WorldWideScience

Sample records for constrained linear systems

  1. On improving the convergence rate of linear continuous-time systems subject to asymmetrically constrained control

    Directory of Open Access Journals (Sweden)

    A. Baddou

    2006-01-01

    Full Text Available This paper solves the problem of controlling linear continuous-time systems subject to control signals constrained in magnitude (maybe asymmetrically. A controller design methodology is proposed, based on using an asymmetric Lyapunov function, that avoids the discontinuities in the control vector components resulting from the application of a piecewise linear control law previously proposed. The proposed method gives improved speed of convergence without discontinuities of the control vector components, respecting always the imposed asymmetric constraints. An example illustrates the approach.

  2. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...... are solved in the minimax sense subject to the linear constraints. This ensures a feasible-point algorithm. Further, we introduce local bounds on the solutions of the linear subproblems, the bounds being adjusted automatically, depending on the quality of the linear approximations. It is proved...... that the algorithm will always converge to the set of stationary points of the problem, a stationary point being defined in terms of the generalized gradients of the minimax objective function. It is further proved that, under mild regularity conditions, the algorithm is identical to a quadratically convergent...

  3. Order-constrained linear optimization.

    Science.gov (United States)

    Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P

    2017-11-01

    Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.

  4. Model predictive control of constrained with non linear stochastic parameters systems

    OpenAIRE

    Dombrovskii, V.; Obyedko, T.

    2011-01-01

    In this paper we consider the model predictive control problem of discrete-time systems with non-linear random depended parameters for which only the first and second conditional distribution moments, the conditional autocorrelations and the mutual cross-correlations are known. The open-loop feedback control strategy is derived subject to hard constraints on the control variables. The approach is advantageous because the rich arsenal of methods of non-linear estimation or the results of nonpa...

  5. Risk adjusted receding horizon control of constrained linear parameter varying systems

    NARCIS (Netherlands)

    Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.

    2005-01-01

    In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally

  6. On the computation of lambda-contractive sets for linear constrained systems

    OpenAIRE

    Darup, Moritz Schulze; Cannon, Mark

    2016-01-01

    We present two theoretical results on the computation of lambda-contractive sets for linear systems with state and input constraints. First, we show that it is possible to a priori compute a number of iterations that is sufficient to approximate the maximal lambda-contractive set with a given precision using 1-step sets. Second, based on the former result, we provide a procedure for choosing lambda so that the associated maximal lambda-contractive set is guaranteed to approximate the maximal ...

  7. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    Science.gov (United States)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  8. Improved solution for ill-posed linear systems using a constrained optimization ruled by a penalty: evaluation in nuclear medicine tomography

    International Nuclear Information System (INIS)

    Walrand, Stephan; Jamar, François; Pauwels, Stanislas

    2009-01-01

    Ill-posed linear systems occur in many different fields. A class of regularization methods, called constrained optimization, aims to determine the extremum of a penalty function whilst constraining an objective function to a likely value. We propose here a novel heuristic way to screen the local extrema satisfying the discrepancy principle. A modified version of the Landweber algorithm is used for the iteration process. After finding a local extremum, a bound is performed to the 'farthest' estimate in the data space still satisfying the discrepancy principle. Afterwards, the modified Landweber algorithm is again applied to find a new local extremum. This bound-iteration process is repeated until a satisfying solution is reached. For evaluation in nuclear medicine tomography, a novel penalty function that preserves the edge steps in the reconstructed solution was evaluated on Monte Carlo simulations and using real SPECT acquisitions as well. Surprisingly, the first bound always provided a significantly better solution in a wide range of statistics

  9. Reliability evaluation of linear multi-state consecutively-connected systems constrained by m consecutive and n total gaps

    International Nuclear Information System (INIS)

    Yu, Huan; Yang, Jun; Peng, Rui; Zhao, Yu

    2016-01-01

    This paper extends the linear multi-state consecutively-connected system (LMCCS) to the case of LMCCS-MN, where MN denotes the dual constraints of m consecutive gaps and n total gaps. All the nodes are distributed along a line and form a sequence. The distances between the adjacent nodes are usually non-uniform. The nodes except the last one can contain statistically independent multi-state connection elements (MCEs). Each MCE can provide a connection between the node at which it is located and the next nodes along the sequence. The LMCCS-MN fails if it meets either of the two constraints. The universal generating function technique is adopted to evaluate the system reliability. The optimal allocations of LMCCS-MN with two different types of failures are solved by genetic algorithm. Finally, two examples are given for the demonstration of the proposed model. - Highlights: • A new model of multi-state consecutively-connected system (LMCCS-MN) is proposed. • The non-uniform distributed nodes are involved in the proposed LMCCS-MN model. • An algorithm for system reliability evaluation is provided by the UGF method. • The computational complexity of the proposed algorithm is discussed in detail. • Optimal element allocation problem is formulated and solved.

  10. Linear systems

    CERN Document Server

    Bourlès, Henri

    2013-01-01

    Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe

  11. Sympletic quantization of constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Wotzasek, C. (Inst. de Fisica, Univ. Federal do Rio de Janeiro, Caixa Postal 68528, 21945 Rio de Janeiro (BR))

    1992-06-21

    In this paper it is shown that the symplectic two-form, which defines the geometrical structure of a constrained theory in the Faddeev-Jackiw approach, may be brought into a non-degenerated form, by an iterative implementation of the existing constraints. The resulting generalized brackets coincide with those obtained by the Dirac bracket approach, if the constrained system under investigation presents only second-class constraints. For gauge theories, a symmetry breaking term must be supplemented to bring the symplectic form into a non-singular configuration. At present, the singular symplectic two-form provides directly the generators of the time independent gauge transformations.

  12. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  13. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  14. Stabilizing constrained chaotic system using a symplectic psuedospectral method

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Shi, Boyang; Zhang, Sheng; Chen, Biaosong

    2018-03-01

    The problem of controlling chaotic systems has drawn much attention in the last two decades. However, the controlled system may be subjected to complicated constraints and few researches on controlling chaos take constraints into consideration. Therefore, the stabilization of constrained chaotic system is solved under the frame of nonlinear optimal control in this paper. A symplectic pseudospectral method based on qusilinearizaiton techniques and the parametric variational principle is developed to solve constrained nonlinear optimal control problems with arbitrary Lagrange-type cost functional. At the beginning of the proposed method, the original nonlinear optimal control problem is converted into a series of linear-quadratic constrained optimal control problems. Then each of the converted linear quadratic problems is transformed into a standard linear complementarity problem. The proposed method is successfully applied to stabilizing constrained chaotic systems around an unstable equilibrium point or an unstable periodic orbit. Numerical simulations demonstrate that the developed method is effective and efficient, and constraints are strictly satisfied.

  15. An improved partial bundle method for linearly constrained minimax problems

    Directory of Open Access Journals (Sweden)

    Chunming Tang

    2016-02-01

    Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.

  16. A New Interpolation Approach for Linearly Constrained Convex Optimization

    KAUST Repository

    Espinoza, Francisco

    2012-08-01

    In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.

  17. Joint Use of Constant Modulus and Least Squares Criteria in Linearly-Constrained Communication Arrays

    Directory of Open Access Journals (Sweden)

    V. I. Djigan

    2007-12-01

    Full Text Available This paper considers the application of the linear constraints and RLS inverse QR decomposition in adaptive arrays based on constant modulus criterion. The computational procedures of adaptive algorithms are presented. Linearly constrained least squares adaptive arrays, constant modulus adaptive arrays and linearly constrained constant modulus adaptive arrays are compared via simulation. It is demonstrated, that a constant phase shift in the array output signal, caused by desired signal orientation and array weights, is compensated in a simple way in linearly constrained constant modulus adaptive arrays.

  18. Application of Constrained Linear MPC to a Spray Dryer

    OpenAIRE

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik; Utzen, Christer; Jørgensen, John Bagterp

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Sp...

  19. Constrained tri-sphere kinematic positioning system

    Science.gov (United States)

    Viola, Robert J

    2010-12-14

    A scalable and adaptable, six-degree-of-freedom, kinematic positioning system is described. The system can position objects supported on top of, or suspended from, jacks comprising constrained joints. The system is compatible with extreme low temperature or high vacuum environments. When constant adjustment is not required a removable motor unit is available.

  20. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    . The main challenge of spray drying is to meet the residual moisture specification and prevent powder from sticking to the chamber walls. By simulation we compare the performance of the MPC against the conventional PID control strategy. During an industrially recorded disturbance scenario, the MPC increases......In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  1. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  2. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  3. Split diversity in constrained conservation prioritization using integer linear programming.

    Science.gov (United States)

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  4. Conditions for the Solvability of the Linear Programming Formulation for Constrained Discounted Markov Decision Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)

    2016-08-15

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  5. Quantization of soluble classical constrained systems

    International Nuclear Information System (INIS)

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-01-01

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way

  6. Quantization of soluble classical constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Z. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Laboratoire de physique théorique, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia (Algeria); Menas, F. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Ecole Nationale Préparatoire aux Etudes d’ingéniorat, Laboratoire de physique, RN 5 Rouiba, Alger (Algeria); Bérard, A. [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France); Mohrbach, H., E-mail: herve.mohrbach@univ-lorraine.fr [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France)

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  7. Anomalous gauge theories as constrained Hamiltonian systems

    International Nuclear Information System (INIS)

    Fujiwara, T.

    1989-01-01

    Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)

  8. Robust control of linear descriptor systems

    CERN Document Server

    Feng, Yu

    2017-01-01

    This book develops original results regarding singular dynamic systems following two different paths. The first consists of generalizing results from classical state-space cases to linear descriptor systems, such as dilated linear matrix inequality (LMI) characterizations for descriptor systems and performance control under regulation constraints. The second is a new path, which considers descriptor systems as a powerful tool for conceiving new control laws, understanding and deciphering some controller’s architecture and even homogenizing different—existing—ways of obtaining some new and/or known results for state-space systems. The book also highlights the comprehensive control problem for descriptor systems as an example of using the descriptor framework in order to transform a non-standard control problem into a classic stabilization control problem. In another section, an accurate solution is derived for the sensitivity constrained linear optimal control also using the descriptor framework. The boo...

  9. Linearization of the Lorenz system

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  10. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Directory of Open Access Journals (Sweden)

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  11. Power-Constrained Sparse Gaussian Linear Dimensionality Reduction Over Noisy Channels

    Science.gov (United States)

    Shirazinia, Amirpasha; Dey, Subhrakanti

    2015-11-01

    In this paper, we investigate power-constrained sensing matrix design in a sparse Gaussian linear dimensionality reduction framework. Our study is carried out in a single--terminal setup as well as in a multi--terminal setup consisting of orthogonal or coherent multiple access channels (MAC). We adopt the mean square error (MSE) performance criterion for sparse source reconstruction in a system where source-to-sensor channel(s) and sensor-to-decoder communication channel(s) are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE in single-- and multiple--terminal setups. We propose a three-stage sensing matrix optimization scheme that combines semi-definite relaxation (SDR) programming, a low-rank approximation problem and power-rescaling. Under certain conditions, we derive closed-form solutions to the proposed optimization procedure. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the superiority of the proposed scheme by comparing it with other relevant methods. This performance improvement is achieved at the price of higher computational complexity. Hence, in order to address the complexity burden, we present an equivalent stochastic optimization method to the problem of interest that can be solved approximately, while still providing a superior performance over the popular methods.

  12. Optimization of input-constrained systems

    Science.gov (United States)

    Malki, Suleyman; Spaanenburg, Lambert

    2009-05-01

    The computational demands of algorithms are rapidly growing. The naive implementation uses extended doubleprecision floating-point numbers and has therefore extreme difficulties in maintaining real-time performance. For fixedpoint numbers, the value representation pushes in two directions (value range and step size) to set the applicationdependent word size. In the general case, checking all combinations of all different values on all system inputs will easily become computationally infeasible. Checking corner cases only helps to reduce the combinatorial explosion, as still checking for accuracy and precision to limit word size remains a considerable effort. A range of evolutionary techniques have been tried where the sheer size of the problem withstands an extensive search. When the value range can be limited, the problem becomes tractable and a constructive approach becomes feasible. We propose an approach that is reminiscent of the Quine-Mc.Cluskey logic minimization procedure. Next to the conjunctive search as popular in Boolean minimization, we investigate the disjunctive approach that starts from a presumed minimal word size. To eliminate the occurrence of anomalies, this still has to be checked for larger word sizes. The procedure has initially been implemented using Java and Matlab. We have applied the above procedure to feed-forward and to cellular neural networks (CNN) as typical examples of input-constrained systems. In the case of hole-filling by means of a CNN, we find that the 1461 different coefficient sets can be reduced to 360, each giving robust behaviour on 7-bits internal words.

  13. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  14. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product......, the crisp equivalent of the fuzzy constraints should be less relaxed than that purely based on the concept of soft constraints. Based on the application context we adopt a strengthened version of soft constraints to interpret fuzzy constraints and form a crisp model with consistent and compact constraints...... for solution. Simulation results based on realistic data show that the failure risk can be managed by proper combination of aspiration levels and confidence factors for defining fuzzy numbers. There is a tradeoff between failure risk and material cost. The presented approach applies also for other scrap...

  15. Introduction to coordinated linear systems

    NARCIS (Netherlands)

    Kempker, P.L.

    2014-01-01

    This chapter serves as an introduction to the concepts of coordinated linear systems, in formal as well as intuitive terms. The concept of a coordinated linear system is introduced and formulated, and some basic properties are derived, providing both a motivaton and a formal basis for the following

  16. Large deformation image classification using generalized locality-constrained linear coding.

    Science.gov (United States)

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  17. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  18. Constrained systems described by Nambu mechanics

    International Nuclear Information System (INIS)

    Lassig, C.C.; Joshi, G.C.

    1996-01-01

    Using the framework of Nambu's generalised mechanics, we obtain a new description of constrained Hamiltonian dynamics, involving the introduction of another degree of freedom in phase space, and the necessity of defining the action integral on a world sheet. We also discuss the problem of quantizing Nambu mechanics. (authors). 5 refs

  19. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  20. Time-dependent constrained Hamiltonian systems and Dirac brackets

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)

    1996-11-07

    In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)

  1. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  2. A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem.

    Science.gov (United States)

    Dang, Chuangyin; Liang, Jianqing; Yang, Yang

    2013-03-01

    A deterministic annealing algorithm is proposed for approximating a solution of the linearly constrained nonconvex quadratic minimization problem. The algorithm is derived from applications of a Hopfield-type barrier function in dealing with box constraints and Lagrange multipliers in handling linear equality constraints, and attempts to obtain a solution of good quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the box constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem. Preliminary numerical results show that the algorithm seems effective and efficient. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  4. Weighted locality-constrained linear coding for lesion classification in CT images.

    Science.gov (United States)

    Yuan, Yixuan; Hoogi, Assaf; Beaulieu, Christopher F; Meng, Max Q-H; Rubin, Daniel L

    2015-01-01

    Computed tomography is a popular imaging modality for detecting abnormalities associated with abdominal organs such as the liver, kidney and uterus. In this paper, we propose a novel weighted locality-constrained linear coding (LLC) method followed by a weighted max-pooling method to classify liver lesions into three classes: cysts, metastases, hemangiomas. We first divide the lesions into same-size patches. Then, we extract the raw features in all patches followed by Principal Components Analysis (PCA) and apply K means to obtain a single LLC dictionary. Since the interior lesion patches and the boundary patches contribute different information in the image, we assign different weights on these two types of patches to obtain the LLC codes. Moreover, a weighted max pooling approach is also proposed to further evaluate the importance of these two types of patches in feature pooling. Experiments on 109 images of liver lesions were carried out to validate the proposed method. The proposed method achieves a best lesion classification accuracy of 96.33%, which appears to be superior compared with traditional image coding methods: LLC method and Bag-of-words method (BoW) and traditional features: Local Binary Pattern (LBP) features, uniform LBP and complete LBP, demonstrating that the proposed method provides better classification.

  5. Lagrangian formalism for constrained systems. 2. Gauge symmetries

    International Nuclear Information System (INIS)

    Pyatov, P.N.

    1990-01-01

    Using the Lagrangian formalism for constrained systems all gauge symmetries peculiar for a given Lagrangian system and in establishing the relation between them and the constraints are constructed. Besides, the question about the possible dependence of gauge transformations on accelerations and other higher order time derivatives of coordinates is clarified. 14 refs

  6. Linear operator inequalities for strongly stable weakly regular linear systems

    NARCIS (Netherlands)

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov

  7. Variance and Passivity Constrained Fuzzy Control for Nonlinear Ship Steering Systems with State Multiplicative Noises

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2013-01-01

    Full Text Available The variance and passivity constrained fuzzy control problem for the nonlinear ship steering systems with state multiplicative noises is investigated. The continuous-time Takagi-Sugeno fuzzy model is used to represent the nonlinear ship steering systems with state multiplicative noises. In order to simultaneously achieve variance, passivity, and stability performances, some sufficient conditions are derived based on the Lyapunov theory. Employing the matrix transformation technique, these sufficient conditions can be expressed in terms of linear matrix inequalities. By solving the corresponding linear matrix inequality conditions, a parallel distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear ship steering systems subject to variance and passivity performance constraints. Finally, a numerical simulation example is provided to illustrate the usefulness and applicability of the proposed multiple performance constrained fuzzy control method.

  8. Chance-constrained/stochastic linear programming model for acid rain abatement—I. Complete colinearity and noncolinearity

    Science.gov (United States)

    Ellis, J. H.; McBean, E. A.; Farquhar, G. J.

    A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO 2 emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty (LPUU), Chance-Constrained Programming (CCP) and Stochastic Linear Programming (SLP). A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. Complete colinearity assumes complete dependence between transfer coefficients. Complete noncolinearity assumes complete independence. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.

  9. Singular divergence instability thresholds of kinematically constrained circulatory systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, O.N., E-mail: o.kirillov@hzdr.de [Magnetohydrodynamics Division, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Challamel, N. [University of South Brittany, LIMATB, Lorient (France); Darve, F. [Laboratoire Sols Solides Structures, UJF-INPG-CNRS, Grenoble (France); Lerbet, J. [IBISC, Universite d' Evry Val d' Essone, 40 Rue Pelvoux, CE 1455 Courcouronnes, 91020 Evry Cedex (France); Nicot, F. [Cemagref, Unite de Recherche Erosion Torrentielle Neige et Avalanches, Grenoble (France)

    2014-01-10

    Static instability or divergence threshold of both potential and circulatory systems with kinematic constraints depends singularly on the constraints' coefficients. Particularly, the critical buckling load of the kinematically constrained Ziegler's pendulum as a function of two coefficients of the constraint is given by the Plücker conoid of degree n=2. This simple mechanical model exhibits a structural instability similar to that responsible for the Velikhov–Chandrasekhar paradox in the theory of magnetorotational instability.

  10. On gauge fixing and quantization of constrained Hamiltonian systems

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-06-01

    In constrained Hamiltonian systems which possess first class constraints some subsidiary conditions should be imposed for detecting physical observables. This issue and quantization of the system are clarified. It is argued that the reduced phase space and Dirac method of quantization, generally, differ only in the definition of the Hilbert space one should use. For the dynamical systems possessing second class constraints the definition of physical Hilbert space in the BFV-BRST operator quantization method is different from the usual definition. (author). 18 refs

  11. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  12. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  13. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    Science.gov (United States)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  14. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    International Nuclear Information System (INIS)

    Wei, J; Chao, M

    2016-01-01

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  15. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  16. On pole structure assignment in linear systems

    Czech Academy of Sciences Publication Activity Database

    Loiseau, J.-J.; Zagalak, Petr

    2009-01-01

    Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf

  17. Linear systems and operators in Hilbert space

    CERN Document Server

    Fuhrmann, Paul A

    2014-01-01

    A treatment of system theory within the context of finite dimensional spaces, this text is appropriate for students with no previous experience of operator theory. The three-part approach, with notes and references for each section, covers linear algebra and finite dimensional systems, operators in Hilbert space, and linear systems in Hilbert space. 1981 edition.

  18. Dynamic stabilization of regular linear systems

    NARCIS (Netherlands)

    Weiss, G; Curtain, RF

    We consider a general class of infinite-dimensional linear systems, called regular linear systems, for which convenient representations are known to exist both in time and in frequency domain, For this class of systems, we investigate the concepts of stabilizability and detectability, in particular,

  19. LCLSQ: an implementation of an algorithm for linearly constrained linear least-squares problems. [For IBM 370 and 3033, in FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Crane, R L; Garbow, B S; Hillstrom, K E; Minkoff, M

    1980-11-01

    This report describes the implementation of an algorithm of Stoer and Schittkowski for solving linearly constrained linear least-squares problems. These problems arise in many areas, particularly in data fitting where a model is provided and parameters in the model are selected to be a best least-squares fit to known experimental observations. By adding constraints to the least-squares fit, one can force user-specified properties on the parameters selected. The algorithm used applies a numerically stable implementation of the Gram-Schmidt orthogonalization procedure to deal with a factorization approach for solving the constrained least-squares problem. The software developed allows for either a user-supplied feasible starting point or the automatic generation of a feasible starting point, redecomposition after solving the problem to improve numerical accuracy, and diagnostic printout to follow the computations in the algorithm. In addition to a description of the actual method used to solve the problem, a description of the software structure and the user interfaces is provided, along with a numerical example. 3 figures, 1 table.

  20. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  1. A GENERAL-SOLUTION FOR A CLASS OF WEAKLY CONSTRAINED LINEAR-REGRESSION PROBLEMS

    NARCIS (Netherlands)

    TENBERGE, JMF

    1991-01-01

    This paper contains a globally optimal solution for a class of functions composed of a linear regression function and a penalty function for the sum of squared regression weights. Global optimality is obtained from inequalities rather than from partial derivatives of a Lagrangian function.

  2. Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems

    Directory of Open Access Journals (Sweden)

    Man Hong

    2013-01-01

    Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.

  3. On a conjecture on linear systems

    Indian Academy of Sciences (India)

    Green's conjecture; linear systems; hyper-elliptic curves. ... Sonica Anand linear systems. Let C be a smooth curve of genus g ≥ 2 and let L be a globally generated line bundle on C. The evaluation map gives rise to an exact sequence. 0 → E ..... The syzygies of canonically embedded curves were computed by Schreyer [8].

  4. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  5. Hamiltonian and Variational Linear Distributed Systems

    NARCIS (Netherlands)

    Rapisarda, P.; Trentelman, H.L.

    2002-01-01

    We use the formalism of bilinear- and quadratic differential forms in order to study Hamiltonian and variational linear distributed systems. It was shown that a system described by ordinary linear constant-coefficient differential equations is Hamiltonian if and only if it is variational. In this

  6. Balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  7. Linear systems on balancing chemical reaction problem

    Science.gov (United States)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  8. Stress-constrained truss topology optimization problems that can be solved by linear programming

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Svanberg, Krister

    2004-01-01

    We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....

  9. Robust Facial Feature Tracking Using Shape-Constrained Multiresolution-Selected Linear Predictors.

    Science.gov (United States)

    Ong, Eng-Jon; Bowden, Richard

    2011-09-01

    This paper proposes a learned data-driven approach for accurate, real-time tracking of facial features using only intensity information. The task of automatic facial feature tracking is nontrivial since the face is a highly deformable object with large textural variations and motion in certain regions. Existing works attempt to address these problems by either limiting themselves to tracking feature points with strong and unique visual cues (e.g., mouth and eye corners) or by incorporating a priori information that needs to be manually designed (e.g., selecting points for a shape model). The framework proposed here largely avoids the need for such restrictions by automatically identifying the optimal visual support required for tracking a single facial feature point. This automatic identification of the visual context required for tracking allows the proposed method to potentially track any point on the face. Tracking is achieved via linear predictors which provide a fast and effective method for mapping pixel intensities into tracked feature position displacements. Building upon the simplicity and strengths of linear predictors, a more robust biased linear predictor is introduced. Multiple linear predictors are then grouped into a rigid flock to further increase robustness. To improve tracking accuracy, a novel probabilistic selection method is used to identify relevant visual areas for tracking a feature point. These selected flocks are then combined into a hierarchical multiresolution LP model. Finally, we also exploit a simple shape constraint for correcting the occasional tracking failure of a minority of feature points. Experimental results show that this method performs more robustly and accurately than AAMs, with minimal training examples on example sequences that range from SD quality to Youtube quality. Additionally, an analysis of the visual support consistency across different subjects is also provided.

  10. Before or After: Prepositions in Spatially Constrained Systems

    Science.gov (United States)

    Richter, Kai-Florian; Klippel, Alexander

    Cognitive agents use different strategies to identify relevant spatial information in communication. The chosen strategy depends on the agents' conceptualization of the spatial situation at hand. This situation is determined by structural and functional aspects that are induced by the environment and the actions performed or intended therein. In this paper, we are interested in conceptualizations in the context of route directions. We focus on the meaning of prepositions used to characterize movements (actions) in spatially constrained systems such as street networks. We report on different strategies employed by people to disambiguate turning actions at intersections and demonstrate how these can be reflected in automatically generated route directions, again concentrating on the assignment of prepositions for anchoring movement. Including methods that focus on the most successful strategies people use in computational systems is a prerequisite for route directions that respect for human conceptualizations of spatial situations and that become, thus, cognitively ergonomic route directions.

  11. The mathematics of networks of linear systems

    CERN Document Server

    Fuhrmann, Paul A

    2015-01-01

    This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in algebraic system theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate ...

  12. Linear and Branching System Metrics

    NARCIS (Netherlands)

    J., Hilston; de Alfaro, Luca; Faella, Marco; M.Z., Kwiatkowska; Telek, M.; Stoelinga, Mariëlle Ida Antoinette

    We extend the classical system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces. Trace inclusion and equivalence give rise to asymmetrical

  13. Linear heating system for measurement of thermoluminescence ...

    Indian Academy of Sciences (India)

    Unknown

    scence intensity is monitored. The theory of TL usually assumes that the sample temperature varies linearly with time, although more general theories have been formu- lated and calculations made for non-linear heating system. Previous descriptions of apparatus for the measurement of TL have been published elsewhere ...

  14. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  16. Stochastic stability properties of jump linear systems

    Science.gov (United States)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  17. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  18. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment.

    Science.gov (United States)

    Karimzadehgan, Maryam; Zhai, Chengxiang

    2012-07-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching.

  19. Synchronization of linear systems via relative actuation

    OpenAIRE

    Tuna, S. Emre

    2016-01-01

    Synchronization in networks of discrete-time linear time-invariant systems is considered under relative actuation. Neither input nor output matrices are assumed to be commensurable. A distributed algorithm that ensures synchronization via dynamic relative output feedback is presented.

  20. Electrical impedance tomography through constrained sequential linear programming: a topology optimization approach

    Science.gov (United States)

    de Lima, Cícero R.; Mello, Luis A. M.; Gonzalez Lima, Raul; Silva, Emílio C. N.

    2007-09-01

    Electrical impedance tomography (EIT) is an imaging method that estimates conductivity distribution inside a body. In EIT, images are obtained by applying a sequence of low intensity electrical currents through electrodes attached to the body. Although in EIT there are serious difficulties to obtain a high-quality conductivity image, for medical applications this technology is safer and cheaper than other tomography techniques. The EIT deals with an inverse problem in which given the measured voltages on electrodes and a finite element (FE) model, it estimates the conductivity distribution, which are parameters of the FE model. In this work, the topology optimization method is applied as a reconstruction algorithm to obtain absolute images in EIT. It is an optimization method that has been applied successfully to structural mechanical applications and consists of systematically finding a conductivity distribution (or material distribution) in the domain that minimizes the difference between measured voltages and voltages calculated by using a computational model. This algorithm combines the finite element method and sequential linear programming (SLP) to solve the inverse problem of EIT. The SLP allows us to easily apply some regularization schemes based on included constraints in the topology optimization problem. Constraints based on image tuning control and weighted distance interpolation (WDI) are proposed, while a material model is applied to ensure the relaxation of the optimization problem. A new formulation to analytically perform the sensitivity analysis is proposed, using Maxwell's reciprocity theorem. To illustrate, the implemented algorithm is applied to obtain conductivity image distributions of some 2D examples using numerical and experimental data.

  1. Dynamical systems generated by linear maps

    CERN Document Server

    Dolićanin, Ćemal B

    2014-01-01

    The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users with plenty of subtle questions, and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks.

  2. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  3. Contingency-Constrained Unit Commitmentin Meshed Isolated Power Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Vinter, Peter; Bærentsen, Runi

    2015-01-01

    and a modelling point of view. We compare the ORPP to a unit commitment problem that only considers the stationary behavior of the frequency. Simulations based on a Faroe Islands case study show that, without being overly conservative, potential blackouts and power outages can be avoided using the ORPP......This paper presents a mixed-integer linear optimization problem for unit commitment and economic dispatch of power generators in a meshed isolated power system. The optimization problem is referred to as the optimal reserve planning problem (ORPP). The ORPP guarantees that the system frequency...

  4. Adaptive Multi-Agent Systems for Constrained Optimization

    Science.gov (United States)

    Macready, William; Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.

  5. Stochastic Optimization for Network-Constrained Power System Scheduling Problem

    Directory of Open Access Journals (Sweden)

    D. F. Teshome

    2015-01-01

    Full Text Available The stochastic nature of demand and wind generation has a considerable effect on solving the scheduling problem of a modern power system. Network constraints such as power flow equations and transmission capacities also need to be considered for a comprehensive approach to model renewable energy integration and analyze generation system flexibility. Firstly, this paper accounts for the stochastic inputs in such a way that the uncertainties are modeled as normally distributed forecast errors. The forecast errors are then superimposed on the outputs of load and wind forecasting tools. Secondly, it efficiently models the network constraints and tests an iterative algorithm and a piecewise linear approximation for representing transmission losses in mixed integer linear programming (MILP. It also integrates load shedding according to priority factors set by the system operator. Moreover, the different interactions among stochastic programming, network constraints, and prioritized load shedding are thoroughly investigated in the paper. The stochastic model is tested on a power system adopted from Jeju Island, South Korea. Results demonstrate the impact of wind speed variability and network constraints on the flexibility of the generation system. Further analysis shows the effect of loss modeling approaches on total cost, accuracy, computational time, and memory requirement.

  6. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  7. Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

    Energy Technology Data Exchange (ETDEWEB)

    DallAnese, Emiliano; Baker, Kyri; Summers, Tyler

    2017-09-01

    This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.

  8. Geometric Control of Patterned Linear Systems

    CERN Document Server

    Hamilton, Sarah C

    2012-01-01

    This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable.  Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.

  9. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  10. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  11. Controller Reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.K.; Verhaegen, M.H.G.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting

  12. When to call a linear system nonnegative

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  13. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman

    2014-09-01

    Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.

  14. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,

    2010-01-25

    Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end-effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot\\'s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot\\'s degrees of freedom. In addition to supporting efficient sampling of configurations, we show that the RD-space formulation naturally supports planning and, in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end-effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1,000 links in time comparable to open chain sampling, and we can generate samples for 1,000-link multi-loop systems of varying topologies in less than a second. © 2010 The Author(s).

  15. A novel real-time non-linear wavelet-based model predictive controller for a coupled tank system

    OpenAIRE

    Owa, K; Sharma, S; Sutton, R

    2014-01-01

    This article presents the design, simulation and real-time implementation of a constrained non-linear model predictive controller for a coupled tank system. A novel wavelet-based function neural network model and a genetic algorithm online non-linear real-time optimisation approach were used in the non-linear model predictive controller strategy. A coupled tank system, which resembles operations in many chemical processes, is complex and has inherent non-linearity, and hence, controlling such...

  16. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  17. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  18. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  19. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  20. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  1. On exponential stabilizability of linear neutral systems

    Directory of Open Access Journals (Sweden)

    Dusser Xavier

    2001-01-01

    Full Text Available In this paper, we deal with linear neutral functional differential systems. Using an extended state space and an extended control operator, we transform the initial neutral system in an infinite dimensional linear system. We give a sufficient condition for admissibility of the control operator B , conditions under which operator B can be acceptable in order to work with controllability and stabilizability. Necessary and sufficient conditions for exact controllability are provided; in terms of a gramian of controllability N ( μ . Assuming admissibility and exact controllability, a feedback control law is defined from the inverse of the operator N ( μ in order to stabilize exponentially the closed loop system. In this case, the semigroup generated by the closed loop system has an arbitrary decay rate.

  2. Bisimulation theory for switching linear systems

    NARCIS (Netherlands)

    Pola, G.; van der Schaft, Arjan; Di Benedetto, Maria D.

    2004-01-01

    A general notion of hybrid bisimulation is proposed and related to the notions of algebraic, state-space and input-output equivalences for the class of switching linear systems. An algebraic characterization of hybrid bisimulations and a procedure converging in a finite number of steps to the

  3. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  4. Generalized Cross-Gramian for Linear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2012-01-01

    The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross-gramian pop......The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross......-gramian popular in several applications including model reduction, control configuration selection and sensitivity analysis. The ordinary cross-gramian which has been defined in the literature is the solution of a Sylvester equation. This Sylvester equation is not always solvable and therefore for some linear...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...

  5. Consys Linear Control System Design Software Package

    International Nuclear Information System (INIS)

    Diamantidis, Z.

    1987-01-01

    This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

  6. Microwave Feeding System Devices Of Linear Collider

    CERN Document Server

    Bogdanovich, B Yu; Kaminsky, V I; Lalayan, M V; Sobenin, N P; Zavadtsev, D A

    2004-01-01

    The simulations, manufacturing and experimental results for two devices of linear collider RF power distribution system are presented. One of these devices is magic tee with movable choke plungers in E- and H-arms for the tuning the coupling-factor and RF phase of highpower accelerating cavities. The QEXT

  7. Linear covariance analysis for gimbaled pointing systems

    Science.gov (United States)

    Christensen, Randall S.

    Linear covariance analysis has been utilized in a wide variety of applications. Historically, the theory has made significant contributions to navigation system design and analysis. More recently, the theory has been extended to capture the combined effect of navigation errors and closed-loop control on the performance of the system. These advancements have made possible rapid analysis and comprehensive trade studies of complicated systems ranging from autonomous rendezvous to vehicle ascent trajectory analysis. Comprehensive trade studies are also needed in the area of gimbaled pointing systems where the information needs are different from previous applications. It is therefore the objective of this research to extend the capabilities of linear covariance theory to analyze the closed-loop navigation and control of a gimbaled pointing system. The extensions developed in this research include modifying the linear covariance equations to accommodate a wider variety of controllers. This enables the analysis of controllers common to gimbaled pointing systems, with internal states and associated dynamics as well as actuator command filtering and auxiliary controller measurements. The second extension is the extraction of power spectral density estimates from information available in linear covariance analysis. This information is especially important to gimbaled pointing systems where not just the variance but also the spectrum of the pointing error impacts the performance. The extended theory is applied to a model of a gimbaled pointing system which includes both flexible and rigid body elements as well as input disturbances, sensor errors, and actuator errors. The results of the analysis are validated by direct comparison to a Monte Carlo-based analysis approach. Once the developed linear covariance theory is validated, analysis techniques that are often prohibitory with Monte Carlo analysis are used to gain further insight into the system. These include the creation

  8. Collimation systems in the next linear collider

    International Nuclear Information System (INIS)

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs

  9. Stability problems for linear hyperbolic systems

    International Nuclear Information System (INIS)

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  10. Identification of general linear mechanical systems

    Science.gov (United States)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  11. Linear systems optimal and robust control

    CERN Document Server

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  12. On Dynamic Systems with Piecewise Linear Feature

    Directory of Open Access Journals (Sweden)

    Amalia Ţîrdea

    2010-10-01

    Full Text Available Impact dynamics is considered to be one of the most important problems which arise in vibrating systems. Such impact oscillator occurs in the motion with amplitude constraining stop. In the past years, this simple model has been found rich phenomena and given benefit for understanding of impact systems. Different types of impacting response, such as periodic and non-periodic oscillations, can be predicted by using bifurcation diagrams. Many mechanical systems in engineering applications represent systems which are driven in some way and which undergo intermittent or a continuous sequence of contacts with limiting motion by constraints. For example, the principles of the operation of vibration hammers, impact dampers, inertial shakers, milling and forming machines etc, are based on the impact action for moving bodies. With other equipment, machines with clearances, heat exchangers, steam generator tubes, fuel rods in nuclear power plants, rolling railway wheel sets, piping systems, gear transmissions and so on, impacts also occur, but they are undesirable as they bring about failures, strains, and increased noise levels.

  13. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    Science.gov (United States)

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2017-07-03

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  14. The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes

    CERN Document Server

    Blas, Diego; Tram, Thomas

    2011-01-01

    Boltzmann codes are used extensively by several groups for constraining cosmological parameters with Cosmic Microwave Background and Large Scale Structure data. This activity is computationally expensive, since a typical project requires from 10'000 to 100'000 Boltzmann code executions. The newly released code CLASS (Cosmic Linear Anisotropy Solving System) incorporates improved approximation schemes leading to a simultaneous gain in speed and precision. We describe here the three approximations used by CLASS for basic LambdaCDM models, namely: a baryon-photon tight-coupling approximation which can be set to first order, second order or to a compromise between the two; an ultra-relativistic fluid approximation which had not been implemented in public distributions before; and finally a radiation streaming approximation taking reionisation into account.

  15. Nested observer for linear hybrid dynamical systems

    International Nuclear Information System (INIS)

    Abdi, M.; Bensalah, H.; Cherki, B.

    2009-01-01

    The synthesis of observers for linear hybrid dynamical systems ''HDS,'' is significant from the point of view of the applications (control, diagnoses...); it is still, largely open. We proposed a new approach inspired from a new method of identification, where we could obtain better results with respect to discrimination between the discrete states in conflicts and time necessary to this latter. The results of the suggested technique proved to be satisfactory.

  16. Quantum Linear System Algorithm for Dense Matrices

    Science.gov (United States)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  17. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2017-10-03

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition Q(0)(x,a)≽ 0. To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  18. Lectures on algebraic system theory: Linear systems over rings

    Science.gov (United States)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  19. Constrained control of uncertain, time-varying, discrete-time systems an interpolation-based approach

    CERN Document Server

    Nguyen, Hoai-Nam

    2014-01-01

    A comprehensive development of interpolating control, this monograph demonstrates the reduced computational complexity of a ground-breaking technique compared with the established model predictive control. The text deals with the regulation problem for linear, time-invariant, discrete-time uncertain dynamical systems having polyhedral state and control constraints, with and without disturbances, and under state or output feedback. For output feedback a non-minimal state-space representation is used with old inputs and outputs as state variables. Constrained Control of Uncertain, Time-Varying, Discrete-time Systems details interpolating control in both its implicit and explicit forms. In the former at most two linear-programming or one quadratic-programming problem are solved on-line at each sampling instant to yield the value of the control variable. In the latter the control law is shown to be piecewise affine in the state, and so the state space is partitioned into polyhedral cells so that at each sampling ...

  20. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  1. Linear unsaturating magnetoresistance in disordered systems

    Science.gov (United States)

    Lai, Ying Tong; Lara, Silvia; Love, Cameron; Ramakrishnan, Navneeth; Adam, Shaffique

    Theoretical works have shown that disordered systems exhibit classical magnetoresistance (MR). In this talk, we examine a variety of experimental systems that observe linear MR at high magnetic fields, including silver chalcogenides, graphene, graphite and Weyl semimetals. We show that a careful analysis of the magnitude of the MR, as well as the field strength at which the MR changes from quadratic to linear, reveal important properties of the system, such as the ratio of the root-mean-square fluctuations in the carrier density and the average carrier density. By looking at other properties such as the zero-field mobility, we show that this carrier density inhomogeneity is consistent with what is known about the microscopic impurities in these experiments. The application of this disorder-induced MR to a variety of different experimental scenarios underline the universality of these theoretical models. This work is supported by the Singapore National Research Foundation (NRF-NRFF2012-01) and the Singapore Ministry of Education and Yale-NUS College through Grant Number R-607-265-01312.

  2. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  3. Optimal Manoeuvres of Underactuated Linear Mechanical Systems: The Case of Controlling Gantry Crane Operations

    Directory of Open Access Journals (Sweden)

    S. Woods

    2014-01-01

    Full Text Available A method of solving optimal manoeuvre control of linear underactuated mechanical systems is presented. The nonintegrable constraints present in such systems are handled by adding dummy actuators and then by applying Lagrange multipliers to reduce their action to zero. The open- and closed-loop control schemes can be analyzed. The method, referred to as the constrained modal space optimal control (CMSOC, is illustrated in the examples of gantry crane operations.

  4. Optimal Control of Switching Linear Systems

    Directory of Open Access Journals (Sweden)

    Ali Benmerzouga

    2004-06-01

    Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

  5. Linear concentration system; Sistema de concentracion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx

    2013-03-15

    Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para

  6. Relative null controllability of linear systems with multiple delays in ...

    African Journals Online (AJOL)

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  7. Linear-array systems for aerospace NDE

    International Nuclear Information System (INIS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  8. A Kalman decomposition to detect temporal linear system srtucture

    NARCIS (Netherlands)

    Willigenburg, Van L.G.; Koning, De W.L.

    2015-01-01

    Feedback controllers for non-linear systems are often based on a linearized dynamic model. Such a linearized model may be temporarily uncontrollable and/or unreconstructable. This paper introduces the so-called differential Kalman decomposition of time-varying linear systems. It is based on

  9. Identification problems in linear transformation system

    International Nuclear Information System (INIS)

    Delforge, Jacques.

    1975-01-01

    An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr

  10. Dynamics of delayed piecewise linear systems

    Directory of Open Access Journals (Sweden)

    Laszlo E. Kollar

    2003-02-01

    Full Text Available In this paper the dynamics of the controlled pendulum is investigated assuming backlash and time delays. The upper equilibrium of the pendulum is stabilized by a piecewise constant control force which is the linear combination of the sampled values of the angle and the angular velocity of the pendulum. The control force is provided by a motor which drives one of the wheels of the cart through an elastic teeth belt. The contact between the teeth of the gear (rigid and the belt (elastic introduces a nonlinearity known as ``backlash" and causes the oscillation of the controlled pendulum around its upper equilibrium. The processing and sampling delays in the determination of the control force tend to destabilize the controlled system as well. We obtain conditions guaranteeing that the pendulum remains in the neighborhood of the upper equilibrium. Experimental findings obtained on a computer controlled inverted pendulum cart structure are also presented showing good agreement with the simulation results.

  11. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    paper is to extend linear systems and signals theory to include single photon quantum signals . We provide detailed results describing how quantum...v) physical realizability results for finite level quantum systems. 15. SUBJECT TERMS Control Theory , Quantum Feedback, Quantum Algorithms 16...nominal linear models, and (v) physical realizability results for finite level quantum systems. Introduction: Classical linear systems theory

  12. Constraining f(T) gravity in the Solar System

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell' Istruzione dell' Università e della Ricerca (M.I.U.R), Viale Unità di Italia 68, 70125 Bari (Italy); Radicella, Ninfa [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, Fisciano (Italy); Ruggiero, Matteo Luca, E-mail: lorenzo.iorio@libero.it, E-mail: ninfa.radicella@sa.infn.it, E-mail: matteo.ruggiero@polito.it [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (Italy)

    2015-08-01

    In the framework of f(T) theories of gravity, we solve the field equations for f(T)=T+α T{sup n} in the weak-field approximation and for spherical symmetry spacetime. Since f(T)=T corresponds to Teleparallel Gravity, which is equivalent to General Relativity, the non linearity of the Lagrangian are expected to produce perturbations of the general relativistic solutions, parameterized by α. Hence, we use the f(T) solutions to model the gravitational field of the Sun and exploit data from accurate radio-tracking of spacecrafts orbiting Mercury and Saturn to infer preliminary bounds on the model parameter α and on the cosmological constant Λ.

  13. Sensitivity of constrained linear inversions to the selection of the Lagrange multiplier. [for inferring columnar aerosol size distribution from spectral aerosol optical depth measurements

    Science.gov (United States)

    King, M. D.

    1982-01-01

    The influence of the choice of the Lagrange multiplier on constrained linear inversions is explored, with reference made to applications in inferring the columnar aerosol size distributions from spectral aerosol optical depth measurements. A range of the Lagrange multiplier is examined to find all positive solutions for the solution vector, which represents modifying factors to the assumed form of the size distribution. An iterative method is devised to constrain the calculations to consideration of only positive quantities and a requirement that the regression fit to data be consistent with measurement errors. The determination of the variances and covariances is formulated and applied to existing data sets for optical depth. Variances in the solution are found to be large for particle radii when the information content of the data is small.

  14. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  15. Robust Management of Combined Heat and Power Systems via Linear Decision Rules

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2014-01-01

    The heat and power outputs of Combined Heat and Power (CHP) units are jointly constrained. Hence, the optimal management of systems including CHP units is a multicommodity optimization problem. Problems of this type are stochastic, owing to the uncertainty inherent both in the demand for heat and...... linear decision rules to guarantee both tractability and a correct representation of the dynamic aspects of the problem. Numerical results from an illustrative example confirm the value of the proposed approach....

  16. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  17. Restrictive partially blind signature for resource-constrained information systems

    NARCIS (Netherlands)

    Qiu, Weidong; Gong, Zheng; Liu, Bozhong; Long, Yu; Chen, Kefei

    2010-01-01

    Restrictive partially blind signature, which is designed for privacy oriented information systems, allows a user to obtain a blind signature from a signer whilst the blind message must obey some certain rules. In order to reduce storage and communication costs, several public-key cryptosystems are

  18. Titan TTCN-3 Based Test Framework for Resource Constrained Systems

    Directory of Open Access Journals (Sweden)

    Yushev Artem

    2016-01-01

    Full Text Available Wireless communication systems more and more become part of our daily live. Especially with the Internet of Things (IoT the overall connectivity increases rapidly since everyday objects become part of the global network. For this purpose several new wireless protocols have arisen, whereas 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks can be seen as one of the most important protocols within this sector. Originally designed on top of the IEEE802.15.4 standard it is a subject to various adaptions that will allow to use 6LoWPAN over different technologies; e.g. DECT Ultra Low Energy (ULE. Although this high connectivity offers a lot of new possibilities, there are several requirements and pitfalls coming along with such new systems. With an increasing number of connected devices the interoperability between different providers is one of the biggest challenges, which makes it necessary to verify the functionality and stability of the devices and the network. Therefore testing becomes one of the key components that decides on success or failure of such a system. Although there are several protocol implementations commonly available; e.g., for IoT based systems, there is still a lack of according tools and environments as well as for functional and conformance testing. This article describes the architecture and functioning of the proposed test framework based on Testing and Test Control Notation Version 3 (TTCN-3 for 6LoWPAN over ULE networks.

  19. Stochastic Resource Allocation for Energy-Constrained Systems

    Directory of Open Access Journals (Sweden)

    Sachs DanielGrobe

    2009-01-01

    Full Text Available Battery-powered wireless systems running media applications have tight constraints on energy, CPU, and network capacity, and therefore require the careful allocation of these limited resources to maximize the system's performance while avoiding resource overruns. Usually, resource-allocation problems are solved using standard knapsack-solving techniques. However, when allocating conservable resources like energy (which unlike CPU and network remain available for later use if they are not used immediately knapsack solutions suffer from excessive computational complexity, leading to the use of suboptimal heuristics. We show that use of Lagrangian optimization provides a fast, elegant, and, for convex problems, optimal solution to the allocation of energy across applications as they enter and leave the system, even if the exact sequence and timing of their entrances and exits is not known. This permits significant increases in achieved utility compared to heuristics in common use. As our framework requires only a stochastic description of future workloads, and not a full schedule, we also significantly expand the scope of systems that can be optimized.

  20. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  1. A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities

    International Nuclear Information System (INIS)

    Facchinei, F.; Fischer, A.; Kanzow, C.; Peng, J.-M.

    1999-01-01

    The Karush-Kuhn-Tucker (KKT) conditions can be regarded as optimality conditions for both variational inequalities and constrained optimization problems. In order to overcome some drawbacks of recently proposed reformulations of KKT systems, we propose casting KKT systems as a minimization problem with nonnegativity constraints on some of the variables. We prove that, under fairly mild assumptions, every stationary point of this constrained minimization problem is a solution of the KKT conditions. Based on this reformulation, a new algorithm for the solution of the KKT conditions is suggested and shown to have some strong global and local convergence properties

  2. Collisions of Constrained Rigid Body Systems with Friction

    Directory of Open Access Journals (Sweden)

    Haijun Shen

    1998-01-01

    Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.

  3. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    Science.gov (United States)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  4. Constrained non-linear optimization in 3D reflexion tomography; Problemes d'optimisation non-lineaire avec contraintes en tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Delbos, F.

    2004-11-01

    Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)

  5. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Directory of Open Access Journals (Sweden)

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  6. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  7. Analysis of Linear Hybrid Systems in CLP

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...... and argue that we contribute to the general field of using static analysis tools for verification...

  8. Cross-training workers in dual resource constrained systems with heterogeneous processing times

    NARCIS (Netherlands)

    Bokhorst, J. A. C.; Gaalman, G. J. C.

    2009-01-01

    In this paper, we explore the effect of cross-training workers in Dual Resource Constrained (DRC) systems with machines having different mean processing times. By means of queuing and simulation analysis, we show that the detrimental effects of pooling (cross-training) previously found in single

  9. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design......Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  10. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...

  11. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    were used to build  a hipermedia  material.  This  technology  permit  overcomes a linear  communication, improving the  comprehension  of the network perspective.   The teachers  speeches revealed  their  conceptual  con- structions along the  course,  showed the development of the  competences  in identify  interconnection points  in the flow and chemical cycling of energy, compatible  with a systemic view of life.

  12. Fuzzy Lyapunov Reinforcement Learning for Non Linear Systems.

    Science.gov (United States)

    Kumar, Abhishek; Sharma, Rajneesh

    2017-03-01

    We propose a fuzzy reinforcement learning (RL) based controller that generates a stable control action by lyapunov constraining fuzzy linguistic rules. In particular, we attempt at lyapunov constraining the consequent part of fuzzy rules in a fuzzy RL setup. Ours is a first attempt at designing a linguistic RL controller with lyapunov constrained fuzzy consequents to progressively learn a stable optimal policy. The proposed controller does not need system model or desired response and can effectively handle disturbances in continuous state-action space problems. Proposed controller has been employed on the benchmark Inverted Pendulum (IP) and Rotational/Translational Proof-Mass Actuator (RTAC) control problems (with and without disturbances). Simulation results and comparison against a) baseline fuzzy Q learning, b) Lyapunov theory based Actor-Critic, and c) Lyapunov theory based Markov game controller, elucidate stability and viability of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    Science.gov (United States)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  14. Analysis of latent structures in linear systems

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    In chemometrics the emphasis is on latent structure models. The latent structure is the part of the data that the modeling task is based upon. This paper is addressing some fundamental issues, when latent structures are used. The paper consists of three parts. The first part is concerned defining...... the latent structure of a linear model. Here the ‘atomic’ parts of the algorithms that generate the latent structure for linear models are analyzed. It is shown how the PLS algorithm fits within this way of presenting the numerical procedures. The second part is concerning graphic illustrations...... to use for deciding if single or multiple latent structures should be used. The last part is about choosing the variables that should be used in the analysis. The traditional procedures to select variables to include in the model are presented and the insufficiencies of such approaches are demonstrated...

  15. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  16. Cotton-Type and Joint Invariants for Linear Elliptic Systems

    Directory of Open Access Journals (Sweden)

    A. Aslam

    2013-01-01

    that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.

  17. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... to accommodate linear parameter varying systems as well....

  18. Energy balance in a system with quasispherical linear compression

    International Nuclear Information System (INIS)

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  19. A constrained approach to multiscale stochastic simulation of chemically reacting systems

    KAUST Repository

    Cotter, Simon L.

    2011-01-01

    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.

  20. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    2.4 Control system. A distributed control system has been developed for the Pelletron-LINAC accelerator sys- tem (figure 7). It runs on a network of Pentium computers under the LINUX operating system. The devices of the accelerator are connected to several computers using CAMAC interface. The design is based on a ...

  1. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Power system stabilizer; linear quadratic regulator; small-signal stability; transient stability. Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state ...

  2. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    it is important to develop mathematical models and numerical procedures that would appropri- ately treat ... A general model for solving a fuzzy linear system whose coefficient matrix is crisp and the right hand side .... To represent the above problem as fully fuzzy linear system, we represent x as a quantity of the product 1 ...

  3. Minimal solution of general dual fuzzy linear systems

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  4. Model Reduction by Moment Matching for Linear Switched Systems

    DEFF Research Database (Denmark)

    Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal

    2014-01-01

    A moment-matching method for the model reduction of linear switched systems (LSSs) is developed. The method is based based upon a partial realization theory of LSSs and it is similar to the Krylov subspace methods used for moment matching for linear systems. The results are illustrated by numerical...

  5. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  6. Controlled Invariant Polyhedral Sets for Constrained Discrete-Time Descriptor Systems

    Science.gov (United States)

    Araújo, José Mario; Dórea, Carlos Eduardo Trabuco

    This paper addresses the problem of constructing controlled invariant polyhedral sets for linear discrete-time descriptor systems subject to state and control constraints and persistent disturbances. Regardless the large number of contributions on set invariance for linear systems in the standard form, there are few works dealing with set invariance properties in the case of descriptor systems. Here, assuming regularity and causality of the descriptor system, the state equations are written in such way that standard algorithms can be directly applied. Moreover, state and control constraints can be enforced through a piecewise linear delayed state feedback. A numerical example is presented to illustrate these ideas.

  7. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  8. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  9. Adaptive Constrained Control for Uncertain Nonlinear Time-Delay System with Application to Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-01-01

    Full Text Available This paper investigates a class of nonlinear time-delayed systems with output prescribed performance constraint. The neural network and DOB (disturbance observer are designed to tackle the uncertainties and external disturbance, and prescribed performance function is constructed for the output prescribed performance constrained problem. Then the robust controller is designed by using adaptive backstepping method, and the stability analysis is considered by using Lyapunov-Krasovskii. Furthermore, the proposed method is employed into the unmanned helicopter system with time-delay aerodynamic uncertainty. Finally, the simulation results illustrate that the proposed robust prescribed performance control system achieved a good control performance.

  10. Using Real and Simulated TNOs to Constrain the Outer Solar System

    Science.gov (United States)

    Kaib, Nathan

    2018-04-01

    Over the past 2-3 decades our understanding of the outer solar system’s history and current state has evolved dramatically. An explosion in the number of detected trans-Neptunian objects (TNOs) coupled with simultaneous advances in numerical models of orbital dynamics has driven this rapid evolution. However, successfully constraining the orbital architecture and evolution of the outer solar system requires accurately comparing simulation results with observational datasets. This process is challenging because observed datasets are influenced by orbital discovery biases as well as TNO size and albedo distributions. Meanwhile, such influences are generally absent from numerical results. Here I will review recent work I and others have undertaken using numerical simulations in concert with catalogs of observed TNOs to constrain the outer solar system’s current orbital architecture and past evolution.

  11. H2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    W. Colmenares

    2000-01-01

    guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  12. Automatic frequency control system for driving a linear accelerator

    International Nuclear Information System (INIS)

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  13. Constrained quadratic stabilization of discrete-time uncertain nonlinear multi-model systems using piecewise affine state-feedback

    Directory of Open Access Journals (Sweden)

    Olav Slupphaug

    1999-07-01

    Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.

  14. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  15. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard

    2007-01-01

    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly...... of systems like this. Contrary to the common sense in operations management, the LPT rule is able to maximize the total production volume per day. Furthermore, we show that adding one tank has considerable effects. Finally, we conclude that the optimal setup frequency for batches in the first stage...

  16. Analysis of Nonlinear Missile Guidance Systems Through Linear Adjoint Method

    Directory of Open Access Journals (Sweden)

    Khaled Gamal Eltohamy

    2015-12-01

    Full Text Available In this paper, a linear simulation algorithm, the adjoint method, is modified and employed as an efficient tool for analyzing the contributions of system parameters to the miss - distance of a nonlinear time-varying missile guidance system model. As an example for the application of the linear adjoint method, the effect of missile flight time on the miss - distance is studied. Since the missile model is highly nonlinear and a time-varying linearized model is required to apply the adjoint method, a new technique that utilizes the time-reversed linearized coefficients of the missile as a replacement for the time-varying describing functions is applied and proven to be successful. It is found that, when compared with Monte Carlo generated results, simulation results of this linear adjoint technique provide acceptable accuracy and can be produced with much less effort.

  17. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    NARCIS (Netherlands)

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  18. Iterative Solvers within Sequences of Large Linear Systems in Non-linear Structural Mechanics

    Czech Academy of Sciences Publication Activity Database

    Hartmann, S.; Duintjer Tebbens, Jurjen; Quint, K.J.; Meister, A.

    2009-01-01

    Roč. 89, č. 9 (2009), s. 711-728 ISSN 0044-2267 R&D Projects: GA AV ČR KJB100300703 Institutional research plan: CEZ:AV0Z10300504 Keywords : iterative solver * non-symmetric matrices * sequences of linear systems * finite strains * finite elements Subject RIV: BA - General Mathematics Impact factor: 0.866, year: 2009

  19. VT Linear Referencing System - Town-Based 2013

    Data.gov (United States)

    Vermont Center for Geographic Information — LRS2013 is a Linear Referencing System layer that includes Interstate, U.S., State (VT), and other transportation routes logged by the Vermont Agency of...

  20. Optical Tomography System: Charge-coupled Device Linear Image Sensors

    Directory of Open Access Journals (Sweden)

    M. Idroas

    2010-09-01

    Full Text Available This paper discussed an optical tomography system based on charge-coupled device (CCD linear image sensors. The developed system consists of a lighting system, a measurement section and a data acquisition system. Four CCD linear image sensors are configured around a flow pipe with an octagonal-shaped measurement section, for a four projections system. The four CCD linear image sensors consisting of 2048 pixels with a pixel size of 14 micron by 14 micron are used to produce a high-resolution system. A simple optical model is mapped into the system’s sensitivity matrix to relate the optical attenuation due to variations of optical density within the measurement section. A reconstructed tomographic image is produced based on the model using MATLAB software. The designed instrumentation system is calibrated and tested through different particle size measurements from different projections.

  1. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  2. Non-Linear Systems Identification Using Neural Networks

    OpenAIRE

    Chen, S.; Billings, S.A.; Grant, P.M.

    1989-01-01

    Multi-layered neural networks offer an exciting alternative for modelling complex non-linear systems. This paper investigates the identification of discrete-time non-linear systems using neural networks with a single hidden layer. New parameter estimation algorithms are derived for the neural network model based on a prediction error formulation and the application to both simulated and real data is included to demonstrate the effectiveness of the neural network approach.

  3. Iterative algorithms for large sparse linear systems on parallel computers

    Science.gov (United States)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  4. Supersparse Linear Integer Models for Optimized Medical Scoring Systems

    OpenAIRE

    Ustun, Berk; Rudin, Cynthia

    2015-01-01

    Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM...

  5. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    Paralleled dc converter systems are widely used in distribution systems and uninterruptable power supplies. This paper implements a hierarchical control in a droop-controlled dc-dc conversion system with special focus on improving system efficiency which is dealt within the tertiary regulation....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...... implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while...

  6. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    International Nuclear Information System (INIS)

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  7. Economic MPC for a linear stochastic system of energy units

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...... of such large-scale models feasible in real-time. The system presented may serve as a benchmark for simulation and control of smart energy systems and we indicate how advances in computational MPC....

  8. On constrained reliability maximization using active redundancy in coherent systems with non-overlapping subsystems

    Directory of Open Access Journals (Sweden)

    Debasis Bhattacharya

    2015-01-01

    Full Text Available The paper investigates a problem of constrained reliability maximization by allocating redundancy and proposes how to solve it for a broad group of complex coherent systems. Redundancy is an effective engineering tool to enhance system reliability to make a system fail-safe. Since adding redundancy increases the cost and complexity of a system design, it should be used wisely. The work considers an exact solution to the problem under resource constraints and finds optimal redundancy numbers. The proposed method can accommodate any number of constraints. Numerical examples have been included. A sensitivity analysis has been carried out to show how sensitive the optimal allocation of redundant components and the gain in system reliability are to the budget allocation.

  9. Parametric linear hybrid automata for complex environmental systems modeling

    NARCIS (Netherlands)

    Tareen, Samar Hayat Khan; Ahmad, Jamil; Roux, Olivier

    2015-01-01

    Environmental systems, whether they be weather patterns or predator–prey relationships, are dependent on a number different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult

  10. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  11. Euclidean null controllability of linear systems with delays in state ...

    African Journals Online (AJOL)

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  12. Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics

    DEFF Research Database (Denmark)

    Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal

    2014-01-01

    We present a procedure for reducing the number of continuous states of discrete-time linear switched systems, such that the reduced system has the same behavior as the original system for a subset of switching sequences. The proposed method is expected to be useful for abstraction based control...

  13. Modeling and analysis of linear hyperbolic systems of balance laws

    CERN Document Server

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  14. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Xue, Yusheng

    2017-01-01

    The increasing number of distributed energy resources such as electric vehicles and heat pumps connected to power systems raises operational challenges to the network operator, for example, introducing grid congestion and voltage deviations in the distribution network level if their operations...... method in the system, given the high penetration of distributed energy resources. This paper firstly describes the NCTE-based distribution system that introduces a new interacting scheme for actors at the distribution system level. Then, technical modeling and economic interpretation of the NCTE...... are not properly coordinated. Coordination and control of a large number of distributed energy resources requires innovative approaches. In this paper, we follow up on a recently proposed network-constrained transactive energy (NCTE) method for scheduling of electric vehicles and heat pumps within a retailer...

  15. A comparison between linear and toroidal Extrap systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  16. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  17. H 2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  18. Structured Control of Affine Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervaryin...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  19. Tape measuring system using linear encoder and digital camera

    Science.gov (United States)

    Eom, Tae Bong; Jeong, Don Young; Kim, Myung Soon; Kim, Jae Wan; Kim, Jong Ahn

    2013-04-01

    We have designed and constructed the calibration system of line standards such as tape and rule for the secondary calibration laboratories. The system consists of the main body with linear stage and linear encoder, the optical microscope with digital camera, and the computer. The base of the system is a aluminum profile with 2.9 m length, 0.09 m height and 0.18 m width. The linear stage and the linear encoder are fixed on the aluminum profile. The micro-stage driven by micrometer is fixed on the carriage of the long linear stage, and the optical microscope with digital camera and the tablet PC are on the this stage. The linear encoder counts the moving distance of the linear stage with resolution of 1 μm and its counting value is transferred to the tablet PC. The image of the scale mark of the tape is captured by the CCD camera of optical microscope and transferred to the PC through USB interface. The computer automatically determines the center of the scale mark by image processing technique and at the same time reads the moving distance of the linear stage. As a result, the computer can calculate the interval between the scale marks of the tape. In order to achieve the high accuracy, the linear encoder should be calibrated using the laser interferometer or the rigid steel rule. This calibration data of the linear encoder is stored at the computer and the computer corrects the reading value of the linear encoder. In order to determine the center of the scale mark, we use three different algorithms. First, the image profile over specified threshold level is fitted in even order polynomial and the axis of the polynomial is used as the center of the line. Second, the left side and right side areas at the center of the image profile are calculated so that two areas are same. Third, the left and right edges of the image profile are determined at every intensity level of the image and the center of the graduation is calculated as an average of the centers of the left

  20. Dissipativity Analysis of Linear State/Input Delay Systems

    Directory of Open Access Journals (Sweden)

    Guifang Cheng

    2012-01-01

    Full Text Available This paper discusses dissipativity problem for system of linear state/input delay equations. Motivated by dissipativity theory of control systems, we choose a new quadratic supply rate. Using the concept of dissipativity, necessary and sufficient conditions for the linear state/input delay systems to be dissipative and exponentially dissipative are derived. The connection of dissipativity with stability is also considered. Finally, passivity and finite gain are explored, correspondingly. The positive-real and bounded-real lemmas are derived.

  1. State space and input-output linear systems

    CERN Document Server

    Delchamps, David F

    1988-01-01

    It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu­ ate level linear system theory course i...

  2. Bit and Power Allocation in Constrained Multicarrier Systems: The Single-User Case

    Directory of Open Access Journals (Sweden)

    Theodore Antonakopoulos

    2007-09-01

    Full Text Available Multicarrier modulation is a powerful transmission technique that provides improved performance in various communication fields. A fundamental topic of multicarrier communication systems is the bit and power loading, which is addressed in this article as a constrained multivariable nonlinear optimization problem. In particular, we present the main classes of loading problems, namely, rate maximization and margin maximization, and we discuss their optimal solutions for the single-user case. Initially, the classical water-filling solution subject to a total power constraint is presented using the Lagrange multipliers optimization approach. Next, the peak-power constraint is included and the concept of cup-limited waterfilling is introduced. The loading problem is also addressed subject to the integer-bit restriction and the optimal discrete solution is examined using combinatorial optimization methods. Furthermore, we investigate the duality conditions of the rate maximization and margin maximization problems and we highlight various ideas for low-complexity loading algorithms. This article surveys and reviews existing results on resource allocation in constrained multicarrier systems and presents new trends in this area.

  3. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  4. Punctuated equilibrium in a non-linear system of action

    NARCIS (Netherlands)

    J.S. Timmermans (Jos)

    2008-01-01

    textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively

  5. Lag synchronization of chaotic systems with time-delayed linear

    Indian Academy of Sciences (India)

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  6. A study on switched linear system identification using game ...

    African Journals Online (AJOL)

    This study deals with application of game-theoretic strategies and neural computing to switched linear system identification, wherein some of the subsystems may be in failed, standby, or working states. The controller is to detect failed subsystems, and switch standby and working subsystems to maintain stable system ...

  7. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  8. Criteria for stability of linear dynamical systems with multiple delays ...

    African Journals Online (AJOL)

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  9. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    sive control scheme can reduce the control cost significantly, and so it is of great use in practical applications. Now, in this paper, lag synchronization of chaotic systems with time-delayed linear terms will be investigated. The scheme is showed effective through numerical simulations on chaotic systems. The rest of the paper ...

  10. Theoretical analysis of balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu...

  11. Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation

    CERN Document Server

    Angeles, Jorge

    2012-01-01

    Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...

  12. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  13. Damped oscillations of linear systems a mathematical introduction

    CERN Document Server

    Veselić, Krešimir

    2011-01-01

    The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...

  14. A Knowledge-Constrained Access Control Model for Protecting Patient Privacy in Hospital Information Systems.

    Science.gov (United States)

    Zhang, Runtong; Chen, Donghua; Shang, Xiaopu; Zhu, Xiaomin; Liu, Kecheng

    2017-04-24

    Current access control mechanisms of the hospital information system can hardly identify the real access intention of system users. A relaxed access control increases the risk of compromise of patient privacy. To reduce unnecessary access of patient information by hospital staff, this paper proposes a Knowledge-Constrained Role-Based Access Control (KC-RBAC) model in which a variety of medical domain knowledge is considered in access control. Based on the proposed Purpose Tree and knowledge-involved algorithms, the model can dynamically define the boundary of access to the patient information according to the context, which helps protect patient privacy by controlling access. Compared with the Role-Based Access Control model, KC-RBAC can effectively protect patient information according to the results of the experiments.

  15. A Decomposition Method for Security Constrained Economic Dispatch of a Three-Layer Power System

    Science.gov (United States)

    Yang, Junfeng; Luo, Zhiqiang; Dong, Cheng; Lai, Xiaowen; Wang, Yang

    2018-01-01

    This paper proposes a new decomposition method for the security-constrained economic dispatch in a three-layer large-scale power system. The decomposition is realized using two main techniques. The first is to use Ward equivalencing-based network reduction to reduce the number of variables and constraints in the high-layer model without sacrificing accuracy. The second is to develop a price response function to exchange signal information between neighboring layers, which significantly improves the information exchange efficiency of each iteration and results in less iterations and less computational time. The case studies based on the duplicated RTS-79 system demonstrate the effectiveness and robustness of the proposed method.

  16. Canonical symmetry of a constrained Hamiltonian system and canonical Ward identity

    International Nuclear Information System (INIS)

    Li, Zi-ping

    1995-01-01

    An algorithm for the construction of the generators of the gauge transformation of a constrained Hamiltonian system is given. The relationships among the coefficients connecting the first constraints in the generator are made clear. Starting from the phase space generating function of the Green function, the Ward identity in canonical formalism is deduced. We point out that the quantum equations of motion in canonical form for a system with singular Lagrangian differ from the classical ones whether Dirac's conjecture holds true or not. Applications of the present formulation to the Abelian and non-Abelian gauge theories are given. The expressions for PCAC and generalized PCAC of the AVV vertex are derived exactly from another point of view. A new form of the Ward identity for gauge-ghost proper vertices is obtained which differs from the usual Ward-Takahashi identity arising from the BRS invariance

  17. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  18. System identication of a linearized hysteretic system using covariance driven stochastic subspace identication

    DEFF Research Database (Denmark)

    Bajric, Anela

    A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized model...

  19. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    Science.gov (United States)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs

  20. Parametric linear hybrid automata for complex environmental systems modeling

    OpenAIRE

    Tareen, Samar H. K.; Ahmad, Jamil; Roux, Olivier

    2015-01-01

    Environmental systems, whether they be weather patterns or predator–prey relationships, are dependent on a number different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of ...

  1. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  2. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  3. Refined Fuchs inequalities for systems of linear differential equations

    International Nuclear Information System (INIS)

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  4. The graphics software of the Saclay linear accelerator control system

    International Nuclear Information System (INIS)

    Gournay, J.F.

    1987-06-01

    The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined

  5. Chaos synchronization of a unified chaotic system via partial linearization

    International Nuclear Information System (INIS)

    Yu Yongguang; Li Hanxiong; Duan Jian

    2009-01-01

    A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.

  6. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-05-01

    Full Text Available The increasing number of distributed energy resources such as electric vehicles and heat pumps connected to power systems raises operational challenges to the network operator, for example, introducing grid congestion and voltage deviations in the distribution network level if their operations are not properly coordinated. Coordination and control of a large number of distributed energy resources requires innovative approaches. In this paper, we follow up on a recently proposed network-constrained transactive energy (NCTE method for scheduling of electric vehicles and heat pumps within a retailer’s aggregation at distribution system level. We extend this method with: (1 a new modeling technique that allows the resulting congestion price to be directly interpreted as a locational marginal pricing in the system; (2 an explicit analysis of the benefits and costs of different actors when using the NCTE method in the system, given the high penetration of distributed energy resources. This paper firstly describes the NCTE-based distribution system that introduces a new interacting scheme for actors at the distribution system level. Then, technical modeling and economic interpretation of the NCTE-based distribution system are described. Finally, we show the benefits and costs of different actors within the NCTE-based distribution system.

  7. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  8. SNR Estimation in Linear Systems with Gaussian Matrices

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  9. A Proof System for the Linear Time μ-Calculus

    DEFF Research Database (Denmark)

    Dax, Christian; Hofmann, Martin; Lange, Martin

    2006-01-01

    The linear time μ-calculus extends LTL with arbitrary least and greatest fixpoint operators. This gives it the power to express all ω-regular languages, i.e. strictly more than LTL. The validity problem is PSPACE-complete for both LTL and the linear time μ-calculus. In practice it is more difficult...... for the latter because of nestings of fixpoint operators and variables with several occurrences. We present a simple sound and complete infinitary proof system for the linear time μ-calculus and then present two decision procedures for provability in the system, hence validity of formulas. One uses...... nondeterministic Büchi automata, the other one a generalisation of size-change termination analysis (SCT) known from functional programming. The main novelties of this paper are the connection with SCT and the fact that both decision procedures have a better asymptotic complexity than earlier ones and have been...

  10. Input design for linear dynamic systems using maxmin criteria

    DEFF Research Database (Denmark)

    Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik

    1998-01-01

    This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting pl...... plane algorithm to determine the optimal frequency power weights of the input, using successive solutions to linear programs. We present a case study related to estimation of thermal parameters of a building.......This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...

  11. Design of a dependable Interlock System for linear colliders

    CERN Document Server

    Nouvel, Patrice

    For high energy accelerators, the interlock system is a key part of the machine protection. The interlock principle is to inhibit the beam either on failure of critical equipment and/or on low beam quality evaluation. The dependability of such a system is the most critical parameter. This thesis presents the design of an dependable interlock system for linear collider with an application to the CLIC (Compact Linear Collider) project. This design process is based on the IEEE 1220 standard and is is divided in four steps. First, the specifications are established, with a focus on the dependability, more precisely the reliability and the availability of the system. The second step is the design proposal based on a functional analysis, the CLIC and interfaced systems architecture. Third, the feasibility study is performed, applying the concepts in an accelerator facility. Finally, the last step is the hardware verification. Its aim is to prove that the proposed design is able to reach the requirements.

  12. Non-linear dynamics of the complement system activation.

    Science.gov (United States)

    Korotaevskiy, Andrey A; Hanin, Leonid G; Khanin, Mikhail A

    2009-12-01

    The complement system (CS) plays a prominent role in the immune defense. The goal of this work is to study the dynamics of activation of the classic and alternative CS pathways based on the method of mathematical modeling. The principal difficulty that hinders modeling effort is the absence of the measured values of kinetic constants of many biochemical reactions forming the CS. To surmount this difficulty, an optimization procedure consisting of constrained minimization of the total protein consumption by the CS was designed. The constraints made use of published data on the in vitro kinetics of elimination of the Borrelia burgdorferi bacteria by the CS. Special features of the problem at hand called for a significant modification of the general constrained optimization procedure to include a mathematical model of the bactericidal effect of the CS in the iterative setting. Determination of the unknown kinetic constants of biochemical reactions forming the CS led to a fully specified mathematical model of the dynamics of cell killing induced by the CS. On the basis of the model, effects of the initial concentrations of complements and their inhibitors on the bactericidal action of the CS were studied. Proteins playing a critical role in the regulation of the bactericidal action of the CS were identified. Results obtained in this work serve as an important stepping stone for the study of functioning of the CS as a whole as well as for developing methods for control of pathogenic processes.

  13. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  14. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  15. Stability Criterion of Linear Stochastic Systems Subject to Mixed H2/Passivity Performance

    Directory of Open Access Journals (Sweden)

    Cheung-Chieh Ku

    2015-01-01

    Full Text Available The H2 control scheme and passivity theory are applied to investigate the stability criterion of continuous-time linear stochastic system subject to mixed performance. Based on the stochastic differential equation, the stochastic behaviors can be described as multiplicative noise terms. For the considered system, the H2 control scheme is applied to deal with the problem on minimizing output energy. And the asymptotical stability of the system can be guaranteed under desired initial conditions. Besides, the passivity theory is employed to constrain the effect of external disturbance on the system. Moreover, the Itô formula and Lyapunov function are used to derive the sufficient conditions which are converted into linear matrix inequality (LMI form for applying convex optimization algorithm. Via solving the sufficient conditions, the state feedback controller can be established such that the asymptotical stability and mixed performance of the system are achieved in the mean square. Finally, the synchronous generator system is used to verify the effectiveness and applicability of the proposed design method.

  16. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  17. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  18. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  19. An optimum linear receiver for multiple channel digital transmission systems

    NARCIS (Netherlands)

    van Etten, Wim

    2007-01-01

    An optimum linear receiver for multiple channel digital transmission systems is developed for the minimum P. and for the zero-forcing criterion. A multidimensional Nyquist criterion is defined together with a theorem on the optimality of a finite length multiple tapped delay line. Furthermore an

  20. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  1. Relative controllability and null controllability of linear delay systems ...

    African Journals Online (AJOL)

    Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...

  2. Generating Nice Linear Systems for Matrix Gaussian Elimination

    Science.gov (United States)

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  3. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  4. Linearization of systems of four second-order ordinary differential ...

    Indian Academy of Sciences (India)

    In this paper we provide invariant linearizability criteria for a class of systems of four second-order ordinary differential equations in terms of a set of 30 constraint equations on the coefficients of all derivative terms. The linearization criteria are derived by the analytic continuation of the geometric approach of projection of ...

  5. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement ...

  6. Lowest-order constrained variational method for simple many-fermion systems

    International Nuclear Information System (INIS)

    Alexandrov, I.; Moszkowski, S.A.; Wong, C.W.

    1975-01-01

    The authors study the potential energy of many-fermion systems calculated by the lowest-order constrained variational (LOCV) method of Pandharipande. Two simple two-body interactions are used. For a simple hard-core potential in a dilute Fermi gas, they find that the Huang-Yang exclusion correction can be used to determine a healing distance. The result is close to the older Pandharipande prescription for the healing distance. For a hard core plus attractive exponential potential, the LOCV result agrees closely with the lowest-order separation method of Moszkowski and Scott. They find that the LOCV result has a shallow minimum as a function of the healing distance at the Moszkowski-Scott separation distance. The significance of the absence of a Brueckner dispersion correction in the LOCV result is discussed. (Auth.)

  7. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    Science.gov (United States)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  8. Monitoring and control system of the Saclay electron linear accelerator

    International Nuclear Information System (INIS)

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  9. Design and performance of the Stanford Linear Collider Control System

    International Nuclear Information System (INIS)

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

  10. Hyperchaotic encryption based on multi-scroll piecewise linear Systems

    Czech Academy of Sciences Publication Activity Database

    García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej

    2015-01-01

    Roč. 270, č. 1 (2015), s. 413-424 ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo - random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.345, year: 2015 http://library.utia.cas.cz/separaty/2015/TR/celikovsky-0446895.pdf

  11. Design and performance of the Stanford Linear Collider Control System

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures.

  12. Identification of single-input-single-output quantum linear systems

    Science.gov (United States)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  13. Universal Linear Precoding for NBI-Proof Widely Linear Equalization in MC Systems

    Directory of Open Access Journals (Sweden)

    Donatella Darsena

    2007-09-01

    Full Text Available In multicarrier (MC systems, transmitter redundancy, which is introduced by means of finite-impulse response (FIR linear precoders, allows for perfect or zero-forcing (ZF equalization of FIR channels (in the absence of noise. Recently, it has been shown that the noncircular or improper nature of some symbol constellations offers an intrinsic source of redundancy, which can be exploited to design efficient FIR widely-linear (WL receiving structures for MC systems operating in the presence of narrowband interference (NBI. With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the proposed precoding designs and validate the theoretical analysis carried out.

  14. Robust observability for regular linear systems under nonlinear perturbation

    Directory of Open Access Journals (Sweden)

    Weisheng Jiang

    2015-08-01

    Full Text Available In this article, we consider the admissibility and exact observability of a class of semilinear systems obtained by nonlinear perturbation for regular linear systems. We obtain the well-posedness of the semilinear system and the admissibility of the observation operator for the nonlinear semigroup, the solution semigroup of the semilinear system. Further, we obtain the robustness of the exact observability with respect to nonlinear perturbations when the Lipschitz constant is small enough. Finally, we give two examples to illustrate the obtained results.

  15. Algorithmic Approach to Abstracting Linear Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper proposes an LMI-based algorithm for abstracting dynamical systems by timed automata, which enables automatic formal verification of linear systems. The proposed abstraction is based on partitioning the state space of the system using positive invariant sets, generated by Lyapunov...... functions. This partitioning ensures that the vector field of the dynamical system is transversal to all facets of the cells, which induces some desirable properties of the abstraction. The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions, and determining...

  16. Fundamentals of linear systems for physical scientists and engineers

    CERN Document Server

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  17. The robustness in dynamics of out of equilibrium bidirectional transport systems with constrained entrances

    Science.gov (United States)

    Sharma, Natasha; Verma, Atul Kumar; Gupta, Arvind Kumar

    2018-05-01

    Macroscopic and microscopic long-distance bidirectional transfer depends on connections between entrances and exits of various transport mediums. Persuaded by the associations, we introduce a small system module of Totally Asymmetric Simple Exclusion Process including oppositely directed species of particles moving on two parallel channels with constrained entrances. The dynamical rules which characterize the system obey symmetry between the two species and are identical for both the channels. The model displays a rich steady-state behavior, including symmetry breaking phenomenon. The phase diagram is analyzed theoretically within the mean-field approximation and substantiated with Monte Carlo simulations. Relevant mean-field calculations are also presented. We further compared the phase segregation with those observed in previous works, and it is examined that the structure of phase separation in proposed model is distinguished from earlier ones. Interestingly, for phases with broken symmetry, symmetry with respect to channels has been observed as the distinct particles behave differently while the similar type of particles exhibits the same conduct in the system. For symmetric phases, significant properties including currents and densities in the channels are identical for both types of particles. The effect of symmetry breaking occurrence on the Monte Carlo simulation results has also been examined based on particle density histograms. Finally, phase properties of the system having strong size dependency have been explored based on simulations findings.

  18. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  19. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  20. Galerkin projection methods for solving multiple related linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  1. Neural Network for Combining Linear and Non-Linear Modelling of Dynamic Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1994-01-01

    The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information.......The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information....

  2. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  3. A quasi-linear parabolic system of chemotaxis

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider a quasi-linear parabolic system with respect to unknown functions u and v on a bounded domain of n -dimensional Euclidean space. We assume that the diffusion coefficient of u is a positive smooth function A ( u , and that the diffusion coefficient of v is a positive constant. If A ( u is a positive constant, the system is referred to as so-called Keller-Segel system. In the case where the domain is a bounded domain of two-dimensional Euclidean space, it is shown that some solutions to Keller-Segel system blow up in finite time. In three and more dimensional cases, it is shown that solutions to so-called Nagai system blow up in finite time. Nagai system is introduced by Nagai. The diffusion coefficients of Nagai system are positive constants. In this paper, we describe that solutions to the quasi-linear parabolic system exist globally in time, if the positive function A ( u rapidly increases with respect to u .

  4. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  5. Optimal policies for identification of stochastic linear systems

    Science.gov (United States)

    Lopez-Toledo, A. A.; Athans, M.

    1975-01-01

    The problem of designing closed-loop policies for identification of multiinput-multioutput linear discrete-time systems with random time-varying parameters is considered in this paper using a Bayesian approach. A sensitivity index gives a measure of performance for the closed-loop laws. The computation of the optimal laws is shown to be nontrivial, an exercise in stochastic control, but open-loop, affine, and open-loop feedback optimal inputs are shown to yield tractable problems. Numerical examples are given. For time-invariant systems, the criterion considered is shown to be related to the trace of the information matrix associated with the system.

  6. The new control system of the Saclay linear accelerator

    International Nuclear Information System (INIS)

    Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.

    1985-05-01

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  7. Fundamental Matrix for a Class of Point Delay Linear Systems

    International Nuclear Information System (INIS)

    Sen, M. de la; Alastruey, C. F.

    1998-01-01

    It is difficult to establish explicit analytic forms for fundamental matrices of delayed linear systems. In this paper, an explicit form of exponential type is given for such a matrix in the case of punctual delays. The existence of real and complex fundamental matrices, for the case of real parameterizations of the differential system, is studied and discussed. Some additional commutativity properties involving the matrices parameters and the fundamental matrices as well as explicit expressions for the solution of the delayed differential system are also given. (Author)

  8. Persistently-exciting signal generation for Optimal Parameter Estimation of constrained nonlinear dynamical systems.

    Science.gov (United States)

    Honório, Leonardo M; Costa, Exuperry Barros; Oliveira, Edimar J; Fernandes, Daniel de Almeida; Moreira, Antonio Paulo G M

    2018-04-13

    This work presents a novel methodology for Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation of constrained nonlinear systems. It is proposed that the evaluation of each signal must also account for the difference between real and estimated system parameters. However, this metric is not directly obtained once the real parameter values are not known. The alternative presented here is to adopt the hypothesis that, if a system can be approximated by a white box model, this model can be used as a benchmark to indicate the impact of a signal over the parametric estimation. In this way, the proposed method uses a dual layer optimization methodology: (i) Inner Level; For a given excitation signal a nonlinear optimization method searches for the optimal set of parameters that minimizes the error between the outputs of the optimized and benchmark models. (ii) At the outer level, a metaheuristic optimization method is responsible for constructing the best excitation signal, considering the fitness coming from the inner level, the quadratic difference between its parameters and the cost related to the time and space required to execute the experiment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    Science.gov (United States)

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  10. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    Directory of Open Access Journals (Sweden)

    Shoaib Ehsan

    2015-07-01

    Full Text Available The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF, allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video. Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44% in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  11. Neural Network for Combining Linear and Non-Linear Modelling of Dynamic Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1994-01-01

    The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information....

  12. Competitiveness of nonstationary states in linear kinetic systems

    Science.gov (United States)

    Teslenko, Victor I.; Kapitanchuk, Oleksiy L.

    2018-01-01

    The master equation formalism is used to describe the possibility for peak population amplitudes of two nonstationary states in a 3-stage linear kinetic system to be endowed with an untraditional physical quantity — competitiveness — established in regard to the differences for the degree of the peak responses to a change in the input rate constants. Calculated coefficients of competitiveness are found to agree with observations of performance for the three optical materials with respect to their reliability in different operating windows. It is concluded that, for a non-equilibrium linear kinetic system, the competitiveness constitutes a common dynamic property of its nonstationary states and, in the case of their directed irreversible evolution, comprises the property of a system’s anti-cooperativity.

  13. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    CERN Document Server

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  14. Solving Systems of Linear Equations with a Superconducting Quantum Processor.

    Science.gov (United States)

    Zheng, Yarui; Song, Chao; Chen, Ming-Cheng; Xia, Benxiang; Liu, Wuxin; Guo, Qiujiang; Zhang, Libo; Xu, Da; Deng, Hui; Huang, Keqiang; Wu, Yulin; Yan, Zhiguang; Zheng, Dongning; Lu, Li; Pan, Jian-Wei; Wang, H; Lu, Chao-Yang; Zhu, Xiaobo

    2017-05-26

    Superconducting quantum circuits are a promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. 103, 150502 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.150502], which promises an exponential speedup over classical algorithms under certain circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by nontrace-preserving quantum process tomography, which yields a process fidelity of 0.837±0.006. Our results highlight the potential of superconducting quantum circuits for applications in solving large-scale linear systems, a ubiquitous task in science and engineering.

  15. Optimal linear precoding for indoor visible light communication system

    KAUST Repository

    Sifaou, Houssem

    2017-07-31

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.

  16. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    International Nuclear Information System (INIS)

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  17. SSNN toolbox for non-linear system identification

    Science.gov (United States)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  18. AZTEC: A parallel iterative package for the solving linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  19. Dynamic logic architecture based on piecewise-linear systems

    International Nuclear Information System (INIS)

    Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue

    2010-01-01

    This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.

  20. Bounding the error of a continuous approximation for linear systems ...

    African Journals Online (AJOL)

    We present preconditioned interval Gauss-Siedel method and interval LU decomposition for finding solution to the interval linear system of equation Ad=b where the nxn coefficient matrix A lies between two bounds A and A and b„¡ƒËb,b ƒÍ. It is found out that preconditioned interval methods of Gauss-Siedel and LU have ...

  1. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  2. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    KAUST Repository

    Richtarik, Peter

    2017-06-04

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  3. Linear circuits, systems and signal processing: theory and application

    International Nuclear Information System (INIS)

    Byrnes, C.I.; Saeks, R.E.; Martin, C.F.

    1988-01-01

    In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987

  4. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  5. Life history constrains biochemical development in the highly specialized odontocete echolocation system.

    Science.gov (United States)

    Koopman, Heather N; Zahorodny, Zoey P

    2008-10-22

    The vertebrate head has undergone enormous modification from the features borne by early ancestors. The growth of skull bones has been well studied in many species, yet little is known about corresponding soft tissue development. Among mammals, some of the most unusual examples of cranial evolution exist in the toothed whales (odontocetes). Specialized fat bodies in toothed whale heads play important roles in sound transmission and reception. These fat bodies contain unique endogenous lipids, with favourable acoustic properties, arranged in highly organized, three-dimensional patterns. We link variation in developmental rates of acoustic fats with life-history strategy, using bottlenose dolphins and harbour porpoises. Porpoise acoustic fats attain adult configurations earlier (less than 1 year) and at a faster pace than dolphins. The accelerated lipid accumulation in porpoises reflects the earlier need for fully functional echolocation systems. Dolphins enjoy 3-6 years of maternal care; porpoises must achieve total independence by approximately nine months. Further, a stereotypic 'blueprint' for the spatial distribution of lipids is established prior to birth, demonstrating the highly conserved nature of the intricate biochemical arrangement in acoustic tissues. This system illustrates an unusual case of soft tissue development being constrained by life history, rather than the more commonly observed mechanistic or phyletic constraints.

  6. Linear filtering of systems with memory and application to finance

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.

  7. Tracking studies of the Compact Linear Collider collimation system

    International Nuclear Information System (INIS)

    Agapov, I.; Burkhardt, H.; Schulte, D.; Latina, A.; Blair, G.A.; Malton, S.; Resta-Lopez, J.

    2009-01-01

    A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with GEANT4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure

  8. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  9. Synchronization and Control of Linearly Coupled Singular Systems

    Directory of Open Access Journals (Sweden)

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  10. Demultiplexing of photonic temporal modes by a linear system

    Science.gov (United States)

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  11. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  12. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    Science.gov (United States)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  13. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    International Nuclear Information System (INIS)

    Wendy A. Bohrson Department of Geological Sciences, Central Washington University, Ellensburg, Washington, 98926, USA; Frank J. Spera Institute for Crustal Studies and Department of Geological Sciences, University of California, Santa Barbara, California, 93106, USA

    2003-01-01

    A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [Spera and Bohrson, 2001 ; Bohrson and Spera, 2001] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy-constrained formulation, Energy-Constrained Recharge, Assimilation, Fractional Crystallization (EC-RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [Spera and Bohrson, 2002]. Because many EC-RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well-documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge-fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC-RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with particular

  14. Control of Linear Parameter Varying Systems with Applications

    CERN Document Server

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  15. The new control system of the Saclay linear accelerator

    International Nuclear Information System (INIS)

    Gournay, J.F.

    1985-10-01

    A new control system for the Saclay Linear Accelerator designed during the two past years is now in operation. The computer control architecture is based on 3 dedicated VME crates: one crate with a disk-based operating system runs the high level application programs and the database management facilities, another one manages the man-machine communications and the third one interfaces the system to the linac equipments. At the present time, communications between the VME micro-computers are done through 16 bit parallel links. The software is modular and organized in specific layers, the database is fully distributed. About 90% of the code is written in Fortran. The present status of the system is discussed and the hardware and software developments are described

  16. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Directory of Open Access Journals (Sweden)

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  17. Control of stage by stage changing linear dynamic systems

    Directory of Open Access Journals (Sweden)

    Barseghyan V.R.

    2012-01-01

    Full Text Available In this paper, the control problems of linear dynamic systems stage by stage changing and the optimal control with the criteria of quality set for the whole range of time intervals are considered. The necessary and sufficient conditions of total controllability are also stated. The constructive solving method of a control problem is offered, as well as the definitions of conditions for the existence of programmed control and motions. The explicit form of control action for a control problem is constructed. The method for solving optimal control problem is offered, and the solution of optimal control of a specific target is brought.

  18. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  19. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  20. Considering system non-linearity in transmission pricing

    International Nuclear Information System (INIS)

    Oloomi-Buygi, M.; Salehizadeh, M. Reza

    2008-01-01

    In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)

  1. Memristive non-linear system and hidden attractor

    Science.gov (United States)

    Saha, P.; Saha, D. C.; Ray, A.; Chowdhury, A. R.

    2015-07-01

    Effects of memristor on non-linear dynamical systems exhibiting chaos are analysed both form the view point of theory and experiment. It is observed that the memristive system has always fewer number of fixed points than the original one. Sometimes there is no fixed point in the memristive system. But its chaotic properties are retained. As such we have a situation known as hidden attractor because if it is a stable fixed point then the attractor does not evolve from its basin of attraction(obtained from its stable fixed point) or if there is no fixed point, the question of basin of attraction from fixed point does not arise at all [1, 2]. Our analysis gives a detailed accounts of properties related to its chaotic behavior. Important observations are also obtained with the help of electronic circuits to support the numerical simulations.

  2. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  3. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  4. Constraining f(R gravity in solar system, cosmology and binary pulsar systems

    Directory of Open Access Journals (Sweden)

    Tan Liu

    2018-02-01

    Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  5. Final focus system tuning studies towards Compact Linear Collider feasibility

    Directory of Open Access Journals (Sweden)

    E. Marin

    2018-01-01

    Full Text Available In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS. CLIC aims to provide collisions to the experiments at a luminosity above 10^{34}  cm^{-2} s^{-1}. In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections such as roll misalignments and strength errors are included. Moreover both e^{-} and e^{+} beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  6. Final focus system tuning studies towards Compact Linear Collider feasibility

    Science.gov (United States)

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  7. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  8. A type system for PSPACE derived from light linear logic

    Directory of Open Access Journals (Sweden)

    Lucien Capedevielle

    2012-01-01

    Full Text Available We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB. To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME. We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.

  9. Tracking studies of the Compact Linear Collider collimation system

    Directory of Open Access Journals (Sweden)

    I. Agapov

    2009-08-01

    Full Text Available A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with Geant4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure.

  10. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    International Nuclear Information System (INIS)

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  11. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  12. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    International Nuclear Information System (INIS)

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  13. Security-constrained optimal energy management system for three-phase residential microgrids

    DEFF Research Database (Denmark)

    Vergara, Pedro P.; López, Juan Camilo; da Silva, Luiz C.P.

    2017-01-01

    management. The aim of the proposed model is to minimize the final operational costs of the microgrid while considering operational constraints of the EDS and an unexpected outage of the main grid through a security-constrained set of equations. The optimal solution of the MILP model is found using...

  14. Control methods to improve non-linear HVAC system operations

    Science.gov (United States)

    Phalak, Kaustubh Pradeep

    The change of weather conditions and occupancy schedules makes heating ventilating and air-conditioning (HVAC) systems heavily dynamic. The mass and thermal inertia, nonlinear characteristics and interactions in HVAC systems make the control more complicated. As a result, some conventional control methods often cannot provide desired control performance under variable operating conditions. The purpose of this study is to develop control methods to improve the control performance of HVAC systems. This study focuses on optimizing the airflow-pressure control method of air side economizers, identifying robust building pressurization controls, developing a control method to control outdoor air and building pressure in absence of flow and pressure sensors, stabilizing the cooling coil valve operation and, return fan speed control. The improvements can be achieved by identifying and selecting a method with relatively linear performance characteristics out of the available options, applying fans rather than dampers to control building pressure, and improving the controller's stability range using cascade control method. A steady state nonlinear network model, for an air handling unit (AHU), air distribution system and conditioned space, is applied to analyze the system control performance of air-side economizers and building pressurization. The study shows that traditional controls with completely interlinked outdoor air, recirculated air, relief air dampers have the best control performance. The decoupled relief damper control may result in negative building static pressure at lower outdoor airflow ratio and excessively positive building static pressure at higher outdoor airflow ratio. On the other hand, return fan speed control has a better controllability on building pressurization. In absence of flow and pressure sensors fixed interlinked damper and linear return fan speed tracking control can maintain constant outside air ratio and positive building pressure. The

  15. Radii of Solvability and Unsolvability of Linear Systems

    Czech Academy of Sciences Publication Activity Database

    Hladík, M.; Rohn, Jiří

    2016-01-01

    Roč. 503, 15 August (2016), s. 120-134 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * linear equations * linear inequalities * matrix norm Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  16. Dynamical computation of constrained flexible systems using a modal Udwadia-Kalaba formulation: Application to musical instruments.

    Science.gov (United States)

    Antunes, J; Debut, V

    2017-02-01

    Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.

  17. Context- and Template-Based Compression for Efficient Management of Data Models in Resource-Constrained Systems.

    Science.gov (United States)

    Macho, Jorge Berzosa; Montón, Luis Gardeazabal; Rodriguez, Roberto Cortiñas

    2017-08-01

    The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices.

  18. Linear IFMIF Prototype Accelerator (LIPAc) Control System: Design and development

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Pinto, J.

    2014-07-01

    Distributed real time control systems in scientific instruments, such as particle accelerators or telescopes, have emerged as a solution to control multiple interconnected devices, which required constant attention and observation, along with a complete integration of each of its parts. This enhancement is provided by the intense technological development that control devices have suffered in recent years. With respect to the control software, libraries and applications have also emerged in recent times. These sets of tools have been developed collaboratively in various laboratories and research centers worldwide. Experimental Physics and Industrial Control System (EPICS), a set of open source tools capable of controlling most of the devices necessary to operate a particle accelerator, can be pointed as a prime example of this progress. This thesis presents the design and development of the EPICS based control system for Linear IFMIF1 Prototype Accelerator (LIPAc), which construction involves several countries and it is currently being carried out in Rokkasho, Japan. LIPAc comprises a succession of devices and systems that focus and accelerate deuteron beam to an energy of 9 MeV with a current of 125mA, developing a previously unobtainable power of 1.125MW for that given energy...(Author)

  19. Periodic inventory system in cafeteria using linear programming

    Science.gov (United States)

    Usop, Mohd Fais; Ishak, Ruzana; Hamdan, Ahmad Ridhuan

    2017-11-01

    Inventory management is an important factor in running a business. It plays a big role of managing the stock in cafeteria. If the inventories are failed to be managed wisely, it will affect the profit of the cafeteria. Therefore, the purpose of this study is to find the solution of the inventory management in cafeteria. Most of the cafeteria in Malaysia did not manage their stock well. Therefore, this study is to propose a database system of inventory management and to develop the inventory model in cafeteria management. In this study, new database system to improve the management of the stock in a weekly basis will be provided using Linear Programming Model to get the optimal range of the inventory needed for selected categories. Data that were collected by using the Periodic Inventory System at the end of the week within three months period being analyzed by using the Food Stock-take Database. The inventory model was developed from the collected data according to the category of the inventory in the cafeteria. Results showed the effectiveness of using the Periodic Inventory System and will be very helpful to the cafeteria management in organizing the inventory. Moreover, the findings in this study can reduce the cost of operation and increased the profit.

  20. Linear Temporal Logic (LTL) Based Monitoring of Smart Manufacturing Systems.

    Science.gov (United States)

    Heddy, Gerald; Huzaifa, Umer; Beling, Peter; Haimes, Yacov; Marvel, Jeremy; Weiss, Brian; LaViers, Amy

    2015-01-01

    The vision of Smart Manufacturing Systems (SMS) includes collaborative robots that can adapt to a range of scenarios. This vision requires a classification of multiple system behaviors, or sequences of movement, that can achieve the same high-level tasks. Likewise, this vision presents unique challenges regarding the management of environmental variables in concert with discrete, logic-based programming. Overcoming these challenges requires targeted performance and health monitoring of both the logical controller and the physical components of the robotic system. Prognostics and health management (PHM) defines a field of techniques and methods that enable condition-monitoring, diagnostics, and prognostics of physical elements, functional processes, overall systems, etc. PHM is warranted in this effort given that the controller is vulnerable to program changes, which propagate in unexpected ways, logical runtime exceptions, sensor failure, and even bit rot. The physical component's health is affected by the wear and tear experienced by machines constantly in motion. The controller's source of faults is inherently discrete, while the latter occurs in a manner that builds up continuously over time. Such a disconnect poses unique challenges for PHM. This paper presents a robotic monitoring system that captures and resolves this disconnect. This effort leverages supervisory robotic control and model checking with linear temporal logic (LTL), presenting them as a novel monitoring system for PHM. This methodology has been demonstrated in a MATLAB-based simulator for an industry inspired use-case in the context of PHM. Future work will use the methodology to develop adaptive, intelligent control strategies to evenly distribute wear on the joints of the robotic arms, maximizing the life of the system.

  1. Compressive System Identification in the Linear Time-Invariant framework

    KAUST Repository

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  2. Entanglement production in bosonic systems: Linear and logarithmic growth

    Science.gov (United States)

    Hackl, Lucas; Bianchi, Eugenio; Modak, Ranjan; Rigol, Marcos

    2018-03-01

    We study the time evolution of the entanglement entropy in bosonic systems with time-independent, or time-periodic, Hamiltonians. In the first part, we focus on quadratic Hamiltonians and Gaussian initial states. We show that all quadratic Hamiltonians can be decomposed into three parts: (a) unstable, (b) stable, and (c) metastable. If present, each part contributes in a characteristic way to the time dependence of the entanglement entropy: (a) linear production, (b) bounded oscillations, and (c) logarithmic production. In the second part, we use numerical calculations to go beyond Gaussian states and quadratic Hamiltonians. We provide numerical evidence for the conjecture that entanglement production through quadratic Hamiltonians has the same asymptotic behavior for non-Gaussian initial states as for Gaussian ones. Moreover, even for nonquadratic Hamiltonians, we find a similar behavior at intermediate times. Our results are of relevance to understanding entanglement production for quantum fields in dynamical backgrounds and ultracold atoms in optical lattices.

  3. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    of selected units by 23%, while for a non-linear approach the increase can be higher than 39%. The results indicate a higher coherence between the two latter approaches, and that the MLP (mixed integer programming) optimisation is most appropriate from a viewpoint of accuracy and runtime. © 2014 Elsevier Ltd...

  4. Landmark constrained registration of high-genus surfaces applied to vestibular system morphometry.

    Science.gov (United States)

    Wen, Chengfeng; Wang, Defeng; Shi, Lin; Chu, Winnie C W; Cheng, Jack C Y; Lui, Lok Ming

    2015-09-01

    The analysis of the vestibular system (VS) is an important research topic in medical image analysis. VS is a sensory structure in the inner ear for the perception of spatial orientation. It is believed several diseases, such as the Adolescent Idiopathic Scoliosis (AIS), are due to the impairment of the VS function. The morphology of the VS is thus of great research significance. A major challenge is that the VS is a genus-3 surface. The high-genus topology of the VS poses great challenges to find accurate pointwise correspondences between the surfaces and whereby perform accurate shape analysis. In this paper, we present a method to obtain the landmark constrained diffeomorphic registration between the VS surfaces based on the quasi-conformal theory. Given a set of corresponding landmarks on the VS surfaces, a diffeomorphism between the VS surfaces that matches the features consistently can be obtained. The basic idea is to iteratively search for an admissible Beltrami coefficient, which is associated to our desired landmark matching registration. With the obtained surface registrations, vertex-wise morphometric analysis can be carried out. Two types of geometric features are used for shape comparison. One is the collection of homotopic loops on each canals of the VS, which can be used to measure the local thickness of the canals. From the homotopic loops, centerlines can be extracted. By examining the deviations of the centerlines from the best fit planes, bendings of the canals can be detected. The second geometric feature is the minimal surface enclosed by the homotopic loop. From the minimal surfaces of each homotopic loops, cross-sectional area of the canals can be evaluated. To study the local shape difference more comprehensively, a complete shape index, which is defined using the Beltrami coefficients and surface curvatures, is used. We test proposed registration method on 15 VS of normal control subjects and 12 VS of patients suffering from AIS

  5. Sampled-data models for linear and nonlinear systems

    CERN Document Server

    Yuz, Juan I

    2014-01-01

    Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

  6. Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system

    International Nuclear Information System (INIS)

    Sajid, Mohammad; Raza, Zahid

    2017-01-01

    The problem of optimal scheduling of precedence-constrained jobs as well as finding the Pareto-optimal sets for multi objective scheduling problem have been proven to be nondeterministic polynomial time (NP)-complete. The growing consumption of energy has compelled the researchers to consider energy consumption as an important parameter along with other parameters in multi-objective scheduling problem. Accordingly, many energy-aware precedence-constraints scheduling algorithms have been reported in the literature. Most of the algorithms have a limitation of treating this problem as a single objective optimization problem modelling with deterministic execution times rather than stochastic execution times. This work proposes energy-aware stochastic scheduler to schedule the batch of precedence-constrained jobs on dynamic voltage frequency scaling-enabled processors in order to optimize the energy consumption and the turnaround time. The execution and inter-communication times are stochastic which are drawn from independent probability distributions. A novel encoding for batch of precedence-constrained jobs, stochastic turnaround time and energy models are also proposed. Experimental results show that, compared with other algorithms, the proposed scheduler offers reduced turnaround time and reduced energy consumption. - Highlights: • This paper reports stochastic scheduler for energy management of data centres. • Novel encoding, turnaround time and energy consumption models are proposed. • Clark's equations are used to compute the turnaround time and energy consumption. • The proposed scheduler offers reduced turnaround time as well as energy consumption.

  7. 2-D linear motion system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  8. An inexact stochastic-fuzzy jointed chance-constrained programming for regional energy system management under uncertainty

    Science.gov (United States)

    Liu, Zhengping; Huang, Guohe; Li, Wei

    2015-06-01

    Environmental problems associated with socio-economic development have been a growing concern facing many regional and/or national authorities. However, effective planning may encounter difficulties since uncertainties existing in a number of impact factors and pollution-related processes are often not well acknowledged and reflected. Combining chance-constrained programming and fuzzy credibility-constrained programming with interval parameters and stochastic programming, this study advances an inexact stochastic-fuzzy jointed chance-constrained programming method for planning regional economic and environmental systems under multiple uncertainties presented as intervals, fuzzy sets and probability distributions. The developed method has been applied to a case of long-term energy management system with multiple energy resources and three communities. Emissions of sulphur dioxide and nitrogen oxides are controlled and capacity expansion is scheduled. The results can help to identify desired alternatives for planning regional development strategies, where compromised schemes are provided under an integrated consideration of economic efficiency and environmental protection under multiple uncertainties.

  9. Power-constrained supercomputing

    Science.gov (United States)

    Bailey, Peter E.

    As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound

  10. Linear System Models for Ultrasonic Imaging: Intensity Signal Statistics.

    Science.gov (United States)

    Abbey, Craig K; Zhu, Yang; Bahramian, Sara; Insana, Michael F

    2017-04-01

    Despite a great deal of work characterizing the statistical properties of radio frequency backscattered ultrasound signals, less is known about the statistical properties of demodulated intensity signals. Analysis of intensity is made more difficult by a strong nonlinearity that arises in the process of demodulation. This limits our ability to characterize the spatial resolution and noise properties of B-mode ultrasound images. In this paper, we generalize earlier results on two-point intensity covariance using a multivariate systems approach. We derive the mean and autocovariance function of the intensity signal under Gaussian assumptions on both the object scattering function and acquisition noise, and with the assumption of a locally shift-invariant pulse-echo system function. We investigate the limiting cases of point statistics and a uniform scattering field with a stationary distribution. Results from validation studies using simulation and data from a real system applied to a uniform scattering phantom are presented. In the simulation studies, we find errors less than 10% between the theoretical mean and variance, and sample estimates of these quantities. Prediction of the intensity power spectrum (PS) in the real system exhibits good qualitative agreement (errors less than 3.5 dB for frequencies between 0.1 and 10 cyc/mm, but with somewhat higher error outside this range that may be due to the use of a window in the PS estimation procedure). We also replicate the common finding that the intensity mean is equal to its standard deviation (i.e., signal-to-noise ratio = 1) for fully developed speckle. We show how the derived statistical properties can be used to characterize the quality of an ultrasound linear array for low-contrast patterns using generalized noise-equivalent quanta directly on the intensity signal.

  11. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  12. Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems

    NARCIS (Netherlands)

    Camlibel, M. Kanat

    2007-01-01

    It is well-known that checking certain controllability properties of very simple piecewise linear systems are undecidable problems. This paper deals with the controllability problem of a class of piecewise linear systems, known as linear complementarity systems. By exploiting the underlying

  13. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    Science.gov (United States)

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  14. Source model for the Copahue volcano magmaplumbing system constrained by InSARsurface deformation observations

    Science.gov (United States)

    Lundgren, P.; Nikkhoo, M.; Samsonov, S. V.; Milillo, P.; Gil-Cruz, F., Sr.; Lazo, J.

    2017-12-01

    Copahue volcano straddling the edge of the Agrio-Caviahue caldera along the Chile-Argentinaborder in the southern Andes has been in unrest since inflation began in late 2011. We constrain Copahue'ssource models with satellite and airborne interferometric synthetic aperture radar (InSAR) deformationobservations. InSAR time series from descending track RADARSAT-2 and COSMO-SkyMed data span theentire inflation period from 2011 to 2016, with their initially high rates of 12 and 15 cm/yr, respectively,slowing only slightly despite ongoing small eruptions through 2016. InSAR ascending and descending tracktime series for the 2013-2016 time period constrain a two-source compound dislocation model, with a rate ofvolume increase of 13 × 106 m3/yr. They consist of a shallow, near-vertical, elongated source centered at2.5 km beneath the summit and a deeper, shallowly plunging source centered at 7 km depth connecting theshallow source to the deeper caldera. The deeper source is located directly beneath the volcano tectonicseismicity with the lower bounds of the seismicity parallel to the plunge of the deep source. InSAR time seriesalso show normal fault offsets on the NE flank Copahue faults. Coulomb stress change calculations forright-lateral strike slip (RLSS), thrust, and normal receiver faults show positive values in the north caldera forboth RLSS and normal faults, suggesting that northward trending seismicity and Copahue fault motion withinthe caldera are caused by the modeled sources. Together, the InSAR-constrained source model and theseismicity suggest a deep conduit or transfer zone where magma moves from the central caldera toCopahue's upper edifice.

  15. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  16. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  17. A Primal-Dual Interior Point-Linear Programming Algorithm for MPC

    DEFF Research Database (Denmark)

    Edlund, Kristian; Sokoler, Leo Emil; Jørgensen, John Bagterp

    2009-01-01

    Constrained optimal control problems for linear systems with linear constraints and an objective function consisting of linear and l1-norm terms can be expressed as linear programs. We develop an efficient primal-dual interior point algorithm for solution of such linear programs. The algorithm...

  18. Direct linear driving systems; Les entrainements lineaires directs

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.; Brunner, C.; Piaget, D. [ETEL SA (France)

    1999-11-01

    The linear motor is one of the most important developments in electrical drive technology. However, it only, began to be adopted on a large scale at the beginning of the 1990's and will not be considered a mature technology until well into the next millennium. Actuators based on linear motor technology have a number of technical advantages including high speed, high positional accuracy and fine resolution. They also require fewer component parts. Some precautions are necessary when using linear motors. Care must be taken to avoid overheating and excessive vibration, and the magnetic components must be protected.

  19. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  20. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  1. Estimation of failure probabilities of linear dynamic systems by ...

    Indian Academy of Sciences (India)

    variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical thresh-.

  2. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...

  3. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    to a battery of parametric and non-parametric test statistics to measure their performance in one- and four-step ahead forecasts of quarterly data. Using genetic-neural fuzzy systems we find the computational approach superior to some degree and show how to combine both techniques successfully.......This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  4. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  5. Composite-step product methods for solving nonsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.F.; Szeto, T. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31

    The Biconjugate Gradient (BCG) algorithm is the {open_quotes}natural{close_quotes} generalization of the classical Conjugate Gradient method to nonsymmetric linear systems. It is an attractive method because of its simplicity and its good convergence properties. Unfortunately, BCG suffers from two kinds of breakdowns (divisions by 0): one due to the non-existence of the residual polynomial, and the other due to a breakdown in the recurrence relationship used. There are many look-ahead techniques in existence which are designed to handle these breakdowns. Although the step size needed to overcome an exact breakdown can be computed in principle, these methods can unfortunately be quite complicated for handling near breakdowns since the sizes of the look-ahead steps are variable (indeed, the breakdowns can be incurable). Recently, Bank and Chan introduced the Composite Step Biconjugate Gradient (CSBCG) algorithm, an alternative which cures only the first of the two breakdowns mentioned by skipping over steps for which the BCG iterate is not defined. This is done with a simple modification of BCG which needs only a maximum look-ahead step size of 2 to eliminate the (near) breakdown and to smooth the sometimes erratic convergence of BCG. Thus, instead of a more complicated (but less prone to breakdown) version, CSBCG cures only one kind of breakdown, but does so with a minimal modification to the usual implementation of BCG in the hope that its empirically observed stability will be inherited. The authors note, then, that the Composite Step idea can be incorporated anywhere the BCG polynomial is used; in particular, in product methods such as CGS, Bi-CGSTAB, and TFQMR. Doing this not only cures the breakdown mentioned above, but also takes on the advantages of these product methods, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG.

  6. Adaptive feedback control by constrained approximate dynamic programming.

    Science.gov (United States)

    Ferrari, Silvia; Steck, James E; Chandramohan, Rajeev

    2008-08-01

    A constrained approximate dynamic programming (ADP) approach is presented for designing adaptive neural network (NN) controllers with closed-loop stability and performance guarantees. Prior knowledge of the linearized equations of motion is used to guarantee that the closed-loop system meets performance and stability objectives when the plant operates in a linear parameter-varying (LPV) regime. In the presence of unmodeled dynamics or failures, the NN controller adapts to optimize its performance online, whereas constrained ADP guarantees that the LPV baseline performance is preserved at all times. The effectiveness of an adaptive NN flight controller is demonstrated for simulated control failures, parameter variations, and near-stall dynamics.

  7. Homogeneous piecewise polynomial Lyapunov function for robust stability of uncertain piecewise linear system

    International Nuclear Information System (INIS)

    BenAbdallah, Abdallah; Hammami, Mohamed Ali; Kallel, Jalel

    2009-01-01

    In this paper we present some sufficient conditions for the robust stability and stabilization of time invariant uncertain piecewise linear system using homogenous piecewise polynomial Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities which can be numerically solved. An application of the obtained result is given. It consists in resolving the stabilization of piecewise uncertain linear control systems by using a state piecewise linear feedback.

  8. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-10-01

    Full Text Available The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM. The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m according to the guidelines of the General Services Administration for BIM accuracy.

  9. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    Science.gov (United States)

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-10-16

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  10. A novel linear direct drive system for textile winding applications

    OpenAIRE

    Jakeman, N; Bullough, W; Bingham, Chris; Mellor, Phillip

    2003-01-01

    The paper describes the specification, modelling, magnetic design, thermal characteristics and control of a novel, high acceleration (up to 82g) brushless PM linear actuator with Halbach array, for textile package winding applications. Experimental results demonstrate the realisation of the actuator and induced performance advantages afforded to the phase lead, closed-loop position control scheme.

  11. Estimation of failure probabilities of linear dynamic systems by ...

    Indian Academy of Sciences (India)

    An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.

  12. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  13. Kinetics of clusters in a binary linear system

    NARCIS (Netherlands)

    Hilhorst, H.J.

    We consider the stochastically time-dependent behaviour of a binary linear chain of N units at temperature T and in an external field H. The kinetics is described in terms of clusters (sequences) of specified numbers of units in the same state. A coarse-grained master equation for the cluster

  14. Riccati transformations and principal solutions of discrete linear systems

    International Nuclear Information System (INIS)

    Ahlbrandt, C.D.; Hooker, J.W.

    1984-01-01

    Consider a second-order linear matrix difference equation. A definition of principal and anti-principal, or recessive and dominant, solutions of the equation are given and the existence of principal and anti-principal solutions and the essential uniqueness of principal solutions is proven

  15. Iterative linear system solvers with approximate matrix-vector products

    NARCIS (Netherlands)

    Eshof, J. van den; Sleijpen, G.L.G.; Gijzen, M.B. van

    2003-01-01

    There are classes of linear problems for which a matrix-vector product is a time consuming operation because an expensive approximation method is required to compute it to a given accuracy. One important example is simulations in lattice QCD with Neuberger fermions where a matrix multiply

  16. Linearization of systems of four second-order ordinary differential ...

    Indian Academy of Sciences (India)

    found and proved to be cubically semi-linear in the dependent variables [3]. Separately, the geometric .... and all three parameters in (4) are complex functions of the real independent variable. Thus we obtain .... coupling as above but whose coefficients involve the dependent and independent variables, f1 − f1( f 2. 1 − f 2.

  17. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-09-01

    Full Text Available Operating system (OS technology is significant for the proliferation of the wireless sensor network (WSN. With an outstanding OS; the constrained WSN resources (processor; memory and energy can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  18. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Directory of Open Access Journals (Sweden)

    José Luis Torres-Moreno

    2016-03-01

    Full Text Available This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs. Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF and the unscented Kalman filter (UKF, in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics.

  19. The duality in the topological vector spaces and the linear physical system theory

    International Nuclear Information System (INIS)

    Oliveira Castro, F.M. de.

    1980-01-01

    The excitation-response relation in a linear, passive, and causal physical system who has the property of this relation be invariant for a time translation is univocally determined by the general form of the linear and continuous functionals defined on the linear topological space chosen for the representation of the excitations. (L.C.) [pt

  20. Amplitude Linearizers for PEP-II 1.2 MW Klystrons and LLRF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Winkle, D.; Browne, J.; Fox, J.D.; Mastorides, T.; Rivetta, C.; Teytelman, D.; /SLAC

    2006-07-18

    The PEP-II B-factory has aggressive current increases planned for luminosity through 2008. At 2.2A (HER) on 4A (LER) currents, we estimate that longitudinal growth rates will be comparable to the damping rates currently achieved in the existing low level RF and longitudinal feedback systems. Prior to having a good non-linear time domain model [1] it was postulated that klystron small signal gain non-linearity may be contributing to measured longitudinal growth rates being higher than linearly predicted growth rates. Five prototype klystron amplitude modulation linearizers have been developed to explore improved linearity in the LLRF system. The linearizers operate at 476 MHz with 15 dB dynamic range and 1 MHz linear control bandwidth. Results from lab measurements and high current beam tests are presented. Future development plans, conclusions from beam testing and ideas for future use of this linearization technique are presented.

  1. A final focus system for the Next Linear Collider

    International Nuclear Information System (INIS)

    Zimmermann, F.; Brown, K.; Emma, P.; Helm, R.; Irwin, J.; Tenenbaum, P.; Wilson, P.

    1995-06-01

    The final focus of the Next Linear Collider (NLC) demagnifies electron and positron beams of 250--750 GeV energy down to a transverse size of about 2.5 x 350 nm 2 at the interaction point (IP). The basic layout, momentum bandwidth, vibration tolerances, wakefield effects, and the tunability of the proposed final focus design are discussed. Also a perspective is given on the crab cavity and on effects of the solenoid field in the interaction region

  2. Adaptive ensemble Kalman filtering of non-linear systems

    Directory of Open Access Journals (Sweden)

    Tyrus Berry

    2013-07-01

    Full Text Available A necessary ingredient of an ensemble Kalman filter (EnKF is covariance inflation, used to control filter divergence and compensate for model error. There is an on-going search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra (1970, 1972 enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the model error and observation covariances. We propose an adaptive scheme, based on lifting Mehra's idea to the non-linear case, that recovers the model error and observation noise covariances in simple cases, and in more complicated cases, results in a natural additive inflation that improves state estimation. It can be incorporated into non-linear filters such as the extended Kalman filter (EKF, the EnKF and their localised versions. We test the adaptive EnKF on a 40-dimensional Lorenz96 model and show the significant improvements in state estimation that are possible. We also discuss the extent to which such an adaptive filter can compensate for model error, and demonstrate the use of localisation to reduce ensemble sizes for large problems.

  3. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  4. Complexity in Linear Systems: A Chaotic Linear Operator on the Space of Odd 2π-Periodic Functions

    Directory of Open Access Journals (Sweden)

    Tamás Kalmár-Nagy

    2017-01-01

    Full Text Available Not just nonlinear systems but infinite-dimensional linear systems can exhibit complex behavior. It has long been known that twice the backward shift on the space of square-summable sequences l2 displays chaotic dynamics. Here we construct the corresponding operator C on the space of 2π-periodic odd functions and provide its representation involving a Principal Value Integral. We explicitly calculate the eigenfunction of this operator, as well as its periodic points. We also provide examples of chaotic and unbounded trajectories of C.

  5. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  6. Quality control of virtual wedge in a linear electron accelerator with a computerized radiography system (CR)

    International Nuclear Information System (INIS)

    Ordiales, J. M.; Alvarez, F. J.; Falero, B.

    2011-01-01

    For quality control of the virtual wedge there are several systems on the market as arrays of detectors or ionization chambers, linear or 2D configuration, radiochromic films or digital imaging systems incorporated in electron linear accelerators (ALE ). The present work aims at implementing a system of Computed Radiography (CR) for a routine check of the virtual wedge.

  7. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  8. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    Abstract. This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and.

  9. Application of linear systems theory to characterize coherence scanning interferometry

    Science.gov (United States)

    Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel

    2012-04-01

    This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.

  10. Dissipative open systems theory as a foundation for the thermodynamics of linear systems.

    Science.gov (United States)

    Delvenne, Jean-Charles; Sandberg, Henrik

    2017-03-06

    In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  11. Mobile-based system for cost-effective e-learning contents delivery in resource and bandwidth constrained learning environments

    Directory of Open Access Journals (Sweden)

    Michael P. J. Mahenge

    2014-12-01

    Full Text Available The advancement in Information and Communication Technologies (ICTs has brought opportunities for the development of Smart Cities. The Smart City uses ICT to enhance performance and wellbeing, to reduce costs and resource consumption, and to engage more effectively and actively with its citizens. In particular, the education sector is adopting new ways of learning in Higher Education Institutions (HEIs through e-learning systems. While these opportunities exist, e-learning content delivery and accessibility in third world countries like Tanzania is still a challenge due to resource and network constrained environments. The challenges include: high cost of bandwidth connection and usage; high dependency on the Internet; limited mobility and portability features; inaccessibility during the offline period and shortage of ICT facilities. In this paper, we investigate the use of mobile technology to sustainably support education and skills development particularly in developing countries. Specifically, we propose a Cost-effective Mobile Based Learning Content Delivery system for resource and network constrained environments. This system can be applied to cost-effectively broaden and support education in many cities around the world, which are approaching the 'Smart City' concept in their own way, even with less available technology infrastructure. Therefore, the proposed solution has the potential to reduce the cost of the bandwidth usage, and cut down the server workload and the Internet usage overhead by synchronizing learning contents from some remote server to a local database in the user’s device for offline use. It will also improve the quality of experience and participation of learners as well as facilitate mobility and portability in learning activities, which also supports the all-compassing learning experience in a Smart City.

  12. How to Use Linear Programming for Information System Performances Optimization

    Directory of Open Access Journals (Sweden)

    Hell Marko

    2014-09-01

    Full Text Available Background: Organisations nowadays operate in a very dynamic environment, and therefore, their ability of continuously adjusting the strategic plan to the new conditions is a must for achieving their strategic objectives. BSC is a well-known methodology for measuring performances enabling organizations to learn how well they are doing. In this paper, “BSC for IS” will be proposed in order to measure the IS impact on the achievement of organizations’ business goals. Objectives: The objective of this paper is to present the original procedure which is used to enhance the BSC methodology in planning the optimal targets of IS performances value in order to maximize the organization's effectiveness. Methods/Approach: The method used in this paper is the quantitative methodology - linear programming. In the case study, linear programming is used for optimizing organization’s strategic performance. Results: Results are shown on the example of a case study national park. An optimal performance value for the strategic objective has been calculated, as well as an optimal performance value for each DO (derived objective. Results are calculated in Excel, using Solver Add-in. Conclusions: The presentation of methodology through the case study of a national park shows that this methodology, though it requires a high level of formalisation, provides a very transparent performance calculation.

  13. 3Es System Optimization under Uncertainty Using Hybrid Intelligent Algorithm: A Fuzzy Chance-Constrained Programming Model

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2016-01-01

    Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.

  14. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

  15. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Thus, constructing a subsystem Markov model and matching its parameters with the specified safety factors provides the basis for the entire system analysis. For the system simulation, temporal databases and predictive control algorithm are designed. The simulation results are analyzed to assess the reliability of the system ...

  16. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Edwin Tazelaar; E. Middelman; P. van den Bosch; Bram Veenhuizen

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  17. Distributed Hardware-in-the-loop simulator for autonomous continuous dynamical systems with spatially constrained interactions

    NARCIS (Netherlands)

    Verburg, D.J.; Papp, Z.; Dorrepaal, M.

    2003-01-01

    The state-of-the-art intelligent vehicle, autonomous guided vehicle and mobile robotics application domains can be described as collection of interacting highly autonomous complex dynamical systems. Extensive formal analysis of these systems – except special cases – is not feasible, consequently the

  18. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  19. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... cannot be achieved without violation of process constraints. A target calculation function can be used to calculate the optimal achievable target for the process. The use of hard and soft constraints for process input constraints in the MPC controllers, ensures feasible solutions. The computational load...... as function of controllers type, Model dimension and constraint type will be discussed. Finally the special requirements set by processes including a pure integration dynamics will be illustrated by a linearised CSTR process. The simulated results presented, will later on be implemented on and demonstrated...

  20. Linear and/or curvilinear rail mount system

    Science.gov (United States)

    Thomas, Jackie D. (Inventor); Harris, Lawanna L. (Inventor)

    2012-01-01

    One or more linear and/or curvilinear mounting rails are coupled to a structure. Each mounting rail defines a channel and at least one cartridge assembly is engaged in the channel. Each cartridge assembly includes a housing that slides within the channel. The housing defines a curvilinearly-shaped recess longitudinally aligned with the channel when the housing is in engagement therewith. The cartridge assembly also includes a cleat fitted in the recess for sliding engagement therealong. The cleat can be coupled to a fastener that passes through the mounting rail and the housing when the housing is so-engaged in the channel. The cleat is positioned in the recess by a position of the fastener.

  1. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    Science.gov (United States)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  2. Tunnel radio communications system at Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Struven, W.C.

    1980-07-01

    A unique single frequency, dual daisy chain tunnel radio communication system has been developed for use in our new Positron-Electron Storage Ring. Communications are possible between portables in the underground ring and between a portable in the ring and all control rooms on the site. The system is designed as a wide band facility and therefore can carry many simplex and duplex transmissions. This system utilizes TV twinlead as a distributed antenna and repeater amplifiers to cover more than 7000 feet of underground tunnel. The design philosophy, tests and initial design are discussed and contrasted with the final implementation of the system. Future uses of the system are discussed.

  3. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-12-01

    Full Text Available Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.

  4. Stability analysis and controller design for a linear system with Duhem hysteresis nonlinearity

    NARCIS (Netherlands)

    Ouyang, Ruiyue; Jayawardhana, Bayu

    2012-01-01

    In this paper, we investigate the stability of feedback interconnections between a linear system and a Duhem hysteresis operator, where the linear system satisfies either counter-clockwise (CCW) or clockwise (CW) inputoutput dynamics [1], [13]. More precisely, depending on the input-output dynamics

  5. Weak regularizability and pole assignment for non-square linear systems

    Czech Academy of Sciences Publication Activity Database

    Korotka, Tetiana; Loiseau, J. J.; Zagalak, Petr

    2012-01-01

    Roč. 48, č. 6 (2012), s. 1065-1088 ISSN 0023-5954 R&D Projects: GA ČR GAP103/12/2431 Keywords : linear systems * linear state feedback * pole assignment Subject RIV: BC - Control Systems Theory Impact factor: 0.619, year: 2012 http://library.utia.cas.cz/separaty/2013/AS/korotka-0386325.pdf

  6. EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe

    International Nuclear Information System (INIS)

    Chomiuk, Laura; Soderberg, Alicia M.; Moe, Maxwell; Margutti, Raffaella; Fong, Wen-fai; Dittmann, Jason A.; Chevalier, Roger A.; Rupen, Michael P.; Badenes, Carles; Fransson, Claes

    2012-01-01

    We report unique Expanded Very Large Array observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ∼10 15 -10 16 cm, implying an upper limit on the mass loss rate from the progenitor system of M-dot -10 M ☉ yr -1 (assuming a wind speed of 100 km s –1 ) or expansion into a uniform medium with density n CSM ∼ –3 . Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitor systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out much of the parameter space associated with popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space largely inhabited by some double degenerate systems, as well as exotic single degenerates with a sufficient time delay between mass accretion and SN explosion.

  7. Conservation laws for multidimensional systems and related linear algebra problems

    NARCIS (Netherlands)

    Igonine, Sergei

    2002-01-01

    We consider multidimensional systems of PDEs of generalized evolution form with t-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order t-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for the

  8. Conservation laws for multidimensional systems and related linear algebra problems

    NARCIS (Netherlands)

    Igonin, S.

    2002-01-01

    We consider multidimensional systems of PDEs of generalized evolution form with $t$-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order $t$-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for

  9. Static linear Fresnel lenses as LCPV system in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2011-01-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will

  10. Linear time heteronymous damping in nonlinear parametric systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena; Houfek, Martin

    2016-01-01

    Roč. 40, 23-24 (2016), s. 10038-10051 ISSN 0307-904X Institutional support: RVO:61388998 Keywords : nonlinear dynamics of system s * parametric system s * time heteronymous damping * gears Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 2.350, year: 2016

  11. Conservation laws for multidimensional systems and related linear algebra problems

    International Nuclear Information System (INIS)

    Igonin, Sergei

    2002-01-01

    We consider multidimensional systems of PDEs of generalized evolution form with t-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order t-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for the existence of higher conservation laws in terms of the system's symbol. For systems that violate this condition we give an effective upper bound on the order of conservation laws. Using this result, we completely describe conservation laws for viscous transonic equations, for the Brusselator model and the Belousov-Zhabotinskii system. To achieve this, we solve over an arbitrary field the matrix equations SA=A t S and SA=-A t S for a quadratic matrix A and its transpose A t , which may be of independent interest

  12. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  13. Design and implementation of a patient navigation system in rural Nepal: Improving patient experience in resource-constrained settings.

    Science.gov (United States)

    Raut, Anant; Thapa, Poshan; Citrin, David; Schwarz, Ryan; Gauchan, Bikash; Bista, Deepak; Tamrakar, Bibhu; Halliday, Scott; Maru, Duncan; Schwarz, Dan

    2015-12-01

    Patient navigation programs have shown to be effective across multiple settings in guiding patients through the care delivery process. Limited experience and literature exist, however, for such programs in rural and resource-constrained environments. Patients living in such settings frequently have low health literacy and substantially lower social status than their providers. They typically have limited experiences interfacing with formalized healthcare systems, and, when they do, their experience can be unpleasant and confusing. At a district hospital in rural far-western Nepal, we designed and implemented a patient navigation system that aimed to improve patients' subjective care experience. First, we hired and trained a team of patient navigators who we recruited from the local area. Their responsibility is exclusively to demonstrate compassion and to guide patients through their care process. Second, we designed visual cues throughout our hospital complex to assist in navigating patients through the buildings. Third, we incorporated the patient navigators within the management and communications systems of the hospital care team, and established standard operating procedures. We describe here our experiences and challenges in designing and implementing a patient navigator program. Such patient-centered systems may be relevant at other facilities in Nepal and globally where patient health literacy is low, patients come from backgrounds of substantial marginalization and disempowerment, and patient experience with healthcare facilities is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Phase and amplitude control system for Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Yoo, S.J.

    1983-01-01

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  15. Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays

    Directory of Open Access Journals (Sweden)

    Tadeusz Kaczorek

    2013-06-01

    Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.

  16. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2005-01-01

    In this paper we present an approach to the design optimization of fault-tolerant embedded systems for safety-critical applications. Processes are statically scheduled and communications are performed using the time-triggered protocol. We use process re-execution and replication for tolerating...

  17. Verification and controller synthesis for resource-constrained real-time systems

    DEFF Research Database (Denmark)

    Li, Shuhao; Pettersson, Paul

    2010-01-01

    -TIGA to check whether a given control objective can be enforced, and if so, we synthesize a controller for the system. We carry out a case study of this approach on a battery-powered autonomous truck. Experimental results indicate that the method is effective and computationally feasible....

  18. Discontinuous Galerkin Methods for NonLinear Differential Systems

    Science.gov (United States)

    Barth, Timothy; Mansour, Nagi (Technical Monitor)

    2001-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.

  19. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  20. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    , in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...... time delay at any given performance. In other words, attaining a specific performance level necessitates achieving a higher data rate when the channel time delay grows. The theoretical framework is demonstrated via an illustrative example.......This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover...

  1. Analysis, control and optimal operations in hybrid power systems advanced techniques and applications for linear and nonlinear systems

    CERN Document Server

    Bizon, Nicu; Mahdavi Tabatabaei, Naser

    2014-01-01

    This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.

  2. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    , for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical......Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  3. Soliton-like behavior in fast two-pulse collisions in weakly perturbed linear physical systems

    Science.gov (United States)

    Peleg, Avner; Nguyen, Quan M.; Huynh, Toan T.

    2017-12-01

    We demonstrate that pulses of linear physical systems, weakly perturbed by nonlinear dissipation, exhibit soliton-like behavior in fast collisions. The behavior is demonstrated for linear waveguides with weak cubic loss and for systems described by linear diffusion-advection models with weak quadratic loss. We show that in both systems, the expressions for the collision-induced amplitude shifts due to the nonlinear loss have the same form as the expression for the amplitude shift in a fast collision between two solitons of the cubic nonlinear Schrödinger equation in the presence of weak cubic loss. Our analytic predictions are confirmed by numerical simulations with the corresponding coupled linear evolution models with weak nonlinear loss. These results open the way for studying dynamics of fast collisions between pulses of weakly perturbed linear physical systems in an arbitrary spatial dimension.

  4. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    Science.gov (United States)

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. On the origin of power-law distributions in systems with constrained phase space

    Directory of Open Access Journals (Sweden)

    E.V. Vakarin

    2013-01-01

    Full Text Available Behavior of condensed matter systems deviating from the standard equilibrium conditions is discussed. Statistical properties of coupled dynamic-stochastic systems are studied within a combination of the maximum information principle and the superstatistical approach. The conditions at which the Shannon entropy functional leads to a power-law statistics are investigated. It is demonstrated that, from a quite general point of view, the power-law dependencies may appear as a consequence of "global" constraints restricting both the dynamic phase space and the stochastic fluctuations. As a result, at sufficiently long observation times the dynamic counterpart is driven into a non-equilibrium steady state whose deviation from the usual exponential statistics is given by the distance from the conventional equilibrium.

  6. Constrained control framework for a stand-alone hybrid (Stirling engine)/supercapacitor power generation system

    International Nuclear Information System (INIS)

    Alamir, M.; Rahmani, M.A.; Gualino, D.

    2014-01-01

    Highlights: • A complete state feedback controller for the voltage conditioning stage of a hybrid power plant is proposed. • The controller explicitly handles the state and controller constraints. • The developed control methodology can be applied to various power electronics architectures. - Abstract: In this paper, a complete control architecture is proposed for the voltage conditioning stage of a hybrid power generation system composed of a Stirling engine coupled with a supercapacitor. Such a solar energy-based generation system aims at providing electricity to off-grid regions. The novelty of the proposed architecture is that it completely handles constraints on all the state variables of the electric stage while providing near to optimal performances in terms of settling time. The derivation of the control law enables a deep understanding of the main issues involved in the success of the closed-loop control. Moreover, the resulting feedback laws are real-time compatible and are given in a complete explicit form

  7. A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System

    Directory of Open Access Journals (Sweden)

    Carlos Aguilar-Ibanez

    2016-01-01

    Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.

  8. ASAP: A MAC Protocol for Dense and Time-Constrained RFID Systems

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2007-08-01

    Full Text Available We introduce a novel medium access control (MAC protocol for radio frequency identification (RFID systems which exploits the statistical information collected at the reader. The protocol, termed adaptive slotted ALOHA protocol (ASAP, is motivated by the need to significantly improve the total read time performance of the currently suggested MAC protocols for RFID systems. In order to accomplish this task, ASAP estimates the dynamic tag population and adapts the frame size in the subsequent round via a simple policy that maximizes an appropriately defined efficiency function. We demonstrate that ASAP provides significant improvement in total read time performance over the current RFID MAC protocols. We next extend the design to accomplish reliable performance of ASAP in realistic scenarios such as the existence of constraints on frame size, and mobile RFID systems where tags move at constant velocity in the reader's field. We also consider the case where tags may fail to respond because of a physical breakdown or a temporary malfunction, and show the robustness in those scenarios as well.

  9. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    for certain input in the time or frequency domain, are emphasised. Consequently, some special techniques are required, in particular for input signal design and model validation. The model structure containing physical parameters is constructed from basic physical laws (mathematical modelling). It is possible......Estimation of physical parameters is an important subclass of system identification. The specific objective is to obtain accurate estimates of the model parameters, while the objective of other aspects of system identification might be to determine a model where other properties, such as responses...... and essential to utilise this physical insight in the input design and validation procedures. This project has two objectives: 1. To develop and apply theories and techniques that are compatible with physical insight and robust to violation of assumptions and approximations, for system identification in general...

  10. Development Of Linear Quadratic Regulator Design For Small UAV System

    Directory of Open Access Journals (Sweden)

    Cho Zin Myint

    2015-08-01

    Full Text Available The aim of this paper is to know the importance role of stability analysis for both unmanned aircraft system and for all control system. The objective of paper is to develop a method for dynamic stability analysis of the design process. These are categorized intoTo design model and stability analysis of UAV based on the forces and moment equations of aircraft dynamic model To choose the suitable controller for desired altitude of a particular UAV model To analyze the stability condition for aircraft using mathematical modeling and MATLAB. In this paper the analytical model of the longitudinal dynamic of flying wing UAV has been developed using aerodynamic data. The stability characteristics of UAV can be achieved from the system transfer function with LQR controller.

  11. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    Science.gov (United States)

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  13. THE CONSTRAINING FACTORS OF THE INNOVATIVE DIRECTION IN THE BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Ludmila COBZARI

    2014-03-01

    Full Text Available The new reality and proper functioning of banking institutions in order to fully satisfy the customers’ needs by using modern electronic banking technologies, and in some cases, revision of the monitoring procedures and control of hazards. Without the use of innovations in the banking system it is almost impossible to create high competitive products and services. Under these conditions, a significant competitive advantage will have the banks that will be able to develop and introduce new technologies, products and services, develop alternative customer service channels, and namely achieve the innovation process, innovation becoming finally an effective mean of competition.

  14. THE CONSTRAINING FACTORS OF THE INNOVATIVE DIRECTION IN THE BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Ludmila COBZARI

    2014-01-01

    Full Text Available The new reality and proper functioning of banking institutions in order to fully satisfy the customers’ needs by using modern electronic banking technologies, and in some cases, revision of the monitoring procedures and control of hazards. Without the use of innovations in the banking system it is almost impossible to create high competitive products and services. Under these conditions, a significant competitive advantage will have the banks that will be able to develop and introduce new technologies, products and services, develop alternative customer service channels, and namely achieve the innovation process, innovation becoming finally an effective mean of competition.

  15. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  16. Downlink SINR Distribution of Linearly Precoded Multiuser MIMO Systems

    DEFF Research Database (Denmark)

    Lin, Zihuai; Sørensen, Troels Bundgaard; Mogensen, Preben

    2007-01-01

    is confined to 3GPP downlink transmission in which we specifically investigate the Single User (SU) and Multi-user (MU) Spatial Divsion Multiplexing (SDM) MIMO schemes. From the analytical results we find that the outage probability for systems using the SU-MIMO scheme is larger than the one for the MU...

  17. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2004-01-01

    This paper develops a stability theorem and response bounds for non-conservative systems of the form MX + (D + G)x + (K + N)x = f(t), with hermitian positive-definite matrices M, D and K, and skew-hermitian matrices G and N. To this end, we first find a Lyapunov function by solving the Lyapunov m...

  18. Stability and stabilization of linear systems with saturating actuators

    CERN Document Server

    Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle

    2011-01-01

    Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.

  19. Linear and branching metrics for quantitative transition systems

    NARCIS (Netherlands)

    de Alfaro, L.; Faella, M.; Stoelinga, Mariëlle Ida Antoinette; Díaz, J.; Karhumäki, J.; Lepistö, A.; Sannella, D.

    2004-01-01

    We extend the basic system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as real values in the interval [0,1]. Trace inclusion and equivalence give rise to asymmetrical and

  20. Identification of linear error-models with projected dynamical systems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Kuhnen, K.

    2004-01-01

    Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517

  1. cauchy problems for semi-linear hyperbolic systems with their ...

    African Journals Online (AJOL)

    DJFLEX

    is given. We apply this solution approached to establish the solution representation for any isentropic fluid flow. KEYWORDS: Hyperbolic Systems, Characteristic curves, eigenvalues, eigenvectors, isentropic fluid. 1.0. INTRODUCTION. Cauchy problems arose naturally from physical phenomena and are of great interest.

  2. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    Laser-wire; accelerator test facility; laser; optical system; Compton; beam emittance; MOPA; fiber laser. Abstract. A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to ...

  3. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    ... line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires. Keywords. Laser-wire; accelerator test facility; laser; optical system; Compton; beam emittance; MOPA; fiber laser.

  4. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  5. Computational Experiments with ABS Algorithms for KKT Linear Systems

    Czech Academy of Sciences Publication Activity Database

    Bodon, E.; Del Popolo, A.; Lukšan, Ladislav; Spedicato, E.

    2001-01-01

    Roč. 16, č. 1-4 (2001), s. 85-99 ISSN 1055-6788 R&D Projects: GA ČR GA201/00/0080 Institutional research plan: AV0Z1030915 Keywords : ABS algorithms * KKT systems Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.623, year: 2001

  6. Linear Motion Systems. A Modular Approach for Improved Straightness Performance

    NARCIS (Netherlands)

    Nijsse, G.J.P.

    2001-01-01

    This thesis deals with straight motion systems. A modular approach has been applied in order to find ways to improve the performance. The main performance parameters that are considered are position accuracy, repeatability and, to a lesser extent, cost. Because of the increasing requirements to

  7. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  8. Linear Optimization of Frequency Spectrum Assignments Across System

    Science.gov (United States)

    2016-03-01

    ELECTROMAGNETIC MANEUVER WARFARE .............................5  B.  THE SPECTRUM AS THE NEWEST DOMAIN ..................................6  C.  A FULL...environment EMI electromagnetic interference EMS electromagnetic spectrum EMW electromagnetic maneuver warfare EP electronic protect ES electronic...warships’ electromagnetic systems to operate dynamically across the spectrum (Carter 2013). Bureaucratic and administrative spectrum allocations

  9. Linear and Branching Metrics for Quantitative Transition Systems

    NARCIS (Netherlands)

    de Alfaro, Luca; Faella, Marco; Stoelinga, Mariëlle Ida Antoinette

    2004-01-01

    We extend the basic system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as real values in the interval [0,1]. Trace inclusion and equivalence give rise to asymmetrical and

  10. Extending the COVAD toolbox to accommodate system non-linearities

    NARCIS (Netherlands)

    Bucco, D.; Weiss, M.

    2009-01-01

    The COVAD toolbox is a MATLAB/Simulink based tool conceived and developed for the rapid analysis and simulation of stochastically driven dynamic systems. In addition to a generic Monte Carlo capability, the toolbox is also supported by traditional analytical techniques such as the adjoint and

  11. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    Science.gov (United States)

    Cannizzo, John K.; Nelemans, Gijs

    2015-01-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  12. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    Science.gov (United States)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  13. Computing a constrained control policy for a single-server queueing system

    DEFF Research Database (Denmark)

    Larsen, Christian

    n different processing times. Hence, we must subdivide the infinite state space into n disjoint sets and for each set decide which processing time to use. We show how to derive a mathematical expression for the long-run average cost per time unit. We also present an algorithm to find the optimal......We consider a single-server queueing system designed to serve homogeneous jobs. The jobs arrive to the system after a Poisson process and all processing times are deterministic. There is a set-up cost for starting up production and a holding cost rate is incurred for each job present. Also......, there is a service cost per job, which is a convex function of the service time. The control policy specifies when the server is on or off. It also specifies the state-dependent processing times. In order to avoid a very detailed control policy (which could be hard to implement) we will only allow the server to use...

  14. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  15. Ex vivo kinematic studies of a canine unlinked semi-constrained hybrid total elbow arthroplasty system.

    Science.gov (United States)

    Lorenz, N D; Channon, S; Pettitt, R; Smirthwaite, P; Innes, J F

    2015-01-01

    Introduction of the Sirius® canine total elbow arthroplasty system, and presentation of the results of a passive range-of-motion analysis based on ex vivo kinematic studies pre-and post-implantation. Thoracic limbs (n = 4) of medium sized dogs were harvested by forequarter amputation. Plain orthogonal radiographs of each limb were obtained pre- and post-implantation. Limbs were prepared by placement of external fixator pins and Kirschner wires into the humerus and radius. Each limb was secured into a custom-made box frame and retro-reflective markers were placed on the exposed ends of the pins and wires. Each elbow was manually moved through five ranges-of-motion manoeuvres. Data collected included six trials of i) full extension to full flexion and ii) pronation and supination in 90° flexion; a three-dimensional motion capture system was used to collect and analyse the data. The Sirius elbow prosthesis was subsequently implanted and the same measurements were repeated. Data sets were tested for normality. Paired t-tests were used for comparison of pre- and post-implantation motion parameters. Kinematic analysis showed that the range-of-motion (mean and SD) for flexion and extension pre-implantation was 115° ± 6 (range: 25° to 140°). The range-of-motion in the sagittal plane post-implantation was 90° ± 4 (range: 36° to 130°) and this reduction was significant (p = 0.0001). The ranges-of-motion (mean and SD) for supination and pronation at 90° were 50° ± 5, whereas the corresponding mean ranges-of-motion post-implantation were 38° ± 6 (p = 0.0188). Compared to a normal elbow, the range-of-motion was reduced. Post-implantation, supination and pronation range-of-motion was significantly reduced at 90° over pre-implantation values. These results provide valuable information regarding the effect of the Sirius system on ex vivo kinematics of the normal canine elbow joint. Further, this particular ex vivo model allowed for satisfactory and repeatable

  16. An energy analysis of a linear concentrating photovoltaic system with an active cooling system

    Science.gov (United States)

    Kerzmann, Tony L.; Schaefer, Laura A.

    2010-08-01

    The recent focus on renewable energy has lead to an increased awareness of solar energy. Concentrating photovoltaic systems have seen a resurgence in research interest since their earlier pilot plant origins in the 1970s and 1980s. The use of concentration reduces the amount of expensive photovoltaic materials while maintaining a high level of incident solar radiation. This research combines the advantage of concentrating solar energy with high efficiency multijunction cells and an active cooling system to create a system that efficiently produces both electricity and heat. A linear concentrating photovoltaic system model was developed in order to simulate the system under actual solar and climatic conditions, where a number of different system variables can be adjusted. This simulation was used to evaluate the effects of domestic hot water use on a 6.2 kWp system. The results show the changes in solar cell efficiency, electricity produced, thermal energy produced, dollar value displaced, and global warming potential displaced as the domestic hot water use of the system is varied. This simulation can be used to find an optimal system for given input conditions and can be used to find optimal operating conditions for a given system size.

  17. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  18. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Directory of Open Access Journals (Sweden)

    Annah S Rolig

    2017-02-01

    Full Text Available Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS, a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  19. The enteric nervous system promotes intestinal health by constraining microbiota composition

    Science.gov (United States)

    Mittge, Erika K.; Ganz, Julia; Troll, Josh V.; Melancon, Ellie; Wiles, Travis J.; Alligood, Kristin; Stephens, W. Zac; Eisen, Judith S.; Guillemin, Karen

    2017-01-01

    Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health. PMID:28207737

  20. Improving Deterministic Reserve Requirements for Security Constrained Unit Commitment and Scheduling Problems in Power Systems

    Science.gov (United States)

    Wang, Fengyu

    Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch

  1. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...

  2. Portable linear-focused solar thermal energy collecting system

    Science.gov (United States)

    Miller, C. G.; Pohl, J. G. (Inventor)

    1977-01-01

    A solar heat collection system is provided by utilizing a line-focusing device that is effectively a cylindrically curved concentrator within a protected environment formed by a transparent inflatable casing. A target, such as a fluid or gas carrying conduit is positioned within or near the casing containing the concentrator, at the line focus of the concentrator. The casing can be inflated at the site of use by a low pressure air supply to form a unitary light weight structure. The collector, including casing, concentrator and target, is readily transportable and can be used either at ground level or on rooftops. The inflatable concentrator can be replaced with a rigid metal or other concentrator while maintaining the novel advantages of the whole solar heat collection system.

  3. Effective solution of a linear system with Chebyshev coefficients

    Czech Academy of Sciences Publication Activity Database

    Kujan, Petr; Hromčík, M.; Šebek, Michael

    2009-01-01

    Roč. 20, č. 8 (2009), s. 619-628 ISSN 1065-2469 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : orthogonal Chebyshev polynomials * hypergeometric functions * optimal PWM problem Subject RIV: BC - Control Systems Theory Impact factor: 0.756, year: 2009 http://dx.doi.org/10.1080/10652460902727938

  4. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Now consider a single generator connected to the external system through a power transformer as shown in figure 1 (Gurunath & Sen 2010). The rotor angle with respect to the voltage Vs θs of the high voltage bus is defined as δs = δ − θs. The expressions for δs, Eq, id and iq are as follows (Gurunath & Sen 2010; Gurunath ...

  5. Static Linear Fresnel Lenses as LCPV System in a Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.

    2011-12-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system

  6. Left Atrial Linear Ablation of Paroxysmal Atrial Fibrillation Guided by Three-dimensional Electroanatomical System

    DEFF Research Database (Denmark)

    Zhang, Dai-Fu; Li, Ying; Qi, Wei-Gang

    2005-01-01

    Objective To investigate the safety and efficacy of Left atrial linear ablation of paroxysmal atrial fibrillation guided by three-dimensional electroanatomical system. Methods 29 patients with paroxysmal atrial fibrillation in this study. A nonfluoroscopic mapping system was used to generate a 3D...... attacks unchanged. No pulmonary vein narrowing was observed. Conclusion Left atrial linear ablation of paroxysmal atrial fibrillation guided by three-dimensional electroanatomical system was safe and effective....

  7. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  8. Timing of Solar Nebula Dispersal Constrained by Early Solar System Paleomagnetism

    Science.gov (United States)

    Wang, H.; Weiss, B. P.; Downey, B. G.; Bai, X. N.; Wang, J.; Suavet, C. R.; Fu, R. R.; Lima, E. A.; Zucolotto, M. E.

    2015-12-01

    The formation of the solar system/extrasolar planets largely takes place in the gas-rich solar nebular/protoplanetary disks. Nebular magnetic fields are thought to play a dominant role in global disk evolution by driving angular momentum transport via the magneto-rotational instability and/or magnetized disk winds, with the magnetically-driven accretion rate proportional to the square of the field strength. Previous paleomagnetic analyses of the Semarkona meteorite found evidence for a ~5-50 μT solar nebular field at ~2-3 My after the formation of calcium-aluminum-rich inclusions (CAIs), which consist of the first solids condensed from the cooling protoplanetary disk. These field strengths are consistent with stellar accretion rates of ~10-8 Msun/yr as typically observed for Sun-like stars. A key remaining question is the time when the nebular magnetic field and solar nebula itself dispersed. To address this, we analyzed the paleomagnetism of angrites, a class of exceptionally well-preserved igneous rocks that should retain magnetic records beginning just ~4 My after CAI formation. Here we present paleomagnetic, rock magnetic, and synchrotron-based transmission X-ray microscopic analyses of the quenched angrites D'Orbigny, Sahara 99555 and Asuka 881371. Our data show that the magnetic field at the angrite parent body region was < ~0.1 µT at ~4 My after CAI formation. This indicates that the nebular magnetic field had rapidly declined by at least a factor of ~50 by that time, such that the magnetically driven solar accretion rate was well below 10-11 Msun/yr. Because a strong nebular magnetic field was likely present throughout most of the gaseous disk lifetime, our results suggest that the solar nebula itself had probably already dispersed by ~4 My after CAI formation. This dispersal time agrees with typical protoplanetary disk lifetimes inferred from infrared excesses for Sun-like protostars. Our results suggest that the formation of the solar system giant

  9. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite

  10. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  11. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  12. Frequency Interval Cross Gramians for Linear and Bilinear Systems

    DEFF Research Database (Denmark)

    Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza

    2017-01-01

    the frequency interval cross gramians are derived in order to be used to obtain information regarding controllability and observability within a single matrix. The advantage of the proposed method is that it is computationally more efficient compared to existing gramian-based techniques since only half...... of the number of equations need to be solved in order to obtain information regarding the controllability and observability of a system compared to existing techniques. Numerical examples are provided to demonstrate the computational efficiency of the proposed method which uses frequency interval cross gramians...

  13. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.

  14. Linear problems and Baecklund transformations for the Hirota-Ohta system

    International Nuclear Information System (INIS)

    Adler, V.E.; Postnikov, V.V.

    2011-01-01

    The auxiliary linear problems are presented for all discretization levels of the Hirota-Ohta system. The structure of these linear problems coincides essentially with the structure of Nonlinear Schroedinger hierarchy. The squared eigenfunction constraints are found which relate Hirota-Ohta and Kulish-Sklyanin vectorial NLS hierarchies.

  15. ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Directory of Open Access Journals (Sweden)

    Valerii Azarskov

    2011-03-01

    Full Text Available Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results.

  16. Establishing a regulatory value chain model: An innovative approach to strengthening medicines regulatory systems in resource-constrained settings.

    Science.gov (United States)

    Chahal, Harinder Singh; Kashfipour, Farrah; Susko, Matt; Feachem, Neelam Sekhri; Boyle, Colin

    2016-05-01

    Medicines Regulatory Authorities (MRAs) are an essential part of national health systems and are charged with protecting and promoting public health through regulation of medicines. However, MRAs in resource-constrained settings often struggle to provide effective oversight of market entry and use of health commodities. This paper proposes a regulatory value chain model (RVCM) that policymakers and regulators can use as a conceptual framework to guide investments aimed at strengthening regulatory systems. The RVCM incorporates nine core functions of MRAs into five modules: (i) clear guidelines and requirements; (ii) control of clinical trials; (iii) market authorization of medical products; (iv) pre-market quality control; and (v) post-market activities. Application of the RVCM allows national stakeholders to identify and prioritize investments according to where they can add the most value to the regulatory process. Depending on the economy, capacity, and needs of a country, some functions can be elevated to a regional or supranational level, while others can be maintained at the national level. In contrast to a "one size fits all" approach to regulation in which each country manages the full regulatory process at the national level, the RVCM encourages leveraging the expertise and capabilities of other MRAs where shared processes strengthen regulation. This value chain approach provides a framework for policymakers to maximize investment impact while striving to reach the goal of safe, affordable, and rapidly accessible medicines for all.

  17. FAST modularization framework for wind turbine simulation: full-system linearization

    Science.gov (United States)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  18. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  19. Modal cost analysis for linear matrix-second-order systems

    Science.gov (United States)

    Skelton, R. E.; Hughes, P. C.

    1980-01-01

    Reduced models and reduced controllers for systems governed by matrix-second-order differential equations are obtained by retaining those modes which make the largest contributions to quadratic control objectives. Such contributions, expressed in terms of modal data, used as mode truncation criteria, allow the statement of the specific control objectives to influence the early model reduction from very high order models which are available, for example, from finite element methods. The relative importance of damping, frequency, and eigenvector in the mode truncation decisions are made explicit for each of these control objectives: attitude control, vibration suppression and figure control. The paper also shows that using modal cost analysis (MCA) on the closed loop modes of the optimally controlled system allows the construction of reduced control policies which feedback only those closed loop modal coordinates which are most critical to the quadratic control performance criterion. In this way, the modes which should be controlled (and hence the modes which must be observable by choice of measurements), are deduced from truncations of the optimal controller.

  20. The Upper Bound for GMRES on Normal Tridiagonal Toeplitz Linear System

    Directory of Open Access Journals (Sweden)

    R. Doostaki∗

    2015-09-01

    Full Text Available The Generalized Minimal Residual method (GMRES is often used to solve a large and sparse system Ax = b. This paper establishes error bound for residuals of GMRES on solving an N × N normal tridiagonal Toeplitz linear system. This problem has been studied previously by Li [R.-C. Li, Convergence of CG and GMRES on a tridiagonal Toeplitz linear system, BIT 47 (3 (2007 577-599.], for two special right-hand sides b = e1, eN . Also, Li and Zhang [R.-C. Li, W. Zhang, The rate of convergence of GMRES on a tridiagonal Toeplitz linear system, Numer. Math. 112 (2009 267-293.] for non-symmetric matrix A, presented upper bound for GMRES residuals. But in this paper we establish the upper bound on normal tridiagonal Toeplitz linear systems for special right-hand sides b = b(lel, for 1  l  N

  1. Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with energy levels e i with i=1,2,...,N. The time-dependent occupation probabilities p i (t) are assumed to obey the nonlinear rate equations τ dp i /dt=-p i ln p i -α(t)p i -β(t)e i p i where α(t) and β(t) are functionals of the p i (t)'s that maintain invariant the mean energy E=Σ i=1 N e i p i (t) and the normalization condition 1=Σ i=1 N p i (t). The entropy S(t)=-k B Σ i=1 N p i (t)ln p i (t) is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p i (t) of the rate equations are unique and well defined for arbitrary initial conditions p i (0) and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the p i 's but of their positive square roots √(p i ), they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski [Phys. Rev. A 63, 022105 (2001);63, 054102 (2001)]. Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger [Physica D 170, 72 (2002)]. We also interpret the functionals k B α(t) and k B β(t) as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu

  2. Analysis of linear dynamic systems of low rank

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Aaljoki, K.; Høskuldsson, Agnar

    2005-01-01

    to carry out graphic analysis of the dynamic systems. It is shown how score vectors can display the low dimensional variation in data, the loading vectors display the correlation structure, and the transformation vectors how the variables generate the resulting variation in data; these graphic analysis......The objective of this paper is to show how the procedures of traditional chemometrics like stepwise evaluation of the model, graphic analysis of the latent structure, etc., can be applied to common modeling methods in chemical engineering like for instance Kalman filtering. Procedures of how...... have proven their importance in traditional chemometric methods. These graphics methods are important in supervising and controlling the process in light of the variation in data. The algorithms can provide with solutions of models having hundreds or thousands of variables. It is shown here how...

  3. A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems

    International Nuclear Information System (INIS)

    Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.

    2015-01-01

    In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors

  4. Improved electron collimation system design for Elekta linear accelerators.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2017-09-01

    V. These results allowed collimation system design for 6 × 6-25 × 25-cm 2 applicators. Reducing trimmer weights by as much as 4 kg (25 × 25-cm 2 applicator) should result in easier applicator handling by the radiotherapy team. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  6. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  7. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base

  8. The 13th International Conference on Magnetically Levitated Systems and Linear Drives MAGLEV 1993

    Science.gov (United States)

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  9. CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, Jamie R.; Wisniewski, John P.; Hashimoto, Jun [Homer L. Dodge Department of Physics, University of Oklahoma, Norman, OK 73071 (United States); Grady, Carol A. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McElwain, Michael W. [NASA Goddard Space Flight Center, Code 6681, Greenbelt, MD 20771 (United States); Kudo, Tomoyuki; Currie, Thayne M; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Kusakabe, Nobuhiko; Hayashi, Masahiko [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Okamoto, Yoshiko K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Fukagawa, Misato [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Abe, Lyu [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d’Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang; Feldt, Markus [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Goto, Miwa, E-mail: Jamie.R.Lomax@ou.edu, E-mail: wisniewski@ou.edu, E-mail: carol.a.grady@nasa.gov [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); and others

    2016-09-01

    We present a new analysis of multi-epoch, H -band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system’s spectral energy distribution (SED) and H -band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur’s SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur’s spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H -band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk–planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.

  10. Robust computer-aided synthesis and optimization of linear multivariable control systems with varying plant dynamics via AUTOCON

    Science.gov (United States)

    Lefkowitz, C. P.; Tekawy, J. A.; Pujara, P. K.; Safonov, M. G.

    1989-01-01

    AUTOCON is an automated computer-aided design tool for the synthesis and optimization of linear multivariable control systems based upon user-defined control parameter optimization. Violations in stability and performance requirements are computed from constraints on Single Input/Single Output (SISO) open- and closed-loop transfer function frequency responses, and from constraints on the singular-value frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for all critical plant variations. Optimum nonlinear programming algorithms are used in the search for local constrained solutions in which violations in stability and performance are caused either to vanish or be minimized for a proper selection of the control parameters. Classical control system stability and performance design can, in this way, be combined with modern multivariable robustness methods to offer general frequency response loop-shaping via a computer-aided design tool. Complete Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots are produced, including user-defined boundary responses. AUTOCON is used to synthesize and optimize the lateral/directional flight control system for a typical high-performance aircraft.

  11. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem’s parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme...

  12. Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs

    Czech Academy of Sciences Publication Activity Database

    Henrion, D.; Tarbouriech, S.; Kučera, Vladimír

    2005-01-01

    Roč. 50, č. 9 (2005), s. 1360-1364 ISSN 0018-9286 R&D Projects: GA MŠk 1M0567; GA ČR GA102/05/0011 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear matrix inequality (LMI) * linear systems * pole placement * polynomials * time-domain constraints Subject RIV: BC - Control Systems Theory Impact factor: 2.159, year: 2005

  13. Model-Checking of Linear-Time Properties in Multi-Valued Systems

    OpenAIRE

    Li, Yongming; Droste, Manfred; Lei, Lihui

    2012-01-01

    In this paper, we study model-checking of linear-time properties in multi-valued systems. Safety property, invariant property, liveness property, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued $\\omega$-regular properties using lattice-valued automata are thoroughly studied. Since the law o...

  14. On the use of small integrating spheres to improve the linearity range of RASNIKS systems

    International Nuclear Information System (INIS)

    Alberdi, J.; Burgos, C.; Ferrando, A.; Molinero, A.; Schvachkin, V.; Figueroa, C.F.; Matorras, F.; Rodrigo, T.; Ruiz, A.; Vila, I.

    1997-10-01

    Rasniks elements will be used in the CMS alignment system. The large displacements of the different sub detectors expected in the CMS experiment demands large linearity response of this system. By the use of a small integrating sphere we have optimized the source definition such that a factor three improvement in the linearity range with respect to conventional Rasniks configurations is obtained. The response range reached coincides with the maximum one can get with the components used in the test

  15. Variants of the CMRH method for solving multi-shifted non-Hermitian linear systems

    OpenAIRE

    Gu, Xian-Ming; Huang, Ting-Zhu; Carpentieri, Bruno; Imakura, Akira; Zhang, Ke; Du, Lei

    2016-01-01

    The multi-shifted linear systems with non-Hermitian matrices often arise from the numerical solutions for time-dependent partial/fractional differential equations (PDEs/FDEs), control theory, PageRank problem, etc. In the present paper, we derive the variants of restarted CMRH (Changing Minimal Residual method based on the Hessenberg process), in which the Hessenberg process is always cheaper than the conventional Arnoldi procedure, for solving such sequence of shifted linear systems. In orde...

  16. Identification and control of non-linear time-varying dynamical systems using artificial neural networks

    OpenAIRE

    Dror, Shahar

    1992-01-01

    Approved for public release; distribution is unlimited Identification and control of non-linear dynamical systems is a very complex task which requires new methods of approaching. This research addresses the problem of emulation and control via the use of distributed parallel processing, namely artificial neural networks. Four models for describing non-linear MIMO dynamical systems are presented. Based on these models a combined feedforward and recurrent neural networks are structured t...

  17. An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.

  18. Non-linear rheology of layered systems-a phase model approach

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Matsukawa, Hiroshi; Yukawa, Satoshi; Kawamura, Hikaru

    2007-01-01

    We study non-linear rheology of a simple theoretical model developed to mimic layered systems such as lamellar structures under shear. In the present work we study a 2-dimensional version of the model which exhibits a Kosterlitz-Thouless transition in equilibrium at a critical temperature T c . While the system behaves as Newtonain fluid at high temperatures T > T c , it exhibits shear thinning at low temperatures T c . The non-linear rheology in the present model is understood as due to motions of edge dislocations and resembles the non-linear transport phenomena in superconductors by vortex motions

  19. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  20. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    , the estimate of fault is used to compensate for the effect of the fault. Hence, using the estimate of fault, a fault tolerant controller using a piecewise linear static output feedback is designed such that it stabilizes the system and provides an upper bound on the H∞ performance of the faulty system......In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then....... Sufficient conditions for the existence of robust fault estimator and fault tolerant controller are derived in terms of linear matrix inequalities. Upper bounds on the H∞ performance can be minimized by solving convex optimization problems with linear matrix inequality constraints. The efficiency...

  1. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  2. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  3. Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Campen, J.B.; Bot, G.P.A.

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  4. Reliability of linear and circular consecutive- k -out-of- n systems ...

    African Journals Online (AJOL)

    A consecutive k-out-of-n system consists of an ordered sequence of n components, such that the system functions if and only if at least k (k ≤ n) consecutive components function. The system is called linear (L) or circular (C) depending on whether the components are arranged on a straight line or form a circle. In the rst part, ...

  5. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  6. Increase of nonlinear signal distortions due to linear mode coupling in space division multiplexed systems

    DEFF Research Database (Denmark)

    Kutluyarov, Ruslan V.; Bagmanov, Valeriy Kh; Antonov, Vyacheslav V.

    2017-01-01

    This paper is focused on the analysis of linear and nonlinear mode coupling in space division multiplexed (SDM) optical communications over step-index fiber in few-mode regime. Linear mode coupling is caused by the fiber imperfections, while the nonlinear coupling is caused by the Kerr-nonlineari......This paper is focused on the analysis of linear and nonlinear mode coupling in space division multiplexed (SDM) optical communications over step-index fiber in few-mode regime. Linear mode coupling is caused by the fiber imperfections, while the nonlinear coupling is caused by the Kerr...... to a significant increase of the nonlinear distortions. It is necessary to take this phenomenon into account in SDM systems with linear compensation of mode coupling, because the nonlinear distortions may sufficiently decrease the effectiveness of the compensation....

  7. Stabilization of positive linear discrete-time systems by using a Brauer's theorem.

    Science.gov (United States)

    Cantó, Begoña; Cantó, Rafael; Kostova, Snezhana

    2014-01-01

    The stabilization problem of positive linear discrete-time systems (PLDS) by linear state feedback is considered. A method based on a Brauer's theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO) and for multi-input multioutput (MIMO) cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.

  8. Stabilization of Positive Linear Discrete-Time Systems by Using a Brauer’s Theorem

    Directory of Open Access Journals (Sweden)

    Begoña Cantó

    2014-01-01

    Full Text Available The stabilization problem of positive linear discrete-time systems (PLDS by linear state feedback is considered. A method based on a Brauer’s theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO and for multi-input multioutput (MIMO cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.

  9. Study on spatial resolution improvement of distributed temperature sensor system by linear fitting algorithm

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Li, Jun; Yang, Shuang; Dong, Fengzhong

    2015-10-01

    Spatial resolution determines the minimum space unit that a distributed temperature sensor system can distinguish along the fiber thus it is an important parameter to evaluate the performance of the distributed temperature sensor system. A typical distributed temperature sensor system with a spatial resolution of 5m is built and an algorithm of linear fitting correction is proposed to realize temperature measurement of fiber length shorter than 5m accurately. With the method of linear fitting correction, the spatial resolution of the distributed temperature sensor system has been improved from 5m to 1m. The measured temperature of the DTS system is well calibrated by using linear fitting correction algorithm with a fiber length of 4m, 3m, 2m and 1m respectively. The maximum error of the corrective temperature is 2° for long term measurement.

  10. Detection optimization using linear systems analysis of a coded aperture laser sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, S.M. [Sandia National Labs., Albuquerque, NM (United States). Optoelectronic Design Dept.

    1994-09-01

    Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

  11. Linear Versus Non-linear Supersymmetry, in General

    CERN Document Server

    Ferrara, Sergio; Van Proeyen, Antoine; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM's: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  12. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  13. On Active Surge Control of Compression Systems via Characteristic Linearization and Model Nonlinearity Cancellation

    Directory of Open Access Journals (Sweden)

    Yohannes S.M. Simamora

    2014-09-01

    Full Text Available A simple approach of active surge control of compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last-mentioned was achieved when massflow was 5.38 per cent less than the surge point.

  14. Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices

    Science.gov (United States)

    Gallagher, Timothy M.; Sheldon, Nathan D.; Mauk, Jeffrey L.; Petersen, Sierra V.; Gueneli, Nur; Brocks, Jochen J.

    2017-01-01

    The Midcontinent Rift System (MRS) is a Late Mesoproterozoic (∼1.1 Ga) sequence of volcanic and sedimentary rocks exposed in the Lake Superior Region of North America. The MRS continues to be the focus of much research due to its economic mineral deposits as well as its archive of Precambrian life and tectonic processes. In order to constrain the post-depositional thermal history of the MRS, samples were analyzed for carbonate clumped isotope composition and organic thermal maturity. Clumped isotope values from sedimentary/early-diagenetic samples were partially reset during burial to temperatures between 68 and 75 °C. Solid-state reordering models indicate that maximum burial temperatures of 125–155 °C would reset the clumped isotope values to the observed temperature range prior to the onset of regional cooling and uplift. Clumped isotope results from late-stage veins in the White Pine Mine encompass a greater temperature range (49–116 °C), indicative of spatially variable hydrothermal activity and vein emplacement after burial temperatures fell below 100 °C during regional cooling and uplift. Clumped isotope and organic thermal maturity data do not indicate significant spatial differences in thermal history along the MRS. Observed variability in bulk organic matter composition and biomarker indices are therefore more likely a result of shifts in primary productivity or early-degradation processes. These results demonstrate that the MRS experienced a spatially consistent, relatively mild thermal history (125–155 °C) and is therefore a valuable archive for understanding the Late Mesoproterozoic environment.

  15. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  16. Noise analysis of fluid-valve system in a linear compressor using CAE

    International Nuclear Information System (INIS)

    Lee, Jun Ho; Jeong, Weui Bong; Kim, Dang Ju

    2009-01-01

    A linear compressor in a refrigerator uses piston motion to transfer refrigerant so its efficiency is higher than a previous reciprocal compressor. Because of interaction between refrigerant and valves system in the linear compressor, however, noise has been a main issue. In spite of doing many experimental researches, there is no way to rightly predict the noise. In order to solve this limitation, the CAE analysis is applied. For giving credit to these computational data, all of the data are experimentally validated.

  17. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    Directory of Open Access Journals (Sweden)

    Xiu Kan

    2012-01-01

    Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  18. Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy

    International Nuclear Information System (INIS)

    Giansante, C.; Ferrari, V.

    1996-12-01

    In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors

  19. Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Batt, J.; Rein, G. [Muenchen Univ. (Germany). Mathematisches Inst.; Morrison, P.J. [Texas Univ., Austin, TX (United States)

    1993-03-01

    Rigorous results on the stability of stationary solutions of the Vlasov-Poisson system are obtained in both the plasma physics and stellar dynamics contexts. It is proven that stationary solutions in the plasma physics (stellar dynamics) case are linearly stable if they are decreasing (increasing) functions of the local, i.e. particle, energy. The main tool in the analysis is the free energy of the system, a conserved quantity. In addition, an appropriate global existence result is proven for the linearized Vlasov-Poisson system and the existence of stationary solutions that satisfy the above stability condition is established.

  20. Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations

    Directory of Open Access Journals (Sweden)

    Sung Wook Yun

    2014-01-01

    Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.