings and shows tremendous promise as a high power source of radiation at terahertz frequencies. However, because of the properties of the radiation and the electron beams needed to produce it, there are a number of interesting features of the storage ring that can be optimized for CSR. Furthermore, CSR has been observed in three distinct forms: as steady pulses from short bunches, bursts from growth of spontaneous modulations in high current bunches, and from micro modulations imposed on a bunch from laser slicing. These processes have their relative merits as sources and can be improved via the ring design. The terahertz (THz) and sub-THz region of the electromagnetic spectrum lies between the infrared and the microwave . This boundary region is beyond the normal reach of optical and electronic measurement techniques and sources associated with these better-known neighbors. Recent research has demonstrated a relatively high power source of THz radiation from electron storage rings: coherent synchrotron radiation (CSR). Besides offering high power, CSR enables broadband optical techniques to be extended to nearly the microwave region, and has inherently sub-picosecond pulses. As a result, new opportunities for scientific research and applications are enabled across a diverse array of disciplines: condensed matter physics, medicine, manufacturing, and space and defense industries. CSR will have a strong impact on THz imaging, spectroscopy, femtosecond dynamics, and driving novel non-linear processes. CSR is emitted by bunches of accelerated charged particles when the bunch length is shorter than the wavelength being emitted. When this criterion is met, all the particles emit in phase, and a single-cycle electromagnetic pulse results with an intensity proportional to the square of the number of particles in the bunch. It is this quadratic dependence that can

  12. Optimal portfolio model based on WVAR

    OpenAIRE

    Hao, Tianyu

    2012-01-01

    This article is focused on using a new measurement of risk-- Weighted Value at Risk to develop a new method of constructing initiate from the TVAR solving problem, based on MATLAB software, using the historical simulation method (avoiding income distribution will be assumed to be normal), the results of previous studies also based on, study the U.S. Nasdaq composite index, combining the Simpson formula for the solution of TVAR and its deeply study; then, through the representation of WVAR for...

  13. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  14. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  15. Optimal perturbations for nonlinear systems using graph-based optimal transport

    Science.gov (United States)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  16. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  17. Optimal policy for value-based decision-making.

    Science.gov (United States)

    Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre

    2016-08-18

    For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down.

  18. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  19. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  20. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  1. Interactive Reliability-Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Pedersen, Claus

    In order to introduce the basic concepts within the field of reliability-based structural optimization problems, this chapter is devoted to a brief outline of the basic theories. Therefore, this chapter is of a more formal nature and used as a basis for the remaining parts of the thesis. In section...... 2.2 a general non-linear optimization problem and corresponding terminology are presented whereupon optimality conditions and the standard form of an iterative optimization algorithm are outlined. Subsequently, the special properties and characteristics concerning structural optimization problems...... are treated in section 2.3. With respect to the reliability evalutation, the basic theory behind a reliability analysis and estimation of probability of failure by the First-Order Reliability Method (FORM) and the iterative Rackwitz-Fiessler (RF) algorithm are considered in section 2.5 in which...

  2. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    Science.gov (United States)

    Janardhanan, S.; Datta, B.

    2011-12-01

    saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.

  3. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    Science.gov (United States)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  4. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  5. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  6. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm

    International Nuclear Information System (INIS)

    Chaudhary, Kailash; Chaudhary, Himanshu

    2015-01-01

    In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).

  7. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Kailash; Chaudhary, Himanshu [Malaviya National Institute of Technology, Jaipur (Malaysia)

    2015-11-15

    In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).

  8. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    Science.gov (United States)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  9. Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Po-Chen Cheng

    2015-06-01

    Full Text Available In this paper, an asymmetrical fuzzy-logic-control (FLC-based maximum power point tracking (MPPT algorithm for photovoltaic (PV systems is presented. Two membership function (MF design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V curve of solar cells under standard test conditions (STC. The second method uses the particle swarm optimization (PSO technique to optimize the input MF setting values. Because the PSO approach must target and optimize a cost function, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs is also proposed. According to the simulated and experimental results, the proposed asymmetrical FLC-based MPPT method has the highest fitness value, therefore, it can successfully address the tracking speed/tracking accuracy dilemma compared with the traditional perturb and observe (P&O and symmetrical FLC-based MPPT algorithms. Compared to the conventional FLC-based MPPT method, the obtained optimal asymmetrical FLC-based MPPT can improve the transient time and the MPPT tracking accuracy by 25.8% and 0.98% under STC, respectively.

  10. Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-12-01

    Full Text Available This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE generation, energy storage systems (ESSs, and thermostatically controlled loads (TCLs. This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

  11. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  12. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  13. Length scale and manufacturability in density-based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...... provide competitive designs in terms of cost, materials and functionality under a wide set of constraints. However, the optimized topologies are often considered as conceptual due to loosely defined topologies and the need of postprocessing. Subsequent amendments can affect the optimized design...

  14. Cooperative Game Study of Airlines Based on Flight Frequency Optimization

    Directory of Open Access Journals (Sweden)

    Wanming Liu

    2014-01-01

    Full Text Available By applying the game theory, the relationship between airline ticket price and optimal flight frequency is analyzed. The paper establishes the payoff matrix of the flight frequency in noncooperation scenario and flight frequency optimization model in cooperation scenario. The airline alliance profit distribution is converted into profit distribution game based on the cooperation game theory. The profit distribution game is proved to be convex, and there exists an optimal distribution strategy. The results show that joining the airline alliance can increase airline whole profit, the change of negotiated prices and cost is beneficial to profit distribution of large airlines, and the distribution result is in accordance with aviation development.

  15. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  16. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  17. An opinion formation based binary optimization approach for feature selection

    Science.gov (United States)

    Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo

    2018-02-01

    This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.

  18. A Dynamic Optimization Method of Indoor Fire Evacuation Route Based on Real-time Situation Awareness

    Directory of Open Access Journals (Sweden)

    DING Yulin

    2016-12-01

    Full Text Available How to provide safe and effective evacuation routes is an important safeguard to correctly guide evacuation and reduce the casualties during the fire situation rapidly evolving in complex indoor environment. The traditional static path finding method is difficult to adjust the path adaptively according to the changing fire situation, which lead to the evacuation decision-making blindness and hysteresis. This paper proposes a dynamic method which can dynamically optimize the indoor evacuation routes based on the real-time situation awareness. According to the real-time perception of fire situation parameters and the changing indoor environment information, the evacuation route is optimized dynamically. The integrated representation of multisource indoor fire monitoring sensor observations oriented fire emergency evacuation is presented at first, real-time fire threat situation information inside building is then extracted from the observation data of multi-source sensors, which is used to constrain the dynamical optimization of the topology of the evacuation route. Finally, the simulation experiments prove that this method can improve the accuracy and efficiency of indoor evacuation routing.

  19. Discounted cost model for condition-based maintenance optimization

    International Nuclear Information System (INIS)

    Weide, J.A.M. van der; Pandey, M.D.; Noortwijk, J.M. van

    2010-01-01

    This paper presents methods to evaluate the reliability and optimize the maintenance of engineering systems that are damaged by shocks or transients arriving randomly in time and overall degradation is modeled as a cumulative stochastic point process. The paper presents a conceptually clear and comprehensive derivation of formulas for computing the discounted cost associated with a maintenance policy combining both condition-based and age-based criteria for preventive maintenance. The proposed discounted cost model provides a more realistic basis for optimizing the maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.

  20. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T; Yue, N; Jabbour, S; Zhang, M [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  1. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    International Nuclear Information System (INIS)

    Chen, T; Yue, N; Jabbour, S; Zhang, M

    2016-01-01

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  2. Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony.

    Science.gov (United States)

    Gao, Lingyun; Ye, Mingquan; Wu, Changrong

    2017-11-29

    Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.

  3. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  4. Global Optimization Based on the Hybridization of Harmony Search and Particle Swarm Optimization Methods

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2014-01-01

    Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.

  5. Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs

    Directory of Open Access Journals (Sweden)

    Jiajun Liu

    2017-10-01

    Full Text Available Energy storage systems (ESS play an important role in the performance of mining vehicles. A hybrid ESS combining both batteries (BTs and supercapacitors (SCs is one of the most promising solutions. As a case study, this paper discusses the optimal hybrid ESS sizing and energy management strategy (EMS of 14-ton underground load-haul-dump vehicles (LHDs. Three novel contributions are added to the relevant literature. First, a multi-objective optimization is formulated regarding energy consumption and the total cost of a hybrid ESS, which are the key factors of LHDs, and a battery capacity degradation model is used. During the process, dynamic programming (DP-based EMS is employed to obtain the optimal energy consumption and hybrid ESS power profiles. Second, a 10-year life cycle cost model of a hybrid ESS for LHDs is established to calculate the total cost, including capital cost, operating cost, and replacement cost. According to the optimization results, three solutions chosen from the Pareto front are compared comprehensively, and the optimal one is selected. Finally, the optimal and battery-only options are compared quantitatively using the same objectives, and the hybrid ESS is found to be a more economical and efficient option.

  6. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept.

    Science.gov (United States)

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-11-25

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

  7. Cover crop-based ecological weed management: exploration and optimization

    NARCIS (Netherlands)

    Kruidhof, H.M.

    2008-01-01

    Keywords: organic farming, ecologically-based weed management, cover crops, green manure, allelopathy, Secale cereale, Brassica napus, Medicago sativa

    Cover crop-based ecological weed management: exploration and optimization. In organic farming systems, weed control is recognized as one

  8. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  9. Workshop on Computational Optimization

    CERN Document Server

    2016-01-01

    This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2014, held at Warsaw, Poland, September 7-10, 2014. The book presents recent advances in computational optimization. The volume includes important real problems like parameter settings for controlling processes in bioreactor and other processes, resource constrained project scheduling, infection distribution, molecule distance geometry, quantum computing, real-time management and optimal control, bin packing, medical image processing, localization the abrupt atmospheric contamination source and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks.

  10. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  11. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Trust regions in Kriging-based optimization with expected improvement

    Science.gov (United States)

    Regis, Rommel G.

    2016-06-01

    The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.

  13. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  14. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  15. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  16. Energy-efficient relay selection and optimal power allocation for performance-constrained dual-hop variable-gain AF relaying

    KAUST Repository

    Zafar, Ammar

    2013-12-01

    This paper investigates the energy-efficiency enhancement of a variable-gain dual-hop amplify-and-forward (AF) relay network utilizing selective relaying. The objective is to minimize the total consumed power while keeping the end-to-end signal-to-noise-ratio (SNR) above a certain peak value and satisfying the peak power constraints at the source and relay nodes. To achieve this objective, an optimal relay selection and power allocation strategy is derived by solving the power minimization problem. Numerical results show that the derived optimal strategy enhances the energy-efficiency as compared to a benchmark scheme in which both the source and the selected relay transmit at peak power. © 2013 IEEE.

  17. A systematic optimization for graphene-based supercapacitors

    Science.gov (United States)

    Deuk Lee, Sung; Lee, Han Sung; Kim, Jin Young; Jeong, Jaesik; Kahng, Yung Ho

    2017-08-01

    Increasing the energy-storage density for supercapacitors is critical for their applications. Many researchers have attempted to identify optimal candidate component materials to achieve this goal, but investigations into systematically optimizing their mixing rate for maximizing the performance of each candidate material have been insufficient, which hinders the progress in their technology. In this study, we employ a statistically systematic method to determine the optimum mixing ratio of three components that constitute graphene-based supercapacitor electrodes: reduced graphene oxide (rGO), acetylene black (AB), and polyvinylidene fluoride (PVDF). By using the extreme-vertices design, the optimized proportion is determined to be (rGO: AB: PVDF  =  0.95: 0.00: 0.05). The corresponding energy-storage density increases by a factor of 2 compared with that of non-optimized electrodes. Electrochemical and microscopic analyses are performed to determine the reason for the performance improvements.

  18. Teaching learning based optimization algorithm and its engineering applications

    CERN Document Server

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  19. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  20. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    Science.gov (United States)

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  1. Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Na Tian

    2015-01-01

    Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.

  2. Simulation-based optimization of sustainable national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola

    2015-01-01

    The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.

  3. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  4. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  5. Institutional and Actor-Oriented Factors Constraining Expert-Based Forest Information Exchange in Europe: A Policy Analysis from an Actor-Centred Institutionalist Approach

    Directory of Open Access Journals (Sweden)

    Tanya Baycheva-Merger

    2018-03-01

    Full Text Available Adequate and accessible expert-based forest information has become increasingly in demand for effective decisions and informed policies in the forest and forest-related sectors in Europe. Such accessibility requires a collaborative environment and constant information exchange between various actors at different levels and across sectors. However, information exchange in complex policy environments is challenging, and is often constrained by various institutional, actor-oriented, and technical factors. In forest policy research, no study has yet attempted to simultaneously account for these multiple factors influencing expert-based forest information exchange. By employing a policy analysis from an actor-centred institutionalist perspective, this paper aims to provide an overview of the most salient institutional and actor-oriented factors that are perceived as constraining forest information exchange at the national level across European countries. We employ an exploratory research approach, and utilise both qualitative and quantitative methods to analyse our data. The data was collected through a semi-structured survey targeted at forest and forest-related composite actors in 21 European countries. The results revealed that expert-based forest information exchange is constrained by a number of compound and closely interlinked institutional and actor-oriented factors, reflecting the complex interplay of institutions and actors at the national level. The most salient institutional factors that stand out include restrictive or ambiguous data protection policies, inter-organisational information arrangements, different organisational cultures, and a lack of incentives. Forest information exchange becomes even more complex when actors are confronted with actor-oriented factors such as issues of distrust, diverging preferences and perceptions, intellectual property rights, and technical capabilities. We conclude that expert-based forest information

  6. Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control

    Institute of Scientific and Technical Information of China (English)

    杨剑影; 张海; 谢邦荣; 尹健

    2004-01-01

    Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.

  7. Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.

  8. Sizing optimization of skeletal structures using teaching-learning based optimization

    Directory of Open Access Journals (Sweden)

    Vedat Toğan

    2017-03-01

    Full Text Available Teaching Learning Based Optimization (TLBO is one of the non-traditional techniques to simulate natural phenomena into a numerical algorithm. TLBO mimics teaching learning process occurring between a teacher and students in a classroom. A parameter named as teaching factor, TF, seems to be the only tuning parameter in TLBO. Although the value of the teaching factor, TF, is determined by an equation, the value of 1 or 2 has been used by the researchers for TF. This study intends to explore the effect of the variation of teaching factor TF on the performances of TLBO. This effect is demonstrated in solving structural optimization problems including truss and frame structures under the stress and displacement constraints. The results indicate that the variation of TF in the TLBO process does not change the results obtained at the end of the optimization procedure when the computational cost of TLBO is ignored.

  9. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2015-01-01

    Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.

  10. Reliability-based performance simulation for optimized pavement maintenance

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Le, Thanh-Son

    2011-01-01

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: →A novel algorithm using multi-objective particle swarm optimization technique. → Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. → A probabilistic model for regression parameters is employed to assess reliability-based performance. → The proposed approach can help decision makers to optimize roadway maintenance plans.

  11. Reliability-based performance simulation for optimized pavement maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jui-Sheng, E-mail: jschou@mail.ntust.edu.tw [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China); Le, Thanh-Son [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China)

    2011-10-15

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: > A novel algorithm using multi-objective particle swarm optimization technique. > Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. > A probabilistic model for regression parameters is employed to assess reliability-based performance. > The proposed approach can help decision makers to optimize roadway maintenance plans.

  12. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    Science.gov (United States)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  13. A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2012-01-01

    This paper presents a novel decision-support tool for assessing future generation portfolios in an increasingly uncertain electricity industry. The tool combines optimal generation mix concepts with Monte Carlo simulation and portfolio analysis techniques to determine expected overall industry costs, associated cost uncertainty, and expected CO 2 emissions for different generation portfolio mixes. The tool can incorporate complex and correlated probability distributions for estimated future fossil-fuel costs, carbon prices, plant investment costs, and demand, including price elasticity impacts. The intent of this tool is to facilitate risk-weighted generation investment and associated policy decision-making given uncertainties facing the electricity industry. Applications of this tool are demonstrated through a case study of an electricity industry with coal, CCGT, and OCGT facing future uncertainties. Results highlight some significant generation investment challenges, including the impacts of uncertain and correlated carbon and fossil-fuel prices, the role of future demand changes in response to electricity prices, and the impact of construction cost uncertainties on capital intensive generation. The tool can incorporate virtually any type of input probability distribution, and support sophisticated risk assessments of different portfolios, including downside economic risks. It can also assess portfolios against multi-criterion objectives such as greenhouse emissions as well as overall industry costs. - Highlights: ► Present a decision support tool to assist generation investment and policy making under uncertainty. ► Generation portfolios are assessed based on their expected costs, risks, and CO 2 emissions. ► There is tradeoff among expected cost, risks, and CO 2 emissions of generation portfolios. ► Investment challenges include economic impact of uncertainties and the effect of price elasticity. ► CO 2 emissions reduction depends on the mix of

  14. Optimization for PET imaging based on phantom study and NECdensity

    International Nuclear Information System (INIS)

    Daisaki, Hiromitsu; Shimada, Naoki; Shinohara, Hiroyuki

    2012-01-01

    In consideration of the requirement for global standardization and quality control of PET imaging, the present studies gave an outline of phantom study to decide both scan and reconstruction parameters based on FDG-PET/CT procedure guideline in Japan, and optimization of scan duration based on NEC density was performed continuously. In the phantom study, scan and reconstruction parameters were decided by visual assessment and physical indexes (N 10mm , NEC phantom , Q H,10mm /N 10mm ) to visualize hot spot of 10 mm diameter with standardized uptake value (SUV)=4 explicitly. Simultaneously, Recovery Coefficient (RC) was evaluated to recognize that PET images had enough quantifiably. Scan durations were optimized by Body Mass Index (BMI) based on retrospective analysis of NEC density . Correlation between visual score in clinical FDG-PET images and NEC density fell after the optimization of scan duration. Both Inter-institution and inter-patient variability were decreased by performing the phantom study based on the procedure guideline and the optimization of scan duration based on NEC density which seem finally useful to practice highly precise examination and promote high-quality controlled study. (author)

  15. Group search optimiser-based optimal bidding strategies with no Karush-Kuhn-Tucker optimality conditions

    Science.gov (United States)

    Yadav, Naresh Kumar; Kumar, Mukesh; Gupta, S. K.

    2017-03-01

    General strategic bidding procedure has been formulated in the literature as a bi-level searching problem, in which the offer curve tends to minimise the market clearing function and to maximise the profit. Computationally, this is complex and hence, the researchers have adopted Karush-Kuhn-Tucker (KKT) optimality conditions to transform the model into a single-level maximisation problem. However, the profit maximisation problem with KKT optimality conditions poses great challenge to the classical optimisation algorithms. The problem has become more complex after the inclusion of transmission constraints. This paper simplifies the profit maximisation problem as a minimisation function, in which the transmission constraints, the operating limits and the ISO market clearing functions are considered with no KKT optimality conditions. The derived function is solved using group search optimiser (GSO), a robust population-based optimisation algorithm. Experimental investigation is carried out on IEEE 14 as well as IEEE 30 bus systems and the performance is compared against differential evolution-based strategic bidding, genetic algorithm-based strategic bidding and particle swarm optimisation-based strategic bidding methods. The simulation results demonstrate that the obtained profit maximisation through GSO-based bidding strategies is higher than the other three methods.

  16. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  17. Radiation protection optimization using a knowledge based methodology

    International Nuclear Information System (INIS)

    Reyes-Jimenez, J.; Tsoukalas, L.H.

    1991-01-01

    This paper presents a knowledge based methodology for radiological planning and radiation protection optimization. The cost-benefit methodology described on International Commission of Radiation Protection Report No. 37 is employed within a knowledge based framework for the purpose of optimizing radiation protection and plan maintenance activities while optimizing radiation protection. 1, 2 The methodology is demonstrated through an application to a heating ventilation and air conditioning (HVAC) system. HVAC is used to reduce radioactivity concentration levels in selected contaminated multi-compartment models at nuclear power plants when higher than normal radiation levels are detected. The overall objective is to reduce personnel exposure resulting from airborne radioactivity, when routine or maintenance access is required in contaminated areas. 2 figs, 15 refs

  18. ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    T. SHANKAR

    2014-04-01

    Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.

  19. Enhancing product robustness in reliability-based design optimization

    International Nuclear Information System (INIS)

    Zhuang, Xiaotian; Pan, Rong; Du, Xiaoping

    2015-01-01

    Different types of uncertainties need to be addressed in a product design optimization process. In this paper, the uncertainties in both product design variables and environmental noise variables are considered. The reliability-based design optimization (RBDO) is integrated with robust product design (RPD) to concurrently reduce the production cost and the long-term operation cost, including quality loss, in the process of product design. This problem leads to a multi-objective optimization with probabilistic constraints. In addition, the model uncertainties associated with a surrogate model that is derived from numerical computation methods, such as finite element analysis, is addressed. A hierarchical experimental design approach, augmented by a sequential sampling strategy, is proposed to construct the response surface of product performance function for finding optimal design solutions. The proposed method is demonstrated through an engineering example. - Highlights: • A unifying framework for integrating RBDO and RPD is proposed. • Implicit product performance function is considered. • The design problem is solved by sequential optimization and reliability assessment. • A sequential sampling technique is developed for improving design optimization. • The comparison with traditional RBDO is provided

  20. Design Optimization of Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator

    Directory of Open Access Journals (Sweden)

    B. Thamaraikannan

    2014-01-01

    Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.