A constrained supersymmetric left-right model
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)
2016-03-02
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.
Constrained supersymmetric flipped SU(5) GUT phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mustafayev, Azar [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Stanford University, Department of Physics and SLAC, Palo Alto, CA (United States)
2011-07-15
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M{sub in}, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tau}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2},m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M{sub in}, as we illustrate for several cases with tan {beta}=10 and 55. However, these features do not necessarily disappear at large M{sub in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
Ellis, John; Olive, Keith A
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...
Constrained supersymmetric flipped SU(5) GUT phenomenology
International Nuclear Information System (INIS)
Ellis, John; Mustafayev, Azar; Olive, Keith A.
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M in , above the GUT scale, M GUT . We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino χ and the lighter stau τ 1 is sensitive to M in , as is the relationship between m χ and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m 1/2 ,m 0 ) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M in , as we illustrate for several cases with tan β=10 and 55. However, these features do not necessarily disappear at large M in , unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.
Giedt, Joel; Thomas, Anthony W; Young, Ross D
2009-11-13
Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.
Investigating multiple solutions in the constrained minimal supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Allanach, B.C. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); George, Damien P. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); Cavendish Laboratory, University of Cambridge,JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nachman, Benjamin [SLAC, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)
2014-02-07
Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
International Nuclear Information System (INIS)
Wellegehausen, Bjoern-Hendrik
2012-01-01
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Constraining supersymmetric models using Higgs physics, precision observables and direct searches
International Nuclear Information System (INIS)
Zeune, Lisa
2014-08-01
We present various complementary possibilities to exploit experimental measurements in order to test and constrain supersymmetric (SUSY) models. Direct searches for SUSY particles have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at ∝126 GeV as well as of the W boson mass (M W ) can provide valuable indirect constraints, supplementing the ones from direct searches. This thesis is divided into three major parts: In the first part we present the currently most precise prediction for M W in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters and in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The evaluation includes the full one-loop result and all relevant available higher order corrections of Standard Model (SM) and SUSY type. We perform a detailed scan over the MSSM parameter space, taking into account the latest experimental results, including the observation of a Higgs signal. We find that the current measurements for M W and the top quark mass (m t ) slightly favour a non-zero SUSY contribution. The impact of different SUSY sectors on the prediction of M W as well as the size of the higher-order SUSY corrections are analysed both in the MSSM and the NMSSM. We investigate the genuine NMSSM contribution from the extended Higgs and neutralino sectors and highlight differences between the M W predictions in the two SUSY models. In the second part of the thesis we discuss possible interpretations of the observed Higgs signal in SUSY models. The properties of the observed Higgs boson are compatible with the SM so far, but many other interpretations are also possible. Performing scans over the relevant parts of the MSSM and the NMSSM parameter spaces and applying relevant constraints from Higgs searches, flavour physics and electroweak measurements, we find that a Higgs boson at ∝126 GeV, which decays into two photons, can in
Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario
Energy Technology Data Exchange (ETDEWEB)
Cerna-Velazco, Nhell; Jones-Perez, Joel [Pontificia Universidad Catolica del Peru, Seccion Fisica, Departamento de Ciencias, Lima (Peru); Faber, Thomas; Porod, Werner [Uni Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)
2017-10-15
We consider a scenario inspired by natural supersymmetry, where neutrino data is explained within a low-scale seesaw scenario. We extend the Minimal Supersymmetric Standard Model by adding light right-handed neutrinos and their superpartners, the R-sneutrinos, and consider the lightest neutralinos to be higgsino-like. We consider the possibilities of having either an R-sneutrino or a higgsino as lightest supersymmetric particle. Assuming that squarks and gauginos are heavy, we systematically evaluate the bounds on slepton masses due to existing LHC data. (orig.)
The exceptional generalised geometry of supersymmetric AdS flux backgrounds
Energy Technology Data Exchange (ETDEWEB)
Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford, Andrew Wiles Building,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Petrini, Michela [Sorbonne Université, UPMC Paris 06, UMR 7589,LPTHE, 75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)
2016-12-29
We analyse generic AdS flux backgrounds preserving eight supercharges in D=4 and D=5 dimensions using exceptional generalised geometry. We show that they are described by a pair of globally defined, generalised structures, identical to those that appear for flat flux backgrounds but with different integrability conditions. We give a number of explicit examples of such “exceptional Sasaki-Einstein” backgrounds in type IIB supergravity and M-theory. In particular, we give the complete analysis of the generic AdS{sub 5} M-theory backgrounds. We also briefly discuss the structure of the moduli space of solutions. In all cases, one structure defines a “generalised Reeb vector” that generates a Killing symmetry of the background corresponding to the R-symmetry of the dual field theory, and in addition encodes the generic contact structures that appear in the D=4 M-theory and D=5 type IIB cases. Finally, we investigate the relation between generalised structures and quantities in the dual field theory, showing that the central charge and R-charge of BPS wrapped-brane states are both encoded by the generalised Reeb vector, as well as discussing how volume minimisation (the dual of a- and F-maximisation) is encoded.
International Nuclear Information System (INIS)
Stelle, Kellogg S
2007-01-01
With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Ema, Yohei; Hagihara, Daisuke; Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori
2018-04-01
Recently, a new minimal extension of the Standard Model has been proposed, where a spontaneously broken, flavor-dependent global U(1) symmetry is introduced. It not only explains the hierarchical flavor structure in the quark and lepton sector, but also solves the strong CP problem by identifying the Nambu-Goldstone boson as the QCD axion, which we call flaxion. In this work, we consider supersymmetric extensions of the flaxion scenario. We study the CP and flavor violations due to supersymmetric particles, the effects of R-parity violations, the cosmological gravitino and axino problems, and the cosmological evolution of the scalar partner of the flaxion, sflaxion. We also propose an attractor-like inflationary model where the flaxion multiplet contains the inflaton field, and show that a consistent cosmological scenario can be obtained, including inflation, leptogenesis, and dark matter.
International Nuclear Information System (INIS)
Srednicki, M.
1981-01-01
I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV
International Nuclear Information System (INIS)
Townsend, P.K.; Sierra, G.
1983-01-01
Chiral anomalies for gauge theories in any even dimension are computed and the results applied to supersymmetric theories in D=6, 8 and 10. For D=8 there is an anomalous chiral U(1) invariance, just as in D=4, except for certain special groups. For D=6 and D=10 there is no anomalous chiral U(1) symmetry, but the gauge current is anomalous except for certain ''anomaly-free'' groups. For D=6 the group is thereby constrained to be one of [SU(2), SU(3), exceptional], while for D=10 it is constrained to be one of [SU(n)n 8 ]. (orig.)
Supersymmetric family unification
International Nuclear Information System (INIS)
Frampton, P.H.; Kephart, T.W.
1983-01-01
The superheavy symmetry breaking of the gauge group in supersymmetrized unified theories is studied. The requirement that supersymmetry be unbroken strongly constrains the possible gauge group breaking, and we systematize such constraints group theoretically. In model building, one issue is whether to permit an adjoint matter superfield with concomitant color exotic fermions. A second issue is that of naturalness which is complicated by the well-known supersymmetry non-renormalization theorems. Both with and without an adjoint matter superfield, the most promising group appears to be SU(9) where three families can be naturally accommodated, at least for low-energy gauge group SU(3) x SU(2) x U(1). With an extra U(1) factor, as advocated by Fayet, the non-renormalization theorem must be exploited. (orig.)
Supersymmetric classical mechanics
International Nuclear Information System (INIS)
Biswas, S.N.; Soni, S.K.
1986-01-01
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
Supersymmetric particles at LEP
International Nuclear Information System (INIS)
Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.
1979-10-01
The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)
N=2 supersymmetric dynamics for pedestrians
Tachikawa, Yuji
2015-01-01
Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...
Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio
2012-01-01
We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of
Supersymmetric quasipotential equations
International Nuclear Information System (INIS)
Zaikov, R.P.
1981-01-01
A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru
Supersymmetric Extension of Technicolor & Fermion Mass Generation
DEFF Research Database (Denmark)
Antola, Matti; Di Chiara, Stefano; Sannino, Francesco
2012-01-01
We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....
Duality and supersymmetric monopoles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1998-01-01
Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)
International Nuclear Information System (INIS)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.
Renormalization of supersymmetric theories
International Nuclear Information System (INIS)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses
Topics in supersymmetric theories
International Nuclear Information System (INIS)
Nemeschansky, D.D.
1984-01-01
This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2004-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ f c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f =N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c +1≤ N f c and find that baryon number is broken dynamically for μ > mu c . We also give a qualitative description of the phases in the 'conformal window', 3/2 N c f c , at finite density. (author)
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2003-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential μ, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ > Λ. We find that for N F c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f = N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c + 1 (le) N f c and find that baryon number is broken dynamically for μ > μ c . We also give a qualitative description of the phases in the ''conformal window'', 3/2 N c f c , at finite density
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Symmetries of supersymmetric integrable hierarchies of KP type
International Nuclear Information System (INIS)
Nissimov, E.; Pacheva, S.
2002-01-01
This article is devoted to the systematic study of additional (non-isospectral) symmetries of constrained (reduced) supersymmetric integrable hierarchies of KP type--the so-called SKP (R;M B ,M F ) models. The latter are supersymmetric extensions of ordinary constrained KP hierarchies which contain as special cases basic integrable systems such as (m)KdV, AKNS, Fordy-Kulish, Yajima-Oikawa, etc. As a first main result it is shown that any SKP (R;M B ,M F ) hierarchy possesses two different mutually (anti-)commuting types of superloop superalgebra additional symmetries corresponding to the positive- and negative-grade parts of certain superloop superalgebras. The second main result is the systematic construction of the full algebra of additional Virasoro symmetries of SKP (R;M B ,M F ) hierarchies, which requires nontrivial modifications of the Virasoro flows known from the general case of unconstrained Manin-Radul super-KP hierarchies (the latter flows do not define symmetries for constrained SKP (R;M B ,M F ) hierarchies). As a third main result we provide systematic construction of the supersymmetric analogs of multi-component (matrix) KP hierarchies and show that the latter contain, among others, the supersymmetric version of the Davey-Stewartson system. Finally, we present an explicit derivation of the general Darboux-Baecklund solutions for the SKP (R;M B ,M F ) super-tau functions (supersymmetric 'soliton'-like solutions) which preserve the additional (non-isospectral) symmetries
Instantons in supersymmetric theories
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.
1982-01-01
Instanton effects are considered for a sample of supersymmetric theories: quantum mechanics, gluodynamics. Higgs model. The problem is how to reconcile the apparent lack of the boson-fermion symmetry in the effective instanton induced interaction with supersymmetry of the corresponding lagrangians. It is shown that in case of quantum mechanics and Higgs model there is no conflict between supersymmetry and the instanton calculus since the Ward identities, associated with the supersymmetry transformations, are satisfied. In case of supersymmetric gluodynamics the standard instanton calculus explicity violates the Ward identities. This is due to the lack of symmetry in the standard class of classical solutions used in the instanton calculus
Supersymmetric models without R parity
International Nuclear Information System (INIS)
Ross, G.G.; Valle, J.W.F.
1985-01-01
We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)
Supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Crombrugghe, M. de; Rittenberg, V.
1982-12-01
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)
Supersymmetric reflection matrices
International Nuclear Information System (INIS)
Moriconi, M.; Schoutens, K.
1997-04-01
We briefly review the general structure of integrable particle theories in 1 + 1 dimensions having N = 1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N = 1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N = 1 supersymmetry algebra contains non-trivial topological charges. (author). 8 refs, 2 figs
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Nearly Supersymmetric Dark Atoms
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP
2011-08-12
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
International Nuclear Information System (INIS)
Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin
2016-01-01
Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.
Supersymmetrically transformed periodic potentials
C, David J. Fernandez
2003-01-01
The higher order supersymmetric partners of a stationary periodic potential are studied. The transformation functions associated to the band edges do not change the spectral structure. However, when the transformation is implemented for factorization energies inside of the forbidden bands, the final potential will have again the initial band structure but it can have bound states encrusted into the gaps, giving place to localized periodicity defects.
Planarizable Supersymmetric Quantum Toboggans
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2011-01-01
Roč. 7, - (2011), 018/1-018/23 ISSN 1815-0659. [Workshop on Supersymmetric Quantum Mechanics and Spectral Design. Benasque, 18.07.2010-30.07. 2010] R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : supersymmetry * Schrodinger equation * complexified coordinates Subject RIV: BE - Theoretical Physics Impact factor: 1.071, year: 2011
Dynamics of supersymmetric chameleons
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy
2013-01-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons
Dynamics of supersymmetric chameleons
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.
Spin analysis of supersymmetric particles
International Nuclear Information System (INIS)
Choi, S.Y.; Martyn, H.U.
2006-12-01
The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)
Enhanced lepton flavour violation in the supersymmetric inverse seesaw
International Nuclear Information System (INIS)
Weiland, C
2013-01-01
In minimal supersymmetric seesaw models, the contribution to lepton flavour violation from Z-penguins is usually negligible. In this study, we consider the supersymmetric inverse seesaw and show that, in this case, the Z-penguin contribution dominates in several lepton flavour violating observables due to the low scale of the inverse seesaw mechanism. Among the observables considered, we find that the most constraining one is the μ-e conversion rate which is already restricting the otherwise allowed parameter space of the model. Moreover, in this framework, the Z-penguins exhibit a non-decoupling behaviour, which has previously been noticed in lepton flavour violating Higgs decays
Supersymmetric reciprocal transformation and its applications
International Nuclear Information System (INIS)
Liu, Q. P.; Popowicz, Ziemowit; Tian Kai
2010-01-01
The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a Baecklund-type transformation between these two equations, is adopted to construct a recursion operator for the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated with the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.
International Nuclear Information System (INIS)
Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.
1992-01-01
We show that Tr(-1) F F e -βH is an index for N = 2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β. For integrable theories we can also compute the index thermodynamically, using the exact S-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations. (orig.)
Supersymmetric inflation: Recent progress
International Nuclear Information System (INIS)
Ovrut, B.A.; Steinhardt, P.J.
1986-01-01
The new inflationary universe scenario is, in principle, a simple and powerful approach to resolving a large number of fundamental cosmological problems. However, in order for the scenario to be considered a complete theory, one critical question remains to be answered: What is the physics responsible for the phase transition that triggers the exponential expansion (inflation) of the universe? One possibility that the authors and several other groups have been pursuing is that the physics responsible for the phase transition involves (local) supersymmetry. The goal of this paper is to review the present status of ''Supersymmetric Inflation'', particularly emphasizing some very exciting results that they recently obtained
Aspects of supersymmetric inflation
International Nuclear Information System (INIS)
Lindblom, P.R.
1987-01-01
A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed
Supersymmetric seesaw inflection
International Nuclear Information System (INIS)
Aulakh, Charanjit S.; Garg, Ila
2013-01-01
We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)
Supersymmetric Majoron inflation
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2017-03-31
We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
Supersymmetric GUTs and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1982-06-01
By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)
Deformed supersymmetric mechanics
International Nuclear Information System (INIS)
Ivanov, E.; Sidorov, S.
2013-01-01
Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry
Supersymmetric Quantum Mechanics and Topology
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul
2016-01-01
Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Properties of supersymmetric particles and processes
International Nuclear Information System (INIS)
Barnett, R.M.
1986-01-01
The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs
Collisional processes in supersymmetric plasma
International Nuclear Information System (INIS)
Czajka, Alina; Mrowczynski, Stanislaw
2011-01-01
Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.
Basic hypergeometry of supersymmetric dualities
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar, E-mail: ilmar.gahramanov@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D14476 Potsdam (Germany); Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, D12489 Berlin (Germany); Institute of Radiation Problems ANAS, B.Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku (Azerbaijan); Rosengren, Hjalmar, E-mail: hjalmar@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg (Sweden)
2016-12-15
We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.
How to quantize supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe
Supersymmetric two-particle equations
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1986-01-01
In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found
Supersymmetric models and their phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1995-01-01
The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)
Supersymmetric and supergravity theories
International Nuclear Information System (INIS)
Pernici, M.
1986-01-01
The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations
International Nuclear Information System (INIS)
Tian, Kai; Liu, Q.P.
2012-01-01
A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed. -- Highlights: ► A new supersymmetric Harry Dym equation is constructed through supersymmetric reciprocal transformations. ► The recursion operator and Lax formulation are established for the new supersymmetric Harry Dym equation. ► A supersymmetric equation of Harry Dym type is shown to be linearized through supersymmetric reciprocal transformation.
New supersymmetrizations of the generalized KDV hierarchies
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Stanciu, S.
1993-03-01
Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)
Supersymmetric probes on the conifold
International Nuclear Information System (INIS)
Arean, Daniel; Crooks, David E.; Ramallo, Alfonso V.
2004-01-01
We study the supersymmetric embeddings of different D-brane probes in the AdS 5 xT 1,1 geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T 1,1 space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T 1,1 space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined. (author)
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Supersymmetric flipped SU(5) revitalized
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.
1987-08-06
We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.
Supersymmetric regulators and supercurrent anomalies
International Nuclear Information System (INIS)
Majumdar, P.; Poggio, E.C.; Schnitzer, H.J.
1980-01-01
The supercurrent anomalies of the supercurrent deltasub(μ) of the supersymmetric Yang-Mills theory in Wess-Zumino gauge are computed using the supersymmetric dimensional regulator of Siegel. It is shown that γsub(μ)deltasup(μ) = 0 and deltasub(μ)deltasup(μ) unequal 0 in agreement with an earlier calculation based on the Adler-Rosenberg method. The problem of exhibiting the chiral anomaly and a regulator for local supersymmetry suggests that the interpretation of dimensional reduction in component language is incomplete. (orig.)
On quantization of supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe to resolve ordering ambiguities in the quantum hamiltonian of supersymmetric theories is suggested. The Weyl ordering prescription for supercharge operators should be employed to preserve SUSY algebra on the quantum level. The quantum hamiltonian does not generally coincide with the Weyl ordered classical hamiltonian, the difference being due to the fact that the Weyl symbol of anticommutator of supercharges does not generally coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The suggested procedure is applied in the examples of N=1 and N=2 supersymmetric σ-models analyzed in the constant field limit
Supersymmetric dark matter above the W mass
Griest, Kim; Kamionkowski, Marc; Turner, Michael S.
1989-01-01
The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.
Supersymmetric classical mechanics: free case
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica
2001-06-01
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)
CERN. Geneva
2011-01-01
In these lectures, I shall describe the theory of supersymmetry accessible to people with a knowledge of basic quantum field theory. The lectures will contain recipes of how to calculate which interactions (and which special relations) are in supersymmetry, without providing detailed proofs of where they come from. We shall also cover: motivation for weak-scale supersymmetry and the minimal supersymmetric standard model.
DEFF Research Database (Denmark)
Aggerholm, Kenneth; Moltke Martiny, Kristian
Phenomenological research is in traditional terms a matter of going 'back to the things themselves', as Husserl famously stated. But if phenomenology is to renew itself in creative ways and reveal new aspects of human experience it is of value to look for a certain kind of phenomena: exceptions. ...
Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons
Energy Technology Data Exchange (ETDEWEB)
Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)
2017-11-15
The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)
Constraints on supersymmetric models from the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Carena, M.; Giudice, G.F.; Wagner, C.E.M.
1996-10-01
We study the impact of present and future (g - 2) μ measurements on supersymmetric models. The corrections to (g - 2) μ become particularly relevant in the presence of light sleptons, charginos and neutralinos, especially in the large tan β regime. For moderate or large values of tan β, it is possible to rule out scenarios in which charginos and sneutrinos are both light, but nevertheless escape detection at the LEP2 collider. Furthermore, models in which supersymmetry breaking is transferred to the observable sector through gauge interactions can be efficiently constrained by the (g - 2) μ measurement. (orig.)
A review of Higgs mass calculations in supersymmetric models
DEFF Research Database (Denmark)
Draper, P.; Rzehak, H.
2016-01-01
The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...
Supersymmetric models with light higgsinos
International Nuclear Information System (INIS)
Bruemmer, F.
2012-05-01
In the Minimal Supersymmetric Standard Model, the higgsinos can have masses around the electroweak scale, while the other supersymmetric particles have TeV-scale masses. This happens in models of gauge-mediated SUSY breaking with a high messenger scale, which are motivated from string theory. For particular choices of the messenger eld content, multi-TeV squark and gluino masses naturally lead to a much lower electroweak scale, somewhat similar to focus point supersymmetry. They also induce Higgs masses of 124-126 GeV, while making the discovery of supersymmetry at the LHC unlikely. The light higgsinos will be di cult to see at the LHC but may eventually be discovered at a linear collider.
Supersymmetric Higgs bosons and beyond
International Nuclear Information System (INIS)
Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose
2010-01-01
We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.
Spontaneous baryogenesis in supersymmetric models
International Nuclear Information System (INIS)
Abel, S.A.; Cottingham, W.N.; Whittingham, I.B.
1993-01-01
In this paper we extent the results of previous work on spontaneous baryogenesis to general models involving charge-parity (CP) violation in the Higgs sector. We show how to deal with Chern-Simons terms appearing in the effective potential arising from phase changes in the vacuum expectation values of the Higgs fields. In particular, this enables us to apply this mechanism to general supersymmetric models including the minimal supersymmetric standard model, and the extended model with a gauge singlet. A comparison is made between this approach, and that in which one solves the equations of motion for Higgs winding modes. As anticipated in earlier work, the effect of the latter approach is found to be small. (Author)
Fun with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references
Fermion number in supersymmetric models
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
1975-01-01
The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)
Supersymmetric quantum mechanics an introduction
Gangopadhyaya, Asim; Rasinariu, Constantin
2017-01-01
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
Search for supersymmetric particles with R-parity violation
International Nuclear Information System (INIS)
Jacquet, M.
1995-12-01
Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e + e - collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic Ζ decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs
New two-loop contribution to electric dipole moment in supersymmetric theories
Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos
1999-01-01
We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.
Classification of supersymmetric backgrounds of string theory
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds. We then demonstrate its effectiveness by classifying the maximally supersymmetric IIB G-backgrounds and by showing that N=31 IIB solutions do not exist. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
The massless limit of supersymmetric QCD
International Nuclear Information System (INIS)
Davis, A.C.; Dine, M.; Seiberg, N.
1983-01-01
We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, msub(q), has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as msub(q)->0. We study the possibility of supersymmetric breaking at msub(q)=0. (orig.)
Duality in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.
Duality in supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Directory of Open Access Journals (Sweden)
Oana-Andreea Pirnuta
2017-11-01
Full Text Available In an interconnected world where foreign relations matter not only for resources or military alliances but also for cultural relationships, it is highly important to have a better understanding of the power relations among nations. The information carries certain meanings that have important outcomes thus defining the power of a given nation. Foreign policy is the channel through which global politics is exercised. International politics is a hierarchy of power being determined by important cultural, economic as well as geographical aspects. The reasons and strategies that are used in order to reach the outcomes in global politics represent the focus of the present paper. The United States has been the leader in international politics since the early 20th century due to its vast resources and wealth as well as its cultural output. America’s interest in preserving a democratic and free world has its foundation in the beliefs and values it stands for the aim of this paper is to question whether or not there is a concrete premise for the idea of American exceptionalism.
Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky
Energy Technology Data Exchange (ETDEWEB)
Kim, Ju Min
2010-09-15
We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)
Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky
International Nuclear Information System (INIS)
Kim, Ju Min
2010-09-01
We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)
Ultraviolet divergences and supersymmetric theories
International Nuclear Information System (INIS)
Sagnotti, A.
1984-09-01
This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references
Supersymmetric gyratons in five dimensions
Energy Technology Data Exchange (ETDEWEB)
Caldarelli, Marco M [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Klemm, Dietmar [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Zorzan, Emanuele [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy)
2007-03-07
We obtain the gravitational and electromagnetic field of a spinning radiation beam-pulse (a gyraton) in minimal five-dimensional gauged supergravity and show under which conditions the solution preserves part of the supersymmetry. The configurations represent generalizations of Lobatchevski waves on AdS with nonzero angular momentum, and possess a Siklos-Virasoro reparametrization invariance. We compute the holographic stress-energy tensor of the solutions and show that it transforms without anomaly under these reparametrizations. Furthermore, we present supersymmetric gyratons both in gauged and ungauged five-dimensional supergravity coupled to an arbitrary number of vector supermultiplets, which include gyratons on domain walls.
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
Supersymmetric Adler functions and holography
Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu
2016-09-01
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
The supersymmetric Pegg-Barnett oscillator
International Nuclear Information System (INIS)
Shen, Jian Qi
2005-01-01
The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Classification of supersymmetric backgrounds of string theory
Gran, Ulf; Gutowski, Jan; Papadopoulos, George; Roest, Diederik
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds.We then demonstrate
Applications of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Rietdijk, R.H.
1992-01-01
The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs
International Nuclear Information System (INIS)
Consonni, M.
2008-07-01
The LHC (Large Hadron Collider) is expected to deliver the first proton-proton collisions in September 2008 and the ATLAS experiment is designed to explore a large spectrum of phenomena that could arise from these interactions. In the context of supersymmetric extensions of the Standard Model, the lightest Higgs boson can be produced via cascade decays of supersymmetric particles. We investigate the possibility of observing such events with the ATLAS detector at the LHC. First, we focus on the ATLAS capability in measuring the missing energy due to the passage of supersymmetric particles escaping the detection. Then, we show that, for some regions of the Minimal Supergravity parameter space compatible with the last LEP searches, the lightest Higgs boson can be discovered with less than 10 fb -1 , giving results competitive with standard Higgs production channels. We also study the possibility of measuring quantities related to the masses and couplings of the supersymmetric particles involved in the process. Finally, starting from these measurements, we use the SFitter tool to set up a global fit to the parameters of the underlying supersymmetric model, showing the validity of such procedure for constraining the theoretical interpretations of future LHC data. (author)
Exploring Constrained Creative Communication
DEFF Research Database (Denmark)
Sørensen, Jannick Kirk
2017-01-01
Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...
On the supersymmetric BKP hierarchy
International Nuclear Information System (INIS)
Ramos, Eduardo; Stanciu, Sonia
1994-01-01
We prove that the supersymmetric BKP-hierarchy of Yu (SBKP 2 ) is hamiltonian with respect to a nonlinear extension of the N=1 super-Virasoro algebra (W SBKP ) by fields of spin k, where k>[3]/[2] and 2k≡0,3 (mod 4). Moreover, we show how to associate in a similar manner an N=1 W-superalgebra with every integrable hierarchy of the SKdV-type. We also show using dressing transformations how to extend, in a way which is compatible with the hamiltonian structure, the SBKP 2 hierarchy by odd flows, as well as the equivalence of this extended hierarchy to the SBKP-hierarchy of Manin-Radul. ((orig.))
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1993-09-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: The SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. The main technical tool is the supersymmetric generalisation of a map originally due to Radul between the Lie algebra of superdifferential operators and the Lie algebra of vector fields on the space of supersymmetric Lax operators. In the case of the Manin-Radul SKP hierarchy we identify additional symmetries which form an algebra isomorphic to a subalgebra of superdifferential operators; whereas in the case of the Jacobian SKP, the (additional) symmetries are identified with the algebra itself. (orig.)
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
Supersymmetric quantum mechanics and new potentials
International Nuclear Information System (INIS)
Drigo Filho, E.
1988-01-01
Using the supersymmetric quantum mechanics the following potential are generalized. The particle in the box, Poeschl-Teller and Rosen-Morse. The new potentials are evaluated and their eigenfunctions and spectra are indicated. (author) [pt
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Integrability and boundary conditions of supersymmetric systems
International Nuclear Information System (INIS)
Yue Ruihong; Liang Hong
1996-01-01
By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms
Patterns of flavor signals in supersymmetric models
International Nuclear Information System (INIS)
Goto, T.; Tanaka, M.
2007-11-01
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Study of R-parity Violating Decays of Supersymmetric Particles with the ATLAS Detector at the LHC
AUTHOR|(CDS)2101187; Flowerdew, Micheal
Supersymmetry is a space-time symmetry that postulates the existence of new particles. It assigns to each Standard Model fermion (boson) an associated supersymmetric boson (fermion) partner with the same quantum numbers except for spin. The introduction of these new supersymmetric particles provides a potential solution to the hierarchy problem. Discovery of such particles or alternatively an exclusion of a certain supersymmetic parameter space is one of the main purposes of collider experiments. A special scenario of Supersymmetry that enables the decay of the lightest supersymmetric particle to Standard Model particles is studied using proton-proton collision data collected by the ATLAS experiment at center-of-mass energy of 13 TeV. The searched signal is characterized by a final state of at least four leptons, which leads to extraordinarily low background contributions from Standard Model processes. The work described in this thesis assisted to an exclusion of the considered supersymmetric model for hypoth...
Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models
International Nuclear Information System (INIS)
Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro
2004-01-01
We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)
Update on the Direct Detection of Supersymmetric Dark Matter
Ellis, Jonathan Richard; Santoso, Y; Spanos, V C; Ellis, John; Olive, Keith A.; Santoso, Yudi; Spanos, Vassilis C.
2005-01-01
We compare updated predictions for the elastic scattering of supersymmetric neutralino dark matter with the improved experimental upper limit recently published by CDMS II. We take into account the possibility that the \\pi-nucleon \\Sigma term may be somewhat larger than was previously considered plausible, as may be supported by the masses of exotic baryons reported recently. We also incorporate the new central value of m_t, which affects indirectly constraints on the supersymmetric parameter space, for example via calculations of the relic density. Even if a large value of \\Sigma is assumed, the CDMS II data currently exclude only small parts of the parameter space in the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking Higgs, squark and slepton masses. None of the previously-proposed CMSSM benchmark scenarios is excluded for any value of \\Sigma, and the CDMS II data do not impinge on the domains of the CMSSM parameter space favoured at the 90 % confidence level in a recent likelihood anal...
Level comparison theorems and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baumgartner, B.; Grosse, H.
1986-01-01
The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke [Imperial College, London (United Kingdom)
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Grand unified supersymmetric Higgs bosons as pseudo-Goldstone particles
International Nuclear Information System (INIS)
Barbieri, R.; Dvali, G.; Strumia, A.
1993-01-01
We reconsider the possibility that the Higgs doublet responsible for the breaking of the electroweak gauge group be quasi-Goldstone bosons of a spontaneously broken approximate global symmetry of the theory. Supersymmetric SU(5) and SO(10) gauge models are discussed. The main phenomenological consequence of this viewpoint is the possible existence at the Fermi scale of a quasi-stable particle, most likely a Lorentz scalar, with the same colour and charge as a down quark. Its existence is a generic feature of models based on SO(10). The associated phenomoenological is illustrated. We also show how the phenomenology of the minimal SU(5) theory, already proposed, gets tightly constrained by the consideration of coupling constant unification without any assumption, otherwise crucial, on the superheavy threshold effects. (orig.)
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Early universe cosmology. In supersymmetric extensions of the standard model
International Nuclear Information System (INIS)
Baumann, Jochen Peter
2012-01-01
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the
Quantum integrability and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)
Bethe Ansatz and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.
Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination
Energy Technology Data Exchange (ETDEWEB)
Krauss, Manuel Ernst
2015-12-18
It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new
CSIR Research Space (South Africa)
Britz, K
2011-09-01
Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...
Supersymmetric quantum mechanics on n-dimensional manifolds
International Nuclear Information System (INIS)
O'Connor, M.
1990-01-01
In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics
Non-supersymmetric orientifolds of Gepner models
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl
2009-01-12
Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.
Bubbles of nothing and supersymmetric compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)
2016-10-03
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.
Supersymmetric leptogenesis with a light hidden sector
International Nuclear Information System (INIS)
De Simone, Andrea
2010-04-01
Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we pro- pose a simple way to circumvent this tension and accommodate naturally ther- mal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed. (orig.)
Solvable potentials derived from supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Levai, G.
1994-01-01
The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
Spectral properties in supersymmetric matrix models
International Nuclear Information System (INIS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2012-01-01
We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.
Supersymmetric Janus solutions in four dimensions
International Nuclear Information System (INIS)
Bobev, Nikolay; Pilch, Krzysztof; Warner, Nicholas P.
2014-01-01
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS 4 vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G 2 global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G 2 global symmetry. In eleven dimensions, this G 2 to G 2 solution corresponds to a domain wall across which a magnetic flux reverses orientation
Vector supersymmetric multiplets in two dimensions
International Nuclear Information System (INIS)
Khattab, Mohammad
1990-01-01
Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields
Dark matter asymmetry in supersymmetric Dirac leptogenesis
International Nuclear Information System (INIS)
Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub
2013-01-01
We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis
N=1 supersymmetric extension of the baby Skyrme model
International Nuclear Information System (INIS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2011-01-01
We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.
Supersymmetric Higgs boson production in Z decays
International Nuclear Information System (INIS)
Gamberini, G.; Giudice, G.F.; Ridolfi, G.
1987-01-01
The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)
Aspects of the supersymmetric Goldstone formalism
International Nuclear Information System (INIS)
Lerche, W.
1985-01-01
The present thesis deal with the discussion of general properties of Goldstone excitations in global N=1 supersymmetric theories. The results can become relevant in the framework of theories which interpret quarks and leptons as composite 'quasi-Goldstone fermions'. The thesis is arranged in two main parts: the first is occupied by group-theoretical aspects, i.e. by the spectrum of supersymmetric Goldstone excitations as well as by geometrical considerations which are connected with effective Lagrangian densities. In the second main part dynamic questions like for instance mass generation are treated. For this a suitable formalism is developed. (orig.) [de
A supersymmetric SYK-like tensor model
Energy Technology Data Exchange (ETDEWEB)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)
2017-05-11
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Indirect detection of heavy supersymmetric dark matter
International Nuclear Information System (INIS)
Kamionkowski, M.
1991-02-01
If neutralinos reside in the galactic halo they will be captured in the Sun and annihilate therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark-matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. 10 refs., 2 figs
A supersymmetric SYK-like tensor model
International Nuclear Information System (INIS)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia
2017-01-01
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
The particle interpretation of N = 1 supersymmetric spin foams
Energy Technology Data Exchange (ETDEWEB)
Baccetti, Valentina [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Livine, Etera R [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69007 Lyon (France); Ryan, James P, E-mail: baccetti@neve.fis.uniroma3.i, E-mail: etera.livine@ens-lyon.f, E-mail: james.ryan@aei.mpg.d [MPI fuer Gravitationsphysik, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Potsdam (Germany)
2010-11-21
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
The particle interpretation of N = 1 supersymmetric spin foams
International Nuclear Information System (INIS)
Baccetti, Valentina; Livine, Etera R; Ryan, James P
2010-01-01
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
Prospects for detecting supersymmetric dark matter at Post-LEP benchmark points
International Nuclear Information System (INIS)
Ellis, J.; Matchev, K.T.; Feng, J.L.; Ferstl, A.; Olive, K.A.
2002-01-01
A new set of supersymmetric benchmark scenarios has recently been proposed in the context of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking masses, taking into account the constraints from LEP, b→sγ and g μ -2. These points have previously been used to discuss the physics reaches of different accelerators. In this paper, we discuss the prospects for discovering supersymmetric dark matter in these scenarios. We consider direct detection through spin-independent and spin-dependent nuclear scattering, as well as indirect detection through relic annihilations to neutrinos, photons, and positrons. We find that several of the benchmark scenarios offer good prospects for direct detection via spin-independent nuclear scattering and indirect detection via muons produced by neutrinos from relic annihilations inside the Sun, and some models offer good prospects for detecting photons from relic annihilations in the galactic centre. (orig.)
Supersymmetric Dark Matter and Prospects for its Detection
Yamamoto, Takahiro
Dark matter is a prominent and dominant form of matter in the Universe. Yet, despite various intense efforts, its nongravitational effects have not been observed. In this dissertation, we explore the nature of such elusive particles within a supersymmetric SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge theory. Although large regions of parameter space within supersymmetric models have been excluded by recent results from collider experiments and direct and indirect dark matter searches, we find that there is a wide range of viable parameter space once the requirements of minimal flavor violation and mass universality are relaxed. In particular, we focus on a class of models in which electroweak-scale Majorana dark matter has interactions with the Standard Model sector via relatively light charged scalars with large chiral mixing and CP-violation. Our model is shown to lead to enhanced dark matter pair annihilation, and is constrained by precise measurements of the lepton dipole moments. We illustrate that our model satisfies all constraints, including the observed thermal relic density, and investigate prospects for the detection of dark matter annihilation products. We also examine the effects of chiral mixing and CP-violationn on the variation in the ratio of the flux of monoenergetic photons from annihilation to two photons relative to that from annihilation to a photon and a Z boson, as well as the helicity asymmetry in the diphoton final state. We also find the most general spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal bremsstrahlung and by final state radiation, and that it provides distinctive gamma-ray signals, which could potentially be observed in the near future.
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
Liouville supersymmetrical equation for a quantum case
International Nuclear Information System (INIS)
Leznov, A.N.; Khrushev, V.V.
1982-01-01
The relation between coupling constants of interacting nonlinear scalar and spinor fields was established which leads to finite series of perturbation theory for the dynamical variable esup(-phi). In the classical limit h/2π→0 the system under consideration turns out to be described by supersymmetric Luiville equation
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Supersymmetric theories of neutrino dark energy
International Nuclear Information System (INIS)
Fardon, Rob; Nelson, Ann E.; Weiner, Neal
2006-01-01
We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
Functional integral in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Ktitarev, D.V.
1990-01-01
The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs
SEARCHES FOR (NON-SUPERSYMMETRIC) NEW PHYSICS
Brooijmans, G; The ATLAS collaboration
2013-01-01
Recent results from the LHC experiments in searches for non-supersymmetric new physics are presented. The LHC experiments are probing scales of order 700 GeV for vector-like quarks, 1.5-2 TeV for electroweakly produced resonances, and 3-4 TeV for quark excitations, pushing naturalness into a corner.
On the maximal superalgebras of supersymmetric backgrounds
International Nuclear Information System (INIS)
Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan
2009-01-01
In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.
The spinorial method of classifying supersymmetric backgrounds
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2006-01-01
We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046
Massive and massless supersymmetric black holes
Energy Technology Data Exchange (ETDEWEB)
Ortin, T. [European Organization for Nuclear Research, Geneva (Switzerland). TH-Div.
1998-02-01
We give a brief overview of black-hole solutions in supergravity theories and their extremal and supersymmetric limits. We also address problems like cosmic censorship and no-hair theorems in supergravity theories. While supergravity by itself seems not to be enough to enforce cosmic censorhip and absence of primary scalar hair, superstring theory may be. (orig.). 17 refs.
arXiv B-branes and supersymmetric quivers in 2d
Closset, Cyril; Sharpe, Eric
2018-02-08
We study 2d $ \\mathcal{N} $ = (0, 2) supersymmetric quiver gauge theories that describe the low-energy dynamics of D1-branes at Calabi-Yau fourfold (CY$_{4}$) singularities. On general grounds, the holomorphic sector of these theories — matter content and (classical) superpotential interactions — should be fully captured by the topological B-model on the CY$_{4}$. By studying a number of examples, we confirm this expectation and flesh out the dictionary between B-brane category and supersymmetric quiver: the matter content of the supersymmetric quiver is encoded in morphisms between B-branes (that is, Ext groups of coherent sheaves), while the superpotential interactions are encoded in the A$_{∞}$ algebra satisfied by the morphisms. This provides us with a derivation of the supersymmetric quiver directly from the CY$_{4}$ geometry. We also suggest a relation between triality of $ \\mathcal{N} $ = (0,2) gauge theories and certain mutations of exceptional collections of sheaves. 0d $ \\mathcal{N} $ = 1 supe...
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Analysis of Ward identities in supersymmetric Yang-Mills theory
Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-05-01
In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.
(Non-)decoupled supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-04-10
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Small numbers in supersymmetric theories of nature
International Nuclear Information System (INIS)
Graesser, Michael L.
1999-01-01
The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject
The goldstino brane, the constrained superfields and matter in N=1 supergravity
International Nuclear Information System (INIS)
Bandos, Igor; Heller, Markus; Kuzenko, Sergei M.; Martucci, Luca; Sorokin, Dmitri
2016-01-01
We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.
The goldstino brane, the constrained superfields and matter in N=1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU,P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,48011, Bilbao (Spain); Heller, Markus [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia35 Stirling Highway, Crawley W.A. 6009 (Australia); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy)
2016-11-21
We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.
Three-body Supersymmetric Top Decays
Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda
2000-01-01
We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.
Supersymmetric hadronic mechanics and procedures for isosupersymmetrization
International Nuclear Information System (INIS)
Ntibashirakandi, L.; Callebaut, D.K.
1994-01-01
In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs
Search for supersymmetric particles at CDF
International Nuclear Information System (INIS)
Wagner, R.G.
1989-01-01
Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab
Defect networks and supersymmetric loop operators
Energy Technology Data Exchange (ETDEWEB)
Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2015-02-10
We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.
Higgs bosons in supersymmetric models. Pt. 1
International Nuclear Information System (INIS)
Gunion, J.F.
1986-01-01
We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)
Topological solitons in the supersymmetric Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)
2017-01-04
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Is supersymmetric origin of monojets viable
International Nuclear Information System (INIS)
Nandi, S.
1985-01-01
The laboratory and cosmological bounds on the masses of the scalar leptons and the photino are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP exclude the scalar quarks, of masses up to 45 GeV, as the origin of these monojets; the cosmological bounds, for a stable photino, exclude the mass range necessary for the gq production interpretation
On negative norm states in supersymmetric theories
International Nuclear Information System (INIS)
Ellwanger, U.
1983-01-01
We study the effective kinetic energy of scalar fields for two classes of supersymmetric theories. In theories with very large VEVs of scalar fields, as proposed by Witten, the use of the renormalization group improved effective action prevents the appearance of negative norm states. For simpler theories a general criterium for the absence of negative norm states is given, which is violated in a model with O(N)-symmetry proposed recently. (orig.)
Shadow fields and local supersymmetric gauges
International Nuclear Information System (INIS)
Baulieu, L.; Bossard, G.; Sorella, S.P.
2006-01-01
To control supersymmetry and gauge invariance in super-Yang-Mills theories we introduce new fields, called shadow fields, which enable us to enlarge the conventional Faddeev-Popov framework and write down a set of useful Slavnov-Taylor identities. These identities allow us to address and answer the issue of the supersymmetric Yang-Mills anomalies, and to perform the conventional renormalization programme in a fully regularization-independent way
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1994-01-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)
Utilitarian supersymmetric gauge model of particle interactions
International Nuclear Information System (INIS)
Ma, Ernest
2010-01-01
A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
The Supersymmetric Top-Ten Lists
Haber, Howard E.
1993-01-01
Ten reasons are given why supersymmetry is the leading candidate for physics beyond the Standard Model. Ultimately, the experimental discovery of supersymmetric particles at future colliders will determine whether supersymmetry is relevant for TeV scale physics. The grand hope of supersymmetry enthusiasts is to connect TeV scale supersymmetry with Planck scale physics. The ten most pressing theoretical problems standing in the way of this goal are briefly described.
The massless supersymmetric ladder with L rungs
International Nuclear Information System (INIS)
Rossi, G.C.; Stanev, Ya.S.
2009-01-01
We show that in the massless N=1 supersymmetric Wess-Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points
On supersymmetric effective theories of axion
Energy Technology Data Exchange (ETDEWEB)
Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics
2011-04-15
We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)
B-L violating supersymmetric couplings
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
We consider two problems: one is the possible effect of the breaking of Peccei-Quinn symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU 5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However the strength of these couplings is limited by the gauge hierarchy
Supersymmetric SU(5) GUT with Stabilized Moduli
Antoniadis, Ignatios; Panda, Binata
2008-01-01
We construct a minimal example of a supersymmetric grand unified model in a toroidal compactification of type I string theory with magnetized D9-branes. All geometric moduli are stabilized in terms of the background internal magnetic fluxes which are of "oblique" type (mutually non-commuting). The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only three families of quarks and leptons transforming in the $10+{\\bar 5}$ representations.
Hierarchy generation in compactified supersymmetric models
International Nuclear Information System (INIS)
Ross, G.G.
1988-01-01
The problem of generating a large hierarchy in compactified supersymmetric models is re-examined. It is shown how, even for the class of models for which Str M 2 is non-vanishing, a combination of non-perturbative effects and radiative corrections may lead to an exponentially large hierarchy. A corollary is that the couplings of the effective field theory in the visible sector should be small, i.e., perturbation theory should be applicable. (orig.)
Supersymmetric solutions for non-relativistic holography
International Nuclear Information System (INIS)
Donos, Aristomenis; Gauntlett, Jerome P.
2009-01-01
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Planar Quantum Mechanics: an Intriguing Supersymmetric Example
Veneziano, Gabriele
2006-01-01
After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Low-temperature specific heat of the degenerate supersymmetric t-J model in one dimension
International Nuclear Information System (INIS)
Lee, K.; Schlottmann, P.
1996-01-01
We consider the one-dimensional SU(N)-invariant t-J model, which consists of electrons with N spin components on a lattice with nearest-neighbor hopping t constrained by the excluded multiple occupancy of the sites and spin-exchange J between neighboring lattice sites. The model is integrable and has been diagonalized in terms of nested Bethe ansatze at the supersymmetric point t=J. The low-T specific heat is proportional to T. The γ-coefficient is extracted from the thermodynamic Bethe-ansatz equations and is expressed in terms of the spin wave velocities and the group velocity of the charges for arbitrary N, band filling, and splitting of the levels (magnetic and crystalline fields). Our results contain the following special cases: (i) For N=2 the traditional spin-1/2 supersymmetric t-J model, (ii) for exactly one electron per site the SU(N)-Heisenberg chain, and (iii) for N=4 the two-band supersymmetric t-J model with crystalline field splitting. copyright 1996 American Institute of Physics
SO(10) supersymmetric grand unified theories
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Supersymmetric Janus solutions in four dimensions
Energy Technology Data Exchange (ETDEWEB)
Bobev, Nikolay [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Pilch, Krzysztof [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Warner, Nicholas P. [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA Saclay,CNRS-URA 2306, 91191 Gif sur Yvette (France); Institut des Hautes Etudes Scientifiques,Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, 91440 (France)
2014-06-10
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS{sub 4} vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G{sub 2} global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G{sub 2} global symmetry. In eleven dimensions, this G{sub 2} to G{sub 2} solution corresponds to a domain wall across which a magnetic flux reverses orientation.
Supersymmetric SO(10) models inspired by deconstruction
International Nuclear Information System (INIS)
Huang Chaoshang; Jiang Jing; Li Tianjun
2004-01-01
We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved
Cosmological consequences of supersymmetric flat directions
Riva, Francesco; Sarkar, Subir; Giudice, Gian
In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...
Continuous degeneracy of non-supersymmetric vacua
International Nuclear Information System (INIS)
Sun Zheng
2009-01-01
In global supersymmetric Wess-Zumino models with minimal Kaehler potentials, F-type supersymmetry breaking always yields instability or continuous degeneracy of non-supersymmetric vacua. As a generalization of the original O'Raifeartaigh's result, the existence of instability or degeneracy is true to any higher order corrections at tree level for models even with non-renormalizable superpotentials. The degeneracy generically coincides the R-axion direction under some assumptions of R-charge assignment, but generally requires neither R-symmetries nor any assumption of generic superpotentials. The result also confirms the well-known fact that tree level supersymmetry breaking is a very rare occurrence in global supersymmetric theories with minimal Kaehler potentials. The implication for effective field theory method in the landscape is discussed and we point out that choosing models with minimal Kaehler potentials may result in unexpected answers to the vacuum statistics. Supergravity theories or theories with non-minimal Kaehler potentials in general do not suffer from the existence of instability or degeneracy. But very strong gauge dynamics or small compactification dimension reduces the Kaehler potential from non-minimal to minimal, and gravity decoupling limit reduces supergravity to global supersymmetry. Instability or degeneracy may appear in these limits. Away from these limits, a large number of non-SUSY vacua may still be found in an intermediate region.
Supersymmetric extensions of Schrodinger-invariance
International Nuclear Information System (INIS)
Henkel, Malte; Unterberger, Jeremie
2006-01-01
The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values
Production and decay of supersymmetric particles at future colliders
International Nuclear Information System (INIS)
Bartl, A.; Majerotto, W.; Moesslacher, B.
1991-01-01
We describe how supersymmetric particles could be detected at the new colliders HERA, LEP 200, LHC, SSC, and at the possible future linear e + e - collider. We shall present theoretical predictions for production cross sections and decay probabilities, as well as for the important signatures. Our calculations will be based on the Minimal Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension of the Standard Model. (authors)
Non-local deformation of a supersymmetric field theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-09-15
In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)
Non-renormalization theorems andN=2 supersymmetric backgrounds
International Nuclear Information System (INIS)
Butter, Daniel; Wit, Bernard de; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed
A K-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu; Walker, J.W. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: jwalker@physics.tamu.edu
2005-10-06
We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1){sub X} factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others
2016-10-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Effective Higgs theories in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)
2017-09-15
The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Production of supersymmetric pairs at antipp colliders
International Nuclear Information System (INIS)
Peschanski, R.
1985-02-01
Production and decay rates of squarks and gluinos at antipp colliders are shown to depend not only on the mass scale but on the ratio of squark to gluino mass. In the degenerate case which is shown to be natural in a large class of broken Supergravity models with minimal field content the predicted cross-sections are enhanced by a sizeable factor. This gives an improved bound on the squark mass (70 GeV) from the analysis of Cern monojets and indications for the search of squark decay modes of supersymmetric pairs at antipp colliders in the near future
Problems with False Vacua in Supersymmetric Theories
Bajc, Borut; Senjanovic, Goran
2011-01-01
It has been suggested recently that in a consistent theory any Minkowski vacuum must be exactly stable. As a result, a large class of theories that in ordinary treatment would appear sufficiently long-lived, in reality make no sense. In particular, this applies to supersymmetric models in which global supersymmetry is broken in a false vacuum. We show that in any such theory the dynamics of supersymmetry breaking cannot be decoupled from the Planck scale physics. This finding poses an obvious challenge for the idea of low-scale metastable (for example gauge) mediation.
On the supersymmetric sine-Gordon model
International Nuclear Information System (INIS)
Hruby, J.
1977-01-01
The sine-Gordon model as the theory of a massless scalar field in one space and one time dimension with interaction Lagrangian density proportional to cosβsub(phi) is generalized for a scalar superfield and it is shown that the solution of the supercovariant sine-Gordon equation is the ''supersoliton'', it is the superfield, which has all ordinary fields in two dimensions as a type of the soliton solution. We also obtain the massive Thirring model and the new equations of motion coupling the Fermi field and the Bose field. The notice about supersymmetric ''SLAC-BAG'' model is done
Twist deformations of the supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)
2009-07-01
The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)
The minimally tuned minimal supersymmetric standard model
International Nuclear Information System (INIS)
Essig, Rouven; Fortin, Jean-Francois
2008-01-01
The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
The eikonal phase of supersymmetric Coulomb partners
Lassaut, M; Lombard, R J
1998-01-01
We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)
Constrained Sypersymmetric Flipped SU (5) GUT Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John; /CERN /King' s Coll. London; Mustafayev, Azar; /Minnesota U., Theor. Phys. Inst.; Olive, Keith A.; /Minnesota U., Theor. Phys. Inst. /Minnesota U. /Stanford U., Phys. Dept. /SLAC
2011-08-12
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, Min, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tilde {tau}}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2}, m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to Min, as we illustrate for several cases with tan {beta} = 10 and 55. However, these features do not necessarily disappear at large Min, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.
Supersymmetric axial anomalies and the Wess-Zumino action
International Nuclear Information System (INIS)
Harada, K.; Shizuya, K.
1988-01-01
We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
IIB solutions with N>28 Killing spinors are maximally supersymmetric
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries
One-instanton calculations in N=2 supersymmetric gauge theories
International Nuclear Information System (INIS)
Ito, Katsushi
1998-01-01
We study the low-energy effective action of N=2 supersymmetric gauge theories in the Coulomb branch. Using microscopic instanton calculus, we compute the one-instanton contribution to the pre potential for N=2 supersymmetric SU(N c ) Yang-Mills theory. We show that the microscopic result agrees with the exact solution. (Author). 23 refs
On the stochastic structure of globally supersymmetric field theories
International Nuclear Information System (INIS)
Flume, R.; Lechtenfeld, O.
1983-09-01
We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)
Dispersive and damping properties of supersymmetric sound. 2
International Nuclear Information System (INIS)
Lebedev, V.V.; Smilga, A.V.
1988-01-01
This paper is the second part of the work devoted to the massless fermionic collective excitation in supersymmetric media at nonzero temperature. The solution to generalized kinetic equations for the Wess-Zumino model at low temperatures is presented and the situation at high temperatures is discussed. Supersymmetric gauge models are also discussed
Ultraviolet divergences in non-renormalizable supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.
2017-01-01
We present a pedagogical review of our current understanding of the ultraviolet structure of N =(1, 1) 6D supersymmetric Yang-Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higher-dimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially of extended supersymmetric theories) is that these counterterms may not be invariant off-shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on-shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behavior.
Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator
International Nuclear Information System (INIS)
Verbaarschot, J.J.M.; West, P.
1991-01-01
In this paper we give an analytical derivation of the large-order behavior of the perturbation series for both the ground state and the excited states of the supersymmetric anharmonic oscillator and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of the fermion coupling. The results which are obtained with the help of instanton calculus coincide with those obtained numerically in previous work. The large-order perturbation series of the ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the perturbation series diverges factorially. The perturbation series of the excited states diverges factorially both at the supersymmetric point and away from this point
Supersymmetric quantum mechanics of the flux tube
Belitsky, A. V.
2016-12-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.
Inverse scattering with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baye, Daniel; Sparenberg, Jean-Marc
2004-01-01
The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering
Toward precision holography with supersymmetric Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Faraggi, Alberto [Instituto de Física, Pontificia Universidad Católica de Chile,Casilla 306, Santiago (Chile); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics,University of Michigan, Ann Arbor, MI 48109 (United States); Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)
2016-04-11
We consider certain 1/4 BPS Wilson loop operators in SU(N)N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS{sub 5}×S{sup 5}. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Supersymmetric chiral electrodynamics as a renormalized theory
International Nuclear Information System (INIS)
Ansel'm, A.A.; Iogansen, A.A.
1991-01-01
It is well know that the QED of chiral fermions is a nonrenormalizable theory, inasmuch as the gauge current in it is not conserved because of the presence of an anomaly. It is evident that in this theory unitarity is also violated. The principal object of investigation in the present paper is supersymmetric chiral QED, supersymmetric QED is a renormalizable theory. This happens because the radiative corrections generate here a charged current of a chiral fermion that appears in the chiral (i.e., longitudinal) part of the vector supermultiplet. At first sight, the chiral part of the vector multiplet is unphysical and contains only supergauge degrees of freedom. However, this is valid only at the classical level, whereas, because of the anomaly, the radiative corrections lead to nonconservation of the gauge current, as a result of which the degrees of freedom associated with the chiral part of the vector multiplet become physical. On the other hand, owing to the nonconservation of the gauge charge, the apparently neutral fermion appearing int he chiral (longitudinal) part of the vector superfield becomes charged
Supersymmetric relations among electromagnetic dipole operators
International Nuclear Information System (INIS)
Graesser, Michael; Thomas, Scott
2002-01-01
Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β
Aspects of extra dimensional supersymmetric unified theories
International Nuclear Information System (INIS)
Fichet, S.
2011-09-01
The purpose of this work is to investigate Grand Unified Theories (GUTs) and to make the link with passed and upcoming experiments. The structure of this thesis is as follows. In the first chapter, we will briefly review the sequence of arguments leading to the Higgs mechanism, then to the different concepts underlying physics beyond the Standard Model, and to the paradigm of extra dimensional supersymmetric grand unified theories. At each level of the argumentation, we will mention the different solutions available. The second chapter introduces more formally supersymmetry and extra dimensions, focusing in particular on the aspects of symmetry breaking. Then, in the third chapter, we present in details the two frameworks of extra dimensional theories in which we worked, called supersymmetric gauge-Higgs unification (GHU) and holographic grand unification (HGU) as well as the developments and modifications we brought to them. The fourth chapter is devoted to the low energy viability of the GHU framework, as well as its phenomenological implications. The fifth chapter presents a more generic study of the property of GUT-scale degenerate Higgs mass matrix, common to both frameworks. Finally, the sixth chapter is devoted to the viability and phenomenological implications of the HGU framework, with special emphasis on lepton flavour violation. This quantitative study takes properly into account effects of matrix anarchy, as well as exact flavour observables. The results obtained should generalize, at least qualitatively, to any other model with similar localization and supersymmetry breaking features
Hunter, Ian M. L.
1977-01-01
An account is given of the exceptional memory of the late Professor A. C. Aitken who was also a distinguished mathematician and mental calculator. Compared with Shereshevskii, another man with exceptional memory, he shows the scholar's reliance on conceptual mapping rather than the mnemonist's reliance on perceptual chaining. (Editor)
MFTF exception handling system
International Nuclear Information System (INIS)
Nowell, D.M.; Bridgeman, G.D.
1979-01-01
In the design of large experimental control systems, a major concern is ensuring that operators are quickly alerted to emergency or other exceptional conditions and that they are provided with sufficient information to respond adequately. This paper describes how the MFTF exception handling system satisfies these requirements. Conceptually exceptions are divided into one of two classes. Those which affect command status by producing an abort or suspend condition and those which fall into a softer notification category of report only or operator acknowledgement requirement. Additionally, an operator may choose to accept an exception condition as operational, or turn off monitoring for sensors determined to be malfunctioning. Control panels and displays used in operator response to exceptions are described
Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space
International Nuclear Information System (INIS)
Arai, Masato; Baba, Kurando
2015-01-01
We construct N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the non-compact exceptional Hermitian symmetric spaces M=E 6(−14) /SO(10)×U(1) and E 7(−25) /E 6 ×U(1). In order to construct them we use the projective superspace formalism which is an N=2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N=2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N=1 superfields, once the Kähler potentials of the base manifolds are obtained. We derive the N=1 supersymmetric nonlinear sigma models on the Kähler manifolds M. Then we extend them into the N=2 supersymmetric models with the use of the result in arXiv:1211.1537 developed in the projective superspace formalism. The resultant models are the N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the Hermitian symmetric spaces M. In this work we complete constructing the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces.
Exceptional confinement in G(2) gauge theory
International Nuclear Information System (INIS)
Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature
1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1980-01-01
The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived
The transformations between N= 2 supersymmetric Korteweg-de Vries and Harry Dym equations
International Nuclear Information System (INIS)
Tian Kai; Liu, Q. P.
2012-01-01
The N= 2 supercomformal transformations are employed to study supersymmetric integrable systems. It is proved that two known N= 2 supersymmetric Harry Dym equations are transformed into two N= 2 supersymmetric modified Korteweg-de Vries equations, thus are connected with two N= 2 supersymmetric Korteweg-de Vries equations.
Chiral anomalies in higher dimensional supersymmetric theories
International Nuclear Information System (INIS)
Bonora, L.; Pasti, P.; Tonin, M.
1987-01-01
We derive explicit formulas for pure gauge anomalies in a SYM theory in 6D as well as in 10D. Each anomaly consists of two terms: a gauge cocycle and a cocycle of the superdiffeomorphisms. The derivation is based essentially on a remarkable property of supersymmetric theories which we call Weil triviality and is directly connected with the constraints. The analogous problem for Lorentz anomalies is stated in the same way. However, in general, there are difficulties concerning Weil triviality. We prove that for pure SUGRA in 6D as well as in 10D it is possible to prove Weil triviality and, consequently, to obtain explict expressions for pure Lorentz anomalies. However, as far as SUGRA coupled to SYM a la Chapline-Manton or a la Green-Schwarz is concerned, no self-evident solution is available. (orig.)
Supersymmetric interpretations of the neutrino anomalies
Valle, José W F
2002-01-01
Solar and atmospheric neutrino data strongly indicate the need for physics beyond the standard model. The neutrino oscillation interpretation of the atmospheric data is rather unambiguous, with more options still open for the solar data. After a brief summary of the latest global fits of neutrino data, I discuss theoretical neutrino mass models. This is done first from a top-bottom approach inspired by unification ideas involving a see-saw mechanism or high dimension operators. Then I consider bottom-up approaches, with especial emphasis on the idea that the origin of neutrino mass and mixing is intrinsically supersymmetric. Models involve effective bilinear breaking of R-parity. This allows for the possibility of probing the neutrino mixing also in the context of high-energy collider experiments such as the LHC. (41 refs).
Effective action of softly broken supersymmetric theories
International Nuclear Information System (INIS)
Groot Nibbelink, S.; Nyawelo, T.S
2006-12-01
We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parameterized using spurion insertions. We comment on the uniqueness of this parameterization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To preform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to non-commutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential. (author)
N =4 supersymmetric mechanics on curved spaces
Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton
2018-04-01
We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.
Supersymmetric quantum mechanics for string-bits
International Nuclear Information System (INIS)
Thorn, C.B.
1997-01-01
The authors develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. The authors focus principally on space dimensions d = 1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 7, 10 space-time dimensions. These are the cases for which classical superstring makes sense, and also the values of d for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question they address is: when is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. They show that the answer is affirmative for d = 1,2, negative for d = 8, and so far inconclusive for d = 4
Supersymmetric grand unified theories and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1983-01-01
By examining the behavior of supersymmetric grand unified theories (GUT's) in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUT's. In the second class of models, the superheavy GUT scale is related to the supersymmetry-breaking scale in the manner of Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out
Supersymmetric null-like holographic cosmologies
International Nuclear Information System (INIS)
Lin Fengli; Wen Wenyu
2006-01-01
We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic c function for the 2-dimensional dual field theory living on the corresponding null-like cosmology. We find that this c function runs in accordance with the c-theorem as the boundary universe evolves, this means that the number of degrees of freedom is divergent at big bang and suggests the possible resolution of big bang singularity
Deformed supersymmetric quantum mechanics with spin variables
Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan
2018-01-01
We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.
Branes and Six Dimensional Supersymmetric Theories
Hanany, Amihay; Hanany, Amihay; Zaffaroni, Alberto
1998-01-01
We consider configurations of sixbranes, fivebranes and eightbranes in various superstring backgrounds. These configurations give rise to $(0,1)$ supersymmetric theories in six dimensions. The condition for RR charge conservation of a brane configuration translates to the condition that the corresponding field theory is anomaly free. Sets of infinitely many models with non trivial RG fixed points at strong coupling are demonstrated. Some of them reproduce and generalise the world-volume theories of SO(32) and $E_8\\times E_8$ small instantons. All the models are shown to be connected by smooth transitions. In particular, the small instanton transition for which a tensor multiplet is traded for 29 hypermultiplets is explicitly demonstrated. The particular limit in which these theories can be considered as six dimensional string theories without gravity are discussed. New fixed points (string theories) associated with $E_n$ global symmetries are discovered by taking the strong string coupling limit.
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
Metzger, St.
2005-12-01
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
Flavour changing decays of Z0 in supersymmetric models
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.
1987-01-01
The possible existence of detectable flavour-changing branching modes of the Z 0 boson is examined in the context of supersymmetric models of currrent interest. An explicit calculation shows that in the so-called minimal version of the supersymmetric standard model the branching ratios for Z 0 →banti s or tanti c are not larger than in the standard model itself and are as such unobservable. On the contrary, we find that in a recently proposed extension of the supersymmetric standard model the mode Z 0 →tanti c may be at the order of being detectable. (orig.)
Vacuum fluctuations of the supersymmetric field in curved background
International Nuclear Information System (INIS)
Bilić, Neven; Domazet, Silvije; Guberina, Branko
2012-01-01
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Vacuum fluctuations of the supersymmetric field in curved background
Energy Technology Data Exchange (ETDEWEB)
Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)
2012-01-16
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Supersymmetric quantum corrections and Poisson-Lie T-duality
International Nuclear Information System (INIS)
Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste
2000-07-01
The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)
Supersymmetric U boson and the old U(1) problem
International Nuclear Information System (INIS)
Kim, B.R.
1983-01-01
In the supersymmetric SU(3)xSU(2)xU(1)xUsup(')(1) model the new gauge group Usup(')(1) enforces the introduction of mirror fermions. In this note we address the inverse question. If one starts with SU(3)xSU(2)xU(1) including mirror fermions, what physical arguments other than the supersymmetric require the introduction of a new gauge group Usup(')(1). It turns out that the old U(1) problem is closely related with this question. Further we give an estimate for the upper bound for the parameter of the supersymmetric U boson r and x. (orig.)
Supersymmetric sigma models and composite Yang-Mills theory
International Nuclear Information System (INIS)
Lukierski, J.
1980-04-01
We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)
The GRACE system for the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Tanaka, H.; Kaneko, T.; Jimbo, M.; Kon, T.
1997-01-01
The algorithm of constructing the Feynman amplitudes for the GRACE system is extended to processes involving supersymmetric particles. New vertex amplitude subroutines needed to compute these processes are now part of the CHANEL library. (orig.)
Pseudoclassical supersymmetrical model for 2+1 Dirac particle
Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.
1996-01-01
A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.
Leptogenesis in the left-right supersymmetric model
International Nuclear Information System (INIS)
Frank, M.
2004-01-01
We analyze the effects of the current neutrino data on thermal leptogenesis and 0νββ decay in a fully left-right extension of the minimal supersymmetric model. The model has several additional phases compared to the minimal supersymmetric model. These phases appear from both the heavy and light neutrino sectors: two CKM-type phases and four Majorana phases which give new contributions to CP-violating parameters and leptogenesis. We study observable effects of these phases on leptogenesis in most general neutrino mixing scenarios, with either hierarchical, inverse hierarchical, or quasidegenerate light and heavy neutrinos. We comment on the effects of these scenarios on the 0νββ decay. The CP-violating phases in both the heavy and light neutrino sectors of the left-right supersymmetric model have unique features, resulting in bounds on heavy neutrino masses different from the minimal scenario in leptogenesis, and which may distinguish the model from other supersymmetric scenarios
On the problem of axial anomaly in supersymmetric gauge theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1984-01-01
The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory
Supersymmetric extension of the Adler-Bardeen theorem
International Nuclear Information System (INIS)
Novikov, V.A.; Zakharov, V.I.; Shifman, M.A.; Vainshtein, A.I.
1985-01-01
A supersymmetric generalization of the Adler-Bardeen theorem in SUSY gauge theories is given. We show that within the Adler-Bardeen procedure, both the conformal and axial anomalies are exhausted by one loop. (orig.)
Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation
International Nuclear Information System (INIS)
Znojil, Miloslav
2004-01-01
Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations
The N=2 supersymmetric Ward-identities on harmonic superspace
International Nuclear Information System (INIS)
Lhallabi, T.
1986-09-01
The quantization of N=2 supersymmetric Yang-Mills theory coupled to matter hypermultiplet has been done in the harmonic superspace, by requiring BRS and anti-BRS invariance. Also the corresponding Ward-identities have been derived. (author)
Classification of irreps and invariants of the N-extended Supersymmetric Quantum Mechanics
International Nuclear Information System (INIS)
Kuznetsova, Zhanna; Rojas, Moises; Toppan, Francesco
2006-01-01
We present an algorithmic classification of the irreps of the N-extended one-dimensional supersymmetry algebra linearly realized on a finite number of fields. Our work is based on the 1-to-1 correspondence between Weyl-type Clifford algebras (whose irreps are fully classified) and classes of irreps of the N-extended 1D supersymmetry. The complete classification of irreps is presented up to N ≤ 10. The fields of an irrep are accommodated in l different spin states. N = 10 is the minimal value admitting length l>4 irreps. The classification of length-4 irreps of the N = 12 and real N = 11 extended supersymmetries is also explicitly presented. Tensoring irreps allows us to systematically construct manifestly (N-extended) supersymmetric multi-linear invariants without introducing a superspace formalism. Multi-linear invariants can be constructed both for unconstrained and multi-linearly constrained fields. A whole class of off-shell invariant actions are produced in association with each irreducible representation. The explicit example of the N = 8 off-shell action of the (1,8,7) multiplet is presented. Tensoring zero-energy irreps leads us to the notion of the fusion algebra of the 1D N-extended supersymmetric vacua
On exceptional instanton strings
Del Zotto, M.; Lockhart, G.
According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons
Nothing Exceptional: Against Agamben
Colatrella, Steven
2011-01-01
Giorgio Agamben's work has become widely influential as a guide to explaining the extra-constitutional powers assumed by governments under the rubric of the War on Terror. His formulations, such as Homo Sacer and State of Exception, have been extended to apply to a wide variety of experiences of repression of liberties or social control, including…
Exactness of supersymmetric WKB method for translational shape invariant potentials
International Nuclear Information System (INIS)
Cheng, K M; Leung, P T; Pang, C S
2003-01-01
By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs
Second Hopf map and supersymmetric mechanics with Yang monopole
International Nuclear Information System (INIS)
Gonzales, M.; Toppan, F.; Kuznetsova, Z.; Nersessian, F.; Yeghikyan, V.
2009-01-01
We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)
Generalized supersymmetric cosmological term in N=1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)
2015-08-04
An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
Exactness of supersymmetric WKB method for translational shape invariant potentials
Cheng, K M; Pang, C S
2003-01-01
By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.
Energy Technology Data Exchange (ETDEWEB)
Jacquet, M
1995-12-01
Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e{sup +}e{sup -} collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic {Zeta} decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs.
Collider, direct and indirect detection of supersymmetric dark matter
International Nuclear Information System (INIS)
Baer, Howard; Park, Eun-Kyung; Tata, Xerxes
2009-01-01
We present an overview of supersymmetry (SUSY) searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the DM sector. In contrast to the minimal supergravity (mSUGRA) model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m 0 -m 1/2 plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early Universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared with generic predictions from mSUGRA. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the next-lightest-supersymmetric-particle (NLSP) is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.
International Nuclear Information System (INIS)
Dietrich, Janet
2011-01-01
With the start of the Large Hadron Collider (LHC) at CERN it is now possible to study physics at the TeV-scale for the first time. At this unprecedented energy range it is expected that the Standard Model of particle physics will reach its limits and new phenomena can appear. One of the main goals of the ATLAS experiment is the search for physics beyond the Standard Model. This includes observing supersymmetric particles, which are predicted to have masses of several hundred GeV up to a few TeV. The subject of this thesis is the search for supersymmetric particles in final states with jets and missing transverse energy and the evaluation of the ATLAS discovery potential for supersymmetric particles in the Minimal Supersymmetric Standard Model (MSSM) parameter space for these channels. Different centre-of-mass energies of √(s)=14 TeV, 10 TeV and 7 TeV are assumed. For many R-parity conserving SUSY models, the decay of supersymmetric particles leads to detector signatures characterized by missing transverse energy and multi-jets, sometimes accompanied by leptons. In this thesis, SUSY searches with ≥2-6 jets and 0-2 leptons (electrons, muons) are studied, with a focus on 0-lepton channels, that are expected to be sensitive in large areas of the SUSY parameter space. The search strategies for supersymmetric particles are applied on a sets of differently constrained SUSY models and on several hundred SUSY signals, generated within the pMSSM subspace of the MSSM. The goal of this work is to explore the reach of the performed SUSY searches for completely different decay signatures. It will be shown that the ATLAS SUSY searches cover a large parameter space of SUSY models. The first p-p collisions at a centre-of-mass energy of √(s)=7 TeV in March 2010 allow a comparison of the measured data with the Monte Carlo predictions, in order to see how well the detector response is understood in the context of SUSY specific variables used in the 0-lepton analyzes. All
Directory of Open Access Journals (Sweden)
John Cairns Jr
2001-03-01
Full Text Available ABSTRACT: Achieving sustainable use of the planet will require ethical judgments in both sciences and environmental politics. The purpose of this editorial is to discuss two paradigms, exceptionalism and globalism, that are important in this regard. Exceptionalism is the insistence that one set of rules or behaviors is acceptable for an individual or country but that a different set should be used for the rest of the world. For example, the disparity in per capita consumption of resources and economic status has increased dramatically in the last century, but the consumers of great amounts of resources do not feel a proportionate responsibility for addressing this issue. Globalism is defined as individual and societal willingness to diminish, postpone or forgo individual natural resource use to protect and enhance the integrity of the global ecological life support system. Increasing affluence and the still increasing human population, coupled with wide dissemination of information and an increasing awareness that humans occupy a finite planet, exacerbate this already difficult situation. Increased interest in sustainable use of the planet makes open discussion of these issues mandatory because individuals cannot function in isolation from the larger society of which they are a part. Similarly, no country can function in isolation from other countries, which collectively form an interactive mosaic. This discussion identifies some of the crucial issues related to exceptionalism and globalism, which must be addressed before sustainable use of the planet can be achieved.
Supersymmetric quantum mechanics for string bits
International Nuclear Information System (INIS)
Thorn, C.B.
1997-01-01
We develop possible versions of supersymmetric single-particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 6, and 10 space-time dimensions. These are the cases for which open-quotes classicalclose quotes superstring makes sense, and also the values of d for which Hooke close-quote s force law is compatible with the simplest superparticle dynamics. The basic question we address is the following: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2, negative for d=8, and so far inconclusive for d=4. copyright 1997 The American Physical Society
Lepton radiative decays in supersymmetric standard model
International Nuclear Information System (INIS)
Volkov, G.G.; Liparteliani, A.G.
1988-01-01
Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.
2017-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Supersymmetric Dark Matter after LHC Run 1
Bagnaschi, E.A.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K.A.; Sakurai, K.; de Vries, K.J.; Weiglein, G.
2015-10-23
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be exp...
Dark matter scenarios in a constrained model with Dirac gauginos
Goodsell, Mark D.; Müller, Tobias; Porod, Werner; Staub, Florian
2015-01-01
We perform the first analysis of Dark Matter scenarios in a constrained model with Dirac Gauginos. The model under investigation is the Constrained Minimal Dirac Gaugino Supersymmetric Standard model (CMDGSSM) where the Majorana mass terms of gauginos vanish. However, $R$-symmetry is broken in the Higgs sector by an explicit and/or effective $B_\\mu$-term. This causes a mass splitting between Dirac states in the fermion sector and the neutralinos, which provide the dark matter candidate, become pseudo-Dirac states. We discuss two scenarios: the universal case with all scalar masses unified at the GUT scale, and the case with non-universal Higgs soft-terms. We identify different regions in the parameter space which fullfil all constraints from the dark matter abundance, the limits from SUSY and direct dark matter searches and the Higgs mass. Most of these points can be tested with the next generation of direct dark matter detection experiments.
DEFF Research Database (Denmark)
Nielsen, Klaus; Storm, Rasmus K.
2013-01-01
in international sport events a similar impact of extraordinary growth rates has been almost totally absent in the case of India. Is India an exception? Several econometric studies have shown that income per capita is a significant variable explaining elite sport results such as results in the Olympic Games. From...... in the sports of the Olympic Summer Games. The findings show only a very weak correlation, if any at all. However, a detailed analysis of country evidence shows interesting trends and details. The paper concludes with tentative explanations for the findings including the contradictory country evidence....
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
Phenomenology with supersymmetric flipped SU(6)
Energy Technology Data Exchange (ETDEWEB)
Shafi, Qaisar E-mail: shafi@bartol.udel.edu; Tavartkiladze, Zurab E-mail: tavzur@axpfe1.fe.infn.it
1999-07-12
The supersymmetric flipped SU(6) x U(1) gauge symmetry can arise through compactification of the ten-dimensional E{sub 8} x E{sub 8} superstring theory. We show how realistic phenomenology can emerge from this theory by supplementing it with the symmetry R x U(1), where R denotes a discrete 'R'-symmetry. The well-known doublet-triplet splitting problem is resolved to 'all orders' via the pseudo-Goldstone mechanism, and the GUT scale arises from an interplay of the Planck and supersymmetry breaking scales. The symmetry R x U(1) is also important for understanding the fermion mass hierarchies as well as the magnitudes of the CKM matrix elements. Furthermore, the well-known MSSM parameter tan {beta} is estimated to be of order unity, while the proton lifetime ({tau}{sub p} {approx} 10{sup 2}{tau}{sub pSU(5)}) is consistent with observations. Depending on some parameters, p {yields} K{mu}{sup +} can be the dominant decay mode. Finally, the observed solar and atmospheric neutrino 'anomalies' requir us to introduce a 'sterile' neutrino state. Remarkably, the R x U(1) symmetry protects it from becoming heavy, so that maximal angle {nu}{sub {mu}} oscillations into a sterile state can explain the atmospheric anomaly, while the solar neutrino puzzle is resolved via the small angle {nu}{sub e} - {nu}{sub {tau}} MSW oscillations. The existence of some ({approx} 15-20% of critical energy density) neutrino hot dark matter is also predicted.
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
On maximally supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Movshev, M.; Schwarz, A.
2004-01-01
We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L ∞ - and A ∞ -algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra (Ω,∂) of (0,k)-forms on some supermanifold; the Lie algebra is tensor product of (Ω,) and matrix algebra. We construct several other algebras that are quasiisomorphic to (Ω,∂) and, therefore, also can be used to give BV formulation of 10D SUSY YM theory and its reductions. In particular, (Ω,∂) is quasiisomorphic to the algebra (B,d), constructed by Berkovits. The algebras (Ω 0 ,∂) and (B 0 ,d) obtained from (Ω,∂) and (B,d) by means of reduction to a point can be used to give a BV-formulation of IKKT model. We introduce associative algebra SYM as algebra where relations are defined as equations of motion of IKKT model and show that Koszul dual to the algebra (B 0 ,d) is quasiisomorphic to SYM
More on homological supersymmetric quantum mechanics
Behtash, Alireza
2018-03-01
In this work, we first solve complex Morse flow equations for the simplest case of a bosonic harmonic oscillator to discuss localization in the context of Picard-Lefschetz theory. We briefly touch on the exact non-BPS solutions of the bosonized supersymmetric quantum mechanics on algebraic geometric grounds and report that their complex phases can be accessed through the cohomology of WKB 1-form of the underlying singular spectral curve subject to necessary cohomological corrections for nonzero genus. Motivated by Picard-Lefschetz theory, we write down a general formula for the index of N =4 quantum mechanics with background R -symmetry gauge fields. We conjecture that certain symmetries of the refined Witten index and singularities of the moduli space may be used to determine the correct intersection coefficients. A few examples, where this conjecture holds, are shown in both linear and closed quivers with rank-one quiver gauge groups. The R -anomaly removal along the "Morsified" relative homology cycles also called "Lefschetz thimbles" is shown to lead to the appearance of Stokes lines. We show that the Fayet-Iliopoulos parameters appear in the intersection coefficients for the relative homology of the quiver quantum mechanics resulting from dimensional reduction of 2 d N =(2 ,2 ) gauge theory on a circle and explicitly calculate integrals along the Lefschetz thimbles in N =4 C Pk -1 model. The Stokes jumping of coefficients and its relation to wall crossing phenomena is briefly discussed. We also find that the notion of "on-the-wall" index is related to the invariant Lefschetz thimbles under Stokes phenomena. An implication of the Lefschetz thimbles in constructing knots from quiver quantum mechanics is indicated.
Supersymmetric dark matter after LHC run 1
International Nuclear Information System (INIS)
Bagnaschi, E.A.; Buchmueller, O.; Cavanaugh, R.; Illinois Univ., Chicago, IL
2015-08-01
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ 0 1 , assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau τ 1 , stop t 1 or chargino χ ± 1 , resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ 1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E T events and long-lived charged particles, whereas their H/A funnel, focus-point and χ ± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ ± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
Precision LEP data, supersymmetric GUTs and string unification
International Nuclear Information System (INIS)
Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center
1990-01-01
The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)
Globally and locally supersymmetric effective theories for light fields
International Nuclear Information System (INIS)
Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.
Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Roy, Barnana
2014-01-01
We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations
Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Roy, Barnana, E-mail: barnana@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)
2014-10-15
We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations.
DEFF Research Database (Denmark)
Nielsen, Klaus; Storm, Rasmus K.
India is still the extreme under-achiever in international sport competitions. Whereas in China high growth rates have been accompanied by a huge improvement in its ranking in international sport events a similar impact of extraordinary growth rates is seemingly totally absent in the case of India....... Is India an exception? Several econometric studies have shown that income per capita is a significant variable explaining elite sport results such as results in the Olympic Games. From this stylized fact follows the hypothesis that 'above/below average' growth rates lead to relative improvements...... between growth in GNP per capita and growth in medal points (no. 1: five points, no. 2: three points, no.3: two points) in Olympic Summer Games. The findings show no correlation and in a few calculations a very weak correlation. Among the countries behaving in accordance with the hypothesis in the most...
Solving the flavour problem in supersymmetric Standard Models with three Higgs families
International Nuclear Information System (INIS)
Howl, R.; King, S.F.
2010-01-01
We show how a non-Abelian family symmetry Δ 27 can be used to solve the flavour problem of supersymmetric Standard Models containing three Higgs families such as the Exceptional Supersymmetric Standard Model (E 6 SSM). The three 27-dimensional families of the E 6 SSM, including the three families of Higgs fields, transform in a triplet representation of the Δ 27 family symmetry, allowing the family symmetry to commute with a possible high energy E 6 symmetry. The Δ 27 family symmetry here provides a high energy understanding of the Z 2 H symmetry of the E 6 SSM, which solves the flavour changing neutral current problem of the three families of Higgs fields. The main phenomenological predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate LSPs and two almost degenerate families of colour triplet D-fermions, providing a clear prediction for the LHC. In addition the model predicts PGBs with masses below the TeV scale, and possibly much lighter, which appears to be a quite general and robust prediction of all models based on the D-term vacuum alignment mechanism.
Non-perturbative supersymmetry anomaly in supersymmetric QCD
International Nuclear Information System (INIS)
Shamir, Y.
1991-03-01
The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs
Supersymmetric contributions to the decay of an extra Z boson
International Nuclear Information System (INIS)
Gherghetta, T.; Kaeding, T.A.; Kane, G.L.
1998-01-01
We analyze in detail the supersymmetric contributions to the decay of an extra Z boson in effective rank 5 models, including the important effect of D terms on sfermion masses. The inclusion of supersymmetric decay channels will reduce the Z ' branching ratio to standard model particles, resulting in lower Z ' mass limits than those often quoted. In particular, the supersymmetric parameter space motivated by the recent Fermilab eeγγ event and other suggestive evidence results in a branching fraction B(Z ' →e + e - )≅2 endash 4%. The expected cross sections and branching ratios could give a few events in the present data and we speculate on the connection to the three e + e - events observed at Fermilab with large dielectron invariant mass. copyright 1998 The American Physical Society
Precision calculations in supersymmetric extensions of the Standard Model
International Nuclear Information System (INIS)
Slavich, P.
2013-01-01
This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)
Invariant solutions of the supersymmetric sine-Gordon equation
International Nuclear Information System (INIS)
Grundland, A M; Hariton, A J; Snobl, L
2009-01-01
A comprehensive symmetry analysis of the N=1 supersymmetric sine-Gordon equation is performed. Two different forms of the supersymmetric system are considered. We begin by studying a system of partial differential equations corresponding to the coefficients of the various powers of the anticommuting independent variables. Next, we consider the super-sine-Gordon equation expressed in terms of a bosonic superfield involving anticommuting independent variables. In each case, a Lie (super)algebra of symmetries is determined and a classification of all subgroups having generic orbits of codimension 1 in the space of independent variables is performed. The method of symmetry reduction is systematically applied in order to derive invariant solutions of the supersymmetric model. Several types of algebraic, hyperbolic and doubly periodic solutions are obtained in explicit form.
Proton and neutron decay rates in conventional and supersymmetric guts
International Nuclear Information System (INIS)
Salati, P.; Wallet, J.C.
1982-01-01
We present a general calculation of the two body decay rates of the nucleon, for the most general form of four-fermion ΔB = ΔL operators, in the framework of the SU(6) non-relativistic quark model. We have applied our general formulas to Higgs mediated decays in conventional and in supersymmetric SU(5) models. Lower bounds upon, the exchanged particles masses are given. We point out that the hierarchies of branching ratios in decays mediated by Higgs bosons are different from those of gauge boson decay modes (in the former case, neutrinos modes are dominant). We give, in conclusion, an experimental way to distinguish non-supersymmetric GUTs from supersymmetric ones, if the nucleon decays via Higgs bosons
Globally and locally supersymmetric effective theories for light fields
Brizi, Leonardo; Scrucca, Claudio A
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2010-01-01
It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
The supersymmetric Higgs pseudoscalar and its production in toponium decay
International Nuclear Information System (INIS)
Gamberini, G.; Giudice, G.F.; Ridolfi, G.
1987-01-01
In the minimal supersymmetric extension of the standard model one scalar Higgs boson is forced to be lighter than the Z 0 . We consider here the bounds, imposed by supersymmetry, on the mass of the physical Higgs pseudoscalar. It turns out that, although fairly stringent limits are found, it is still conveivable that this particle is light enough to be discovered at SLC and LEP. Its production rate in toponium decay is computed and discussed in view of the bounds on the supersymmetric Higgs sector parameters. (orig.)
Supersymmetric SU(11), the invisible axion, and proton decay
International Nuclear Information System (INIS)
Alwis, S.P. de; Kim, J.E.
1981-09-01
We supersymmetrize the very attractive flavour unification model SU(11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (tausub(p) is approximately 10 33 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a unique U(1)sub(A) symmetry, and hence there are no true Nambu-Goldstone bosons. The U(1)sub(A) is broken at the GUT scale and there result an invisible axion and neutrino masses. (author)
Predictions for mt and MW in minimal supersymmetric models
International Nuclear Information System (INIS)
Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.
2009-12-01
Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)
Dispersive and damping properties of supersymmetric sound. 1
International Nuclear Information System (INIS)
Lebedev, V.V.; Smilga, A.V.
1988-01-01
It is shown that a supersymmetric medium at nonzero temperature possesses necessarily the massless fermionic collective excitation which we call phonino. Its appearance is due to the spontaneous SUSY breaking at T ≠ and is as general as the appearance of the sound. The phase velocity of phonino is C=P/E where P is the pressure and E is the energy density of the medium. The Wess-Zumino model is studied in detail. In the case of small temperature, T 2 , where g<<1 is the coupling constant, and small. The gauge supersymmetric theories are also discussed
A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach
Directory of Open Access Journals (Sweden)
Aradhya Shukla
2017-01-01
Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2006-01-01
We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out
Nonlinear realization of supersymmetric AdS space isometries
International Nuclear Information System (INIS)
Clark, T. E.; Love, S. T.
2006-01-01
The isometries of AdS 5 space and supersymmetric AdS 5 xS 1 space are nonlinearly realized on four-dimensional Minkowski space. The resultant effective actions in terms of the Nambu-Goldstone modes are constructed. The dilatonic mode governing the motion of the Minkowski space probe brane into the covolume of supersymmetric AdS 5 space is found to be unstable and the bulk of the AdS 5 space is unable to sustain the brane. No such instability appears in the nonsupersymmetric case
Supersymmetric hybrid inflation with non-minimal Kahler potential
International Nuclear Information System (INIS)
Bastero-Gil, M.; King, S.F.; Shafi, Q.
2007-01-01
Minimal supersymmetric hybrid inflation based on a minimal Kahler potential predicts a spectral index n s ∼>0.98. On the other hand, WMAP three year data prefers a central value n s ∼0.95. We propose a class of supersymmetric hybrid inflation models based on the same minimal superpotential but with a non-minimal Kahler potential. Including radiative corrections using the one-loop effective potential, we show that the prediction for the spectral index is sensitive to the small non-minimal corrections, and can lead to a significantly red-tilted spectrum, in agreement with WMAP
Dark matter and dark forces from a supersymmetric hidden sector
Energy Technology Data Exchange (ETDEWEB)
Andreas, S.; Goodsell, M.D.; Ringwald, A.
2011-09-15
We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)
Supersymmetric self-dual Yang-Mills fields
International Nuclear Information System (INIS)
Zhao Liu
1994-01-01
A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model
Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model
International Nuclear Information System (INIS)
Haba, Naoyuki; Seto, Osamu
2011-01-01
We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.
Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension
International Nuclear Information System (INIS)
Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo
2007-01-01
Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture
Electric dipole moments as a test of supersymmetric unification
Dimopoulos, Savas K; Dimopoulos, S; Hall, L J
1995-01-01
In a class of supersymmetric grand unified theories, including those based on the gauge group SO(10), there are new contributions to the electric dipole moments of the neutron and electron, which arise as a heavy top quark effect. These contributions arise from CKM-like phases, not from phases of the supersymmetry breaking operators, and can be reliably computed in terms of the parameters of the weak scale supersymmetric theory. For the expected ranges of these parameters, the electric dipole moments of the neutron and the electron are predicted to be close to present experimental limits.
Effects of the supersymmetric phases on the neutral Higgs sector
International Nuclear Information System (INIS)
Demir, D.A.
1999-01-01
By using the effective potential approximation and taking into account the dominant top quark and scalar top quark loops, radiative corrections to MSSM Higgs potential are computed in the presence of the supersymmetric CP-violating phases. It is found that, the lightest Higgs scalar remains essentially CP-even as in the CP-invariant theory whereas the other two scalars are heavy and do not have definite CP properties. The supersymmetric CP-violating phases are shown to modify significantly the decay rates of the scalars to fermion pairs. (author)
Supersymmetric inflation, baryon asymmetry and the gravitino problem
International Nuclear Information System (INIS)
Ovrut, B.A.; Pennsylvania Univ., Philadelphia; Steinhardt, P.J.
1984-01-01
A special class of locally supersymmetric models has been found which can produce a phase transition that meets all the conditions necessary for the inflationary universe scenario and which sets, via spontaneous supersymmetry breaking, a mass hierarchy consistent with the electroweak unification scale. In this paper we show that the same models can produce a baryon asymmetry after inflation that is consistent with astrophysical observations and can avoid the cosmological problems caused by gravitinos that appear in almost all other locally supersymmetric models. (orig.)
Exceptional composite dark matter
Energy Technology Data Exchange (ETDEWEB)
Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)
2017-07-15
We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)
DEFF Research Database (Denmark)
Danbolt, Mathias
2016-01-01
At the 2009 Nordic Culture Forum summit in Berlin that centered on the profiling and branding of the Nordic region in a globalized world, one presenter stood out from the crowd. The lobbyist Annika Sigurdardottir delivered a speech that called for the establishment of “The United Nations of Norden...... that have been central to the debates on the branding of Nordicity over the last decades: on the one hand, the discourse of “Nordic exceptionalism,” that since the 1960s has been central to the promotion of a Nordic political, socio-economic, and internationalist “third way” model, and, on the other hand......, the discourse on the “New Nordic,” that emerged out of the New Nordic Food-movement in the early 2000s, and which has given art and culture a privileged role in the international re-fashioning of the Nordic brand. Through an analysis of Kim and Einhorn’s United Nations of Norden (UNN)-performance, the article...
Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity
Energy Technology Data Exchange (ETDEWEB)
Hajer, Jan
2010-06-15
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)
Gravitino and scalar τ-lepton decays in supersymmetric models with broken R-parity
International Nuclear Information System (INIS)
Hajer, Jan
2010-01-01
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1) Q flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar τ-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar τ-leptons in collider experiments. (orig.)
International Nuclear Information System (INIS)
Huang Yongchang; Huo Qiuhong
2008-01-01
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge
Choosing health, constrained choices.
Chee Khoon Chan
2009-12-01
In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.
International Nuclear Information System (INIS)
Groot Nibbelink, Stefan; Hillenbach, Mark
2005-01-01
We consider supersymmetric gauge theories coupled to hypermultiplets on five- and six-dimensional orbifolds and determine the bulk and local fixed point renormalizations of the gauge couplings. We infer from a component analysis that the hypermultiplet does not induce renormalization of the brane gauge couplings on the five-dimensional orbifold S 1 /Z 2 . This is not due to supersymmetry, since the bosonic and fermionic contributions cancel separately. We extend this investigation to T 2 /Z N orbifolds using supergraph techniques in six dimensions. On general Z N orbifolds the gauge couplings do renormalize at the fixed points, except for the Z 2 fixed points of even ordered orbifolds. To cancel the bulk one-loop divergences a dimension six higher derivative operator is needed, in addition to the standard bulk gauge kinetic term.
Should we still believe in constrained supersymmetry?
International Nuclear Information System (INIS)
Balazs, Csaba; Buckley, Andy; Carter, Daniel; Farmer, Benjamin; White, Martin
2013-01-01
We calculate partial Bayes factors to quantify how the feasibility of the constrained minimal supersymmetric standard model (CMSSM) has changed in the light of a series of observations. This is done in the Bayesian spirit where probability reflects a degree of belief in a proposition and Bayes' theorem tells us how to update it after acquiring new information. Our experimental baseline is the approximate knowledge that was available before LEP, and our comparison model is the Standard Model with a simple dark matter candidate. To quantify the amount by which experiments have altered our relative belief in the CMSSM since the baseline data we compute the partial Bayes factors that arise from learning in sequence the LEP Higgs constraints, the XENON100 dark matter constraints, the 2011 LHC supersymmetry search results, and the early 2012 LHC Higgs search results. We find that LEP and the LHC strongly shatter our trust in the CMSSM (with M 0 and M 1/2 below 2 TeV), reducing its posterior odds by approximately two orders of magnitude. This reduction is largely due to substantial Occam factors induced by the LEP and LHC Higgs searches. (orig.)
Stochastic variables in N=1 supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Lechtenfeld, O.
1984-06-01
The stochastic structure of N=1 supersymmetric Yang-Mills theory is rederived by using a previously developed method for the construction of the (nonlocal) Nicolai map. The stochastic variables correspond to the fixed points of this mapping. The relations are derived in a light cone gauge and in general covariant gauges. (orig.)
Recursive representation of Wronskians in confluent supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2017-01-01
A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation. (paper)
Nonlinear Supersymmetric General Relativity and Unity of Nature
Shima, Kazunari; Tsuda, Motomu
2008-01-01
The basic idea and some physical implications of nonlinear supersymmetric general relativity (NLSUSY GR) are discussed, which give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g. the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.
Non-supersymmetric deformations of non-critical superstrings
International Nuclear Information System (INIS)
Itzhaki, Nissan; Kutasov, David; Seiberg, Nathan
2005-01-01
We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds
Analytic stochastic regularization in QCD and its supersymmetric extension
International Nuclear Information System (INIS)
Abdalla, E.; Vianna, R.L.
1987-08-01
We outline some features of stochastic quantization and regularization of fermionic fields with applications to spinor QCD, showing the appearence of a non-gauge invariant counterterm. We also show that non-invariant terms cancel in supersymmetric multiplets. (Author) [pt
Low energy supersymmetric models for several generations and proton decay
International Nuclear Information System (INIS)
Deo, B.B.; Sarkar, U.
1983-08-01
It is found that by invoking additional horizontal gauge symmetries required to explain the generational structure the low energy standard supersymmetric unified theories avoid the renormalizable unsuppressed baryon number violating interactions in a natural way. Theories considered here are anomaly-free by construction. (author)
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Supersymmetric black holes in N = 2 supergravity theory
International Nuclear Information System (INIS)
Aichelburg, P.C.
1982-01-01
We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)
Half-supersymmetric solutions in five-dimensional supergravity
International Nuclear Information System (INIS)
Gutowski, Jan B.; Sabra, Wafic
2007-01-01
We present a systematic classification of half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which at least one of the Killing spinors generate a time-like Killing vector
General supersymmetric solutions of five-dimensional supergravity
International Nuclear Information System (INIS)
Gutowski, Jan B.; Sabra, Wafic
2005-01-01
The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed
Deviations from Newton's law in supersymmetric large extra dimensions
International Nuclear Information System (INIS)
Callin, P.; Burgess, C.P.
2006-01-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case
Charged and neutral minimal supersymmetric standard model Higgs ...
Indian Academy of Sciences (India)
physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.
Testing the supersymmetric QCD Yukawa coupling in a combined ...
Indian Academy of Sciences (India)
843–847. Testing the supersymmetric QCD Yukawa coupling ... we will only consider a scenario where the mass difference m˜g − m˜qL is sufficiently large to .... Based on the simulations for squark production at the LHC and the ILC presented.
The spectra of supersymmetric states in string theory
Cheng, M.C.N.
2008-01-01
In this thesis we study the spectra of supersymmetric states in string theory compactifications with eight and sixteen supercharges, with special focus placed on the quantum states of black holes and the phenomenon of wall-crossing in these theories. A self-contained introduction to the relevant
A mini review on CP-violating minimal supersymmetric Standard
Indian Academy of Sciences (India)
We discuss the present status of the Higgs sector of the CP-violating minimal supersymmetric Standard Model (CPVMSSM). In the Standard Model (SM) of particle physics, the only source of CP violation is the complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix. By now we all know that this singlephase is ...
GUTs and supersymmetric GUTs in the very early universe
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)
Prospects for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at
90 - GeV Higgs boson in supersymmetric models
International Nuclear Information System (INIS)
Grzadkowski, B.; Kalinowski, J.; Pokorski, S.
1989-07-01
We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)
On the supersymmetrization of Galileon theories in four dimensions
Elvang, Henriette; Hadjiantonis, Marios; Jones, Callum R. T.; Paranjape, Shruti
2018-06-01
We use on-shell amplitude techniques to study the possible N = 1 supersymmetrizations of Galileon theories in 3 + 1 dimensions, both in the limit of decoupling from DBI and without. Our results are that (1) the quartic Galileon has a supersymmetrization compatible with Galileon shift symmetry (ϕ → ϕ + c +bμxμ) for the scalar sector and a constant shift symmetry (ψ → ψ + ξ) for the fermion sector, and it is unique at least at 6th order in fields, but possibly not beyond; (2) the enhanced "special Galileon" symmetry is incompatible with supersymmetry; (3) there exists a quintic Galileon with a complex scalar preserving Galileon shift symmetry; (4) one cannot supersymmetrize the cubic and quintic Galileon while preserving the Galileon shift symmetry for the complex scalar; and (5) for the quartic and quintic Galileon, we present evidence for a supersymmetrization in which the real Galileon scalar is partnered with an R-axion to form a complex scalar which only has an ordinary shift symmetry.
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Stationary Configurations and Geodesic Description of Supersymmetric Black Holes
Käppeli, Jürg
2003-01-01
This thesis contains a detailed study of various properties of supersymmetric black holes. In chapter I an overview over some of the fascinating aspects of black hole physics is provided. In particular, the string theory approach to black hole entropy is discussed. One of the consequences of the
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Constrained superfields in supergravity
Energy Technology Data Exchange (ETDEWEB)
Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)
2016-02-16
We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.
Minimal constrained supergravity
Energy Technology Data Exchange (ETDEWEB)
Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2017-01-10
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Minimal constrained supergravity
Directory of Open Access Journals (Sweden)
N. Cribiori
2017-01-01
Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Minimal constrained supergravity
International Nuclear Information System (INIS)
Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.
2017-01-01
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions
Energy Technology Data Exchange (ETDEWEB)
Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)
2016-03-14
We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.
Classifying supersymmetric solutions in 3D maximal supergravity
de Boer, Jan; Mayerson, Daniel R.; Shigemori, Masaki
2014-12-01
String theory contains various extended objects. Among those, objects of codimension two (such as the D7-brane) are particularly interesting. Codimension-two objects carry non-Abelian charges which are elements of a discrete U-duality group and they may not admit a simple spacetime description, in which case they are known as exotic branes. A complete classification of consistent codimension-two objects in string theory is missing, even if we demand that they preserve some supersymmetry. As a step toward such a classification, we study the supersymmetric solutions of 3D maximal supergravity, which can be regarded as an approximate description of the geometry near codimension-two objects. We present a complete classification of the types of supersymmetric solutions that exist in this theory. We found that this problem reduces to that of classifying nilpotent orbits associated with the U-duality group, for which various mathematical results are known. We show that the only allowed supersymmetric configurations are 1/2, 1/4, 1/8, and 1/16 BPS, and determine the nilpotent orbits that they correspond to. One example of 1/16 BPS configurations is a generalization of the MSW system, where momentum runs along the intersection of seven M5-branes. On the other hand, it turns out exceedingly difficult to translate this classification into a simple criterion for supersymmetry in terms of the non-Abelian (monodromy) charges of the objects. For example, it can happen that a supersymmetric solution exists locally but cannot be extended all the way to the location of the object. To illustrate the various issues that arise in constructing supersymmetric solutions, we present a number of explicit examples.
Directory of Open Access Journals (Sweden)
E. Ireson
2016-01-01
Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.
Constrained Vapor Bubble Experiment
Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi
2002-11-01
Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.
PREFACE: Progress in supersymmetric quantum mechanics
Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.
2004-10-01
The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models
Constrained noninformative priors
International Nuclear Information System (INIS)
Atwood, C.L.
1994-10-01
The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given
Trends in Modern Exception Handling
Directory of Open Access Journals (Sweden)
Marcin Kuta
2003-01-01
Full Text Available Exception handling is nowadays a necessary component of error proof information systems. The paper presents overview of techniques and models of exception handling, problems connected with them and potential solutions. The aspects of implementation of propagation mechanisms and exception handling, their effect on semantics and general program efficiency are also taken into account. Presented mechanisms were adopted to modern programming languages. Considering design area, formal methods and formal verification of program properties we can notice exception handling mechanisms are weakly present what makes a field for future research.
Supersymmetric standard model from the heterotic string (II)
International Nuclear Information System (INIS)
Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.
2006-06-01
We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
SCYNet. Testing supersymmetric models at the LHC with neural networks
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2017-10-15
SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)
Higher-order predictions for supersymmetric particle decays
Energy Technology Data Exchange (ETDEWEB)
Landwehr, Ananda Demian Patrick
2012-06-12
We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.
Supersymmetric solutions of N =(1 ,1 ) general massive supergravity
Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.
2018-05-01
We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.
Supersymmetric states in M5/M2 CFTs
International Nuclear Information System (INIS)
Bhattacharyya, Sayantani; Minwalla, Shiraz
2007-01-01
We propose an exact, finite N formula for the partition function over 1/4 th BPS states in the conformal field theory on the world volume of N coincident M5 branes, and 1/8 th BPS states in the theory of N conincident M2 branes. We obtain our partition function by performing the radial quantization of the Coulomb Branches of these theories and rederive the same formula from the quantization of supersymmetric giant and dual giant gravitons in AdS 7 x S 4 and AdS 4 x S 7 . Our partition function is qualitatively similar to the analogous quantity in N = 4 Yang Mills. It reduces to the sum over supersymmetric multi gravitons at low energies, but deviates from this supergravity formula at energies that scale like a positive power of N
Supersymmetric solutions of minimal gauged supergravity in five dimensions
International Nuclear Information System (INIS)
Gauntlett, Jerome P.; Gutowski, Jan B.
2003-01-01
All purely bosonic supersymmetric solutions of minimal gauged supergravity in five dimensions are classified. The solutions fall into two classes depending on whether the Killing vector constructed from the Killing spinor is timelike or null. When it is timelike, the solutions are determined by a four-dimensional Kaehler base manifold, up to an antiholomorphic function, are necessarily not static, and generically preserve 1/2 of the supersymmetry. When it is null we provide a precise prescription for constructing the solutions and we show that they generically preserve 1/4 of the supersymmetry. We show that five-dimensional anti-de Sitter space (AdS 5 ) is the unique maximally supersymmetric configuration. The formalism is used to construct some new solutions, including a nonsingular deformation of AdS 5 , which can be uplifted to obtain new solutions of type IIB supergravity
Gravity duals of supersymmetric gauge theories on three-manifolds
International Nuclear Information System (INIS)
Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James
2016-01-01
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
On integration over Fermi fields in chiral and supersymmetric theories
International Nuclear Information System (INIS)
Vainshtein, A.I.; Zakharov, V.I.
1982-01-01
Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way [ru
Chiral symmetry breaking is permitted in supersymmetric QED
International Nuclear Information System (INIS)
Walker, M.
2000-01-01
Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
Directory of Open Access Journals (Sweden)
Evgeny A. Ivanov
2013-11-01
Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.
Higgs detectability in the extended supersymmetric standard model
International Nuclear Information System (INIS)
Kamoshita, Jun-ichi
1995-01-01
Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)
Supersymmetric Gödel Universes in string theory
DEFF Research Database (Denmark)
Harmark, Troels; Takayanagi, Tadashi
2003-01-01
Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...
On N = 4 supersymmetric Yang-Mills in harmonic superspace
International Nuclear Information System (INIS)
Ahmed, E.; Bedding, S.; Card, C.T.; Dumbrell, M.; Nouri-Moghadam, M.; Taylor, J.G.
1985-01-01
An analysis of N=4 supersymmetric Yang-Mills theory is presented using a construction involving additional bosonic variables in the coset space SU(4)/H. No choice of H can be shown to lead to an analytic formulation of the theory. by introducing an analysis on dual planes the theory is reduced (including the reality constraint) to one involving N=2 symmetry. This approach has to be extended to include truly harmonic derivatives. For the typical case of SU(4)/SU(2)xU(1) prepotentials are introduced which solve the constraints. It has not been possible, however, to construct an action which leads to the equation of motion for the original N=4 supersymmetric Yang-Mills theory (at the linearised level). (author)
Supersymmetric composite models on intersecting D-branes
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'
Supersymmetric electro-weak effects on gsub(μ)-2
International Nuclear Information System (INIS)
Yuan, T.C.; Arnowitt, R.; Chamseddine, A.H.; Nath, P.
1984-01-01
A model independent analysis of the supersymmetric electroweak contribution to gsub(μ)-2 is discussed within the framework of N=1 Supergravity unified theory. A detailed comparison with existing experiment of two models (R.G. and T.B.) is carried out. The supersymmetric electro-weak contributions are found to be characteristically different and generally larger than the electro-weak contributions of the standard theory, and in many cases significantly larger. Effects of the hidden sector and the photino mass dependence of gsub(μ)-2 are also investigated. Present data already eliminates some choices of parameters. Reduction of existing experimental errors by a factor of 3 will make contact with most R.G. models and by a factor of 10 with most T.B. models. (orig.)
Supersymmetric quantum spin chains and classical integrable systems
International Nuclear Information System (INIS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-01-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
F-theory Yukawa couplings and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Oikonomou, V.K.
2012-01-01
The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.
Impact of the muon anomalous magnetic moment on supersymmetric models
International Nuclear Information System (INIS)
Baer, Howard; Balazs, Csaba; Ferrandis, Javier; Tata, Xerxes
2001-01-01
The recent measurement of a μ =(g μ -2)/2 by the E821 Collaboration at Brookhaven deviates from the quoted standard model (SM) central value prediction by 2.6σ. The difference between SM theory and experiment may be easily accounted for in a variety of particle physics models employing weak scale supersymmetry (SUSY). Other supersymmetric models are distinctly disfavored. We evaluate a μ for various supersymmetric models, including minimal supergravity, Yukawa unified SO(10) SUSY GUT's, models with inverted mass hierarchies, models with nonuniversal gaugino masses, gauge mediated SUSY breaking models, anomaly-mediated SUSY breaking models and models with gaugino mediated SUSY breaking. Models with Yukawa coupling unification or multi-TeV first and second generation scalars are disfavored by the a μ measurement
Chiral rings and anomalies in supersymmetric gauge theory
International Nuclear Information System (INIS)
Cachazo, Freddy; Witten, Edward; Seiberg, Nathan; Douglas, Michael R.
2002-01-01
Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)
A supersymmetric flipped SU(5) intersecting brane world
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu (and others)
2005-03-31
We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The spectrum contains a complete grand unified and electroweak Higgs sector. In addition, it contains extra exotic matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)
Supersymmetric quantum mechanics, phase equivalence, and low energy scattering anomalies
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1991-01-01
Supersymmetric quantum mechanics links two Hamiltonians with the same scattering (phase equivalence) but different number of bound states. We examine the Green's functions for these Hamiltonians as a prelude to embedding the two-body dynamics in a many-body system. We study the effect of the elimination of a two-body bound state near zero energy for the Efimov effect and Beg's theorem
Null half-supersymmetric solutions in five-dimensional supergravity
International Nuclear Information System (INIS)
Grover, Jai; Gutowski, Jan B.; Sabra, Wafic
2008-01-01
We classify half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.
New Methods in Supersymmetric Theories and Emergent Gauge Symmetry
CERN. Geneva
2014-01-01
It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.
Supersymmetric black holes with lens-space topology.
Kunduri, Hari K; Lucietti, James
2014-11-21
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.
Superlocalization formulas and supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Bruzzo, U.; Fucito, F.
2004-01-01
By using supermanifolds techniques we prove a generalization of the localization formula in equivariant cohomology which is suitable for studying supersymmetric Yang-Mills theories in terms of ADHM data. With these techniques one can compute the reduced partition functions of topological super-Yang-Mills theory with 4, 8 or 16 supercharges. More generally, the superlocalization formula can be applied to any topological field theory in any number of dimensions
On timelike supersymmetric solutions of gauged minimal 5-dimensional supergravity
Energy Technology Data Exchange (ETDEWEB)
Chimento, Samuele; Ortín, Tomás [Instituto de Física Teórica UAM/CSIC,C/Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain)
2017-04-04
We analyze the timelike supersymmetric solutions of minimal gauged 5-dimensional supergravity for the case in which the Kähler base manifold admits a holomorphic isometry and depends on two real functions satisfying a simple second-order differential equation. Using this general form of the base space, the equations satisfied by the building blocks of the solutions become of, at most, fourth degree and can be solved by simple polynomic ansatzs. In this way we construct two 3-parameter families of solutions that contain almost all the timelike supersymmetric solutions of this theory with one angular momentum known so far and a few more: the (singular) supersymmetric Reissner-Nordström-AdS solutions, the three exact supersymmetric solutions describing the three near-horizon geometries found by Gutowski and Reall, three 1-parameter asymptotically-AdS{sub 5} black-hole solutions with those three near-horizon geometries (Gutowski and Reall’s black hole being one of them), three generalizations of the Gödel universe and a few potentially homogenous solutions. A key rôle in finding these solutions is played by our ability to write AdS{sub 5}’s Kähler base space ( (ℂℙ)-bar {sup 2} or SU(1,2)/U(2)) is three different, yet simple, forms associated to three different isometries. Furthermore, our ansatz for the Kähler metric also allows us to study the dimensional compactification of the theory and its solutions in a systematic way.
On q-deformed supersymmetric classical mechanical models
International Nuclear Information System (INIS)
Colatto, L.P.; Matheus Valle, J.L.
1995-10-01
Based on the idea of quantum groups and paragrassmann variables, we present a generalization of supersymmetric classical mechanics with a deformation parameter q=exp 2πi/k dealing with the k=3 case. The coordinates of the q-superspace are a commuting parameter t and a paragrassmann variable θ, where θ 3 =0. The generator and covariant derivative are obtained, as well as the action for some possible superfields. (author). 13 refs
Complete integrability of the supersymmetric (cos phi)2 model
International Nuclear Information System (INIS)
Kulish, P.P.; Tsyplyaev, S.A.
1987-01-01
Complete integrability of the supersymmetric two-dimensional sine-Gordon field-theoretical model is proved in the framework of the Hamiltonian interpretation of the inverse problem method. The classical r-matrix of this model is computed and shown to be equivalent to the r-matrix of the Grassmann Thirring model. Creation-annihilation variables are constructed and the elementary excitation spectrum is determined
Supersymmetric closed string tachyon cosmology: a first approach
International Nuclear Information System (INIS)
Vázquez-Báez, V; Ramírez, C
2014-01-01
We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations
Finite-temperature behavior of mass hierarchies in supersymmetric theories
International Nuclear Information System (INIS)
Ginsparg, P.
1982-01-01
It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
DEFF Research Database (Denmark)
Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos
2008-01-01
. This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...
Dilaton and second-rank tensor fields as supersymmetric compensators
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2007-01-01
We formulate a supersymmetric theory in which both a dilaton and a second-rank tensor play roles of compensators. The basic off-shell multiplets are a linear multiplet (B μν ,χ,φ) and a vector multiplet (A μ ,λ;C μνρ ), where φ and B μν are, respectively, a dilaton and a second-rank tensor. The third-rank tensor C μνρ in the vector multiplet is ''dual'' to the conventional D field with 0 on-shell or 1 off-shell degree of freedom. The dilaton φ is absorbed into one longitudinal component of A μ , making it massive. Initially, B μν has 1 on-shell or 3 off-shell degrees of freedom, but it is absorbed into the longitudinal components of C μνρ . Eventually, C μνρ with 0 on-shell or 1 off-shell degree of freedom acquires in total 1 on-shell or 4 off-shell degrees of freedom, turning into a propagating massive field. These basic multiplets are also coupled to chiral multiplets and a supersymmetric Dirac-Born-Infeld action. Some of these results are also reformulated in superspace. The proposed mechanism may well provide a solution to the long-standing puzzle of massless dilatons and second-rank tensors in supersymmetric models inspired by string theory
A Chargeless Complex Vector Matter Field in Supersymmetric Scenario
Directory of Open Access Journals (Sweden)
L. P. Colatto
2015-01-01
Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.
The grin of Cheshire cat resurgence from supersymmetric localization
Directory of Open Access Journals (Sweden)
Daniele Dorigoni, Philip Glass
2018-02-01
Full Text Available First we compute the $\\mbox{S}^2$ partition function of the supersymmetric $\\mathbb{CP}^{N-1}$ model via localization and as a check we show that the chiral ring structure can be correctly reproduced. For the $\\mathbb{CP}^1$ case we provide a concrete realisation of this ring in terms of Bessel functions. We consider a weak coupling expansion in each topological sector and write it as a finite number of perturbative corrections plus an infinite series of instanton-anti-instanton contributions. To be able to apply resurgent analysis we then consider a non-supersymmetric deformation of the localized model by introducing a small unbalance between the number of bosons and fermions. The perturbative expansion of the deformed model becomes asymptotic and we analyse it within the framework of resurgence theory. Although the perturbative series truncates when we send the deformation parameter to zero we can still reconstruct non-perturbative physics out of the perturbative data in a nice example of Cheshire cat resurgence in quantum field theory. We also show that the same type of resurgence takes place when we consider an analytic continuation in the number of chiral fields from $N$ to $r\\in\\mathbb{R}$. Although for generic real $r$ supersymmetry is still formally preserved, we find that the perturbative expansion of the supersymmetric partition function becomes asymptotic so that we can use resurgent analysis and only at the end take the limit of integer $r$ to recover the undeformed model.
Supersymmetric quantum mechanics in three-dimensional space, 1
International Nuclear Information System (INIS)
Ui, Haruo
1984-01-01
As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)
From Jack to Double Jack Polynomials via the Supersymmetric Bridge
Lapointe, Luc; Mathieu, Pierre
2015-07-01
The Calogero-Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as their non-supersymmetric version. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transformations), dubbed the double Jack polynomials. Here, in addition to spelling out these results, which were first obtained in the context of Macdonal superpolynomials, we provide a heuristic derivation of the Jack superpolynomial case by performing simple manipulations on the supersymmetric eigen-operators, rendering them independent of the number of particles and of the fermionic degree. In addition, we work out the expression of the Hamiltonian which characterizes the double Jacks. This Hamiltonian, which defines a new integrable system, involves not only the expected Calogero-Sutherland pieces but also combinations of the generators of an underlying affine {widehat{sl}_2} algebra.
Supersymmetric U(1)' model with multiple dark matters
International Nuclear Information System (INIS)
Hur, Taeil; Lee, Hye-Sung; Nasri, Salah
2008-01-01
We consider a scenario where a supersymmetric model has multiple dark matter particles. Adding a U(1) ' gauge symmetry is a well-motivated extension of the minimal supersymmetric standard model (MSSM). It can cure the problems of the MSSM such as the μ problem or the proton decay problem with high-dimensional lepton number and baryon number violating operators which R parity allows. An extra parity (U parity) may arise as a residual discrete symmetry after U(1) ' gauge symmetry is spontaneously broken. The lightest U-parity particle (LUP) is stable under the new parity becoming a new dark matter candidate. Up to three massive particles can be stable in the presence of the R parity and the U parity. We numerically illustrate that multiple stable particles in our model can satisfy both constraints from the relic density and the direct detection, thus providing a specific scenario where a supersymmetric model has well-motivated multiple dark matters consistent with experimental constraints. The scenario provides new possibilities in the present and upcoming dark matter searches in the direct detection and collider experiments
From topological quantum field theories to supersymmetric gauge theories
International Nuclear Information System (INIS)
Bossard, G.
2007-10-01
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Supersymmetric gauge theories with classical groups via M theory fivebrane
International Nuclear Information System (INIS)
Terashima, S.
1998-01-01
We study the moduli space of vacua of four-dimensional N=1 and N=2 supersymmetric gauge theories with the gauge groups Sp(2N c ), SO(2N c ) and SO(2N c +1) using the M theory fivebrane. Higgs branches of the N=2 supersymmetric gauge theories are interpreted in terms of the M theory fivebrane and the type IIA s-rule is realized in it. In particular, we construct the fivebrane configuration which corresponds to a special Higgs branch root. This root is analogous to the baryonic branch root in the SU(N c ) theory which remains as a vacuum after the adjoint mass perturbation to break N=2 to N=1. Furthermore, we obtain the monopole condensations and the meson vacuum expectation values in the confining phase of N=1 supersymmetric gauge theories using the fivebrane technique. These are in complete agreement with the field theory results for the vacua in the phase with a single confined photon. (orig.)
GUTs and supersymmetric GUTs in the very early universe
International Nuclear Information System (INIS)
Ellis, J.
1982-10-01
This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record
General conditions for the PT symmetry of supersymmetric partner potentials
International Nuclear Information System (INIS)
Levai, G.
2004-01-01
Complete text of publication follows. A common feature of symmetries of quantum systems is that they restrict the form of the Hamiltonian, and consequently they also influence the structure of the energy spectrum. This is also the case with two symmetry concepts that are typically applied in non-relativistic quantum mechanics: supersymmetric quantum mechanics (SUSYQM) and PT symmetry. SUSYQM connects one-dimensional potentials pairwise via the relation V (±) (x) W 2 (x) ± dW/dx + ε, where ε is the factorization energy, V (-) (x) and V (+) (x) are the SUSY partner potentials, while W(x) is the superpotential. In the simplest case, when supersymmetry is unbroken, W(x) is defined in terms of the ground-state wavefunction of V (-) (x) as W(x) = - d/dx lnψ 0 (-) (x), and the factorization energy is chosen as ε E 0 (-) . Under these conditions the SUSY partner potentials possess the same energy levels, except that E 0 (-) is missing from the spectrum of V (+) (x), and the degenerate levels are connected by the SUSY ladder operators A = d/dx + W(x) and A † = - d/dx + W(x). The PT symmetry of a Hamiltonian prescribes its invariance under simultaneous space and time inversion, which boils down to the condition V (x) = V*(-x) in the case of one-dimensional potentials. The unusual feature of this new symmetry concept is that PT-symmetric potentials are complex in general, nevertheless, they possess real energy eigen-values, unless PT symmetry is spontaneously broken, in which case the energy spectrum consists of complex conjugate energy pairs. The interplay of these two symmetry concepts has been analyzed in a number of works, and it has been found that when V (-) (x) has unbroken PT symmetry, then the same applies to V (+) (x), while the spontaneous breakdown of the PT symmetry of V (-) (x) implies the manifest breakdown of the PT symmetry of V (+) (x). The factorization energy ε was found to be real in the former case, and imaginary in the latter one. The examples
Supersymmetric KP hierarchy in N=1 superspace and its N=2 reductions
International Nuclear Information System (INIS)
Lechtenfeld, O.; Sorin, A.
2000-01-01
A wide class of N=2 reductions of the supersymmetric KP hierarchy in N=1 superspace is described. This class includes a new N=2 supersymmetric generalization of the Toda chain hierarchy. The Lax pair representations of the bosonic and fermionic flows, local and non-local Hamiltonians, finite and infinite discrete symmetries, first two Hamiltonian structures and the recursion operator of this hierarchy are constructed. Its secondary reduction to new N=2 supersymmetric modified KdV hierarchy is discussed
Supersymmetric KP hierarchy in N=1 superspace and its N=2 reductions
International Nuclear Information System (INIS)
Lechtenfeld, O.; Sorin, A.
1999-01-01
A wide class of N=2 reductions of the supersymmetric KP hierarchy in N=1 superspace is described. This class includes a new N=2 supersymmetric generalization of the Toda chain hierarchy. The Lax pair representations of the bosonic and fermionic flows, local and nonlocal Hamiltonians, finite and infinite discrete symmetries, first two Hamiltonian structures and the recursion operator of this hierarchy are constructed. Its secondary reduction to new N=2 supersymmetric modified KdV hierarchy is discussed
Low energy dynamics of monopoles in supersymmetric Yang-Mills theories with hypermultiplets
International Nuclear Information System (INIS)
Kim, Chanju
2006-01-01
We derive the low energy dynamics of monopoles and dyons in N = 2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials
International Nuclear Information System (INIS)
Costanza, Francesco
2014-09-01
The analysis presented in this thesis is a search for direct pair production of supersymmetric top-quark partners at CMS. Supersymmetry is a compelling theory providing possible solutions to several of the Standard Models limitations. However, previous searches for supersymmetric particles came back with empty hands. These results and the discovery of a Higgs boson with a mass of about 125 GeV by the ATLAS and CMS Collaborations strongly constrain the simplest supersymmetric models. Nevertheless, more sophisticated models with light third-generation squarks did not lose their theoretical appeal and are within the reach of the 8 TeV run of the Large Hadron Collider. In this analysis, a search for direct top-squark (t) pair production is performed in a final state consisting of a single isolated lepton, jets, among which at least one is a b-tagged jet, and large missing transverse energy. Six search regions are defined with a semi-automatic procedure to maximize the sensitivity of the analysis. The background estimation is performed using simulated samples validated in control regions with small or no signal contamination. Scale factors are measured in the control regions and used to correct the background in the search regions if needed. The observed event yields in the search regions agree with the predicted backgrounds within the uncertainties, hence no evidence for pair-produced top-squarks can be inferred. The results are used to constrain top-squark pair production in the framework of simplified models. Two possible top-squark decay modes are considered: the decay to top quark and a neutralino (chiz), t→tχ 0 , and the decay to a bottom quark and a chargino (χ + ), t→bχ + , with the subsequent χ + →W + +χ 0 decay. Exclusion limits are set for branching ratios B(t →tχ 0 )=100% and B(t → tχ 0 )=50%. In the former case, for small mass values of the lightest neutralino, the analysis probes top-squark masses up to 600 GeV and up to 500 GeV in the
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....
Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM
International Nuclear Information System (INIS)
Bélanger, G.; Hugonie, C.; Pukhov, A.
2009-01-01
We reexamine the constrained version of the Next-to-Minimal Supersymmetric Standard Model with semi universal parameters at the GUT scale (CNMSSM). We include constraints from collider searches for Higgs and susy particles, upper bound on the relic density of dark matter, measurements of the muon anomalous magnetic moment and of B-physics observables as well as direct searches for dark matter. We then study the prospects for direct detection of dark matter in large scale detectors and comment on the prospects for discovery of heavy Higgs states at the LHC
Consistent Kaluza-Klein truncations via exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS,École Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07 (France)
2015-01-26
We present the generalized Scherk-Schwarz reduction ansatz for the full supersymmetric exceptional field theory in terms of group valued twist matrices subject to consistency equations. With this ansatz the field equations precisely reduce to those of lower-dimensional gauged supergravity parametrized by an embedding tensor. We explicitly construct a family of twist matrices as solutions of the consistency equations. They induce gauged supergravities with gauge groups SO(p,q) and CSO(p,q,r). Geometrically, they describe compactifications on internal spaces given by spheres and (warped) hyperboloides H{sup p,q}, thus extending the applicability of generalized Scherk-Schwarz reductions beyond homogeneous spaces. Together with the dictionary that relates exceptional field theory to D=11 and IIB supergravity, respectively, the construction defines an entire new family of consistent truncations of the original theories. These include not only compactifications on spheres of different dimensions (such as AdS{sub 5}×S{sup 5}), but also various hyperboloid compactifications giving rise to a higher-dimensional embedding of supergravities with non-compact and non-semisimple gauge groups.
Covarient quantization of heterotic strings in supersymmetric chiral boson formulation
International Nuclear Information System (INIS)
Yu, F.
1992-01-01
This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts
Scalar mass relations and flavor violations in supersymmetric theories
International Nuclear Information System (INIS)
Cheng, Hsin-Chia; California Univ., Berkeley, CA
1996-01-01
Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1% accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p → K 0 μ + , weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as μ → eγ. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs
Flipped version of the supersymmetric strongly coupled preon model
Energy Technology Data Exchange (ETDEWEB)
Fajfer, S. (Institut za Fiziku, University of Sarajevo, Sarajevo, (Yugoslavia)); Milekovic, M.; Tadic, D. (Zavod za Teorijsku Fiziku, Prirodoslovno-Matematicki Fakultet, University of Zagreb, Croatia, (Yugoslavia))
1989-12-01
In the supersymmetric SU(5) (SUSY SU(5)) composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5){direct product}U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.
Required experimental accuracy to select between supersymmetrical models
Grellscheid, David
2004-03-01
We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. This talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).
Supersymmetric QED at finite temperature and the principle of equivalence
International Nuclear Information System (INIS)
Robinett, R.W.
1985-01-01
Unbroken supersymmetric QED is examined at finite temperature and it is shown that the scalar and spinor members of a chiral superfield acquire different temperature-dependent inertial masses. By considering the renormalization of the energy-momentum tensor it is also shown that the T-dependent scalar-spinor gravitational masses are also no longer degenerate and, moreover, are different from their T-dependent inertial mass shifts implying a violation of the equivalence principle. The temperature-dependent corrections to the spinor (g-2) are also calculated and found not to vanish
Non-supersymmetric loop amplitudes and MHV vertices
International Nuclear Information System (INIS)
Bedford, James; Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how the MHV diagram description of Yang-Mills theories can be used to study non-supersymmetric loop amplitudes. In particular, we derive a compact expression for the cut-constructible part of the general one-loop MHV multi-gluon scattering amplitude in pure Yang-Mills theory. We show that in special cases this expression reduces to known amplitudes-the amplitude with adjacent negative-helicity gluons, and the five gluon non-adjacent amplitude. Finally, we briefly discuss the twistor space interpretation of our result
Universality in radiative corrections for non-supersymmetric heterotic vacua
Angelantonj, C; Tsulaia, Mirian
2016-01-01
Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.
On radiative gauge symmetry breaking in the minimal supersymmetric model
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.; Zwirner, F.
1990-01-01
We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)
Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase
International Nuclear Information System (INIS)
Dutta, Bhaskar; Mohapatra, R.N.
2003-01-01
We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator
Thermal and superthermal properties of supersymmetric field theories
International Nuclear Information System (INIS)
Fuchs, J.
1984-01-01
We discuss the finite-temperature behaviour of supersymmetric field theories. We show that their 'superthermal' properties which concern the question of susy breaking at finite temperature and their thermal properties must be considered separately. Susy breaking is determined by the so-called superthermal ensemble, whereas thermodynamical properties follow from the conventional thermal ensemble, leading to the usual statistics for the bosonic and fermionic components of a superfield. We show that superspace techniques can be used in a straightforward way only for superthermal Green functions but not for thermal ones. We also discuss the possibility of finite-temperature susy restoration and the implications of Goldstone's theorem at finite temperature. (orig.)
Third-order differential ladder operators and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Mateo, J; Negro, J
2008-01-01
Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting third-order differential ladder operators are studied. Each Hamiltonian has associated three-step Darboux (pseudo)-cycles and Painleve IV equations as a closure condition. The whole hierarchy is generated applying some operations on the cycles. These operations are investigated in the frame of supersymmetric quantum mechanics and mainly involve algebraic manipulations. A consistent geometric representation for the hierarchy and cycles is built that also helps in understanding the operations. Three kinds of hierarchies are distinguished and a realization based on the harmonic oscillator Hamiltonian is supplied, giving an interpretation for the spectral properties of the Hamiltonians of each hierarchy
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
ATLAS Z Excess in Minimal Supersymmetric Standard Model
International Nuclear Information System (INIS)
Lu, Xiaochuan; Terada, Takahiro
2015-06-01
Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.
Root Structures of Infinite Gauge Groups and Supersymmetric Field Theories
International Nuclear Information System (INIS)
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2013-01-01
We show the relationship between critical dimensions of supersymmetric fundamental theories and dimensions of certain Jordan algebras. In our approach position vectors in spacetime or in superspace are endowed with algebraic properties that are present only in those critical dimensions. A uniform construction of super Poincaré groups in these dimensions will be shown. Some applications of these algebraic methods to hidden symmetries present in the covariant and interacting string Lagrangians and to superparticle will be discussed. Algebraic methods we develop will be shown to generate the root structure of some infinite groups that play the role of gauge groups in a second quantized theory of strings
Duality and BPS spectra in N = 2 supersymmetric QCD
International Nuclear Information System (INIS)
Ferrari, F.
1997-01-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.)
Local rings of singularities and N=2 supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Lesniewski, A. (Harvard Univ., Cambridge, MA (USA))
1991-02-01
We investigate the Kaehler structure arising in n-component, N = 2 supersymmetric quantum mechanics. We define L{sup 2}-cohomology groups of a modified {delta}-operator and relate them to the corresponding spaces of harmonic forms. We prove that the cohomology is concentrated in the middle dimension, and is isomorphic to the direct sum of the local rings of the singularities of the superpotential. In the physics language, this means that the number of ground states is equal to the absolute value of the index of the supercharge, and each ground state contains exactly n fermions. (orig.).
Supersymmetric couplings and trajectories in N = 1 supergravity
International Nuclear Information System (INIS)
Castagnino, M.; Umerez, N.; Domenech, G.; Levinas, M.
1989-01-01
The present work deals with the classical behaviour of matter represented by chiral multiplets in a background of N = 1 supergravity. The WKB method is used. It is shown that supersymmetric coupling leads, at the lowest order, to a non-geodesic motion law for spin-1/2 matter. This result permits us to establish physical differences with respect to gravitational theories with minimal coupled matter Lagrangians. Deviations from the Newton law are found, allowing us to speculate about low-energy effects for testing supergravity. (author)
Solution of second order supersymmetrical intertwining relations in Minkowski plane
Energy Technology Data Exchange (ETDEWEB)
Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Nishnianidze, D. N., E-mail: cutaisi@yahoo.com [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Akaki Tsereteli State University, 4600 Kutaisi, Georgia (United States)
2016-08-15
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.
Supersymmetric Higgs pair discovery prospects at hadron colliders
Belyaev, A; Éboli, Oscar J P; Mizukoshi, J K; Novaes, S F
2000-01-01
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. Using analytical expressions for the relevant amplitudes, we perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is emphasised. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.
Behaviour of coupling constants at high temperature in supersymmetric theories
International Nuclear Information System (INIS)
Swee Ping Chia.
1986-04-01
An analysis is presented of the temperature dependence of the coupling constants using the improved one-loop approximation in the Wess-Zumino model and the supersymmetric O(N) model. It is found that all the coupling constants, both bosonic (Φ 4 type) and Yukawa, approach constant nonzero values as T→∞. The asymptotic values of the bosonic couplings are slightly smaller than the corresponding zero-temperature values, and those of the Yukawa couplings are the same as the zero-temperature values. (author)
Supersymmetric D2 anti-D2 Strings
Bak, Dongsu; Ohta, Nobuyoshi
2001-01-01
We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...
Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Howe, P.S.; Stelle, K.S.
1984-01-01
We determine the loop orders for the onset of allowed ultra-violet divergences in higher dimensional supersymmetric Yang-Mills theories. Cancellations are controlled by the non-renormalization theorems for the linearly realizable supersymmetries and by the requirement that counterterms display the full non-linear supersymmetries when the classical equations of motion are imposed. The first allowed divergences in the maximal super Yang-Mills theories occur at four loops in five dimensions, three loops in six dimensions and two loops in seven dimensions. (orig.)
N=4 supersymmetric mechanics with nonlinear chiral supermultiplet
International Nuclear Information System (INIS)
Bellucci, S.; Beylin, A.; Krivonos, S.; Nersessian, A.; Orazi, E.
2005-01-01
We construct N=4 supersymmetric mechanics using the N=4 nonlinear chiral supermultiplet. The two bosonic degrees of freedom of this supermultiplet parameterize the sphere S 2 and go into the bosonic components of the standard chiral multiplet when the radius of the sphere goes to infinity. We construct the most general action and demonstrate that the nonlinearity of the supermultiplet results in the deformation of the connection, which couples the fermionic degrees of freedom with the background, and of the bosonic potential. Also a non-zero magnetic field could appear in the system
Charge and color breaking minima in supersymmetric models
International Nuclear Information System (INIS)
Brhlik, Michal
2001-01-01
Supersymmetric extensions of the Standard Model include complicated scalar sectors leading to the possible occurrence of non-standard minima along suitable directions in the field space. These minima usually break charge and/or color and their presence in the theory would require an explanation why the universe has settled in the standard electroweak symmetry breaking minimum. In this talk I illustrate the relevance of the charge and color breaking minima in the framework of the minimal supergravity model and a string motivated Horava-Witten scenario
Is the world supersymmetric? When will we know?
International Nuclear Information System (INIS)
Kane, G.
1995-01-01
After a very short review of the Standard Model of particle physics to make the talk self-contained, the author explains the hypothetical symmetry of particle states and interactions called open-quotes supersymmetryclose quotes briefly, and describes the motivations that have led many particle physicists to work on it. In recent years a sympathetic observer can find several kinds of indirect evidence that nature may actually be supersymmetric, which the author describes. Finally the author summarizes some of the ways supersymmetry predictions could be directly verified, and the expected superpartners detected
Phenomenology of non-minimal supersymmetric models at linear colliders
International Nuclear Information System (INIS)
Porto, Stefano
2015-06-01
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Duality and BPS spectra in N = 2 supersymmetric QCD
Energy Technology Data Exchange (ETDEWEB)
Ferrari, F. [Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique
1997-05-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.).
Duality in a Supersymmetric Gauge Theory From a Perturbative Viewpoint
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2018-01-01
points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications......We study duality in N ¼ 1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a, c, a=c, and b at superconformal fixed...
A premier analysis of supersymmetric closed string tachyon cosmology
Vázquez-Báez, V.; Ramírez, C.
2018-04-01
From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.
Recent developments in the N-extended supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Toppan, Francesco
2007-01-01
In this paper we review some recent developments in the understanding of the supersymmetric quantum mechanics for large-N values of the extended supersymmetries. A list of the topics here covered includes the new available classification of the finite linear irreducible representations, the construction of manifestly off-shell invariant actions without introducing a superfield formalism, the notion of the 'fusion algebra' of the irreducible representations, the connection (for N = 8) with the octonionic structure constants, etc. The results presented are based on the work of the author and his collaborators. (author)
Softening the supersymmetric flavor problem in orbifold grand unified theories
International Nuclear Information System (INIS)
Kajiyama, Yuji; Terao, Haruhiko; Kubo, Jisuke
2004-01-01
The infrared attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) grand unified theory of Kawamura. Then this force aligns in the infrared regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like
Stability of mass hierarchy in locally supersymmetric grand unification
International Nuclear Information System (INIS)
Nishino, H.; Helayel-Neto, J.A.; Koh, I.G.
1984-06-01
Some locally supersymmetric SU(5) grand unified models with a sliding singlet and two pairs of 5sub(tilde) and 5sub(tilde)* Higgs multiplets are considered from the viewpoint of universal baryon asymmetry and the one-loop stability of mass hierarchy. A new mechanism based on ''sliding singlet reflection symmetry'' to avoid the problem of the mass hierarchical stability is proposed. The stability is shown up to two-loop levels for some models. All order stability is also discussed. (author)
Constraining supersymmetry with precision data
International Nuclear Information System (INIS)
Pierce, D.M.; Erler, J.
1997-01-01
We discuss the results of a global fit to precision data in supersymmetric models. We consider both gravity- and gauge-mediated models. As the superpartner spectrum becomes light, the global fit to the data typically results in larger values of χ 2 . We indicate the regions of parameter space which are excluded by the data. We discuss the additional effect of the B(B→X s γ) measurement. Our analysis excludes chargino masses below M Z in the simplest gauge-mediated model with μ>0, with stronger constraints for larger values of tanβ. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Vilar, L.C.Q.; Sasaki, C.A.G.; Sorella, S.P.
1996-09-01
The supersymmetric descent equations in superspace are discussed by means of the introduction of two operators ζ α , ζ -α which allow to decompose the supersymmetric covariant derivatives D α , D -α as BRS commutators. (author). 27 refs., 4 tabs
Energy Technology Data Exchange (ETDEWEB)
Verde, Licia; Jimenez, Raul [Institute of Cosmos Sciences, University of Barcelona, IEEC-UB, Martí Franquès, 1, E08028 Barcelona (Spain); Bellini, Emilio [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Pigozzo, Cassio [Instituto de Física, Universidade Federal da Bahia, Salvador, BA (Brazil); Heavens, Alan F., E-mail: liciaverde@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: cpigozzo@ufba.br, E-mail: a.heavens@imperial.ac.uk, E-mail: raul.jimenez@icc.ub.edu [Imperial Centre for Inference and Cosmology (ICIC), Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)
2017-04-01
We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.
Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1988-01-01
Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry
Two-loop anomalous dimensions for four-Fermi operators in supersymmetric theories
Directory of Open Access Journals (Sweden)
Junji Hisano
2017-09-01
Full Text Available We derive two-loop anomalous dimensions for four-Fermi operators in supersymmetric theories using the effective Kähler potential. We introduce the general forms in generic gauge theories and apply our results to the flavor-changing operators in (minimal supersymmetric standard models.
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Extended N=2 supersymmetric matrix (1, s)-KdV hierarchies
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1997-01-01
We propose the Lax operators for N=2 supersymmetric matrix generalization of the bosonic (1, s)-KdV hierarchies. The simplest examples - the N=2 supersymmetric a=4 KdV and a=5/2 Boussinesq hierarchies - are discussed in detail
International Nuclear Information System (INIS)
Chaichian, M.; Kulish, P. P.
1978-04-01
Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)
A review of supersymmetric GUT and its implication to proton decay
International Nuclear Information System (INIS)
Sakai, N.
1983-01-01
Supersymmetric grand unification and its implication to proton decay are reviewed. The author discusses prototype models and reviews recent studies of model building, in particular models with an intermediate scale (10/sup 10/ -- 10/sup 12/ Gev) supersymmetry breaking. Finally proton decay in supersymmetric models is reviewed
Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses
International Nuclear Information System (INIS)
Annibale, Alessia; Gualdi, Giulia; Cavagna, Andrea
2004-01-01
The structure of states of the perturbed p-spin spherical spin-glass is analysed. At low enough free energy, metastable states have a supersymmetric structure, while at higher free energies the supersymmetry is broken. The transition between the supersymmetric and the supersymmetry-breaking phase is triggered by a change in the stability of states
Contraction-based classification of supersymmetric extensions of kinematical lie algebras
International Nuclear Information System (INIS)
Campoamor-Stursberg, R.; Rausch de Traubenberg, M.
2010-01-01
We study supersymmetric extensions of classical kinematical algebras from the point of view of contraction theory. It is shown that contracting the supersymmetric extension of the anti-de Sitter algebra leads to a hierarchy similar in structure to the classical Bacry-Levy-Leblond classification.
Exceptional groups from open strings
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Zwiebach, B.
1998-01-01
We consider type IIB theory compactified on a two-sphere in the presence of mutually non-local 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional open strings, and are shown to generate the structure of exceptional groups. (orig.)
Constraining neutrinoless double beta decay
International Nuclear Information System (INIS)
Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.
2012-01-01
A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.
Implications of a heavy top in supersymmetric theories
Leontaris, George K
1995-01-01
In the context of the radiative electroweak symmetry breaking scenario we investigate the implications of a heavy top quark mass, close to its infrared fixed point, on the low energy parameters of the minimal supersymmetric standard model. We use analytic expressions to calculate the Higgs masses as well as the supersymmetric masses of the third generation. We further assume bottom-tau unification at the GUT scale and examine the constraints put by this condition on the parameter space (\\tan\\beta,\\alpha_3), using the renormalization group procedure at the two-loop level. We find only a small fraction of the parameter space where the above conditions can be satisfied, namely 1\\le \\tan\\beta \\le 2, while 0.111\\le\\alpha_3(M_Z) \\le 0.118. We further analyse the case where all three Yukawa couplings reach the perturbative limit just after the unification scale. In this latter case, the situation turns out to be very strict demanding \\tan\\beta\\sim 63.
Simple perturbative renormalization scheme for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-06-30
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.
A simple perturbative renormalization scheme for supersymmetric gauge theories
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ] - delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)
Supersymmetric M3-branes and G2 manifolds
International Nuclear Information System (INIS)
Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.
2002-01-01
We obtain a generalisation of the original complete Ricci-flat metric of G 2 holonomy on (R 4 xS 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G 2 metric, and λ={-1,1} are related to this by an S 3 automorphism of the SU(2) 3 isometry group that acts on the S 3 xS 3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G 2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G 2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric
Supersymmetric M3-branes and G2 manifolds
Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.
2002-01-01
We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.
Supersymmetric M3-branes and G{sub 2} manifolds
Energy Technology Data Exchange (ETDEWEB)
Cvetic, M. E-mail: cvetic@cvetic.hep.upenn.edu; Gibbons, G.W.; Lue, H.; Pope, C.N
2002-01-07
We obtain a generalisation of the original complete Ricci-flat metric of G{sub 2} holonomy on R{sup 4}xS{sup 3} to a family with a nontrivial parameter {lambda}. For generic {lambda} the solution is singular, but it is regular when {lambda}={l_brace}-1,0,+1{r_brace}. The case {lambda}=0 corresponds to the original G{sub 2} metric, and {lambda}={l_brace}-1,1{r_brace} are related to this by an S{sub 3} automorphism of the SU(2){sup 3} isometry group that acts on the S{sup 3}xS{sup 3} principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G{sub 2} metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G{sub 2} holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.
Quantum cosmology. The supersymmetric perspective. Vol. 1. Fundamentals
International Nuclear Information System (INIS)
Vargas Moniz, Paulo
2010-01-01
The two volumes that comprise Quantum Cosmology tackle the quantum description of the early universe from the perspective of supersymmetric models of elementary particle physics. The first volume is an accessible primer that covers the basics of the field, critically discussing ideas and concepts that comprise our current knowledge of supersymmetry and supergravity. After reviewing the fundamentals, it provides a thorough analysis of a first set of quantum cosmological models. The second volume is dedicated to more advanced topics. In it, the scope for analyzing quantum cosmological models within a supersymmetric framework is broadened. As much as possible, these two volumes treat what we know, what we think we know and what we think we do not know on an equal footing. Complete with problems and solutions for each chapter, the books are ideal for young, inquisitive minds eager to embark on in-depth research in this field. They provide readers with the tools they need to go on their own, pushing them to ask the right questions rather than seek definitive answers. (orig.)
Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.
Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele
2017-10-20
Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.
Galactic diffusion and the antiproton signal of supersymmetric dark matter
Chardonnet, P; Salati, Pierre; Taillet, R
1996-01-01
The leaky box model is now ruled out by measurements of a cosmic ray gradient throughout the galactic disk. It needs to be replaced by a more refined treatment which takes into account the diffusion of cosmic rays in the magnetic fields of the Galaxy. We have estimated the flux of antiprotons on the Earth in the framework of a two-zone diffusion model. Those species are created by the spallation reactions of high-energy nuclei with the interstellar gas. Another potential source of antiprotons is the annihilation of supersymmetric particles in the dark halo that surrounds our Galaxy. In this letter, we investigate both processes. Special emphasis is given to the antiproton signature of supersymmetric dark matter. The corresponding signal exceeds the conventional spallation flux below 300 MeV, a domain that will be thoroughly explored by the Antimatter Spectrometer experiment. The propagation of the antiprotons produced in the remote regions of the halo back to the Earth plays a crucial role. Depending on the e...
Sfermion mass degeneracy, superconformal dynamics, and supersymmetric grand unified theories
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Noguchi, Tatsuya; Nakano, Hiroaki; Terao, Haruhiko
2002-01-01
We discuss issues in a scenario where hierarchical Yukawa couplings are generated through the strong dynamics of superconformal field theories (SCFTs). Independently of the mediation mechanism of supersymmetry breaking, the infrared convergence property of SCFTs can provide an interesting solution to the supersymmetric flavor problem; sfermion masses are suppressed around the decoupling scale of SCFTs and eventually become degenerate to some degree, thanks to family-independent radiative corrections governed by the gaugino masses of the minimal supersymmetric standard model (MSSM). We discuss under what conditions the degeneracy of the sfermion mass can be estimated in a simple manner. We also discuss the constraints from lepton flavor violations. We then explicitly study sfermion mass degeneracy within the framework of grand unified theories coupled to SCFTs. It is found that the degeneracy for right-handed sleptons becomes worse in the conventional SU(5) model than in the MSSM. On the other hand, in the flipped SU(5)xU(1) model, each right-handed lepton is still an SU(5) singlet, whereas the B-ino mass M 1 is determined by two independent gaugino masses of SU(5)xU(1). These two properties enable us to have an improved degeneracy for the right-handed sleptons. We also speculate on how further improvement can be obtained in the SCFT approach
Functional renormalisation group equations for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Synatschke-Czerwonka, Franziska
2011-01-11
This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)
Non-Abelian duality in N = 4 supersymmetric gauge theories
International Nuclear Information System (INIS)
Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.
1996-03-01
A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs
Supersymmetric Regularization Two-Loop QCD Amplitudes and Coupling Shifts
International Nuclear Information System (INIS)
Dixon, Lance
2002-01-01
We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for ''observed'' particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg → gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS coupling, α s . The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD β function in the FDH and dimensional reduction schemes
Supersymmetric Regularization Two-Loop QCD Amplitudes and Coupling Shifts
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance
2002-03-08
We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for ''observed'' particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg {yields} gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard {bar M}{bar S} coupling, {alpha}{sub s}. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD {beta} function in the FDH and dimensional reduction schemes.
Supersymmetric RG flows and Janus from type II orbifold compactification
Energy Technology Data Exchange (ETDEWEB)
Karndumri, Parinya; Upathambhakul, Khem [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)
2017-07-15
We study holographic RG flow solutions within four-dimensional N = 4 gauged supergravity obtained from type IIA and IIB string theories compactified on T{sup 6}/Z{sub 2} x Z{sub 2} orbifold with gauge, geometric and non-geometric fluxes. In type IIB non-geometric compactifications, the resulting gauged supergravity has ISO(3) x ISO(3) gauge group and admits an N = 4 AdS{sub 4} vacuum dual to an N = 4 superconformal field theory (SCFT) in three dimensions. We study various supersymmetric RG flows from this N = 4 SCFT to N = 4 and N = 1 non-conformal field theories in the IR. The flows preserving N = 4 supersymmetry are driven by relevant operators of dimensions Δ = 1, 2 or alternatively by one of these relevant operators, dual to the dilaton, and irrelevant operators of dimensions Δ = 4 while the N = 1 flows in addition involve marginal deformations. Most of the flows can be obtained analytically. We also give examples of supersymmetric Janus solutions preserving N = 4 and N = 1 supersymmetries. These solutions should describe two-dimensional conformal defects within the dual N = 4 SCFT. Geometric compactifications of type IIA theory give rise to N = 4 gauged supergravity with ISO(3) x U(1){sup 6} gauge group. In this case, the resulting gauged supergravity admits an N = 1 AdS{sub 4} vacuum. We also numerically study possible N = 1 RG flows to non-conformal field theories in this case. (orig.)
Theory, phenomenology, and prospects for detection of supersymmetric dark matter
International Nuclear Information System (INIS)
Diehl, E.; Kane, G.L.; Kolda, C.; Wells, J.D.
1995-01-01
One of the great attractions of minimal superunified supersymmetric models is the prediction of a massive, stable, weakly interacting particle [the lightest supersymmetric partner (LSP)] which can have the right relic abundance to be a cold dark matter candidate. In this paper we investigate the identity, mass, and properties of the LSP after requiring gauge coupling unification, proper electroweak symmetry breaking, and numerous phenomenological constraints. We then discuss the prospects for detecting the LSP. The experiments which we investigate are (1) space annihilations into positrons, antiprotons, and γ rays, (2) large underground arrays to detect upward-going muons arising from LSP capture and annihilation in the sun and earth, (3) elastic collisions on matter in a table top apparatus, and (4) production of LSP's or decays into LSP's at high energy colliders. Our conclusions are that space annihilation experiments and large underground detectors are of limited help in initially detecting the LSP although perhaps they could provide confirmation of a signal seen in other experiments, while table top detectors have considerable discovery potential. Colliders such as the CERN LEP II, an upgraded Fermilab, and the CERN LHC might be the best dark matter detectors of all. This paper improves on most previous analyses in the literature by (a) only considering parameters not already excluded by several physics constraints listed above, (b) presenting results that are independent of (usually untenable) parameter choices, (c) comparing opportunities to study the same cold dark matter, and (d) including minor technical improvements
Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter
Ellis, Jonathan Richard; Olive, Keith A; Ellis, John
2001-01-01
We explore the possible cross sections for the elastic scattering of neutralinos chi on nucleons p,n in the minimal supersymmetric extension of the standard model (MSSM). Universality of the soft supersymmetry-breaking scalar masses for the Higgs multiplets is not assumed, but the MSSM parameters are nevertheless required to lead consistently to an electroweak vacuum. We explore systematically the region of MSSM parameter space where LEP and other accelerator constraints are respected, and the relic neutralino density lies in the range 0.1 < Omega_chi h^2 < 0.3 preferred by cosmology. We also discuss models with Omega_chi h^2 < 0.1, in which case we scale the density of supersymmetric dark matter in our galactic halo by Omega_chi h^2 / 0.1, allowing for the possible existence of some complementary form of cold dark matter. We find values of the cross sections that are considerably lower than the present experimental sensitivities. At low neutralino masses, m_chi < 100 GeV, the cross sections may b...
Learned Helplessness in Exceptional Children.
Brock, Herman B.; Kowitz, Gerald T.
The research literature on learned helplessness in exceptional children is reviewed and the authors' efforts to identify and retrain learning disabled (LD) children who have characteristics typical of learned helplessness are reported. Twenty-eight elementary aged LD children viewed as "learned helpless" were randomly assigned to one of four…
76 FR 53157 - Excepted Service
2011-08-25
... OFFICE OF PERSONNEL MANAGEMENT Excepted Service AGENCY: U.S. Office of Personnel Management (OPM... Administration. Office of Management. Special Assistant.... DE110117 6/22/2011 Office of the Special Assistant... Directors... Special Assistant.... EB110010 6/9/2011 GENERAL SERVICES ADMINISTRATION... Pacific Rim Region...
Exceptional Responders Initial Feasibility Results
A pilot study evaluating identification of cancer patients who respond to treatment that is ineffective in at least 90 percent of patients found that it was indeed able to confirm a majority of proposed patients as exceptional responders based on clinical
Exceptional and Spinorial Conformal Windows
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Ryttov, Thomas
2012-01-01
We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...
Constrained evolution in numerical relativity
Anderson, Matthew William
The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.
New aspects of flavour model building in supersymmetric grand unification
International Nuclear Information System (INIS)
Spinrath, Martin
2010-01-01
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan β-enhanced threshold corrections which can be sizeable if tan β is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y μ /y s =9/2 or 6 or y τ /y b =3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan β where θ u 13 =θ d 13 =0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases δ u 12 and δ d 12 and the right unitarity triangle angle α which suggests a simple phase structure for the quark mass matrices where one matrix element is purely imaginary and the remaining ones are purely real. To complement
Resummation for supersymmetric particle production at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Brensing, Silja Christine
2011-05-10
The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the
New aspects of flavour model building in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Spinrath, Martin
2010-05-19
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan {beta}-enhanced threshold corrections which can be sizeable if tan {beta} is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y{sub {mu}}/y{sub s}=9/2 or 6 or y{sub {tau}}/y{sub b}=3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan {beta} where {theta}{sup u}{sub 13}={theta}{sup d}{sub 13}=0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases {delta}{sup u}{sub 12} and {delta}{sup d}{sub 12} and the right unitarity triangle angle {alpha} which suggests a simple phase structure for the quark mass matrices where
Supersymmetric partition functions and the three-dimensional A-twist
Energy Technology Data Exchange (ETDEWEB)
Closset, Cyril [Theory Department, CERN,CH-1211, Geneva 23 (Switzerland); Kim, Heeyeon [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada); Willett, Brian [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States)
2017-03-14
We study three-dimensional N=2 supersymmetric gauge theories on M{sub g,p}, an oriented circle bundle of degree p over a closed Riemann surface, Σ{sub g}. We compute the M{sub g,p} supersymmetric partition function and correlation functions of supersymmetric loop operators. This uncovers interesting relations between observables on manifolds of different topologies. In particular, the familiar supersymmetric partition function on the round S{sup 3} can be understood as the expectation value of a so-called “fibering operator” on S{sup 2}×S{sup 1} with a topological twist. More generally, we show that the 3d N=2 supersymmetric partition functions (and supersymmetric Wilson loop correlation functions) on M{sub g,p} are fully determined by the two-dimensional A-twisted topological field theory obtained by compactifying the 3d theory on a circle. We give two complementary derivations of the result. We also discuss applications to F-maximization and to three-dimensional supersymmetric dualities.
CMS : An exceptional load for an exceptional work site
2001-01-01
Components of the CMS vacuum tank have been delivered to the detector assembly site at Cessy. The complete inner shell was delivered to CERN by special convoy while the outer shell is being assembled in situ. The convoy transporting the inner shell of the CMS vacuum tank took a week to cover the distance between Lons-le-Saunier and Point 5 at Cessy. Left: the convoy making its way down from the Col de la Faucille. With lights flashing, flanked by police outriders and with roads temporarily closed, the exceptional load that passed through the Pays de Gex on Monday 20 May was accorded the same VIP treatment as a leading state dignitary. But this time it was not the identity of the passenger but the exceptional size of the object being transported that made such arrangements necessary. A convoy of two lorries was needed to transport the load, an enormous 13-metre long, 6 metre diameter cylinder weighing 120 tonnes. It took a week to cover the 120 kilometres between Lons-le-Saunier and the assembly site for...
Lightweight cryptography for constrained devices
DEFF Research Database (Denmark)
Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco
2014-01-01
Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....
Minimal supersymmetric hybrid inflation, flipped SU(5) and proton decay
Energy Technology Data Exchange (ETDEWEB)
Rehman, Mansoor Ur; Shafi, Qaisar [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Wickman, Joshua R., E-mail: jwickman@udel.ed [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)
2010-04-26
Minimal supersymmetric hybrid inflation utilizes a canonical Kaehler potential and a renormalizable superpotential which is uniquely determined by imposing a U(1) R-symmetry. In computing the scalar spectral index n{sub s} we take into account modifications of the tree level potential caused by radiative and supergravity corrections, as well as contributions from the soft supersymmetry breaking terms with a negative soft mass-squared term allowed for the inflaton. All of these contributions play a role in realizing n{sub s} values in the range 0.96-0.97 preferred by WMAP. The U(1) R-symmetry plays an important role in flipped SU(5) by eliminating the troublesome dimension five proton decay. The proton decays into e{sup +}pi{sup 0} via dimension six operators arising from the exchange of superheavy gauge bosons with a lifetime of order 10{sup 34}-10{sup 36} years.
Nucleon electric dipole moments in high-scale supersymmetric models
International Nuclear Information System (INIS)
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Neutron electric dipole moment in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.
1995-01-01
The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)
Electric dipole moments from Yukawa phases in supersymmetric theories
International Nuclear Information System (INIS)
Romanino, A.; Strumia, A.
1997-01-01
We study quark and electron EDMs generated by Yukawa couplings in supersymmetric models with different gauge groups, using the EDM properties under flavour transformations. In the MSSM (or if soft terms are mediated below the unification scale) the one-loop contributions to the neutron EDM are smaller than in previous computations based on numerical methods, although increasing as tan 3 β. A neutron EDM close to the experimental limits can be generated in SU(5), if tan β is large, through the u-quark EDM d u , proportional to tan 4 β. This effect has to be taken into account also in SO(10) with large tan β, where d u is comparable to the d quark EDM, proportional to tan β. (orig.)
Precise predictions for supersymmetric particle production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Rothering, Marcel
2016-07-01
One of the main objectives of the Large Hadron Collider (LHC) is the search for physics beyond the Standard Model. Among the most promising candidates is the Minimal Supersymmetric Standard Model (MSSM) which postulates the existence of further particles. Since none of these supersymmetric particles have been found yet, their mass limits have been shifted to high values. Hence, with the available energy of the LHC they would always be produced close to their production threshold. This leads to predictions for cross sections which are characterized by the presence of dominant logarithmic terms stemming from multiple soft gluon emission. These contributions spoil the convergence of the perturbative series and require a resummation to predict reliable results in these critical kinematical phase space regions. As the attention of experimental searches has been shifted towards electroweak supersymmetric particle production at the LHC, we update in this thesis our predictions for direct slepton pair production at proton-proton collision to next-to-leading order (NLO) matched to resummation at the next-to-leading logarithmic (NLL) accuracy. As a benchmark scenario we choose simplified models which have the advantage of only containing a few relevant physical parameters. They are now commonly adopted by the experimental collaborations for slepton and electroweak gaugino searches. We find that the scale dependence is drastically reduced by including NLL corrections, especially for large slepton masses. For increasing mass limits we hint towards the significance of next-to-next-to-leading logarithmic contributions to the cross section. By using modern Monte Carlo techniques we reanalyze ATLAS and CMS results for slepton searches for different assumptions about the compositions of the sleptons and their neutralino decay products. We observe similar mass limits for selectrons and smuons as both collaborations and find that masses for left-handed (right-handed) selectrons and
Supersymmetric models with tan β close to unity
International Nuclear Information System (INIS)
Ananthanarayan, B.; Babu, K.S.; Shafi, Q.
1994-01-01
Within the framework of supersymmetric grand unification, estimates of the b quark mass based on the asymptotic relation m b similar eqm τ single out the region with tan β close to unity, particularly if m t (m t ) < or ∼170 GeV. We explore the radiative breaking of the electroweak symmetry and the associated sparticle and higgs spectroscopy in models with 1 < tan β< or ∼1.6. The lightest scalar higgs is expected to have a mass below 100 GeV, while the remaining four higgs masses exceed 300 GeV. The lower bounds on some of the sparticle masses are within the range of LEP 200. ((orig.))
M-Theory and Maximally Supersymmetric Gauge Theories
Lambert, Neil
2012-01-01
In this informal review for non-specalists we discuss the construction of maximally supersymmetric gauge theories that arise on the worldvolumes branes in String Theory and M-Theory. Particular focus is made on the relatively recent construction of M2-brane worldvolume theories. In a formal sense, the existence of these quantum field theories can be viewed as predictions of M-Theory. Their construction is therefore a reinforcement of the ideas underlying String Theory and M-Theory. We also briefly discuss the six-dimensional conformal field theory that is expected to arise on M5-branes. The construction of this theory is not only an important open problem for M-Theory but also a significant challenge to our current understanding of quantum field theory more generally.
Radiative corrections to the masses of supersymmetric Higgs bosons
International Nuclear Information System (INIS)
Ellis, J.; Zwirner, F.
1991-01-01
The lightest neutral Higgs boson in the minimal supersymmetric extension of the standard model has a tree-level mass less than that of the Z 0 . We calculate radiative corrections to its mass and to that of the heavier CP-even neutral Higgs boson. We find large corrections that increase with the top quark and squark masses, and vary with the ratio of vacuum expectation values v 2 /v 1 . These radiative corrections can be as large as O(100) GeV, and have the effect of (i) invalidating lower bounds on v 2 /v 1 inferred from unsuccessful Higgs searches at LEP I, (ii) in many cases, increasing the mass of the lighter CP-even Higgs boson beyond m z , (iii) often, increasing the mass of the heavier CP-even Higgs boson beyond the LEP reach, into a range more accessible to the LHC or SSC. (orig.)
Webs of domain walls in supersymmetric gauge theories
International Nuclear Information System (INIS)
Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2005-01-01
Webs of domain walls are constructed as 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in d=4, N=2 supersymmetric U(N C ) gauge theories with N F hypermultiplets in the fundamental representation. Webs of walls can contain any numbers of external legs and loops like (p,q) string/5-brane webs. We find the moduli space M of a 1/4 BPS equation for wall webs to be the complex Grassmann manifold. When moduli spaces of 1/2 BPS states (parallel walls) and the vacua are removed from M, the noncompact moduli space of genuine 1/4 BPS wall webs is obtained. All the solutions are obtained explicitly and exactly in the strong gauge coupling limit. In the case of Abelian gauge theory, we work out the correspondence between configurations of wall web and the moduli space CP N F -1
Supersymmetric AdS6 solutions of type IIB supergravity
International Nuclear Information System (INIS)
Kim, Hyojoong; Kim, Nakwoo; Suh, Minwoo
2015-01-01
We study the general requirement for supersymmetric AdS 6 solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS 6 . This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity
Gauge hierarchy in an SO(10) supersymmetric grand unified model
International Nuclear Information System (INIS)
Zhiyong, Z.
1982-01-01
An SO(10) supersymmetric grand unified model is constructed in which the gauge hierarchy problem may be solved. Using Higgs superfields belonging to the SO(10) representations 16, 10 and 54, it is found that if SO(10) is broken down to SU(3)sub(c)xSU(2)sub(L)xU(1) via SO(6)xSO(4)approximately equal to SU(4)sub(c)xSU(2)sub(L)xSU(2)sub(R) at unification mass scales without supersymmetry breaking, the gauge hierarchy puzzle might be carried away. It is also shown that the colour-triplet Higgs, which mediates proton decay, is superheavy by an incredibly accurate, but 'natural' adjustment of parameters in the potential. (author)
Anatomy of Higgs mass in supersymmetric inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-09-07
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.
Goldstone fermions in supersymmetric theories at finite temperature
International Nuclear Information System (INIS)
Aoyama, H.; Boyanovsky, D.
1984-01-01
The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators
The general supersymmetric solution of topologically massive supergravity
International Nuclear Information System (INIS)
Gibbons, G W; Pope, C N; Sezgin, E
2008-01-01
We find the general fully nonlinear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant μ. If μ does not take the critical value, μ = ±1, these solutions are asymptotically regular on a Poincare patch, but do not admit a smooth global compactification with boundary S 1 x R. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincare patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole
A supersymmetric phase transition in Josephson-tunnel-junction arrays
International Nuclear Information System (INIS)
Foda, O.
1988-01-01
The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T I ≤T V , then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T I =T V . Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory. (orig.)
Supersymmetric phase transition in Josephson-tunnel-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1988-08-31
The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.
Local gauge coupling running in supersymmetric gauge theories on orbifolds
International Nuclear Information System (INIS)
Hillenbach, M.
2007-01-01
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners
International Nuclear Information System (INIS)
Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub
2004-01-01
We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV
On the stability of non-supersymmetric supergravity solutions
Imaanpur, Ali; Zameni, Razieh
2017-09-01
We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5 ×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2 ×M8, where the compact space is a U (1) bundle over N (1 , 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.
On the stability of non-supersymmetric supergravity solutions
Directory of Open Access Journals (Sweden)
Ali Imaanpur
2017-09-01
Full Text Available We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2×M8, where the compact space is a U(1 bundle over N(1,1. We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.
Searches for supersymmetric higgsinos with the ATLAS detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
A search for supersymmetric partners of the Higgs and gauge bosons (charginos and neutralinos) is presented in this work, using the data from the ATLAS experiment Considerations on the naturalness of the Higgs boson mass suggest that the two lightest neutralinos might be a mix of the partners of the Higgs and could have a similar mass. Using this scenario as reference, in the analysis we are searching for final states with pairs of electrons and muons with low transverse momentums coming from the decay of the two lightest neutralinos, high missing transvers momentum generated by neutrinos which are non detectable, and an energetic jet coming from QCD initial state radiation. Results are shown for the analysis obtained with 36 \\ifb, and limits are set on the mass parameter of the higgsinos.
Resonances in A=6 nuclei: use of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Dutta, S.K.; Das, T.K.; Khan, M.A.; Chakrabarti, B.
2004-01-01
We propose a novel theoretical technique for the calculation of resonances at low excitation energies in weakly bound systems. Starting from an effective potential, supersymmetric quantum mechanics can be successfully used to generate families of isospectral potentials having desirable and adjustable properties. For resonance states, for which there is no bound ground state of the same spin-parity, one can construct an isospectral potential with a bound state in the continuum (BIC). The potential looks quite different but is strictly isospectral with the original one. The quasi-bound state in the original shallow potential will be effectively trapped in the deep well of the isospectral family facilitating an easier and more accurate calculation of the resonance energy. Application to 6 He, 6 Be, and 6 Li systems yields quite accurate results. The beauty of our technique: We get both the bound ground state and the resonances by a single technique and using the same potential. (author)
Structure of UV divergences in maximally supersymmetric gauge theories
Kazakov, D. I.; Borlakov, A. T.; Tolkachev, D. M.; Vlasenko, D. E.
2018-06-01
We consider the UV divergences up to sub-subleading order for the four-point on-shell scattering amplitudes in D =8 supersymmetric Yang-Mills theory in the planar limit. We trace how the leading, subleading, etc divergences appear in all orders of perturbation theory. The structure of these divergences is typical for any local quantum field theory independently on renormalizability. We show how the generalized renormalization group equations allow one to evaluate the leading, subleading, etc. contributions in all orders of perturbation theory starting from one-, two-, etc. loop diagrams respectively. We focus then on subtraction scheme dependence of the results and show that in full analogy with renormalizable theories the scheme dependence can be absorbed into the redefinition of the couplings. The only difference is that the role of the couplings play dimensionless combinations like g2s2 or g2t2, where s and t are the Mandelstam variables.
Renormalization of supersymmetric models without using auxiliary fields
International Nuclear Information System (INIS)
Urbanek, P.
1986-01-01
Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)
Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations
Riotto, Antonio
1998-01-01
The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...
Supersymmetric quantum mechanics, spinors and the standard model
International Nuclear Information System (INIS)
Woit, P.
1988-01-01
The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)
4D constructions of supersymmetric extra dimensions and gaugino mediation
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Grojean, Christophe; Kribs, Graham D.
2002-01-01
We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric (SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino mediation of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models
Ilakovac, Amon; Popov, Luka
2014-01-01
We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.
New supersymmetric AdS4 type II vacua
International Nuclear Information System (INIS)
Tsimpis, D.
2010-01-01
We review the supersymmetric AdS 4 x w M 6 backgrounds of type IIA/IIB supergravity constructed in[1]. In type IIA the supersymmetry is N=2, and the six-dimensional internal space is locally an S 2 bundle over a four-dimensional Kaehler-Einstein base; in IIB the internal space is the direct product of a circle and a five-dimensional squashed Sasaki-Einstein manifold. These backgrounds do not contain any sources, all fluxes (including the Romans mass in IIA) are generally non-zero, and the dilaton and warp factor are non-constant. The IIA solutions include the massive deformations of the IIA reduction of the eleven-dimensional AdS 4 x Y p,q solutions, and had been predicted to exist on the basis of the AdS 4 /CFT 3 correspondence. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Searches for supersymmetric higgsinos with the ATLAS detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
A search for supersymmetric partners of the Higgs and gauge bosons (charginos and neutralinos) is presented in this work, using the data from the ATLAS experiment at the LHC. Considerations on the naturalness of the Higgs boson mass suggest that the two lightest neutralinos might be a mix of the partners of the Higgs and could have a similar mass. Using this scenario as reference, the analysis searches for final states with pairs of electrons and muons with low transverse momentums coming from the decay of the second lightest neutralino into the lightest neutralino, high missing transvers momentum generated by neutrinos which are non detectable, and an energetic jet coming from QCD initial state radiation. Results are shown for the analysis obtained with 36 fb$^{-1}$, and limits are set on the mass parameter of the higgsinos.
Supersymmetric Dirac particles in Riemann-Cartan space-time
International Nuclear Information System (INIS)
Rumpf, H.
1981-01-01
A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)