WorldWideScience

Sample records for constrained biomass availability

  1. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

    Directory of Open Access Journals (Sweden)

    W. Li

    2017-11-01

    Full Text Available The use of dynamic global vegetation models (DGVMs to estimate CO2 emissions from land-use and land-cover change (LULCC offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error. The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

  2. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030, regardless of....../or biogas, natural gas or electricity for transport are advantageous....

  3. Increasing biomass resource availability through supply chain analysis

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability. The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy. - Highlights: • As global biomass demand increases, focus is placed indigenous resources. • A Biomass Resource Model is applied to analyse UK biomass supply chain dynamics. • Biomass availability is best increased

  4. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    Science.gov (United States)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  5. The expected availability of biomass in 2010

    International Nuclear Information System (INIS)

    Koppejan, J.; De Boer-Meulman, P.D.M.

    2005-11-01

    The aim of the Dutch government is to produce 5% of the energy consumption in the Netherlands from renewable energy sources in the year 2010. According to the Plan of Activities for Biomass bio-energy could contribute 75-87 PJ. In this study attention is paid to the expected availability of biomass in order to meet the targets, taking into account biomass sources in the Netherlands and abroad [nl

  6. Availability of Dutch biomass for electricity and heat in 2020

    International Nuclear Information System (INIS)

    Koppejan, J.; Elbersen, W.; Meeusen, M.; Bindraban, P.

    2009-11-01

    Availability of biomass is an important factor in realizing the Dutch targets for renewable energy. This study maps the availability of Dutch biomass in the framework of alternative applications and sustainability requirements, today and in the future. The conclusion is drawn that there is approximately 13 to 16 million tons of dry biomass available for energy generation in the Netherlands in 2020. This is 30 to 40% of the amount of biomass that is annually used in the Netherlands, generating 53 to 94 PJ of final energy, avoiding 101 to 157 PJ of fossil energy. This availability of biomass and the energy that is generated from the biomass can increase further after 2020. In addition, biomass will also be imported, especially for combustion and co-firing in coal-fired power plants and for the production of transport fuels. [nl

  7. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  8. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.

  9. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  10. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  11. Corn Stover Availability for Biomass Conversion: Situation Analysis

    International Nuclear Information System (INIS)

    Hess, J. Richard; Kenney, Kevin L.; Wright, Christopher T.; Perlack, Robert; Turhollow, Anthony

    2009-01-01

    As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, this study of a large, square-bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional-bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting and collection and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes

  12. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    International Nuclear Information System (INIS)

    Li, Xiaoxi; Rubæk, Gitte H.; Sørensen, Peter

    2016-01-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha"−"1 application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha"−"1 straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil.

  13. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  14. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    of alternative uses. Since natural gas and coal will be used as fuels for heat and power production at least within this time frame, the lost alternatives include substitution of natural gas or coal in the heat and power sector. In a case study, we investigate the environmental feasibility of using advanced...... show that for the case of this advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas...

  15. GRAIN. Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2001-07-01

    The objective of the study on the title subject (GRAIN) is to provide better insight in the 'upper' limit of the amount of biomass that can be made available in a sustainable way for the energy supply in the Netherlands, on the basis of existing studies. Based on this insight an integral, compact and clear overview is formulated of the possibilities, the boundary conditions and the desirability of import of (energy from) biomass. In order to generate this insight the following questions will be answered: (1) What do the available literature sources mention about global production of biomass and the share of this production which can be utilised for the energy supply at the medium (2020) and long (2050) term?; (2) To what extent is this potential affected by the demand for biomass as a source of materials, based upon experiences in Europe?; (3) What is the result of earlier studies on global land use in relation to the demand for food, population growth, agricultural practices and biophysical production limits?; (4) Which sustainability criteria have to be taken into account when importing biomass in the Netherlands?

  16. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    Pla Duporte, Manuel; Arango, Mirta; Guyat Dupuy, Maria Antonia

    2011-01-01

    The quick decrease of the fossil fuels has taken to the search of renewable sources of energy. Cuba has in the biomasses one of the biggest potentialities of sources renewable of energy, but even with a small exploitation. The purpose of increasing the employment of the sources renewable of energy, in particular the biomasses one requires evaluation of the capacities with which it counts our country. Presently work the results of an are presented The study carried out directed to the evaluation of these sources focused basically to the possibility of their employment in processes thermochemical. The evaluation of the is attacked availability of these energy resources, their main ones characteristic, the potentialities are also determined of use of the selected biomasses. Equally you it makes an estimate of the availability of the biomasses chosen in dependence of the behavior of its consumption, for finally to carry out an appreciation of the one potential of energy obtaining starting from her and its technician-economic feasibility. (author)

  17. Regional Responses to Constrained Water Availability

    Science.gov (United States)

    Cui, Y.; Calvin, K. V.; Hejazi, M. I.; Clarke, L.; Kim, S. H.; Patel, P.

    2017-12-01

    There have been many concerns about water as a constraint to agricultural production, electricity generation, and many other human activities in the coming decades. Nevertheless, how different countries/economies would respond to such constraints has not been explored. Here, we examine the responding mechanism of binding water availability constraints at the water basin level and across a wide range of socioeconomic, climate and energy technology scenarios. Specifically, we look at the change in water withdrawals between energy, land-use and other sectors within an integrated framework, by using the Global Change Assessment Model (GCAM) that also endogenizes water use and allocation decisions based on costs. We find that, when water is taken into account as part of the production decision-making, countries/basins in general fall into three different categories, depending on the change of water withdrawals and water re-allocation between sectors. First, water is not a constraining factor for most of the basins. Second, advancements in water-saving technologies of the electricity generation cooling systems are sufficient of reducing water withdrawals to meet binding water availability constraints, such as in China and the EU-15. Third, water-saving in the electricity sector alone is not sufficient and thus cannot make up the lowered water availability from the binding case; for example, many basins in Pakistan, Middle East and India have to largely reduce irrigated water withdrawals by either switching to rain-fed agriculture or reducing production. The dominant responding strategy for individual countries/basins is quite robust across the range of alternate scenarios that we test. The relative size of water withdrawals between energy and agriculture sectors is one of the most important factors that affect the dominant mechanism.

  18. Portuguese pellets market: Analysis of the production and utilization constrains

    International Nuclear Information System (INIS)

    Monteiro, Eliseu; Mantha, Vishveshwar; Rouboa, Abel

    2012-01-01

    As opposite in Portugal, the wood pellets market is booming in Europe. In this work, possible reasons for this market behavior are foreseen according to the key indicators of biomass availability, costs and legal framework. Two major constrains are found in the Portuguese pellets market: the first one is the lack of an internal consumption, being the market based on exportations. The second one is the shortage of raw material mainly due to the competition with the biomass power plants. Therefore, the combination of the biomass power plants with pellet production plants seems to be the best option for the pellets production in the actual Portuguese scenario. The main constrains for pellets market has been to convince small-scale customers that pellets are a good alternative fuel, mainly due to the investment needed and the strong competition with natural gas. Besides some benefits in the acquisition of new equipment for renewable energy, they are insufficient to cover the huge discrepancy of the investment in pellets heating. However, pellets are already economic interesting for large utilizations. In order cover a large amount of households, additional public support is needed to cover the supplementary costs of the pellets heating systems. - Highlights: ► There is a lack of internal consumption being the pellets market based on exportation. ► The shortage of raw material is mainly due to the biomass power plants. ► Combining pellet plants with biomass power plants seems to be a wise solution. ► The tax benefits of renewable energy equipments are not enough to cover the higher investment. ► Pellets are already economic interesting for large utilizations in the Portuguese scenario.

  19. Assessment of oscillatory stability constrained available transfer capability

    International Nuclear Information System (INIS)

    Jain, T.; Singh, S.N.; Srivastava, S.C.

    2009-01-01

    This paper utilizes a bifurcation approach to compute oscillatory stability constrained available transfer capability (ATC) in an electricity market having bilateral as well as multilateral transactions. Oscillatory instability in non-linear systems can be related to Hopf bifurcation. At the Hopf bifurcation, one pair of the critical eigenvalues of the system Jacobian reaches imaginary axis. A new optimization formulation, including Hopf bifurcation conditions, has been developed in this paper to obtain the dynamic ATC. An oscillatory stability based contingency screening index, which takes into account the impact of transactions on severity of contingency, has been utilized to identify critical contingencies to be considered in determining ATC. The proposed method has been applied for dynamic ATC determination on a 39-bus New England system and a practical 75-bus Indian system considering composite static load as well as dynamic load models. (author)

  20. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  1. Biomass availability, energy consumption and biochar production in rural households of Western Kenya

    International Nuclear Information System (INIS)

    Torres-Rojas, Dorisel; Lehmann, Johannes; Hobbs, Peter; Joseph, Stephen; Neufeldt, Henry

    2011-01-01

    Pyrolytic cook stoves in smallholder farms may require different biomass supply than traditional bioenergy approaches. Therefore, we carried out an on-farm assessment of the energy consumption for food preparation, the biomass availability relevant to conventional and pyrolytic cook stoves, and the potential biochar generation in rural households of western Kenya. Biomass availability for pyrolysis varied widely from 0.7 to 12.4 Mg ha -1 y -1 with an average of 4.3 Mg ha -1 y -1 , across all 50 studied farms. Farms with high soil fertility that were recently converted to agriculture from forest had the highest variability (CV = 83%), which was a result of the wide range of farm sizes and feedstock types in the farms. Biomass variability was two times lower for farms with low than high soil fertility (CV = 37%). The reduction in variability is a direct consequence of the soil quality, coupled with farm size and feedstock type. The total wood energy available in the farms (5.3 GJ capita -1 y -1 ) was not sufficient to meet the current cooking energy needs using conventional combustion stoves, but may be sufficient for improved combustion stoves depending on their energy efficiency. However, the biomass that is usable in pyrolytic cook stoves including crop residues, shrub and tree litter can provide 17.2 GJ capita -1 y -1 of energy for cooking, which is well above the current average cooking energy consumption of 10.5 GJ capita -1 y -1 . The introduction of a first-generation pyrolytic cook stove reduced wood energy consumption by 27% while producing an average of 0.46 Mg ha -1 y -1 of biochar. -- Highlights: → Total energy from wood fuel available on smallholder farms in Western Kenya was not sufficient to meet current cooking energy needs using conventional combustion stoves, but may be sufficient for improved combustion stoves. → Feedstock options acceptable to pyrolysis cook stoves which includes crop residues, exceeded the energy needs required for daily

  2. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.

  3. Principles of commercially available pretreatment and feeding equipment for baled biomass

    Energy Technology Data Exchange (ETDEWEB)

    Koch, T. [Thomas Koch Energi, Vanloese (Denmark); Hummelshoej, R.M. [COWIconsult, Lyngby (Denmark)

    1993-12-31

    During the last 15 years, there has been a growing interest in utilizing waste biomass for energy production in Denmark. Since 1990, it has been unlawful to burn surplus straw on open land. Before the year 2000, it is intended to utilize most of the 2--3 million tons of surplus straw as an energy resource. The type of plants that were built in the beginning were combustion plants for district heating. The feeding equipment for these plants has been developed to an acceptable standard. Later, combustion plants for combined heat and power production based on a steam turbine were introduced. This type of plant demands a much greater continuity in the fuel flow, and the consequences of minor discontinuities are to be dropped from the grid. Gasification and pyrolysis demands a high sealing ability of the feeding equipment, because of the explosive and poisonous gas in the plant and a need for a very high continuity in the fuel feed. The first plants were built with the equipment and experiences from the farming industries, which have a long tradition in working with biomass-handling. The experiences gained with this type of equipment were not very promising, and in the early eighties, a more industrial type of biomass-handling equipment was developed. This paper presents the principles of the heavy-duty biomass pretreatment and feeding equipment that was commercially available in Denmark in May, 1993.

  4. Characterization of biomasses available in the region of North-East India for production of biofuels

    International Nuclear Information System (INIS)

    Sasmal, Soumya; Goud, Vaibhav V.; Mohanty, Kaustubha

    2012-01-01

    The lignocellulosic materials are cheap and readily available either in the form of agricultural waste or forest residues. These materials can be used as a source for energy production either in the gaseous form (CO, H 2 etc) or in liquid form (ethanol, butanol etc) to meet the rising demand of energy. The reign of lignocellulosic materials for energy production is a proven fact in this era of energy research. The present study focuses on characterization of three biomass samples namely areca nut husk (Areca catheu), moj (Albizia lucida) and bonbogori (Ziziphus rugosa), available in the region of North-East India. Physical and chemical analysis of these lignocellulosic biomass samples were performed using X-ray diffraction techniques, thermogravimetric analysis, FTIR, Raman spectroscopy and CHNSO analysis. Maximum crystalinity was observed in areca nut husk fiber (63.84%) followed by moj (46.43%) and bonbogori (42.46%). The calorific values of all the biomasses were found within the range of 17 MJ/kg to 22 MJ/kg. All these properties combined together per se shows that areca nut husk, bonbogori and moj are potential sources for biofuel production. -- Highlights: ► Non-conventional biomasses were considered in this study. ► Complete characterization of these biomasses are reported. ► Maximum crystalinity was observed in areca nut husk fiber followed by moj and bonbogori. ► Results confirmed that these biomasses can be utilized for biofuel production.

  5. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    of litter mass for both species richness and biomass indicates that these tropical consumers strongly depend on habitat space and resource availability. Our study supports previous theoretical work indicating that consumer species richness is jointly influenced by resource availability and the balanced supply of multiple chemical elements in their resources. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Estimation of arboreal lichen biomass available to woodland caribou in Hudson Bay lowland black spruce sites

    Directory of Open Access Journals (Sweden)

    Sarah K. Proceviat

    2003-04-01

    Full Text Available An arboreal lichen index to be utilized in assessing woodland caribou habitat throughout northeastern Ontario was developed. The "index" was comprised of 5 classes, which differentiated arboreal lichen biomass on black spruce trees, ranging from maximal quantities of arboreal lichen (class 5 to minimal amounts of arboreal lichen (class 1. This arboreal lichen index was subsequently used to estimate the biomass of arboreal lichen available to woodland caribou on lowland black spruce sites ranging in age from 1 year to 150 years post-harvest. A total of 39 sites were assessed and significant differences in arboreal lichen biomass were found, with a positive linear relationship between arboreal lichen biomass and forest age. It is proposed that the index be utilized by government and industry as a means of assessing the suitability of lowland black spruce habitat for woodland caribou in this region.

  7. Pyrolysis in the Countries of the North Sea Region: Potentially available quantities of biomass waste for biochar production

    NARCIS (Netherlands)

    Kolk, van der J.W.H.; Zwart, K.B.

    2013-01-01

    One of the objectives of the Interreg IVB project Biochar: Climate Saving Soils is to assess the amount of available biomass that could be used for the production of biochar. In this publication the authors give an impression of the amounts of biomass available for pyrolysis.

  8. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1993-01-01

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  9. Availability of Biomass for Energy Purposes in Nordic and Baltic Countries

    DEFF Research Database (Denmark)

    Rytter, Lars; Andreassen, Kjell; Bergh, Jonas

    2015-01-01

    in a European perspective where 38 % of the land area is forest (EU-27). Although some forest areas are protected, 75–92 % of the area can still be used for wood production. Further, substantial agriculture land areas may also be available for production of biomass for energy. Coniferous species dominate......, leading to the conclusion that some of the difference may be used for energy purposes in the near future. The current potential for forest fuel resources was estimated to 230–410 TWh yr-1 (830–1,480 PJ yr-1) for the countries included and forest fuels will thus be of utmost importance for the future...... for specific regions. Wood is extensively used for energy purposes and the forests hold a large potential for increasing the production of renewable energy. The potential may be further increased in the future with increased fertilization, extended breeding for enhanced biomass production, larger cultivation...

  10. The role of biomass and CCS in China in a climate mitigation perspective

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Karlsson, Kenneth Bernard; Gregg, Jay Sterling

    2011-01-01

    As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created and then gl......As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created...... and then global climate scenarios are simulated using TIAM (TIMES Integrated Assessment Model). TIAM is a 16-region global energy system optimization model that includes a climate module that calculates the global concentrations of GHGs in the atmosphere. We analyze the potential for using biomass, CCS......, and bioenergy CCS (BECCS) in China under the constraint of meeting a climate stabilization target such that dangerous climate change (as defined by the Copenhagen Accord) is avoided. When considering hypothetical scenarios where GHG emissions are constrained, China consumes all available domestic biomass...

  11. Availability of waste and biomass for energy generation in the Netherlands; Beschikbaarheid van afval en biomassa voor energieopwekking in Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.A.P.M.; Koppejan, J. [TNO Milieu, Energie- en Processinnovatie TNO-MEP, Apeldoorn (Netherlands); Bergsma, G.C. [Centrum voor Energiebesparing en schone technologie CE, Delft (Netherlands); Meeusen-van Onna, M.J.G. [Landbouw Economisch Instituut LEI, Den Haag (Netherlands)

    1999-12-01

    The Netherlands agency for energy and the environment (Novem) commissioned a consortium to carry out the ABC (Dutch abbreviation for Waste and Biomass Conversion) project in three separate studies: (A) a scenario study of the availability of biomass and waste for energy generation in the Netherlands; (B) a 'three-level assessment' of biomass availability on national, European and global levels; and (C) a scenario study of the feasibility / profitability of energy crops in the Netherlands. The results of the ABC project are published in two separate reports. This present report gives the results of the combined scenario study of availability (A) and the three-level assessment (B). The results of the energy crops study (C) are presented elsewhere. The goal of the present project is to gain insight into the current availability of biomass and waste flows for energy generation, and of the driving forces and constraints that can affect their availability up to the year 2020. First, it is examined whether the availability of biomass and waste is or could become problematic. This is an important aspect for market parties that want to invest in energy from biomass and biomass. Second, it is examined what additional policy measures the Dutch government would need to take to achieve the set policy goal of savings of fossil fuels. The combined scenario study of waste availability (in the Netherlands) and biomass availability (in the Netherlands, the European Union, and worldwide) for energy generation started off with a Definition Phase. In this phase, the project's framework and key issues were formulated and relevant sources of information were outlined. On the basis of these sources, a Quick Scan was carried out to map the existing information as well as any gaps in knowledge and uncertainties about the availability of biomass and waste. In the subsequent In-depth Phase the results of the Quick Scan were submitted to a number of national experts for comment

  12. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  13. The effects of location, feedstock availability, and supply-chain logistics on the greenhouse gas emissions of forest-biomass energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jappinen, E,

    2013-11-01

    Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass's availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues

  14. Assessing land availability to produce biomass for energy: The case of Brazilian charcoal for steel making

    International Nuclear Information System (INIS)

    Piketty, Marie-Gabrielle; Wichert, Marcos; Fallot, Abigail; Aimola, Luis

    2009-01-01

    The paper discusses the availability of biomass in Brazil to supply charcoal to the steel industry on the bases of an initial global assessment of land potentially available for plantations and of Brazilian data that allows refining the assessment and specifying the issue of practical availability. Technical potentials are first assessed through a series of simple rules against direct competition with agriculture, forests and protected areas, and of quantitative criteria, whether geo-climatic (rainfall), demographic (population density) or legal (reserves). Institutional, social and economic factors are then identified and discussed so as to account for the practical availability of Brazilian biomass through six criteria. The ranking of nine Brazilian States according to these criteria brings out the necessary trade-offs in the selection of land for plantations that would efficiently supply charcoal to the steel industry. (author)

  15. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Directory of Open Access Journals (Sweden)

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  16. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    Science.gov (United States)

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  17. Overview of methods and tools for evaluating future woody biomass availability in European countries

    NARCIS (Netherlands)

    Barreiro, Susana; Schelhaas, Mart Jan; Kändler, Gerald; Antón-Fernández, Clara; Colin, Antoine; Bontemps, Jean Daniel; Alberdi, Iciar; Condés, Sonia; Dumitru, Marius; Ferezliev, Angel; Fischer, Christoph; Gasparini, Patrizia; Gschwantner, Thomas; Kindermann, Georg; Kjartansson, Bjarki; Kovácsevics, Pál; Kucera, Milos; Lundström, Anders; Marin, Gheorghe; Mozgeris, Gintautas; Nord-Larsen, Thomas; Packalen, Tuula; Redmond, John; Sacchelli, Sandro; Sims, Allan; Snorrason, Arnór; Stoyanov, Nickola; Thürig, Esther; Wikberg, Per Erik

    2016-01-01

    Key message: This analysis of the tools and methods currently in use for reporting woody biomass availability in 21 European countries has shown that most countries use, or are developing, National Forest Inventory-oriented models whereas the others use standwise forest inventory--oriented

  18. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    Directory of Open Access Journals (Sweden)

    W. Michael Griffin

    2014-02-01

    Full Text Available Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model was developed using seven types of biomass residues for Peninsular Malaysia. Results suggest that about 12 Mt/year of residues are available annually, of which oil-palm residues contribute 77%, and rice and logging residues comprise 17%. While minimizing the cost of biomass and biomass residue transport, co-firing at four existing coal plants in Peninsular Malaysia could meet the 330 MW biomass electricity target and reduce costs by about $24 million per year compared to coal use alone and reduces GHG emissions by 1.9 Mt of CO2. Maximizing emissions reduction for biomass co-firing results in 17 Mt of CO2 reductions at a cost of $23/t of CO2 reduced.

  19. Biomass availability and commercialization trend analysis in China. A marketing study

    International Nuclear Information System (INIS)

    2000-10-01

    Among the different energy sources utilized in China, biomass energy takes a very important part. The importance of the biomass energy can be proved particularly in the rural area. In the period 1991 to 1995 the average consumption of bio-energy represented about 40% of the total rural energy consumption and about 70% of rural household energy consumption. The annual bio-energy consumption is more than 220 Mtce. According to prediction, all kinds of biomass fuels produced by new technology will take 40% of the total energy consumption all over the world at the middle of next century. In future decades, R and D for new technologies of producing all kinds of biomass energies as substitute fuels will be extremely important to China. The biomass energy resources in China mainly come from 4 sources: (1)The residues from agriculture and forestry processing such us straw, stalk, wood residues, high concentrated organic effluents from the agriculture products processing, etc.; (2) Firewood; (3) Human and animal excreta; and (4) Urban household solid wastes. The utilization technology of biomass energy can be generally classified as (a) The direct burn technology, which refers the method and equipment using crop straws and firewood as fuels through direct burning; (b) Physical conversion technology, which includes gasification technology by physical method - mainly heating and relevant equipment; (c) Biological conversion technology, which refers technology and equipment converting and gasifying the biomass through biological method - mainly anaerobic biodegradation; (d) Liquefaction technology; and (e) Conversion technology for solid waste. Chinese government has been giving great attention to the development and utilization of biomass energy. However, at present the bio-energy as one of the most important energy resources, its development and commercialized utilization are just at beginning stage. The basic conditions composing a market and commercialization environment

  20. Biomass of active microorganisms is not limited only by available carbon in the rhizosphere

    Science.gov (United States)

    Gilmullina, Aliia

    2017-04-01

    Microbial activity is generally limited by carbon (C) availability. The easily available substrate release by roots creates so called "hotspots" in the rhizosphere that drives microbial activity removing C limitation. We simulated a gradient of root exudates by glucose addition at different concentrations to stimulate the activation of microbial biomass (MB). Glucose was added at the rates lower than MB (5, 10, 25 and 50%) and at the rates similar or higher than MB (100, 150, 200, 250, 300 and 400%). During incubation CO2 efflux was measured by conductometry, the size of active MB and specific growth rate were estimated by substrate-induced growth response method. We tested a hypothesis that glucose addition exceeding 100% MB is able to activate major fraction of soil microbial community. Addition of glucose at concentrations higher than 5% decreased specific growth rate, demonstrating the shift of microbial community from r-strategy to K-strategy. The percentage of active MB grew up by the increase of glucose concentration. The treatment with glucose at 100% presented a dramatic shift in the activation of MB up to 14%. Contrary to our hypothesis, further increase in glucose rate caused moderate stimulation of active MB up to 22% of total MB. Furthermore, glucose addition above 200% did not increase the fraction of active biomass indicating glucose oversaturation and possible limitation by other nutrients. The results suggest that despite the fact that C is the most important limitation factor, limitless C supply is not able to activate MB up to 100%. Thus, if the rhizosphere is limited by nutrients, the fraction of active biomass remains at low level despite an excess of available C.

  1. Food web architecture and basal resources interact to determine biomass and stoichiometric cascades along a benthic food web.

    Directory of Open Access Journals (Sweden)

    Rafael D Guariento

    Full Text Available Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ to evaluate the individual and interactive effects of resource availability (nutrients and light and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.

  2. Tuber size variation and organ preformation constrain growth responses of a spring geophyte.

    Science.gov (United States)

    Werger, Marinus J A; Huber, Heidrun

    2006-03-01

    Functional responses to environmental variation do not only depend on the genetic potential of a species to express different trait values, but can also be limited by characteristics, such as the timing of organ (pre-) formation, aboveground longevity or the presence of a storage organ. In this experiment we tested to what degree variation in tuber size and organ preformation constrain the responsiveness to environmental quality and whether responsiveness is modified by the availability of stored resources by exposing the spring geophyte Bunium bulbocastanum to different light and nutrient regimes. Growth and biomass partitioning were affected by initial tuber size and resource availability. On average, tuber weight amounted to 60%, but never less than 30% of the total plant biomass. Initial tuber size, considered an estimate of the total carbon pool available at the onset of treatments, affected plant growth and reproduction throughout the experiment but had little effect on the responsiveness of plants to the treatments. The responsiveness was partly constrained by organ preformation: in the second year variation of leaf number was considerably larger than in the first year of the treatments. The results indicate that a spring geophyte with organ preformation has only limited possibilities to respond to short-term fluctuations of the environment, as all leaves and the inflorescence are preformed in the previous growing season and resources stored in tubers are predominantly used for survival during dormancy and are not invested into plastic adjustments to environmental quality. Such spring geophytes have only limited possibilities to buffer environmental variation. This explains their restriction to habitats characterized by predictable changes of the environmental conditions.

  3. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  4. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  5. Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2018-01-01

    Full Text Available Forest biomass is an important resource for producing bioenergy and reducing greenhouse gas (GHG emissions. The State of Michigan in the United States (U.S. is one region recognized for its high potential of supplying forest biomass; however, the long-term availability of timber harvests and the associated harvest residues from this area has not been fully explored. In this study time trend analyses was employed for long term timber assessment and developed mathematical models for harvest residue estimation, as well as the implications of use for ethanol. The GHG savings potential of ethanol over gasoline was also modeled. The methods were applied in Michigan under scenarios of different harvest solutions, harvest types, transportation distances, conversion technologies, and higher heating values over a 50-year period. Our results indicate that the study region has the potential to supply 0.75–1.4 Megatonnes (Mt dry timber annually and less than 0.05 Mt of dry residue produced from these harvests. This amount of forest biomass could generate 0.15–1.01 Mt of ethanol, which contains 0.68–17.32 GJ of energy. The substitution of ethanol for gasoline as transportation fuel has potential to reduce emissions by 0.043–1.09 Mt CO2eq annually. The developed method is generalizable in other similar regions of different countries for bioenergy related analyses.

  6. Modeling biomass burning over the South, South East and East Asian Monsoon regions using a new, satellite constrained approach

    Science.gov (United States)

    Lan, R.; Cohen, J. B.

    2017-12-01

    Biomass burning over the South, South East and East Asian Monsoon regions, is a crucial contributor to the total local aerosol loading. Furthermore, the impact of the ITCZ, and Monsoonal circulation patterns coupled with complex topography also have a prominent impact on the aerosol loading throughout much of the Northern Hemisphere. However, at the present time, biomass burning emissions are highly underestimated over this region, in part due to under-reported emissions in space and time, and in part due to an incomplete understanding of the physics and chemistry of the aerosols emitted in fires and formed downwind from them. Hence, a better understanding of the four-dimensional source distribution, plume rise, and in-situ processing, in particular in regions with significant quantities of urban air pollutants, is essential to advance our knowledge of this problem. This work uses a new modeling methodology based on the simultaneous constraints of measured AOD and some trace gasses over the region. The results of the 4-D constrained emissions are further expanded upon using different fire plume height rise and in-situ processing assumptions. Comparisons between the results and additional ground-based and remotely sensed measurements, including AERONET, CALIOP, and NOAA and other ground networks are included. The end results reveal a trio of insights into the nonlinear processes most-important to understand the impacts of biomass burning in this part of the world. Model-measurement comparisons are found to be consistent during the typical burning years of 2016. First, the model performs better under the new emissions representations, than it does using any of the standard hotspot based approaches currently employed by the community. Second, long range transport and mixing between the boundary layer and free troposphere contribute to the spatial-temporal variations. Third, we indicate some source regions that are new, either because of increased urbanization, or of

  7. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  8. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

    Science.gov (United States)

    Zwetsloot, Marie J; Lehmann, Johannes; Solomon, Dawit

    2015-01-01

    Pyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer. Linear combination fitting of synchrotron-based X-ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water-extractable P, but high formic acid-extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two- to five-fold higher than rock phosphate. Pyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry.

  9. Technologies for a greenhouse-constrained society

    International Nuclear Information System (INIS)

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-01-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind's thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base

  10. Landscape Features Impact on Soil Available Water, Corn Biomass, and Gene Expression during the Late Vegetative Stage

    Directory of Open Access Journals (Sweden)

    Stephanie Hansen

    2013-07-01

    Full Text Available Crop yields at summit positions of rolling landscapes often are lower than backslope yields. The differences in plant response may be the result of many different factors. We examined corn ( L. plant productivity, gene expression, soil water, and nutrient availability in two landscape positions located in historically high (backslope and moderate (summit and shoulder yielding zones to gain insight into plant response differences. Growth characteristics, gene expression, and soil parameters (water and N and P content were determined at the V12 growth stage of corn. At tassel, plant biomass, N content, C isotope discrimination (Δ, and soil water was measured. Soil water was 35% lower in the summit and shoulder compared with the lower backslope plots. Plants at the summit had 16% less leaf area, biomass, and N and P uptake at V12 and 30% less biomass at tassel compared with plants from the lower backslope. Transcriptome analysis at V12 indicated that summit and shoulder-grown plants had 496 downregulated and 341 upregulated genes compared with backslope-grown plants. Gene set and subnetwork enrichment analyses indicated alterations in growth and circadian response and lowered nutrient uptake, wound recovery, pest resistance, and photosynthetic capacity in summit and shoulder-grown plants. Reducing plant populations, to lessen demands on available soil water, and applying pesticides, to limit biotic stress, may ameliorate negative water stress responses.

  11. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  12. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  13. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  14. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  15. Complementarity of flux- and biometric-based data to constrain parameters in a terrestrial carbon model

    Directory of Open Access Journals (Sweden)

    Zhenggang Du

    2015-03-01

    Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also

  16. Biomass as blast furnace injectant – Considering availability, pretreatment and deployment in the Swedish steel industry

    International Nuclear Information System (INIS)

    Wang, Chuan; Mellin, Pelle; Lövgren, Jonas; Nilsson, Leif; Yang, Weihong; Salman, Hassan; Hultgren, Anders; Larsson, Mikael

    2015-01-01

    Highlights: • Injection of biofuels was modeled, using real blast furnace data as reference. • For charcoal, torrefied and pelletized biomass; a replacement limit was predicted. • As expected, reduced CO 2 emissions are possible, especially when using charcoal. • We also found that substantial energy savings can be made, using any of the biofuels. • Circumstances today and biomass availability tomorrow are encouraging for deployment. - Abstract: We have investigated and modeled the injection of biomass into blast furnaces (BF), in place of pulverized coal (PC) from fossil sources. This is the easiest way to reduce CO 2 emissions, beyond efficiency-improvements. The considered biomass is either pelletized, torrefied or pyrolyzed. It gives us three cases where we have calculated the maximum replacement ratio for each. It was found that charcoal from pyrolysis can fully replace PC, while torrefied material and pelletized wood can replace 22.8% and 20.0% respectively, by weight. Our energy and mass balance model (MASMOD), with metallurgical sub-models for each zone, further indicates that (1) more Blast Furnace Gas (BFG) will be generated resulting in reduced fuel consumption in an integrated plant, (2) lower need of limestone can be expected, (3) lower amount of generated slag as well, and (4) reduced fuel consumption for heating the hot blast is anticipated. Overall, substantial energy savings are possible, which is one of the main findings in this paper. Due to the high usage of PC in Sweden, large amounts of biomass is required if full substitution by charcoal is pursued (6.19 TWh/y). But according to our study, it is likely available in the long term for the blast furnace designated M3 (located in Luleå). Finally, over a year with almost fully used production capacity (2008 used as reference), a 28.1% reduction in on-site emissions is possible by using charcoal. Torrefied material and wood pellets can reduce the emissions by 6.4% and 5.7% respectively

  17. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  18. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...... not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient...

  19. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    Padron Perez, Rolando; Paredes Morejon, Lizeyda; Leyva Canavaciolo, Rafael

    2011-01-01

    The sugar Power stations commonly are endowed with an area water heater energetics with I upset generators to burn biomass and to generate electricity, alone that make it in the period of harvest, the trash that generate in its industrial process for electricity to be self-sufficient in burning. For to continue generating the whole year is necessary the supply of other solid fuels (biomasses not sugar). In this case the supply of marabou biomass with more caloric power and smaller content of humidity that the trash, converts it in a more efficient fuel in this industry. This project opens a road for the use of more than 900.000 hectares today infested by marabou, some will be been able to use again, after more than disabled 25 years, for the agricultural production and others will be able to be reforested with energy forests that allow the sustainable of the project. These studies are guided to contribute to the increment and sustainable of the security electro-energetics in Cuba, facilitating the environmental recovery and the agricultural use of the floors, facilitating the adoption of systems that achieve an in agreement generation with the strategy approved in the principles of the Energy Revolution and proposal in the limits of the 6. Congress of Party. (author)

  20. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  1. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  2. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  3. Biomass Data | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5

  4. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  5. Climate vs. carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-02-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to

  6. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  7. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  8. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  9. The global economic long-term potential of modern biomass in a climate-constrained world

    Science.gov (United States)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  10. The global economic long-term potential of modern biomass in a climate-constrained world

    International Nuclear Information System (INIS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Leon Bodirsky, Benjamin; Bonsch, Markus; Lotze-Campen, Hermann

    2014-01-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at $5 GJ −1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by $5 GJ −1 in 2055 and by $10 GJ −1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N 2 O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha −1 yr −1 with and without tax. (letter)

  11. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  12. Availability of biomass for energy: Report of the contractors meeting, held at November 3, 1994, in Utrecht, Netherlands

    International Nuclear Information System (INIS)

    De Jager, D.

    1994-11-01

    Results of a few studies on the title subject, carried out within the framework of the NOVEM programme EWAB, were presented at a contractors meeting. The overall conclusion of the presentation was that energy from biomass has a large potential. However, the cost effectiveness of the different options has to be improved. In particular, international research on the subject is necessary. Also more demonstration projects have to be set up in order to gain insight in the exact costs and benefits, the options to improve the cost-effectiveness, and to fill in the knowledge gaps. In the presentations of the meeting attention is paid to avoided CO 2 emissions as a result of energy crops, the spatial aspects of biomass cultivation, model calculations of the economics of biomass techniques in comparison with other techniques, conversion techniques for biomass, biomass harvesting systems, logistic aspects regarding energy production from biomass, experiences with the cultivation of willows and miscanthus, the cost effectiveness of biomass cultivation, and the state-of-the-art in national and international research on energy from biomass

  13. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  14. Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol

    International Nuclear Information System (INIS)

    Peduzzi, Emanuela; Tock, Laurence; Boissonnet, Guillaume; Maréchal, François

    2013-01-01

    In a carbon and resources constrained world, thermo-chemical conversion of lignocellulosic biomass into fuels and chemicals is regarded as a promising alternative to fossil resources derived products. Methanol is one potential product which can be used for the synthesis of various chemicals or as a fuel in fuel cells and internal combustion engines. This study focuses on the evaluation and optimization of the thermodynamic and economic performance of methanol production from biomass by applying process integration and optimization techniques. Results reveal the importance of the energy integration and in particular of the cogeneration of electricity for the efficient use of biomass. - Highlights: • A thermo-economic model for biomass conversion into methanol is developed. • Process integration and multi-objective optimization techniques are applied. • Results reveal the importance of energy integration for electricity co-generation

  15. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius.

    Directory of Open Access Journals (Sweden)

    Klaus Reinhardt

    Full Text Available Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition. Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se.

  16. Microbial Decomposers Not Constrained by Climate History Along a Mediterranean Climate Gradient

    Science.gov (United States)

    Baker, N. R.; Khalili, B.; Martiny, J. B. H.; Allison, S. D.

    2017-12-01

    The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 10.3-22.8° C in mean annual temperature and 100-400+ mm mean annual precipitation. Litterbags were deployed in October 2014 and collected four times over the course of 14 months. Recovered litter was assayed for mass loss, litter chemistry, microbial biomass, extracellular enzymes (Vmax and Km­), and enzyme temperature sensitivities. We hypothesized that grassland litter would decompose most rapidly in the grassland site, and that access to local microbial communities would enhance litter decomposition rates and microbial activity in the other sites along the gradient. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbes were not restricted in their ability to decompose litter under different climate conditions. Although we observed a strong correlation between bacterial biomass and mass loss across the gradient, litter that was inoculated with local microbial communities lost less mass despite having greater bacterial biomass and potentially accumulating more microbial residues. Our results suggest that microbial community composition may not constrain C-cycling rates under climate change in our system. However, there may be community constraints on decomposition if climate change alters litter chemistry, a

  17. DUE GlobBiomass - Estimates of Biomass on a Global Scale

    Science.gov (United States)

    Eberle, J.; Schmullius, C.

    2017-12-01

    For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.

  18. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.

    Science.gov (United States)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-10-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake ( 15 N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their

  19. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Lim, Chun Hsion; Lam, Hon Loong

    2014-01-01

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  20. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  1. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  2. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.

    Science.gov (United States)

    Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A

    2018-02-01

    Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.

  3. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  4. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Science.gov (United States)

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  5. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  6. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  8. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  9. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  10. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  11. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    The economic and supply structures of short rotation woody crop (SRWC) markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

  13. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Coignac, Julien

    2013-01-01

    as relevant quantities of agricultural residues (notably from palm oil cropping systems). To a lesser extent, Europe also presents significant amounts of agricultural co-products and forestry residues which could be available for bio-energy. Nevertheless an improvement of biomass supply structure is necessary to be in the position to answer the demand for BtL (Biomass to Liquid) industry. Mineral composition is also a relevant parameter to be considered for the thermochemical conversion process, since the Fischer-Tropsch catalysis - last step of the conversion process - is very sensitive to mineral elements of biomass. Concerning mineral composition of biomass, five public databases were analysed to collect relevant characteristics and the information was aggregated in one large database dedicated to the project. Nitrogen, chlorine, phosphorus, sulphur, ash and energy contents are the major parameters collected. By analysing these data, we observe that fast-growing plants (typically agricultural co-products) contain much more minerals than low-growing crops (typically forest residues). This is mostly due to the fertilizers spread in the fields for the growth of agricultural crops. Consequently, agricultural by-products appear as the most constraining biomass in terms of mineral contents. Regarding costs, a literature review was also carried out, with a special focus on the French case. Most data come from REGIX Programme and French organisms (FCBA, Association AILE, etc.). This allowed us to observe that agricultural by-products are the cheapest biomass (10 to 15 euro/MWh, equivalent to 50 to 75 euro/TDM), as they are still considered as sub-products of grains. Their price is only driven by conditioning and transport costs. (Very) short rotation forestry bio- masses are slightly more expensive (13 to 17 euro/MWh, equivalent to 70 to 90 euro/TDM), due to harvest costs, but they remain cheaper than energy crops (20 to 22 euro/MWh, equivalent to 95 to 110 euro

  14. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Downing, M.; Graham, R.L.

    1993-01-01

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  15. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  16. Recent Progress in Measuring and Modeling Patterns of Biomass and Soil Carbon Pools Across the Amazon Basin

    Science.gov (United States)

    Potter, Christopher; Malhi, Yadvinder

    2004-01-01

    Ever more detailed representations of above-ground biomass and soil carbon pools have been developed during the LBA project. Environmental controls such as regional climate, land cover history, secondary forest regrowth, and soil fertility are now being taken into account in regional inventory studies. This paper will review the evolution of measurement-extrapolation approaches, remote sensing, and simulation modeling techniques for biomass and soil carbon pools, which together help constrain regional carbon budgets and enhance in our understanding of uncertainty at the regional level.

  17. Forest biomass observation: current state and prospective

    Directory of Open Access Journals (Sweden)

    D. G. Schepaschenko

    2017-08-01

    Full Text Available With this article, we provide an overview of the methods, instruments and initiatives for forest biomass observation at global scale. We focus on the freely available information, provided by both remote and in-situ observations. The advantages and limitation of various space borne methods, including optical, radar (C, L and P band and LiDAR, as well as respective instruments available on the orbit (MODIS, Proba-V, Landsat, Sentinel-1, Sentinel-2 , ALOS PALSAR, Envisat ASAR or expecting (BIOMASS, GEDI, NISAR, SAOCOM-CS are discussed. We emphasize the role of in-situ methods in the development of a biomass models, providing calibration and validation of remote sensing data. We focus on freely available forest biomass maps, databases and empirical models. We describe the functionality of Biomass.Geo-Wiki.org portal, which provides access to a collection of global and regional biomass maps in full resolution with unified legend and units overplayed with high-resolution imagery. The Forest-Observation-System.net is announced as an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. Prospects of unmanned aerial vehicles in the forest inventory are briefly discussed. The work was partly supported by ESA IFBN project (contract 4000114425/15/NL/FF/gp.

  18. Topo-edaphic controls over woody plant biomass in South African savannas

    Directory of Open Access Journals (Sweden)

    M. S. Colgan

    2012-05-01

    Full Text Available The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91. The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87. Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  19. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  20. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  1. The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, S. E.; Magni, C. R.; Martinez, V. A.; Ivkovic, M.

    2013-05-01

    Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don. Area of study: Seedlings of 69 families of P. radiata belonging to five different sites in Central Chile, ranging from coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to watering. Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded. Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed. Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local land race of P. radiata in Chile originating from contrasting environments possess distinct morphological responses to water deficit which in turn leads to phenotypic plasticity. Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas, selecting those with high root: shoot ratio. (Author) 46 refs.

  2. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  3. Biomass for biorefining: Resources, allocation, utilization, and policies

    Science.gov (United States)

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  4. Biomass reallocation within freshwater bacterioplankton induced by manipulating phosphorus availability and grazing

    Czech Academy of Sciences Publication Activity Database

    Posch, T.; Mindl, B.; Horňák, Karel; Jezbera, Jan; Salcher, M.M.; Sattler, B.; Sonntag, B.; Vrba, Jaroslav; Šimek, Karel

    2007-01-01

    Roč. 49, č. 3 (2007), s. 223-232 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:ASF(AT) FWF P17554-B06 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterial biomass * bacteria-flagellate interactions * fluorescence in situ hybridization Subject RIV: EH - Ecology, Behaviour Impact factor: 2.385, year: 2007

  5. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  6. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  7. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  8. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  9. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  10. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  11. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass

    International Nuclear Information System (INIS)

    Speirs, Jamie; McGlade, Christophe; Slade, Raphael

    2015-01-01

    Energy policies are strongly influenced by resource availability and recoverability estimates. Yet these estimates are often highly uncertain, frequently incommensurable, and regularly contested. This paper explores how the uncertainties surrounding estimates of the availability of fossil fuels, biomass and critical metals are conceptualised and communicated. The contention is that a better understanding of the uncertainties surrounding resource estimates for both conventional and renewable energy resources can contribute to more effective policy decision making in the long term. Two complementary approaches for framing uncertainty are considered in detail: a descriptive typology of uncertainties and a framework that conceptualises uncertainty as alternative states of incomplete knowledge. Both have the potential to be useful analytical and communication tools. For the three resource types considered here we find that data limitations, inconsistent definitions and the use of incommensurable methodologies present a pervasive problem that impedes comparison. Many aspects of resource uncertainty are also not commonly captured in the conventional resource classification schemes. This highlights the need for considerable care when developing and comparing aggregate resource estimates and when using these to inform strategic energy policy decisions. - Highlights: • Resource estimates are highly uncertain, frequently incommensurable, and regularly contested. • Data limitations need to be overcome, and methodologies harmonised and improved. • Sustainability and socio-political uncertainties are frequently neglected. • Uncertainties are dynamic, but reducing uncertainties inevitably involves trade-offs.

  12. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  13. Availability of waste and biomass for energy generation in the Netherlands. Summary of the report GAVE-9911 and EWAB-9926; Beschikbaarheid van afval en biomassa voor energieopwekking in Nederland. Samenvatting GAVE-9911 -- EWAB-9926

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.A.P.M.; Koppejan, J. [TNO Milieu, Energie- en Processinnovatie TNO-MEP, Apeldoorn (Netherlands); Bergsma, G.C. [Centrum voor Energiebesparing en schone technologie CE, Delft (Netherlands); Meeusen-van Onna, M.J.G. [Landbouw Economisch Instituut LEI, Den Haag (Netherlands)

    1999-12-01

    The Netherlands agency for energy and the environment (Novem) commissioned a consortium to carry out the ABC (Dutch abbreviation for Waste and Biomass Conversion) project in three separate studies: (A) a scenario study of the availability of biomass and waste for energy generation in the Netherlands; (B) a 'three-level assessment' of biomass availability on national, European and global levels; and (C) a scenario study of the feasibility / profitability of energy crops in the Netherlands. The results of the ABC project are published in two separate reports. This present report gives the results of the combined scenario study of availability (A) and the three-level assessment (B). The results of the energy crops study (C) are presented elsewhere. The goal of the present project is to gain insight into the current availability of biomass and waste flows for energy generation, and of the driving forces and constraints that can affect their availability up to the year 2020. First, it is examined whether the availability of biomass and waste is or could become problematic. This is an important aspect for market parties that want to invest in energy from biomass and biomass. Second, it is examined what additional policy measures the Dutch government would need to take to achieve the set policy goal of savings of fossil fuels. The combined scenario study of waste availability (in the Netherlands) and biomass availability (in the Netherlands, the European Union, and worldwide) for energy generation started off with a Definition Phase. In this phase, the project's framework and key issues were formulated and relevant sources of information were outlined. On the basis of these sources, a Quick Scan was carried out to map the existing information as well as any gaps in knowledge and uncertainties about the availability of biomass and waste. In the subsequent In-depth Phase the results of the Quick Scan were submitted to a number of national experts for comment

  14. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  15. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  16. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  17. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  18. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  19. Outcome of UNIDO symposium on biomass energy

    International Nuclear Information System (INIS)

    Nazemi, A.H.

    1997-01-01

    The results of the UNIDO symposium are presented. The symposium covered a variety of subjects, beginning with a comparison of biomass energy production and potential uses in different regions, specific country case studies about the present situation and trends in biomass energy utilisation. Technological aspects discussed included the production of biomass resources, their conversion into energy carriers and technology transfer to developing countries. An analysis of financial resources available and mechanisms for funding biomass projects were given. Environmental effects and some relatively successful biomass projects under development were described. (K.A.)

  20. Influence of soil management practices and substrate availability on microbial biomass and its activities in some haplic luvisols

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, Jurgen K [University Hohenheeim, Stuttgart (Germany)

    1996-07-01

    Soil microbial biomass and activities are sensitive indicators of management effects. Higher contents of microbial biomass and higher activities, for example, are found with crop rotations in contrast to bare fallow and mono culture systems. The main reason for these differences is a higher input of crop and root residues in crop rotation systems, leading to more microbial available substrate. The objectives of this study were to describe indices for microbial available substrate in arable soils depending on management practices, and to relate them with soil microbial biomass and activities. At two locations (Muttergarten and hinger Hof near the University of Hohenheim, Stuttgart, SW-Germany), adenosine triphosphate (ATP) contents and microbial activities were measured in haplic Luviosls. As indices for microbial available substrate, water soluble organic carbon compounds in soils were determined and decomposable young soil organic matter was calculated from organic fertilizers and crop and root residues using empirical decomposition functions. Higher ATP contents and microbial activities were observed along with organic fertilization (liquid cattle manure) than with mineral fertilization. Shallow cultivation with a rotary cultivator led to higher values of microbial properties in the upper part of the Ap horizon than ploughing. Soil microbial parameters were higher in plots under a rape-cereals crop rotation, compared to a legumes-cereals crop rotation. Microbial biomass and its activities were related more closely to decomposable young soil organic matter than to soil humus content or to any other soil property. Water soluble organic carbon compounds did not prove as an indicator of microbial available substrate. [Spanish] La biomasa y la actividad microbianas son indicadores sensibles de los efectos del manejo del suelo. Por ejemplo, con la rotacion de cultivos se obtiene un contenido y una actividad mayores de la biomasa microbiana en contraste con el simple

  1. Sustainable Biomass Resource Development and Use | Energy Analysis | NREL

    Science.gov (United States)

    Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can biomass resource development. They look at whether there is available land to support bioenergy. They also

  2. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  3. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  4. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  5. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  6. Techno-economic Assessment of Biomass Pellets for Power Generation in India

    OpenAIRE

    Purohit, P.; Chaturvedi, V.

    2016-01-01

    Biomass pellet production has increased considerably in recent years, mainly due to the demand created by policies and bioenergy-use targets in the European Union (EU). Global biomass pellet production was 24.1 million tonne (Mt) in 2014. In this study, a preliminary attempt has been made to assess the techno-economic feasibility of biomass pellets for electricity generation in India produced from biomass surplus available from agriculture and forestry/wasteland. Biomass surplus availability ...

  7. Spatial modeling of potential woody biomass flow

    Science.gov (United States)

    Woodam Chung; Nathaniel Anderson

    2012-01-01

    The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...

  8. Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, Mohsen Parsa

    2011-01-01

    This work addresses a relevant methodology for self-scheduling of a price-taker fuel and emission constrained power producer in day-ahead correlated energy, spinning reserve and fuel markets to achieve a trade-off between the expected profit and the risk versus different risk levels based on Markowitz's seminal work in the area of portfolio selection. Here, a set of uncertainties including price forecasting errors and available fuel uncertainty are considered. The latter uncertainty arises because of uncertainties in being called for reserve deployment in the spinning reserve market and availability of power plant. To tackle the price forecasting errors, variances of energy, spinning reserve and fuel prices along with their covariances which are due to markets correlation are taken into account using relevant historical data. In order to tackle available fuel uncertainty, a framework for self-scheduling referred to as rolling window is proposed. This risk-constrained self-scheduling framework is therefore formulated and solved as a mixed-integer non-linear programming problem. Furthermore, numerical results for a case study are discussed. (author)

  9. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  10. The survival strategy of the soil microbial biomass

    Science.gov (United States)

    Brookes, Philip; Kemmitt, Sarah; Dungait, Jennifer; Xu, Jianming

    2014-05-01

    The soil microbial biomass (biomass) is defined as the sum of the masses of all soil microorganisms > 5000 µm3 (e.g. fungi, bacteria, protozoa, yeasts, actinomycetes and algae). Typically comprising about 1 to 3 % of total soil organic matter (SOM), the biomass might be though to live in a highly substrate-rich environment. However, the SOM is, normally, only exceedingly slowly available to the biomass. However the biomass can survive for months or even years on this meagre energy source. Not surprisingly, therefore, the biomass exhibits many features typical of a dormant or resting population. These include a very low rate of basal and specific respiration, a slow rate of cell division (about once every six months on average) and slow turnover rate. These are clearly adaptations to existing in an environment where substrate availability is very low. Yet, paradoxically, the biomass, in soils worldwide, has an adenosine triphosphate (ATP) concentration (around 10 to 12 µmol ATP g-1 biomass C), and an Adenylate Energy Charge (AEC = [(ATP) + (0.5 ADP)]/[(ATP)+(ADP) + (AMP)]) which are typical of microorganisms growing exponentially in a chemostat. This sets us several questions. Firstly, under the condition of extremely limited substrate availability in soil, why does the biomass not mainly exist as spores, becoming active, by increasing both its ATP concentration and AEC, when substrate (plant and animal residues) becomes available? We surmise that a spore strategy may put organisms at a competitive disadvantage, compared to others which are prepared to invest energy, maintaining high ATP and ATP, to take advantage of a 'food event' as soon as it becomes available. Secondly, since SOM is available (although only very slowly) to the biomass, why have some groups not evolved the ability to mineralize it faster, obtain more energy, and so gain a competitive advantage? We believe that the reason why organisms do not use this strategy is, simply, that they cannot. Our

  11. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  12. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  13. Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model

    Directory of Open Access Journals (Sweden)

    Robbie A. Hember

    2018-01-01

    Full Text Available Environmental conditions and silviculture fundamentally alter the metabolism of individual trees and, therefore, need to be studied at that scale. However, changes in forest biomass density (Mg C ha−1 may be decoupled from changes in growth (kg C year−1 when the latter also accelerates the life cycle of trees and strains access to light, nutrients, and water. In this study, we refer to an individual-based model of forest biomass dynamics to constrain the magnitude of system feedbacks associated with ontogeny and competition and estimate the scaling relationship between changes in tree growth and forest biomass density. The model was driven by fitted equations of annual aboveground biomass growth (Gag, probability of recruitment (Pr, and probability of mortality (Pm parameterized against field observations of black spruce (Picea mariana (Mill. BSP, interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn. Franco, and western hemlock (Tsuga heterophylla (Raf. Sarg.. A hypothetical positive step-change in mean tree growth was imposed half way through the simulations and landscape-scale responses were then evaluated by comparing pre- and post-stimulus periods. Imposing a 100% increase in tree growth above calibrated predictions (i.e., contemporary rates only translated into 36% to 41% increases in forest biomass density. This corresponded with a tree-growth elasticity of forest biomass (εG,SB ranging from 0.33 to 0.55. The inelastic nature of stand biomass density was attributed to the dependence of mortality on intensity of competition and tree size, which decreased stand density by 353 to 495 trees ha−1, and decreased biomass residence time by 10 to 23 years. Values of εG,SB depended on the magnitude of the stimulus. For example, a retrospective scenario in which tree growth increased from 50% below contemporary rates up to contemporary rates indicated values of εG,SB ranging from 0.66 to 0.75. We conclude that: (1 effects of

  14. The biomass burning contribution to climate–carbon-cycle feedback

    Directory of Open Access Journals (Sweden)

    S. P. Harrison

    2018-05-01

    Full Text Available Temperature exerts strong controls on the incidence and severity of fire. All else equal, warming is expected to increase fire-related carbon emissions, and thereby atmospheric CO2. But the magnitude of this feedback is very poorly known. We use a single-box model of the land biosphere to quantify this positive feedback from satellite-based estimates of biomass burning emissions for 2000–2014 CE and from sedimentary charcoal records for the millennium before the industrial period. We derive an estimate of the centennial-scale feedback strength of 6.5 ± 3.4 ppm CO2 per degree of land temperature increase, based on the satellite data. However, this estimate is poorly constrained, and is largely driven by the well-documented dependence of tropical deforestation and peat fires (primarily anthropogenic on climate variability patterns linked to the El Niño–Southern Oscillation. Palaeo-data from pre-industrial times provide the opportunity to assess the fire-related climate–carbon-cycle feedback over a longer period, with less pervasive human impacts. Past biomass burning can be quantified based on variations in either the concentration and isotopic composition of methane in ice cores (with assumptions about the isotopic signatures of different methane sources or the abundances of charcoal preserved in sediments, which reflect landscape-scale changes in burnt biomass. These two data sources are shown here to be coherent with one another. The more numerous data from sedimentary charcoal, expressed as normalized anomalies (fractional deviations from the long-term mean, are then used – together with an estimate of mean biomass burning derived from methane isotope data – to infer a feedback strength of 5.6 ± 3.2 ppm CO2 per degree of land temperature and (for a climate sensitivity of 2.8 K a gain of 0.09 ± 0.05. This finding indicates that the positive carbon cycle feedback from increased fire provides a substantial

  15. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  16. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  17. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  18. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  19. A study of palm biomass processing strategy in Sarawak

    Science.gov (United States)

    Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.

    2017-06-01

    In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.

  20. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  1. Comparison of phase-constrained parallel MRI approaches: Analogies and differences.

    Science.gov (United States)

    Blaimer, Martin; Heim, Marius; Neumann, Daniel; Jakob, Peter M; Kannengiesser, Stephan; Breuer, Felix A

    2016-03-01

    Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information. © 2015 Wiley Periodicals, Inc.

  2. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Rodriguez, Luis C.; May, Barrie; Herr, Alexander; O'Connell, Deborah

    2011-01-01

    Coal fired electricity is a major factor in Australia's greenhouse gas emissions (GHG) emissions. The country has adopted a mandatory renewable energy target (MRET) to ensure that 20% of electricity comes from renewable sources by 2020. In order to support the MRET, a market scheme of tradable Renewable Energy Certificates (RECs) has been implemented since 2001. Generators using biomass from eligible sources are able to contribute to GHG emission reduction through the substitution of coal for electricity production and are eligible to create and trade RECs. This paper quantifies the potential biomass resources available for energy generation from forestry and agriculture in the Green Triangle, one of the most promising Australian Regions for biomass production. We analyse the cost of electricity generation using direct firing of biomass, and estimate the required REC prices to make it competitive with coal fired electricity generation. Major findings suggest that more than 2.6 million tonnes of biomass are produced every year within 200 km of the regional hub of Mount Gambier and biomass fired electricity is viable using feedstock with a plant gate cost of 46 Australian Dollars (AUD) per tonne under the current REC price of 34 AUD per MWh. These findings are then discussed in the context of regional energy security and existing targets and incentives for renewable energies. -- Highlights: → We assessed the biomass production in the Green Triangle. → 2.6 million tonnes of biomass per year are produced within 200 km from Mt Gambier. → Renewable Energy Certificates makes bioenergy competitive with coal electricity. → At a REC price of 34 AUD, biomass of up to 46 AUD/tonne might be used for bionergy

  3. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  4. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  5. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  6. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  7. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  8. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  10. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  11. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  12. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  15. Biomass burning fuel consumption rates: a field measurement database

    NARCIS (Netherlands)

    van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Ruecker, G.; French, N.H.F.; Archibald, S.; Carvalho Jr., J.A.; Cook, G.D.; de Groot, J.W.; Hely, C.; Kasischke, E.S.; Kloster, S.; McCarty, J.L.; Pettinari, M.L.; Savadogo, P.

    2014-01-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions.

  16. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  17. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  18. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  19. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  20. Availability of potassium in biomass combustion ashes and gasification biochars after application to soils with variable pH and clay content

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2017-01-01

    .8–7.8) and clay contents (3–17%). Exchangeable K in the product-soil mixture was determined, and the K recovery rate from the applied products varied from 31 to 86%. The relative recovery compared to applied KCl was used to indicate K availability and was 50–86% across all soils, but lower for two sewage sludge....... The objective of this study was to evaluate the potassium (K) availability in various types of biomass ashes and gasification biochars (GBs) derived from straw, wood, sewage sludge and poultry manure when mixed with soil. A 16-week incubation study was conducted with three contrasting soils of variable pH (5...

  1. Brown carbon in fresh and aged biomass burning emissions

    Science.gov (United States)

    Saleh, R.; Robinson, E.; Tkacik, D. S.; Ahern, A.; Liu, S.; Aiken, A. C.; Sullivan, R. C.; Presto, A. A.; Dubey, M.; Donahue, N. M.; Robinson, A. L.

    2013-12-01

    To date, most climate forcing calculations treat black carbon (BC) and dust as the only particulate light absorbers. Numerous studies have shown that some organic aerosols (OA), referred to as brown carbon (BrC), also absorb light. BrC has been identified in biomass burning emissions; however, its light absorption properties are poorly constrained. Literature values of the imaginary part of the refractive indices of biomass burning OA (kOA) span two orders of magnitude. This variability, attributed to differences in fuel type and burning conditions, complicates the representation of biomass burning BrC in climate models. Proper accounting for BrC absorption in climate forcing calculations is of great importance. It can enhance the models' performance, bringing estimates of climate sensitivity to better agreement with observations. Here, we investigate the source of variability in absorptivity of biomass-burning OA observed in this study. We show that absorptivity is closely linked to OA volatility. Specifically, low-volatility organic compounds (LVOCs) are responsible for most of the light absorption, with effective kOA 1-2 orders of magnitude greater than the semi-volatile organic compounds (SVOCs). The effective kOA of biomass-burning emissions thus depends on the extent to which SVOCs partition to the condensed phase, which is sensitive to OA loading. kOA increases by a factor of 3-4 when the emissions are diluted from source concentrations (1-10 mg/m3) to atmospheric-like concentrations (1-10 μg/m3), as the partitioning of SVOCs shifts towards the gas phase. More importantly, we demonstrate that the effective kOA depends largely on burn conditions, and not fuel type. Burns which produce high levels of BC emit OA that is more absorptive than burns which produce low levels of BC. The dependence of kOA on OA loading and burn conditions can be parameterized as a function of a single property of the emissions, namely the BC-to-OA ratio. Specifically, kOA at

  2. Pyrolysis characteristics of typical biomass thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Hongzhen Cai

    Full Text Available The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite. Keywords: Biomass thermoplastic composite, Calcium carbonate, Pyrolysis characteristic

  3. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  4. Performance of biomass availability and chemical composition of 23 Leucaena spp. accessions; Comportamiento de la disponibilidad de biomasa y la composición química en 23 accesiones de Leucaena spp.

    Energy Technology Data Exchange (ETDEWEB)

    Wencomo, Hilda B., E-mail: hilda.wencomo@indio.atenas.inf.cu [Estación Experimental de Pastos y Forrajes ' Indio Hatuey' , Central España Republicana, CP 44280, Matanzas (Cuba); Ortiz, R. [Instituto Nacional de Ciencias Agrícolas, Mayabeque (Cuba)

    2012-07-01

    A study was conducted with 23 Leucaena spp. accessions in an area which had been planted six years before. The objective was to determine, in the established plants, total biomass, edible biomass, ligneous biomass, stem diameter and number of branches in each accession, and its bromatological composition under simulated grazing conditions. The research was conducted at the EEPF 'Indio Hatuey' during two years, on a hydrated ferruginous nodular humic lixiviated Ferralitic Red soil. Simple 3 m x 6 m plots were used. In the edible biomass and its components (leaves and fresh stems), there were significant differences (P<0,05) between the seasons of the two years. It could be observed that production was higher in the rainy season than in the dry season, although there were no differences among the mean biomass production of the accessions; in the case of total biomass no significant differences were found between seasons. To continue the studies is recommended, to determine, in the long term, the effect of the evaluated indicators on the availability and persistence of the tree. (author)

  5. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jesus [American Community Enrichment, Elma, WA (United States)

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  6. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  7. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  8. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  9. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  10. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  11. Biomassa e energia Biomass and energy

    Directory of Open Access Journals (Sweden)

    José Goldemberg

    2009-01-01

    Full Text Available Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.

  12. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  13. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  14. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  15. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  16. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  17. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  18. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  19. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  20. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  1. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  2. Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Hastings, Astley; Jørgensen, Uffe

    2016-01-01

    Miscanthus and reed canary grass (RCG) are C4 and C3 perennial grasses which are popular in Europe as energy crops. Although Miscanthus is relatively chilling tolerant compared to other C4 species, its production in northern Europe is still constrained by cold temperature. A more chilling tolerant...... Miscanthus cultivar which can emerge early in the spring would utilize more solar radiation and produce higher biomass yields. In this study, using MiscanFor model, we estimated potential biomass yield of Miscanthus in current and future climates with the assumption that breeding would provide a chilling...

  3. A review on torrefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tapasvi, Dhruv; Tran, Khanh-Quang

    2010-07-01

    Full text: Torrefaction is a mild-pyrolysis (200-300 deg.C.) process which can be employed as pre-treatment to improve fuel properties of plant biomass materials. The treatment results in not only improved energy density, but also enhanced grindability and better storage characteristics for biomass fuels. Because of these advantages and the high level of viability, the technique has attracted increasing interests during the last decades. Several studies on torrefaction of biomass for heat and power applications have been documented. Substantial amounts of data on the technique are available in the literature, which need to be reviewed and analyzed for further actions in the area. This is the primary objective of the present study. This review is consisted of three parts, of which the first focuses on the mechanism of biomass torrefaction for heat and power applications, and the process as a whole. It is then followed by a critical review on experimental methods in laboratory, and effects of operating parameters on fuel properties of torrefied biomass. Finally, opportunities and challenges for the process are discussed. (Author)

  4. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    Delaney, W.F.; Zane, G.A.

    1991-01-01

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  5. Water and land availability for energy farming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schooley, F.A.; Mara, S.J.; Mendel, D.A.; Meagher, P.C.; So, E.C.

    1979-10-01

    The physical and economic availability of land and water resources for energy farming were determined. Ten water subbasins possessing favorable land and water availabilities were ranked according to their overall potential for biomass production. The study results clearly identify the Southeast as a favorable area for biomass farming. The Northwest and North-Central United States should also be considered on the basis of their highly favorable environmental characteristics. Both high and low estimates of water availability for 1985 and 2000 in each of 99 subbasins were prepared. Subbasins in which surface water consumption was more than 50% of surface water supply were eliminated from the land availability analysis, leaving 71 subbasins to be examined. The amount of acreage potentially available for biomass production in these subbasins was determined through a comparison of estimated average annual net returns developed for conventional agriculture and forestry with net returns for several biomass production options. In addition to a computerized method of ranking subbasins according to their overall potential for biomass production, a methodology for evaluating future energy farm locations was developed. This methodology included a general area selection procedure as well as specific site analysis recommendations. Thirty-five general factors and a five-step site-specific analysis procedure are described.

  6. EFFICIENT USE OF BIOMASS IN IMPROVED COOKSTOVES

    Directory of Open Access Journals (Sweden)

    R. K. PAL

    2016-12-01

    Full Text Available Traditional biomass cookstoves have very low efficiency. The improved cookstoves have very high efficiency. These improved cookstoves with high efficiency saves biomass fuels. Biomass can be saved in case of rocket elbow cookstoves. The amount of biomass which can be saved in case of rocket elbow cookstoves is 65.88 MT. More biomass can be saved in case of gasifier fan cookstoves. The amount of biomass which can be saved is 155.71 MT. The pollutants like particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission is lesser in case of rocket elbow cookstoves. The pollutants are least in case of gasifier fan cookstoves. The reduction in particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission in gasifier fan cookstoves is 1.77 MT, 0.24 MT, 0.71 MT & 151.64 MT respectively in comparison to traditional cookstoves. Therefore indoor air pollution is greatly reduced in case of improved cookstoves especially in case of gasifier fan cookstoves as compared to traditional cookstoves.

  7. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  8. A New Synthetic Global Biomass Carbon Map for the year 2010

    Science.gov (United States)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  9. An efficient Azorean thermophilic consortium for lignocellulosic biomass degradation

    OpenAIRE

    Martins, Rita; Teixeira, Mário; Toubarro, Duarte; Simões, Nelson; Domingues, Lucília; Teixeira, J. A.

    2015-01-01

    [Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potent...

  10. A review of forest and tree plantation biomass equations in Indonesia

    NARCIS (Netherlands)

    Anitha, Kamalakumari; Verchot, Louis V.; Joseph, Shijo; Herold, Martin; Manuri, Solichin; Avitabile, Valerio

    2015-01-01

    Key message: We compiled 2,458 biomass equations from 168 destructive sampling studies in Indonesia. Unpublished academic theses contributed the largest share of the biomass equations. The availability of the biomass equations was skewed to certain regions, forest types, and species. Further

  11. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  12. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  13. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  14. Biomass requirements from natural pastures for livestock grazing ...

    African Journals Online (AJOL)

    The problem of seasonal shortages of herbage production from natural pastures in the Ethiopian highlands was investigated. This was done by comparing the available biomass amounts on the pastures with biomass amounts required for livestock grazing and for protecting land slope from soil erosion within a given slope ...

  15. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  16. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  17. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  18. Modeling natural regeneration biomass of Pinus stand

    Directory of Open Access Journals (Sweden)

    Rafael Cubas

    2016-09-01

    Full Text Available Reliable biomass data are very important in the evaluation of ecosystems, and help in understanding the contribution of forests in climate change. Variables that describe the size of the tree, like diameter and height are directly associated with biomass, which allows the use of regression models to estimate this element. Therefore, this study aimed to estimate by regression models, the biomass of different compartments of natural regeneration of trees of a Pinus taeda L. stand. The data were obtained through direct destructive method, using 100 randomly selected trees in the understory of a stand of Pinus taeda. We analyzed three arithmetical models, three logarithmic and two models developed by Stepwise process. Logarithmic equations developed by Stepwise procedure showed the best estimates of total and stems biomass. However, for needles and twigs compartments the best adjust was observed with Husch model and for root biomass Berkhout model proved to be the most suitable.

  19. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  20. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  1. Biomass, lasting perspective. Biomassa, een duurzaam perspectief

    Energy Technology Data Exchange (ETDEWEB)

    Knol, M E [Centrum voor Energiebesparing en Schone Technologie,Delft (Netherlands)

    1989-10-01

    The contribution of biomass in a possible sustainable energy future of the Netherlands is discussed. The different types of biomass, their properties and their most effective energy conversion techniques are summarized. At this moment the energy potential of the available biomass is 110 PJ per year. Net energy: 45 PJ per year (= 2% of the energy consumption in the Netherlands). Estimated net energy in 2000 is 60 PJ per year. Scenario calculations for the late 21st century reveal potential and net energy amounts of 350 PJ and 280 PJ per year, respectively. 2 refs., 4 tabs., 1 ill.

  2. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  3. A biomass energy flow chart for Sierra Leone

    International Nuclear Information System (INIS)

    Amoo-Gottfried, K.; Hall, D.O.

    1999-01-01

    Terrestrial above-ground biomass production and utilisation in Sierra Leone was analysed for the years 1984/5 to 1990/1. The total production of biomass energy was estimated at an annual average of 131 PJ (39% from agriculture, 51% from forestry and 10% from livestock). Of the 117 PJ produced from agricultural and forestry operations, 37 PJ was harvested as firewood and burnt (10.9 GJ or 0.72 t wood per capita per year, supplying 80% of the country's energy), 12 PJ was harvested for food, 66 PJ was unutilised crop and forestry residues, 3 PJ was harvested crop residues for use directly as fuel, and 2 PJ was harvested and used for industrial purposes and not for fuel. Livestock produced wastes with an energy content of 13 PJ of which only 0.1 PJ was collected and used for fuel. Thus 54 PJ (41%) of the 131 PJ of biomass energy produced annually was actually utilised while 49 PJ remained as unused agricultural residues and dung, and a further 27 PJ was unused forestry residues. The total amount of biomass (fuelwood, residues and dung) used directly to provide energy, mostly in households, was estimated at 40 PJ (11.8 GJ per capita per year of 0.79 t fuelwood equivalent). Direct biomass energy utilisation in agroindustry (0.4 PJ) was negligible in comparison. Two assessments of Sierra Leone's biomass standing stock and MAI (mean annual increment) were examined in order to assess the sustainability of various biomass use scenarios. Large differences were found between the MAI of the two assessments, making it difficult to predict sustainability of biomass production and use. The estimation of total standing stock varied between 227 and 366 Mt and the estimation of MAI varied between 15 and 70 Mt. Analysis of the availability and use of the biomass resource is crucial if biomass energy is to be used on a sustainable basis. A software package has been developed and is available to draft biomass flow charts but further work is needed to incorporate social and economic

  4. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  5. Analysis of todays best available technology for biomass fired heating plants in the interval 0.5 to 10 MW

    International Nuclear Information System (INIS)

    Karlsson, Mats-Lennart; Gustavsson, Lennart; Maartensson, D.; Leckner, B.

    1998-01-01

    The purpose of the present project has been to study today's best available technology for biomass fired heating plants in the interval 0.5 to 10 MW from an emission point of view. Emission measurements have been conducted at 21 plants of different types and sizes, i.e. one stationary fluidized bed, fourteen boilers with moving grates, four boilers with fixed grates, one pellet burner and one boiler with a gasification oven. The plants were fired with different fuels: native fuels like wood chips, bark/sawdust, grass and refined fuels like briquettes and pellets. The plants were chosen to represent the best available and/or the most common technology. The flue gases were analyzed for CO, NO x , Total Hydrocarbons (THC), methane, ethylene, acetylene, ammonia, nitrous oxide, CO 2 and O 2 . The measurements were usually made at the heat loads and operating conditions given at the time of testing. However, in a few cases measurements were made at different loads and air settings

  6. Grate Firing of Biomass: Measurements, Validation and Demonstration

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    The worldwide concern about global warming because of the emission of CO2 and other greenhouse gases and the limited availability of fossil fuels has increased the interest in using biomass as a fuel for energy production. In Denmark, to use biomass (mainly straw) as a fuel for energy production...

  7. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and

  8. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  9. Development Potentials and Policy Options of Biomass in China

    Science.gov (United States)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  10. How important is biomass burning in Canada to mercury contamination?

    Science.gov (United States)

    Fraser, Annemarie; Dastoor, Ashu; Ryjkov, Andrei

    2018-05-01

    Wildfire frequency has increased in past four decades in Canada and is expected to increase in future as a result of climate change (Wotton et al., 2010). Mercury (Hg) emissions from biomass burning are known to be significant; however, the impact of biomass burning on air concentration and deposition fluxes in Canada has not been previously quantified. We use estimates of burned biomass from FINN (Fire INventory from NCAR) and vegetation-specific emission factors (EFs) of mercury to investigate the spatiotemporal variability of Hg emissions in Canada. We use Environment and Climate Change Canada's GEM-MACH-Hg (Global Environmental Multi-scale, Modelling Air quality and Chemistry model, mercury version) to quantify the impact of biomass burning in Canada on spatiotemporal variability of air concentrations and deposition fluxes of mercury in Canada. We use North American gaseous elemental mercury (GEM) observations (2010-2015), GEM-MACH-Hg, and an inversion technique to optimize the EFs for GEM for five vegetation types represented in North American fires to constrain the biomass burning impacts of mercury. The inversion results suggest that EFs representing more vegetation types - specifically peatland - are required. This is currently limited by the sparseness of measurements of Hg from biomass burning plumes. More measurements of Hg concentration in the air, specifically downwind of fires, would improve the inversions. We use three biomass burning Hg emissions scenarios in Canada to conduct three sets of model simulations for 2010-2015: two scenarios where Hg is emitted only as GEM using literature or optimized EFs and a third scenario where Hg is emitted as GEM using literature EFs and particle bound mercury (PBM) emitted using the average GEM/PBM ratio from lab measurements. The three biomass burning emission scenarios represent a range of possible values for the impacts of Hg emissions from biomass burning in Canada on Hg concentration and deposition. We find

  11. Comportamiento de la disponibilidad de biomasa y la composición química en 23 accesiones de Leucaena spp. Performance of biomass availability and chemical composition of 23 Leucaena spp. accessions

    Directory of Open Access Journals (Sweden)

    Hilda B Wencomo

    2012-03-01

    Full Text Available Se realizó un estudio con 23 accesiones de Leucaena spp. en un área que tenía seis años de sembrada. El objetivo fue determinar, en las plantas establecidas, la biomasa total, la biomasa comestible, la biomasa leñosa, el grosor del tallo y el número de ramas de cada accesión, y su composición bromatológica en condiciones de pastoreo simulado. La investigación se realizó en la EEPF "Indio Hatuey" durante dos años, en un suelo Ferralítico Rojo lixiviado, húmico nodular ferruginoso hidratado. Se utilizaron parcelas sencillas de 3 m x 6 m. En la biomasa comestible y sus componentes (hojas y tallos tiernos existieron diferencias significativas (PA study was conducted with 23 Leucaena spp. accessions in an area which had been planted six years before. The objective was to determine, in the established plants, total biomass, edible biomass, ligneous biomass, stem diameter and number of branches in each accession, and its bromatological composition under simulated grazing conditions. The research was conducted at the EEPF "Indio Hatuey" during two years, on a hydrated ferruginous nodular humic lixiviated Ferralitic Red soil. Simple 3 m x 6 m plots were used. In the edible biomass and its components (leaves and fresh stems, there were significant differences (P<0,05 between the seasons of the two years. It could be observed that production was higher in the rainy season than in the dry season, although there were no differences among the mean biomass production of the accessions; in the case of total biomass no significant differences were found between seasons. To continue the studies is recommended, to determine, in the long term, the effect of the evaluated indicators on the availability and persistence of the tree.

  12. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  13. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  14. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  15. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  16. Biomass of cocoa and sugarcane

    Science.gov (United States)

    Siswanto; Sumanto; Hartati, R. S.; Prastowo, B.

    2017-05-01

    The role of the agricultural sector is very important as the upstream addressing downstream sectors and national energy needs. The agricultural sector itself is also highly dependent on the availability of energy. Evolving from it then it must be policies and strategies for agricultural development Indonesia to forward particularly agriculture as producers as well as users of biomass energy or bioenergy for national development including agriculture balance with agriculture and food production. Exports of biomass unbridled currently include preceded by ignorance, indifference and the lack of scientific data and potential tree industry in the country. This requires adequate scientific supporting data. This study is necessary because currently there are insufficient data on the potential of biomass, including tree biomasanya detailing the benefits of bioenergy, feed and food is very necessary as a basis for future policy. Measurement of the main estate plants biomass such as cocoa and sugarcane be done in 2015. Measurements were also conducted on its lignocellulose content. Tree biomass sugarcane potential measured consist of leaves, stems and roots, with the weight mostly located on the stem. Nevertheless, not all the potential of the stem is a good raw material for bioethanol. For cocoa turned out leaves more prospective because of its adequate hemicellulose content. For sugarcane, leaf buds contain a good indicator of digestion of feed making it more suitable for feed.

  17. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  18. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  19. Distribution of mesozooplankton biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2013-02-01

    Full Text Available Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the pelagic food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. In many regions of the global ocean, they are also the primary contributors to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature, they are usually in the form of hand-drawn maps for which the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990s, is an integral part of the Coastal and Oceanic Plankton Ecology, Production, and Observation Database (COPEPOD, and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate an estimate of mesozooplankton global biomass. Global epipelagic mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C L−1, median of 2.7 μg C L−1 and a standard deviation of 10.6 μg C L−1. The global annual average estimate of mesozooplankton in the top 200 m, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, and there were slight decreases from polar oceans (40

  20. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  1. Pyrolysis Dynamics of Biomass Residues in Hot-Stage

    Directory of Open Access Journals (Sweden)

    Ivan Bergier

    2015-09-01

    Full Text Available Original data for mass, element, and methane dynamics under controlled pyrolysis are presented for several biomass feedstocks. The experimental system consisted of an environmental (low-vacuum scanning electron microscopy (ESEM with a hot-stage and energy-dispersive X-ray spectroscopy (EDS detector. A tunable diode laser (TDL was coupled to the ESEM vacuum pump to measure the methane partial pressure in the exhaust gases. Thermogravimetric analysis and differential thermal analysis (TG/DTA in a N2 atmosphere was also carried out to assess the thermal properties of each biomass. It was found that biochars were depleted or enriched in specific elements, with distinct methane formation change. Results depended on the nature of the biomass, in particular the relative proportion of lignocellulosic materials, complex organic compounds, and ash. As final temperature was increased, N generally decreased by 30 to 100%, C increased by 20 to 50% for biomass rich in lignocellulose, and P, Mg, and Ca increased for ash-rich biomass. Methane formation also allows discriminating structural composition, providing fingerprints of each biomass. Biomass with low ashes and high lignin contents peaks CH4 production at 330 and 460 °C, whereas those biomasses with high ashes and low lignin peaks CH4 production at 330 and/or 400 °C.

  2. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  3. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  4. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  5. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  6. Nitrogen utilization and biomass yield in trickle bed air biofilters.

    Science.gov (United States)

    Kim, Daekeun; Sorial, George A

    2010-10-15

    Nitrogen utilization and subsequent biomass yield were investigated in four independent lab-scale trickle bed air biofilters (TBABs) fed with different VOCs substrate. The VOCs considered were two aromatic (toluene, styrene) and two oxygenated (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)). Long-term observations of TBABs performances show that more nitrogen was required to sustain high VOC removal, but the one fed with a high loading of VOC utilized much more nitrogen for sustaining biomass yield. The ratio N(consumption)/N(growth) was an effective indicator in evaluating nitrogen utilization in the system. Substrate VOC availability in the system was significant in determining nitrogen utilization and biomass yield. VOC substrate availability in the TBAB system was effectively identified by using maximum practical concentrations in the biofilm. Biomass yield coefficient, which was driven from the regression analysis between CO(2) production rate and substrate consumption rate, was effective in evaluating the TBAB performance with respect to nitrogen utilization and VOC removal. Biomass yield coefficients (g biomass/g substrate, dry weight basis) were observed to be 0.668, 0.642, 0.737, and 0.939 for toluene, styrene, MEK, and MIBK, respectively. 2010 Elsevier B.V. All rights reserved.

  7. Biomass supply in EU27 from 2010 to 2030

    International Nuclear Information System (INIS)

    Panoutsou, Calliope; Eleftheriadis, John; Nikolaou, Anastasia

    2009-01-01

    With biomass staying high in the EU political agenda and most of the recent documents acknowledging that it has the potential to make a very significant contribution to reaching the 20% target [], the issue of supply in terms of feedstock types, availability constraints and costs in different Member States is set to determine the future technology uptake and market deployment prospects. This paper is based on one of the initial studies, 'Bioenergy's role in the EU market. A view of developments until 2020', and presents a structured review for EU biomass resources, aiming to map technical potentials and provide detailed information on availability, costs and future trends for biomass potentials of different residual feedstocks in EU27. (author)

  8. Karoo-fynbos biomass along an elevational gradient in the western Cape.

    Directory of Open Access Journals (Sweden)

    M. C. Rutherford

    1978-12-01

    Full Text Available A short characterization of the vegetational gradient from two basic physiognomic forms of fynbos, through Renosterbosveld to arid Karoo vegetation of the south-western Cape, is given with reference to possible vegetational analogues within similar gradients in winter-rainfall areas elsewhere. Description is limited to some aspects affecting biomass and its measurement, as well as to consideration of community stability needed for valid comparison of community biomass. Live individuals, including single dominant species, all other shrubs, graminoids and other herbaceous species as well as dead individuals were harvested separately in each major community type within an elevational gradient corresponding to the vegetational gradient described. Greatest biomass (14311 kg ha-1 was found in a summit restionaceous community, while lowest biomass (7564 kg ha-1 was found in a low-lying succulent Karoo community. There was an inverse relationship between elevation and percentage dead material mass and a strongly positive relationship between elevation and percentage biomass of the graminoid group. Total biomass values appear to be in keeping with available data for analogue communities in different Mediterranean climate areas, although distinct differences sometimes occur in the relative biomass contributions of component groups.

  9. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  11. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  12. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  13. Constraining new physics models with isotope shift spectroscopy

    Science.gov (United States)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  14. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  15. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  16. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  17. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  18. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Science.gov (United States)

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  19. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  20. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-11-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

  2. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  3. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  4. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  5. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  6. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  7. How well do different tracers constrain the firn diffusivity profile?

    Directory of Open Access Journals (Sweden)

    C. M. Trudinger

    2013-02-01

    Full Text Available Firn air transport models are used to interpret measurements of the composition of air in firn and bubbles trapped in ice in order to reconstruct past atmospheric composition. The diffusivity profile in the firn is usually calibrated by comparing modelled and measured concentrations for tracers with known atmospheric history. However, in most cases this is an under-determined inverse problem, often with multiple solutions giving an adequate fit to the data (this is known as equifinality. Here we describe a method to estimate the firn diffusivity profile that allows multiple solutions to be identified, in order to quantify the uncertainty in diffusivity due to equifinality. We then look at how well different combinations of tracers constrain the firn diffusivity profile. Tracers with rapid atmospheric variations like CH3CCl3, HFCs and 14CO2 are most useful for constraining molecular diffusivity, while &delta:15N2 is useful for constraining parameters related to convective mixing near the surface. When errors in the observations are small and Gaussian, three carefully selected tracers are able to constrain the molecular diffusivity profile well with minimal equifinality. However, with realistic data errors or additional processes to constrain, there is benefit to including as many tracers as possible to reduce the uncertainties. We calculate CO2 age distributions and their spectral widths with uncertainties for five firn sites (NEEM, DE08-2, DSSW20K, South Pole 1995 and South Pole 2001 with quite different characteristics and tracers available for calibration. We recommend moving away from the use of a firn model with one calibrated parameter set to infer atmospheric histories, and instead suggest using multiple parameter sets, preferably with multiple representations of uncertain processes, to assist in quantification of the uncertainties.

  8. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  9. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  10. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    Mitchell, C.P.; Watters, M.P.

    1995-01-01

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  11. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  12. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  13. Feedstock quality : an important consideration in forest biomass supply

    Energy Technology Data Exchange (ETDEWEB)

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  14. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  15. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  16. Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Xu, Bo; Wang, Jinniu; Wu, Ning; Wu, Yan; Shi, Fusun

    2018-01-01

    Soil microbial activity varies seasonally in frozen alpine soils during cold seasons and plays a crucial role in available N pool accumulation in soil. The intra- and interannual patterns of microbial and nutrient dynamics reflect the influences of changing weather factors, and thus provide important insights into the biogeochemical cycles and ecological functions of ecosystems. We documented the seasonal and interannual dynamics of soil microbial and available N in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China, between April 2011 and October 2013. Soil was collected in the middle of each month and analyzed for water content, microbial biomass C (MBC) and N (MBN), dissolved organic C and N, and inorganic N. Soil microbial community composition was measured by the dilution-plate method. Fungi and actinomycetes dominated the microbial community during the nongrowing seasons, and the proportion of bacteria increased considerably during the early growing seasons. Trends of consistently increasing MBC and available N pools were observed during the nongrowing seasons. MBC sharply declined during soil thaw and was accompanied by a peak in available N pool. Induced by changes in soil temperatures, significant shifts in the structures and functions of microbial communities were observed during the winter-spring transition and largely contributed to microbial reduction. The divergent seasonal dynamics of different N forms showed a complementary nutrient supply pattern during the growing season. Similarities between the interannual dynamics of microbial biomass and available N pools were observed, and soil temperature and water conditions were the primary environmental factors driving interannual fluctuations. Owing to the changes in climate, seasonal soil microbial activities and nutrient supply patterns are expected to change further, and these changes may have crucial implications for the productivity and biodiversity of alpine ecosystems.

  17. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  18. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  19. Communication Schemes with Constrained Reordering of Resources

    DEFF Research Database (Denmark)

    Popovski, Petar; Utkovski, Zoran; Trillingsgaard, Kasper Fløe

    2013-01-01

    This paper introduces a communication model inspired by two practical scenarios. The first scenario is related to the concept of protocol coding, where information is encoded in the actions taken by an existing communication protocol. We investigate strategies for protocol coding via combinatorial...... reordering of the labelled user resources (packets, channels) in an existing, primary system. However, the degrees of freedom of the reordering are constrained by the operation of the primary system. The second scenario is related to communication systems with energy harvesting, where the transmitted signals...... are constrained by the energy that is available through the harvesting process. We have introduced a communication model that covers both scenarios and elicits their key feature, namely the constraints of the primary system or the harvesting process. We have shown how to compute the capacity of the channels...

  20. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  1. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Al-Hamamre, Zayed; Al-Mater, Ali; Sweis, Fawaz; Rawajfeh, Khaled

    2014-01-01

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  2. Exploring Constrained Creative Communication

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2017-01-01

    Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...

  3. The influence of a Renewable Energy Feed in Tariff on the decision to produce biomass crops in Ireland

    International Nuclear Information System (INIS)

    Clancy, D.; Breen, J.P.; Thorne, F.; Wallace, M.

    2012-01-01

    A target of 30 per cent substitution of biomass for peat in the three peat fired power stations from 2015 has been set by the Irish Government. However, a knowledge gap exists on the extent to which Irish farmers would actually choose to grow these crops. An extension of the Renewable Energy Feed in Tariff (REFIT) scheme to include the co-firing of biomass with peat in electricity generation would enable the power stations to enter into Power Purchase Agreements (PPAs). These offer a fixed price to farmers for biomass feedstock. The decision to adopt biomass is represented as a constrained problem under certainty with the objective of profit maximisation. The results showed that the price offered under a PPA has a large effect on the economic returns from biomass crops. The price that the power stations previously estimated they would be able to pay, at €46 and €48 per tonne for willow and miscanthus, respectively, was used as a starting point. At this price the number of farmers who would choose to adopt biomass production is insufficient to achieve the national co-firing target. The target could be achieved at €70 and €65 per tonne for willow and miscanthus, respectively. - Highlights: ► We model the decision of Irish farmers to produce biomass crops. ► Current prices will lead to insufficient adoption to achieve policy targets. ► REFIT mechanism can succeed in meeting policy goals. ► Willow prices need to increase by approximately 27 per cent. ► Miscanthus prices need to increase by approximately 8 per cent.

  4. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  5. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  6. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Directory of Open Access Journals (Sweden)

    Jan Hasenauer

    2014-07-01

    Full Text Available Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  7. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  8. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  9. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  10. Biomass sector review for the Carbon Trust

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-26

    The review drew on an extensive number of sources, including a detailed literature survey, in-house references, questionnaires and interviews with trade associations, industry participants and industry observers. The policy observations that were drawn from the review, together with the results of the analysis itself, were subject to a detailed peer review with leading industry participants, observers and academics. The purpose of this document, is to place the results of this analysis in the public domain and to ensure that it is available to those interested in developing the biomass sector in the UK. Screening of the available biomass resource in the UK highlighted four key biomass fuels: forestry crops, dry agricultural residue, waste wood arid woody energy crops. The four fuels could have a material impact on UK energy supply when used for heat and power. Currently they have the potential to supply up to an additional. 41TWh/yr or about 1.5% of UK energy supply. In the future this could rise to c.80TWh/yr, mainly through expansion in the supply of woody energy crops and/or dry agricultural residue. If available resources are used for biofuels the level of potential carbon saving decreases significantly compared with providing heat or electricity due to lower conversion efficiency. Consequently, biofuels are not covered in depth in this report. Although the UK has a considerable amount of biomass resource, gaining access to it is not always viable for developers and end-users as the UK. currently has a relatively undeveloped biomass fuel supply infrastructure. Just as biomass can be drawn from a number or sources, it can be converted to useful energy through a number of processes and delivered to a variety of markets. Our screening of biomass conversion processes demonstrated that currently combustion represents the best area of focus. Combustion is a proven, established conversion process and the lowest cost option available today. Co-firing was not analysed

  11. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  12. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ

    2013-01-01

    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  13. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  14. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  15. Electricity in a Climate-Constrained World

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    After experiencing a historic drop in 2009, electricity generation reached a record high in 2010, confirming the close linkage between economic growth and electricity usage. Unfortunately, CO2 emissions from electricity have also resumed their growth: Electricity remains the single-largest source of CO2 emissions from energy, with 11.7 billion tonnes of CO2 released in 2010. The imperative to 'decarbonise' electricity and improve end-use efficiency remains essential to the global fight against climate change. The IEA’s Electricity in a Climate-Constrained World provides an authoritative resource on progress to date in this area, including statistics related to CO2 and the electricity sector across ten regions of the world (supply, end-use and capacity additions). It also presents topical analyses on the challenge of rapidly curbing CO2 emissions from electricity. Looking at policy instruments, it focuses on emissions trading in China, using energy efficiency to manage electricity supply crises and combining policy instruments for effective CO2 reductions. On regulatory issues, it asks whether deregulation can deliver decarbonisation and assesses the role of state-owned enterprises in emerging economies. And from technology perspectives, it explores the rise of new end-uses, the role of electricity storage, biomass use in Brazil, and the potential of carbon capture and storage for ‘negative emissions’ electricity supply.

  16. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  17. Availability of Biomass Residues for Co-Firing in Peninsular Malaysia: Implications for Cost and GHG Emissions in the Electricity Sector

    OpenAIRE

    W. Michael Griffin; Jeremy Michalek; H. Scott Matthews; Mohd Nor Azman Hassan

    2014-01-01

    Fossil fuels comprise 93% of Malaysia’s electricity generation and account for 36% of the country’s 2010 Greenhouse Gas (GHG) emissions. The government has targeted the installation of 330 MW of biomass electricity generation capacity by 2015 to avoid 1.3 Mt of CO 2 emissions annually and offset some emissions due to increased coal use. One biomass option is to co-fire with coal, which can result in reduced GHG emissions, coal use, and costs of electricity. A linear optimization cost model wa...

  18. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A

    International Nuclear Information System (INIS)

    MacFarlane, David W.

    2009-01-01

    Tree and wood biomass from urban areas is a potentially large, underutilized resource viewed in the broader social context of biomass production and utilization. Here, data and analysis from a regional study in a 13-county area of Michigan, U.S.A. are combined with data and analysis from several other studies to examine this potential. The results suggest that urban trees and wood waste offer a modest amount of biomass that could contribute significantly more to regional and national bio-economies than it does at present. Better utilization of biomass from urban trees and wood waste could offer new sources of locally generated wood products and bio-based fuels for power and heat generation, reduce fossil fuel consumption, reduce waste disposal costs and reduce pressure on forests. Although wood biomass generally constitutes a 'carbon-neutral' fuel, burning rather than burying urban wood waste may not have a net positive effect on reducing atmospheric CO 2 levels, because it may reduce a significant long term carbon storage pool. Using urban wood residues for wood products may provide the best balance of economic and environmental values for utilization

  19. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  20. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized

  1. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  2. Forestry-based biomass economic and financial information and tools: An annotated bibliography

    Science.gov (United States)

    Dan Loeffler; Jason Brandt; Todd Morgan; Greg Jones

    2010-01-01

    This annotated bibliography is a synthesis of information products available to land managers in the western United States regarding economic and financial aspects of forestry-based woody biomass removal, a component of fire hazard and/or fuel reduction treatments. This publication contains over 200 forestry-based biomass papers, financial models, sources of biomass...

  3. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  4. Spatial Analysis of Depots for Advanced Biomass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Erin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokhansanj, Shahabaddine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez Gonzalez, Maria I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The objective of this work was to perform a spatial analysis of the total feedstock cost at the conversion reactor for biomass supplied by a conventional system and an advanced system with depots to densify biomass into pellets. From these cost estimates, the conditions (feedstock cost and availability) for which advanced processing depots make it possible to achieve cost and volume targets can be identified.

  5. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  6. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  7. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  8. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  9. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  10. Energy from biomass and waste

    International Nuclear Information System (INIS)

    Faaij, A.P.C.

    1997-01-01

    Chapter 2 deals with the characteristics and current availability of biomass residues and waste streams in the Dutch context and evaluates to what extent they are suited for conversion to energy, in particular by means of gasification. In Chapter 3 the technical and economic aspects of gasification of both wastes and clean biomass for electricity production are investigated. The performance of the system is evaluated by means of ASPEN plus modelling. Performance is simulated for a wide range of potential biofuels to assess the sensitivity of the system to the fuel composition. An economic evaluation is made based on component data and on a chain analysis that includes the costs of the biofuels and logistics. Chapter 4 evaluates the final waste treatment system in the Netherlands. It investigates to what extent changes in waste production and the implementation of new waste treatment technologies can atfect the energy production and final waste treatment costs. Chapter 5 focuses on long-range developments with respect to land use in the Netherlands. Chapter 6 addresses costs and benefits of the biomass fuel cycle and focuses especially on the external costs of biomass-based electricity production. A comparison is made with coal-based electricity production. Various methods are used to quantify those costs. Both environmental externalities (such as emissions) and indirect socio-economic effects are analysed. Attention will be given to uncertainties in the outcomes and the implications of the results for the economic feasibility of the production of electricity trom biomass in the Dutch context. refs

  11. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  12. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  13. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    OpenAIRE

    Elliott, DC; Biller, P; Ross, AB; Schmidt, AJ; Jones, SB

    2015-01-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their pr...

  14. Nonmonotonic Skeptical Consequence Relation in Constrained Default Logic

    Directory of Open Access Journals (Sweden)

    Mihaiela Lupea

    2010-12-01

    Full Text Available This paper presents a study of the nonmonotonic consequence relation which models the skeptical reasoning formalised by constrained default logic. The nonmonotonic skeptical consequence relation is defined using the sequent calculus axiomatic system. We study the formal properties desirable for a good nonmonotonic relation: supraclassicality, cut, cautious monotony, cumulativity, absorption, distribution. 

  15. Lignin-blocking treatment of biomass and uses thereof

    Science.gov (United States)

    Yang, Bin [Hanover, NH; Wyman, Charles E [Norwich, VT

    2009-10-20

    Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion. Cellulase efficiencies are improved by the protein or polypeptide treatment. The treatment may be used in combination with steam explosion and acid prehydrolysis techniques. Hydrolysis yields from lignin containing biomass are enhanced 5-20%, and enzyme utilization is increased from 10% to 50%. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

  16. Does salt stress constrain spatial distribution of dune building grasses Ammophila arenaria and Elytrichia juncea on the beach?

    Science.gov (United States)

    van Puijenbroek, Marinka E B; Teichmann, Corry; Meijdam, Noortje; Oliveras, Imma; Berendse, Frank; Limpens, Juul

    2017-09-01

    Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea-level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea . In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co-occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea , suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.

  17. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks

    Directory of Open Access Journals (Sweden)

    Raghav V. Sampangi

    2015-09-01

    Full Text Available Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID and Wireless Body Area Networks (WBAN that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG, and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  18. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  19. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2007-01-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  20. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  1. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  2. Bioenergy in Australia: An improved approach for estimating spatial availability of biomass resources in the agricultural production zones

    International Nuclear Information System (INIS)

    Herr, Alexander; Dunlop, Michael

    2011-01-01

    Bioenergy production from crops and agricultural residues has a greenhouse gas mitigation potential. However, there is considerable debate about the size of this potential. This is partly due to difficulties in estimating the feedstock resource base accurately and with good spatial resolution. Here we provide two techniques for spatially estimating crop-based bioenergy feedstocks in Australia using regional agricultural statistics and national land use maps. The approach accommodates temporal variability by estimating ranges of feedstock availability and the shifting nature of zones of the highest spatial concentration of feedstocks. The techniques are applicable to biomass production from forestry, agricultural residues or oilseeds, all of which have been proposed as biofuel feedstocks. -- Highlights: → Dasymetric mapping appoach for producing spatial and temporal variation maps in feedstock production.→ Combines land use and crop statistics to produce regionally precise feedstock maps. → Feedstock concentrations and feedstock density maps enable identification of feedstock concentration spatially and comparison of yearly variation in production.

  3. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  4. A dataset of forest biomass structure for Eurasia.

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly; Usoltsev, Vladimir; Lakyda, Petro; Luo, Yunjian; Vasylyshyn, Roman; Lakyda, Ivan; Myklush, Yuriy; See, Linda; McCallum, Ian; Fritz, Steffen; Kraxner, Florian; Obersteiner, Michael

    2017-05-16

    The most comprehensive dataset of in situ destructive sampling measurements of forest biomass in Eurasia have been compiled from a combination of experiments undertaken by the authors and from scientific publications. Biomass is reported as four components: live trees (stem, bark, branches, foliage, roots); understory (above- and below ground); green forest floor (above- and below ground); and coarse woody debris (snags, logs, dead branches of living trees and dead roots), consisting of 10,351 unique records of sample plots and 9,613 sample trees from ca 1,200 experiments for the period 1930-2014 where there is overlap between these two datasets. The dataset also contains other forest stand parameters such as tree species composition, average age, tree height, growing stock volume, etc., when available. Such a dataset can be used for the development of models of biomass structure, biomass extension factors, change detection in biomass structure, investigations into biodiversity and species distribution and the biodiversity-productivity relationship, as well as the assessment of the carbon pool and its dynamics, among many others.

  5. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  6. Choosing health, constrained choices.

    Science.gov (United States)

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  7. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Directory of Open Access Journals (Sweden)

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  8. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  9. Pole shifting with constrained output feedback

    International Nuclear Information System (INIS)

    Hamel, D.; Mensah, S.; Boisvert, J.

    1984-03-01

    The concept of pole placement plays an important role in linear, multi-variable, control theory. It has received much attention since its introduction, and several pole shifting algorithms are now available. This work presents a new method which allows practical and engineering constraints such as gain limitation and controller structure to be introduced right into the pole shifting design strategy. This is achieved by formulating the pole placement problem as a constrained optimization problem. Explicit constraints (controller structure and gain limits) are defined to identify an admissible region for the feedback gain matrix. The desired pole configuration is translated into an appropriate cost function which must be closed-loop minimized. The resulting constrained optimization problem can thus be solved with optimization algorithms. The method has been implemented as an algorithmic interactive module in a computer-aided control system design package, MVPACK. The application of the method is illustrated to design controllers for an aircraft and an evaporator. The results illustrate the importance of controller structure on overall performance of a control system

  10. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    large volumes of organic waste, including waste from the paper and agro-food industries, household refuse, and biogas from the fermentation of treatment plant sludge. At the top of the list: the United States, which generated 56 TWh of bio-power in 2005, and Brazil, which favors bagasse from sugar cane and biogas from distillery effluents. The electrical efficiency of a small biomass plant is 30% at best (35% with the best available technologies), whereas coal-fired plants achieve about 45% efficiency and combined-cycle gas-fired plants hit the 55% mark. A problem is the varying composition of straw, wood or waste fueling the boiler, calling for robust, adaptable burners, grates and fluidized beds. Either that, or the fuel has to be converted to produce standardized fuel such as wood pellets or dried sludge, which only ups the price of the fuel even more. Converting forest waste into wood chips, for example, costs 40 to 50 euros per MWh of heat, whereas unprocessed sawmill residue costs 10 to 20 euros for the same MWh. Another obstacle to developing biomass for power generation is the problem of collecting the raw materials from far and wide. In addition to solid biomass, biogas can be used to recycle liquid or wet waste that is difficult to transport. Biogas is produced by the digestion of wet biomass in an oxygen-deprived environment. Biogas contains 40% to 70% methane. The methane can then be used to fuel a gas-fired plant. This is one of the best configurations there is, since the biomass comes directly from the final waste. It's a good illustration of the 'waste to wealth' concept, which consists of recycling waste to produce energy

  11. Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.

    Directory of Open Access Journals (Sweden)

    Alrun Siebenkäs

    Full Text Available Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs and two growth statures (small, tall, and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1 and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass. Both trait-independent complementarity effects (TICE: +21% and dominance effects (DE: +12% positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%. Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that

  12. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  13. Biomass for rural vitality report

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-15

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  14. Biomass for rural vitality report

    International Nuclear Information System (INIS)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-01

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  15. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Directory of Open Access Journals (Sweden)

    Annette C. Rohr

    2015-07-01

    Full Text Available Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  16. Online constrained model-based reinforcement learning

    CSIR Research Space (South Africa)

    Van Niekerk, B

    2017-08-01

    Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Amazon.com Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...

  17. Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Loubota Panzou, GJ.

    2016-01-01

    Full Text Available Biomass and carbon stocks of tropical African forests. A review. Introduction. Quantifying the biomass and carbon stocks contained in tropical forests has become an international priority for the implementation of the REDD+ mechanism. Forest biomass is estimated at three successive levels: the tree, the stand and the region level. This paper reviews the state of the art regarding the estimation of biomass and carbon stocks in tropical African forests. Literature. This review highlights the fact that very few allometric equations, equations used for estimating the biomass of the tree using non-destructive measurements (diameter, height, have been established for tropical African forests. At the stand level, the review highlights the spatial and temporal variations in biomass between forest types in Central and Eastern Africa. While biomass recovery after a disturbance (logging, for instance is rather quick, a great deal of uncertainty still remains regarding the spatial variation in biomass, and there is no consensus on a regional biomass map. The quality of biomass mapping in tropical Africa strongly depends on the type of remotely-sensed data being used (optical, RADAR or LIDAR, and the allometric equation used to convert forest inventory data into biomass. Conclusions. Based on the lack of precision of the available allometric equations and forest inventory data and the large spatial scale involved, many uncertainties persist in relation to the estimation of the biomass and carbon stocks contained in African tropical forests.

  18. Investigations of torrefied biomass grindability using a modified Hardgrove test

    Directory of Open Access Journals (Sweden)

    Tymoszuk Mateusz

    2017-01-01

    Full Text Available This paper presents results of investigations of torrefied biomass grindability using a modified Hardgrove test. The following types of torrefied biomass were used during the testing: alder chips, palm kernel shells and willow chips. Tests were conducted in a standard Hardgrove test mill for 50 cm3 volumetric samples (the same volume as applied in [1]. Volumetric samples of raw biomass were also tested for comparison purposes. Two ranges of the sample particle size were applied during the investigations: 0.6-1.18 mm (as in [2] and 0.2-1.18 mm. As opposed to the standard Hardgrove test, the cumulative passing mass of the product was determined for a wider range of passing of standard sieves. The obtained results point to an increase in the grindability of torrefied fuels compared to raw biomass. They can be used to categorize torrefied biomass fuels due to their grindability, and as basic information in semi-technical scale studies on torrefied biomass comminution features.

  19. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  20. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  1. Commercialization of fuels from Pinyon-Juniper biomass in Nevada

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    This study analyzes and defines energy applications and markets that could stimulate the commercial use of Eastern Nevada's Pinyon-Juniper resources. The commercialization potential for producing energy from Pinyon-Juniper biomass is analyzed by examining the resource base and resource availability for a commercial harvesting and processing operation. The study considered the spectrum of available equipment and technology for carrying out harvesting and processing operations, investigated the markets that might be able to use energy products derived from Pinyon-Juniper biomass, analyzed the costs of harvesting, processing, and transporting Pinyon-Juniper fuels, and set forth a plan for developing the commercial potential of these resources. The emerging residential pellet-fuels market is a promising entry market for the commercialization of an energy from Pinyon-Juniper biomass industry in Eastern Nevada, although there are serious technical issues that may render Pinyon-Juniper biomass an unsuitable feedstock for the manufacture of pellet fuels. These issues could be investigated at a moderate cost in order to determine whether to proceed with development efforts in this direction. In the longer term, one or two biomass-fired power plants in the size range of 5-10 MW could provide a stable and predictable market for the production and utilization of fuels derived from local Pinyon-Juniper biomass resources, and would provide valuable economic and environmental benefits to the region. Municipal utility ownership of such facilities could help to enhance the economic benefits of the investments by qualifying them for federal energy credits and tax-free financing

  2. Potential and possibilities of supplying energy from biomass and biogas; Potentiale und Moeglichkeiten der Energiebereitstellung durch Biomasse und Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, H. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Betriebstechnik; Weiland, P.; Ahlgrimm, H.J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany). Inst. fuer Technologie

    1998-06-01

    Agriculture`s potential contribution to the energy supply of the ``town of the future`` through the conversion of biomass to energy, including biogas production, is a rather modest one. Supposing that the share of total renewable energy in Germany`s primary energy demand rises to approximately 4%, then the proportion of biomass from biotic raw materials especially produced for the purpose will at the most make up an eighth of this amount. Beyond this, biomass is burdened with other drawbacks such as low supply efficiency, limited availability, and weather-dependent reliability. On the other hand, biomass is well suited for conversion to solid, liquid, and gaseous fuels, including inexpensive ones with low energy density (solid fuels), mostly used for stationary heating applications, as well as more expensive ones such as liquid fuels with a high energy density for mobile applications in the automotive sector. Thanks to its capacity to regenerate, biomass is an inexhaustible resource. Moreover, its natural life cycle has a small impact on the environment. [Deutsch] Der Beitrag, den die Landwirtschaft durch energetische Nutzung von Biomasse, z.B. auch mit der Erzeugung von Biogas, zur Energieversorgung der `Stadt der Zukunft` leisten kann, nimmt sich bescheiden aus. Wird erwartet, dass innerhalb des naechsten Jahrzehnts der Anteil regenerativer Energien insgesamt auf etwa 4% des Primaerenergie-Verbrauchs Deutschlands ansteigen koennte, so duerfte Biomasse als speziell zur Energiegewinnung angebaute nachwachsende Rohstoffe mit bestensfalls 0,5 Prozentpunkten daran beteiligt sein. Es beduerfen darueber hinaus auch Nachteile, wie geringe Bereitstellungseffizienz, beschraenkte Verfuegbarkeit und witterungsabhaengige Zuverlaessigkeit, der Beachtung. Die Biomasse kann jedoch mit Erfolg in feste, fluessige und gasfoermige Energietraeger konvertiert werden, sowohl in preiswerte mit geringer Energiedichte (Festbrennstoffe) fuer bevorzugt stationaeren Heizungs-Einsatz als auch

  3. Evaluation of sampling strategies to estimate crown biomass

    Directory of Open Access Journals (Sweden)

    Krishna P Poudel

    2015-01-01

    Full Text Available Background Depending on tree and site characteristics crown biomass accounts for a significant portion of the total aboveground biomass in the tree. Crown biomass estimation is useful for different purposes including evaluating the economic feasibility of crown utilization for energy production or forest products, fuel load assessments and fire management strategies, and wildfire modeling. However, crown biomass is difficult to predict because of the variability within and among species and sites. Thus the allometric equations used for predicting crown biomass should be based on data collected with precise and unbiased sampling strategies. In this study, we evaluate the performance different sampling strategies to estimate crown biomass and to evaluate the effect of sample size in estimating crown biomass. Methods Using data collected from 20 destructively sampled trees, we evaluated 11 different sampling strategies using six evaluation statistics: bias, relative bias, root mean square error (RMSE, relative RMSE, amount of biomass sampled, and relative biomass sampled. We also evaluated the performance of the selected sampling strategies when different numbers of branches (3, 6, 9, and 12 are selected from each tree. Tree specific log linear model with branch diameter and branch length as covariates was used to obtain individual branch biomass. Results Compared to all other methods stratified sampling with probability proportional to size estimation technique produced better results when three or six branches per tree were sampled. However, the systematic sampling with ratio estimation technique was the best when at least nine branches per tree were sampled. Under the stratified sampling strategy, selecting unequal number of branches per stratum produced approximately similar results to simple random sampling, but it further decreased RMSE when information on branch diameter is used in the design and estimation phases. Conclusions Use of

  4. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  5. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  6. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  7. ESTIMATION OF BIOMASS COMMERCIAL SPROUTS OF Ilex paraguariensis A.ST.-HIL

    Directory of Open Access Journals (Sweden)

    Elisabete Vuaden

    2009-10-01

    Full Text Available This study aimed at developing some models that allow estimating the biomass of commercial green shoots of Ilex paraguariensis after pruning, at 10 years-old. In September 2007, 40 Ilex paraguariensis were pruned. One year after the first pruning, in 2008, they were evaluated dendrometrically and their biomass was determined from the commercial harvest of 16 individuals. To the others, the commercial biomass was estimated by the sum of the biomass of shoots.  The result obtained is that the biomass of commercial sprouts can be estimated as a function of the length of the rolls sprouting, with specific models for sprouts short, simple and compound average sprouts and long sprouts compounds. The models used to estimate the biomass of commercial sprouts using the length sum rolls and rolls of the length as independent variables underestimate the values of biomass with a margin of error of only 2.6%.

  8. Biomass. A modern and environmentally acceptable fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    The energy of the sun and carbon dioxide from the atmosphere are captured by plants during photosynthesis. Plant biomass can be used to absorb carbon dioxide emissions from fossil fuels, or it can be converted into modern energy carriers such as electricity, and liquid and gaseous fuels. Biomass supplies 13% of the world's energy consumption (55 EJ, 1990), and in some developing countries it accounts for over 90% of energy use. There is considerable potential for the modernisation of biomass fuels through improved utilisation of existing resources, higher plant productivities and efficient conversion processes using advanced technologies. The interest in bioenergy is increasing rapidly, and it is widely considered as one of the main renewable energy resources of the future due to its large potential, economic viability, and various social and environmental benefits. In particular, biomass energy is among the most favourable options for reducing carbon dioxide emissions. Most of the perceived problems such as land availability, environmental impact, economic viability, and efficiency can be overcome with good management. The constraints to achieving environmentally-acceptable biomass production are not insurmountable, but should rather be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term

  9. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  10. Policy Considerations for Commercializing Natural Gas and Biomass CCUS

    Science.gov (United States)

    Abrahams, L.; Clavin, C.

    2017-12-01

    Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in

  11. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  12. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    of these impacts in LCA, in order to get a realistic picture of the overall impacts from a biomass feedstock crop establishment, and thus downstream products. However, there is a challenge in terms of e.g. the preliminary state of methods, and the requirements to availability of local data. Available biomass...... level. The temporal scope is defined by the impact category considered. The technological scope includes both current environmental performance of biomaterials and a discussion of future perspectives, including potentials for future change in their environmental impacts compared to fossil based...... place in biomaterials, on which there is currently no consensus. Other important environmental aspects related to biomaterials that are currently not generally included in LCAs are land use and land use change (LULUC) related impacts, such as changes in biogenic carbon stocks (especially including soil...

  13. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  14. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  15. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  16. Available forest biomass for new energetic and industrial prospects. Part 1: analysis and synthesis of existing studies compiled at the international level. Part 2: volume calculations. Part 3: economic part. Final report

    International Nuclear Information System (INIS)

    2007-01-01

    Motivated by new energetic constraints and the interest of biomass, the authors report a bibliographical survey of studies concerning the evaluation of the available forest biomass. They comment the geographical and time distribution of the identified and compiled studies. They analyse their different topics. Then, they discuss the various field hypotheses, discuss and comments various resource assessment methodologies. They comment the resource the French forest can be, present a synthesis of the available resource at the regional level according to the different studies. They propose a review of some technical-economical aspects (costs, energy cost, price evolutions, improvement of the wood-energy mobilization). The second part proposes a whole set of volume calculations for different forest types (clusters or plantations of trees, copses, sawmills products), for industry and household consumption. It discusses the available volumes with respect to accessibility, additional available volumes, and possible improvements. The third part analyses, comments and discusses the wood market and wood energetic uses, and the possible supply curves for wood energetic uses by 2016

  17. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  18. Developing Biomass Equations for Western Hemlock and Red Alder Trees in Western Oregon Forests

    Science.gov (United States)

    Krishna Poudel; Hailemariam Temesgen

    2016-01-01

    Biomass estimates are required for reporting carbon, assessing feedstock availability, and assessing forest fire threat. We developed diameter- and height-based biomass equations for Western hemlock (Tsuga heterophylla (Raf.) Sarg.) and red alder (Alnus rubra Bong.) trees in Western Oregon. A system of component biomass...

  19. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  20. Capturing Hotspots For Constrained Indoor Movement

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2013-01-01

    Finding the hotspots in large indoor spaces is very important for getting overloaded locations, security, crowd management, indoor navigation and guidance. The tracking data coming from indoor tracking are huge in volume and not readily available for finding hotspots. This paper presents a graph......-based model for constrained indoor movement that can map the tracking records into mapping records which represent the entry and exit times of an object in a particular location. Then it discusses the hotspots extraction technique from the mapping records....

  1. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  2. Future challenges for woody biomass projections

    NARCIS (Netherlands)

    Schadauer, K.; Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.

    2017-01-01

    Many drivers affect woody biomass projections including forest available for wood supply, market behavior, forest ownership, distributions by age and yield classes, forest typologies resulting from different edaphic, climatic conditions, and last but not least, how these factors are incorporated

  3. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  5. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  6. Biomass briquetting and its perspectives in Brazil

    International Nuclear Information System (INIS)

    Felfli, Felix Fonseca; Mesa P, Juan M.; Rocha, Jose Dilcio; Filippetto, Daniele; Luengo, Carlos A.; Pippo, Walfrido Alonso

    2011-01-01

    A study of the status of biomass briquetting and its perspectives in Brazil was conducted including determination of the availability and characteristics of the agro-residues for briquetting. Wood residues, rice husk and coffee husk were characterized and identified as the more promising agro-residues for briquetting in the short-term in Brazil. A survey was carried out in order to determine the number of briquetting factories in Brazil, and also to determine: used briquetting technologies, briquettes production, briquettes sale prices, the status of biomass briquetting market and its future perspectives. (author)

  7. Biomass briquetting and its perspectives in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Felfli, Felix Fonseca; Mesa P, Juan M. [BIOWARE Ltda., Caixa Postal 6086, 13083-970, Campinas, SP (Brazil); Rocha, Jose Dilcio [EMBRAPA-Agroenergia, Brasilia, DF (Brazil); Filippetto, Daniele; Luengo, Carlos A.; Pippo, Walfrido Alonso [Grupo Combustiveis Alternativos/Departamento de Fisica Aplicada/IFGW/UNICAMP, Caixa Postal 6165, Barao Geraldo 13083-970, Campinas, SP (Brazil)

    2011-01-15

    A study of the status of biomass briquetting and its perspectives in Brazil was conducted including determination of the availability and characteristics of the agro-residues for briquetting. Wood residues, rice husk and coffee husk were characterized and identified as the more promising agro-residues for briquetting in the short-term in Brazil. A survey was carried out in order to determine the number of briquetting factories in Brazil, and also to determine: used briquetting technologies, briquettes production, briquettes sale prices, the status of biomass briquetting market and its future perspectives. (author)

  8. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  9. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    Science.gov (United States)

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  10. Bioadsorption of nickel Mining Company by residual biomass Phyllanthus Orbicularis

    Directory of Open Access Journals (Sweden)

    Ariel Díaz-Puig

    2017-01-01

    Full Text Available Kinetic parameters for the adsorption of nickel were studied in the waste CalcinationPlant Company Ernesto Che Guevara biomass Phyllanthus orbicularis synthetic and industrial waste Calcination Plant enterprise solutions. The results showed that the major factors influencing the adsorption capacity of the biomass increases with increasing pH and the initial concentration of nickel in the effluent and is reduced by increasing the biomass concentration. Meanwhile, the removal efficiency of residual nickel increases with increasing pH and concentration of biomass and reduced when the initial concentration of nickel in the effluent increases. The adsorption capacity nickel biomass Phyllanthus orbicularis from synthetic solutions and industrial waste Calcination Plant Company Nickel "Comandante Ernesto Che Guevara" was 44,05 and 26,25 mg/g respectively. The adsorption process nickel biomass Phyllanthus orbicularis follows kinetics pseudo-second order and according to the values of free energy of adsorption obtained through model-RadushkevichDubinin was 267,26 kJ/mol, this nature demonstrates that corresponds to a process mediated by chemical adsorption where the formation of stable bonds between the functional groups present in the biomass and the metal ions predominates.

  11. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  12. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  13. Biomass: An overview in the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T. [USDA Soil Conservation Service, Washington, DC (United States); Shapouri, H.

    1993-12-31

    Concerns about the heavy reliance on foreign sources of fossil fuels, environmental impacts of burning fossil fuels, environmental impacts of agricultural activities, the need to find sustainable renewable sources of energy, and the need for a sustainable agricultural resource base have been driving forces for the development of biomass as a source of energy. The development of biomass conversion technologies, of high-yielding herbaceous and short-rotation woody biomass crops, of high-yielding food, feed, and fiber crops, and of livestock with higher levels of feed conversion efficiencies has made the transition from total reliance on fossil fuels to utilization of renewable sources of energy from biomass a reality. A variety of biomass conversion technologies have been developed and tested. Public utilities, private power companies, and the paper industry are interested in applying this technology. Direct burning of biomass and/or cofiring in existing facilities will reduce emissions of greenhouse and other undesirable gases. Legislation has been passed to promote biomass production and utilization for liquid fuels and electricity. Land is available. The production of short-rotation woody crops and perennial grasses provides alternatives to commodity crops to stabilize income in the agricultural sector. The production of biomass crops can also reduce soil erosion, sediment loadings to surface water, and agricultural chemical loadings to ground and surface water; provide wildlife habitat; increase income and employment opportunities in rural areas; and provide a more sustainable agricultural resource base.

  14. Biomass Business Opportunities Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Zwebe, D [SNV Netherlands Development Organisation, Ha Noi (Viet Nam)

    2012-03-15

    The goal of this survey is to provide a more specific and integral perspective in which niches, relevant policy development by the Vietnamese government, legislation and sustainability criteria are clearly addressed to benefit both the Dutch Private sector as well as to stimulate Dutch-Vietnamese cooperation and support the Vietnamese government in its search for tangible options to develop the desired enabling environment for a sustainable biomass/biofuel market. The following activities are defined to be executed to reach the goal of the project: Biomass availability in Vietnam (Chapter 2); Government of Vietnam and Energy (Chapter 3); The opportunities and barriers to enter the market in Vietnam (Chapter 4 and 5); Stakeholder analysis of the bio-energy sector (Chapter 6); and Recommendations (Chapter 7)

  15. A Comparative Study on Energy Derived from Biomass

    Directory of Open Access Journals (Sweden)

    A.M. Algarny

    2017-03-01

    Full Text Available The paper promotes sustainable community through empowering the production and utilization of biomass renewable energy. The aim of this paper is to urge societies to adopt sustainable energy practices and resources; the objective is to appraise the possibilities of biomass energy produced through a neighborhood in Eastern Province, Saudi Arabia. The system incorporates an evaluation of the measure of biomass created, then utilizes two ascertaining techniques to gauge whether the measure of energy can be delivered. The computation strategies are hypothetical, with one drawn from past works and the other from a Biomass Calculation Template performed as part of the Evaluation of Biomass Resources for Municipalities study (EBIMUN by the Waterford County Council. The outcomes demonstrate that the aggregate potential biogas generation of the study area is around 43,200 m3 /year, the methane mass is around 18,000 m3 /year, and the energy production amount is around 250 MWh/year. Contrasting the capability of biogas creation from both techniques, the figure assessed by EBIMUN is around 7,000 m3 /year less than the hypothetically computed amount. The figures suggest that biogas is worthy of consideration as a renewable source of energy.

  16. Technical assistance for an evaluation of international schemes to promote biomass sustainability. Final report

    International Nuclear Information System (INIS)

    Londo, M.

    2009-12-01

    In this technical assistance report to the title subject report is given of Task 1: Review of GREEN-X assumptions on biomass availability and costs; Task 2: Impacts of sustainability criteria on biomass availability and costs; Task 3: Applicability of existing certification schemes; Task 4: Identification of feasible verification options; and Task 5: summary, integration. The key objective of Task 1 is to validate the present and future availability (up to 2020) and costs of biomass energy in the EU 27. The GREEN-X model forecasts the deployment of renewable energy systems under various scenarios in terms of supporting policy instruments, the availability of resources and generation technologies and energy, technology and resource price developments. Objective of task 2 is to assess to what extent the sustainability criteria as specified in the Renewable Energy Directive (RED (EP/EC 2009)) affect availability and costs of biofuels. The objective of task 3 is to assess to what extent national and international certification schemes (existing and under development) would be applicable for safeguarding the sustainability criteria as mentioned in the Renewable Energy Sources (RES) directive. The objective of Task 4 is to identify and analyse feasible options to verify compliance with biomass sustainability criteria, in the case of forest biomass.

  17. A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Quang Dung Pham

    2009-10-01

    Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.

  18. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  19. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  20. Short review on the origin and countermeasure of biomass slagging in grate furnace

    Directory of Open Access Journals (Sweden)

    Yiming eZhu

    2014-02-01

    Full Text Available Given the increasing demand for energy consumption, biomass has been more and more important as a new type of clean renewable energy source. Biomass direct firing is the most mature and promising utilization method to date, while it allows a timely solution to slagging problems. Alkali metal elements in the biomass fuel and the ash fusion behavior, as the two major origins contributing to slagging during biomass combustion, are analyzed in this paper. The slag presents various layered structures affected by the different compositions of ash particles. Besides, the high-temperature molten material which provides a supporting effect on the skeletal structure in biomass ash was proposed to evaluate the ash fusion characteristics. In addition, numerous solutions to biomass slagging, such as additives, fuel pretreatment and biomass co-firing, were also discussed.

  1. Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural.

    Science.gov (United States)

    Scodeller, Ivan; Mansouri, Samir; Morvan, Didier; Muller, Eric; de Oliveira Vigier, Karine; Wischert, Raphael; Jérôme, François

    2018-04-30

    We report the synthesis of biomass-derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low-cost biomass. The scientific strategy relies on a Diels-Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta-xylylenediamine (MXD). Transposition of this work to other furfural-derived chemicals is also discussed and reveals that functionalized biomass-derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  3. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  4. Ionic Liquids in Biomass Processing

    Science.gov (United States)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  5. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  6. Routing of biomass for sustainable agricultural development

    International Nuclear Information System (INIS)

    Suhaimi Masduki; Aini Zakaria

    1998-01-01

    Photosynthetically derived biomass and residues, including waste products from food processing industries are renewable. They accumulate every year in large quantities, causing deterioration to the environment and loss of potentially valuable resources. The conserved energy is potentially convertible; thermodynamically the energy can be tapped into forms which are more amenable for value added agricultural applications or for other higher value products such as chemicals or their feedstocks. The forms and types in which this biomass has to be modified for the intended use depend on the costs or the respective alternatives. Under current situations, where chemical feedstocks are available in abundance at very competitive prices, biomass is obviously more suitably placed in the agro-industrial sector. Recycling of the biomass or residues into the soil as biofertilizers or for some other uses for agricultural applications requires less intense energy inputs for their improvements. Highly efficient biological processes with microorganisms as the primary movers in the production of the desired end products indeed require less capital costs than in most other industrial entities. In this paper, the various processes, which are potentially valuable and economically feasible in the conversion of biomass and residues for several products important in the agricultural sector, are described. Emphasis is given to the approach and the possible permutations of these processes to arrive at the desired good quality products for sustainable agricultural development. (Author)

  7. Commercialization analysis for fuels from Pinyon-Juniper biomass

    International Nuclear Information System (INIS)

    Morris, G.P.

    1993-01-01

    Pinyon-Juniper (P-J) is a predominant forest type in the Southwestern US, and in many areas it is considered a hinderance to optimal land use management. There is only limited commercial demand for the traditional products that are produced from PJ biomass, like Christmas trees, fence poles, and firewood, and their production does not always promote overall land-management goals. This research effort, which is supported by the DOE through the Western Regional Biomass Energy Program, identifies commercially feasible energy markets to promote sustainable land clearing operations for alternative land uses of P-J woodlands in Eastern Nevada. All of the woodlands under consideration are federal lands managed by the U.S. Bureau of Land Management, which is supportive of our concept. Three possible markets are available or could reasonably be developed to use fuels derived from PJ biomass in Nevada: (1) The existing market for biomass power-plant fuels in California. (2) The emerging market for fuels for residential pellet-burning stoves. (3) The development of a biomass-fired power plant in the Eastern Nevada Area. The study analyzes the cost of harvesting, processing, transporting, and delivering fuels derived from P-J biomass, and identifies commercialization strategies for bringing these fuels to market. The best opportunity for near term commercial conversion of P-J biomass to fuel lies in the area of entering the pellet-stove fuel market, establishing a 10,000 ton per year pelletizing facility in Lincoln County. Such a facility would have excellent access to markets in Las Vegas, Phoenix, Denver, and Salt Lake City

  8. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Science.gov (United States)

    Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J

    2014-07-01

    Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  9. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  10. BIOMASS IN Eucalyptus viminalis Labill. PLANTATIONS IN BUENOS AIRES PROVINCE, ARGENTINA

    Directory of Open Access Journals (Sweden)

    Paula Ferrere

    2009-10-01

    Full Text Available The present work was developed in the West of Buenos Aires Province (Argentina with the objective of adjusting functions of biomass of individual trees, in their different compartments and in the understorey. Stands of Eucalyptus viminalis Labill. were identified, with ages between 4 and 14 years-old. Twenty-one individuals were felled with diameters ranging from 9,2 to 32,5 cm. Simple and multiple regression models were developed and volume, branch leaf and stem biomass were estimated. The best volume equations were based on lineal models and the most adequate behavior was obtained with d2. To estimate leaf, branch and stem, ln-ln models have been suggested, with diameter and h or only diameter. The leaf biomass presented the weakest adjustment. The distribution of trees biomass agrees with the bibliography. The proportion of crown biomass decreases with age; on the other hand, the proportion of stem biomass increases with age.

  11. Biomass catalysis and solvents; Biomasse catalyse et solvants

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, D [CIRAD-AMIS, programme Agro-Alimentaire, 34 - Montpellier (France); Pouilloux, Y; Barrault, J [Centre National de la Recherche Scientifique (CNRS UMR 6503), ESIP, Lab. de Catalyse en Chimie Organique, 86 - Poitiers (France); and others

    2000-07-01

    How to develop new technics and products and at the same time to respect the environment? The biomass seems to be an interesting domain in this framework and this document allows the selection of performing products obtain by biomass. Among these products the solvents economic and environmental advantages or consequences are discussed. A great part is also devoted to the voc emissions, bound to the solvents.

  12. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  13. Biomass for biogas plants in Denmark - in the short and long term; Biomasse til biogasanlaeg i Danmark - pae kort og langt sigt

    Energy Technology Data Exchange (ETDEWEB)

    Birkmose, T.; Hjort-Gregersen, K.; Stefanek, K.

    2013-04-15

    In the short term, it is one of the major challenges for the developments of the biogas sector that resources of organic waste of the type (organic industrial wastes) that have heretofore been used, generally are estimated to be nearly exhausted. This has led to a number of new biogas projects based on the use of corn (energy crops) as additional biomass to livestock manure. However, Danish policy now has implemented a restriction on the use of corn and other energy crops for biogas production. It is with the restriction clarified that there is a need to use other additional biomass for biogas production. There is a need in the short term to clarify how alternative biomasses such as straw, nature preservation biomass, household waste, etc. in a technically and economically reliable and satisfactory way can be used for biogas production, so that the dependence of energy crops can be reduced. Additionally, it will be essential if the yield of using manure can be increased to reduce economic dependence on energy crops. In the longer term it is essential to strengthen the assessment of the resource potential of biomass available for the production of biogas, and thus what the contribution of biogas in the long term is estimated to be in the future energy supply based on renewable energy. The present report presents the current and future biomass resources potential and biogas production potential. The biomass resources are primarily agricultural and municipal wastes. (LN)

  14. An evaluation of the regional supply of biomass at three midwestern sites

    Energy Technology Data Exchange (ETDEWEB)

    English, B.C.; Dillivan, K.D.; Ojo, M.A.; Alexander, R.R. [Univ. of Tennessee, Knoxville, TN (United States); Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    Research has been conducted on both the agronomy and the conversion of biomass. However, few studies have been initiated that combine the knowledge of growing biomass with site specific resource availability information. An economic appraisal of how much biomass might be grown in a specific area for a given price has only just been initiated. This paper examines the economics of introducing biomass production to three midwest representative areas centered on the following counties, Orange County, Indiana; Olmsted County, Minnesota; and Cass County, North Dakota. Using a regional linear programming model, estimates of economic feasibility as well as environmental impacts are made. At a price of $53 per metric ton the biomass supplied to the plant gate is equal to 183,251 metric tons. At $62 per metric ton the biomass supply has increased to almost 1 million metric tons. The model predicts a maximum price of $88 per metric ton and at this price, 2,748,476 metric tons of biomass are produced.

  15. Exploring the Metabolic and Perceptual Correlates of Self-Selected Walking Speed under Constrained and Un-Constrained Conditions

    Directory of Open Access Journals (Sweden)

    David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes

    2018-03-01

    Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost (J.kg-1.m-1 and carbohydrate (CHO oxidation rate (J.kg-1.min-1 were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate (J.kg-1.min-1 were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost (J.kg-1.m-1 and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost (J.kg-1.m-1 in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.

  16. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  17. THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Directory of Open Access Journals (Sweden)

    Petr Váňa

    2016-11-01

    Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.

  18. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  19. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  20. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  1. Measurement and characteristics of microbial biomass in forest soils

    International Nuclear Information System (INIS)

    Vance, E.D.

    1986-01-01

    The soil microbial biomass is the primary agent responsible for the breakdown and mineralization of soil organic matter and plays a major role in regulating nutrient availability to plants. In this study, methods for measuring biomass in soil were compared and tested in forest soils ranging in pH from 3.2 to 7.2. A good relationship between biomass C measured using the chloroform fumigation-incubation method and soil ATP or microbial biomass C by direct microscopy was found in soils at or above pH 4.2. The fumigation-incubation method consistently underestimated biomass C in soils below pH 4.2, however. Hypotheses for the breakdown of the fumigation-incubation method in strongly acid soils were tested by using an alterative fumigant, measuring the proportion of added 14 C labelled fungi and bacteria decomposed in fumigated soils (k/sub C/), and by studying the effect of large, non-fumigated soil inocula on the flush of respiration following fumigation. These studies indicated that the failure of the method in strongly acid soils was due to inhibited decomposition of non-microbial soil organic matter by the microbial recolonizing population following fumigation. A modified method for measuring biomass C by fumigation-incubation in acid soils is proposed

  2. A perspective on competitiveness of Brazil in the global supply of biomass

    Directory of Open Access Journals (Sweden)

    Javier Cárcel Carrasco

    2012-12-01

    Full Text Available In this paper we intend to present an integrated view of biomass production in Brazil. By analyzing biomass potential and biomass production costs we seek to present a broad view of Brazilian competitiveness in the domestic and global energy markets. By mapping out this potential, we want to present the main opportunities for Brazil in its quest for cleaner, more competitive and more sustainable fuel sources. Our estimate of the potential represents almost double the volume that the country produced in 2010. This should enable Brazil to meet 30% of global demand for biomass by 2035. As regards production costs and profits, dedicated biomass has trading conditions to yield the same or more than the most profitable products in the sector such as sugarcane, soybeans or wood. Compared with fossil fuels, the cost of biomass is equivalent to an oil barrel below R$ 40.00, although adequate logistics is crucial for the economic feasibility of biomass utilization. Global demand for biomass will increase in the coming years, both for conventional and modern uses, such as second generation biofuels or biomass gasification. Due to its agricultural potential, Brazil could become a major biomass producer, with great economic and environmental advantages in a world increasingly concerned with sustainability and climate change.

  3. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang

    2015-03-01

    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  4. Development of an integrated system for producing ethanol from biomass

    International Nuclear Information System (INIS)

    Foody, B.E.; Foody, K.J.

    1991-01-01

    Enzymatic hydrolysis is one of the leading approaches to producing ethanol from low cost biomass. Recent cost estimates suggest that ethanol produced from biomass could be competitive as a transportation fuel with gasoline at $20-25/BBL oil and less expensive than methanol. The process for making ethanol from biomass involves seven major steps: biomass production, pretreatment, enzyme production, enzymatic hydrolysis, fermentation, distillation, and by-product processing. Pretreatment makes the carbohydrate fraction of the biomass accessible to enzymatic attack. Cellulase enzymes are then used to hydrolyze the carbohydrates in biomass into fermentable sugar. The sugar is then fermented to ethanol and the ethanol purified by distillation. Three major cost estimates are available for making ethanol from biomass using a steam explosion pretreatment and enzymatic hydrolysis. These studies began with very different assumptions and as a result came to dramatically different conclusions about ethanol cost. When they are normalized to the same basis, however, their consensus is an expected ethanol cost of $1.64 ± 0.23/gal using technology implemented at Iogen's pilot plant in 1986. Since that time, technology advances have reduced the expected cost of ethanol to $0.77 ± 0.17/gal. Further technical improvements could reduce the cost by as much as $0.23/gal

  5. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  6. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  7. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  8. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  9. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I; SEMIANNUAL

    International Nuclear Information System (INIS)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-01-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere

  10. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  11. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoxue Feng

    2014-11-01

    Full Text Available Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS, which gets better filtering performance than NILS without constraint.

  12. 'Biomass lung': primitive biomass combustion and lung disease

    International Nuclear Information System (INIS)

    Baris, Y. I.; Seyfikli, Z.; Demir, A.; Hoskins, J. A.

    2002-01-01

    Domestic burning of biomass fuel is one of the most important risk factors for the development of respiratory diseases and infant mortality. The fuel which causes the highest level of disease is dung. In the rural areas of developing countries some 80% of households rely on biomass fuels for cooking and often heating as well and so suffer high indoor air pollution. Even when the fire or stove is outside the home those near it are still exposed to the smoke. In areas where the winters are long and cold the problem is aggravated since the fire or stove is indoors for many months of the year. The consequence of biomass burning is a level of morbidity in those exposed to the smoke as well as mortality. The rural areas of Turkey are among many in the world where biomass is the major fuel source. In this case report 8 patients from rural areas, particularly Anatolia, who used biomass are presented. Many of these are non-smoking, female patients who have respiratory complaints and a clinical picture of the chronic lung diseases which would have been expected if they had been heavy smokers. Typically patients cook on the traditional 'tandir' stove using dung and crop residues as the fuel. Ventilation systems are poor and they are exposed to a high level of smoke pollution leading to cough and dyspnoea. Anthracosis is a common outcome of this level of exposure and several of the patients developed lung tumours. The findings from clinical examination of 8 of these patients (2 M, 6 F) are presented together with their outcome where known. (author)

  13. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2018-04-10

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  14. A profile of biomass stove use in Sri Lanka.

    Science.gov (United States)

    Elledge, Myles F; Phillips, Michael J; Thornburg, Vanessa E; Everett, Kibri H; Nandasena, Sumal

    2012-04-01

    A large body of evidence has confirmed that the indoor air pollution (IAP) from biomass fuel use is a major cause of premature deaths, and acute and chronic diseases. Over 78% of Sri Lankans use biomass fuel for cooking, the major source of IAP in developing countries. We conducted a review of the available literature and data sources to profile biomass fuel use in Sri Lanka. We also produced two maps (population density and biomass use; and cooking fuel sources by district) to illustrate the problem in a geographical context. The biomass use in Sri Lanka is limited to wood while coal, charcoal, and cow dung are not used. Government data sources indicate poor residents in rural areas are more likely to use biomass fuel. Respiratory diseases, which may have been caused by cooking emissions, are one of the leading causes of hospitalizations and death. The World Health Organization estimated that the number of deaths attributable to IAP in Sri Lanka in 2004 was 4300. Small scale studies have been conducted in-country in an attempt to associate biomass fuel use with cataracts, low birth weight, respiratory diseases and lung cancer. However, the IAP issue has not been broadly researched and is not prominent in Sri Lankan public health policies and programs to date. Our profile of Sri Lanka calls for further analytical studies and new innovative initiatives to inform public health policy, advocacy and program interventions to address the IAP problem of Sri Lanka.

  15. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  16. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  17. Biomass Assessment: A Question of Method and Expertise

    International Nuclear Information System (INIS)

    Thivolle-Cazat, A.; Le Net, E.; Labalette, F.; Marsac, S.

    2013-01-01

    Whereas the new stakes on lignocellulosic biomass are often demand-oriented (heat, electricity, biofuels, etc.) mainly through public policies, the new equilibrium will depend also on the supply-side. This supply has to be understood as socio-economic and environmental targets combining many topics: multi- resources (agriculture, forest, 'dedicated coppices', by-products and wastes), available/potential quantities and costs, localisation, replacement/substitution effects (activities, lands), and supply- side stakeholders' behaviours. Many initiatives have been launched to grasp those dimensions through projects (National Research Agency, French Environment and Energy Management Agency, etc.). Many figures exist on the biomass assessment aspect but they are not clear enough and not comparable due to differences in definitions, scopes, data, parameters, geographical levels, reporting units, time-scale, etc. Regarding the characterisation of biomass supply chains, evaluations are often incomplete and lack methodological references. This article aims to focus on methodological key points and barriers to overcome, in order to get a better evaluation and understanding of biomass mobilisation expected by potential users and public authorities. (authors)

  18. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  19. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  20. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  1. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  2. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  3. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  4. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    Science.gov (United States)

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  5. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Science.gov (United States)

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  6. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  7. Extension of biomass estimates to pre-assessment periods using density dependent surplus production approach.

    Directory of Open Access Journals (Sweden)

    Jan Horbowy

    Full Text Available Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR, which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.

  8. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  9. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  10. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  11. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  12. Technical and economic analysis of using biomass energy

    Directory of Open Access Journals (Sweden)

    Piaskowska-Silarska Małgorzata

    2017-01-01

    Full Text Available In the first part of the article were presented the technical possibilities of obtaining solid biomass, biogas, landfill gas, a biogas from wastewater treatment plants, bioethanol and biodiesel. Then processes was described, allowing use of energy from biomass. As first was discussed the incineration which includes drying and degassing of the wood materials, wood gas burning at 1200°C, post-combustion gas and heat transfer in the heat exchanger. Then had been described gasification, or thermochemical conversion process, occurring at high temperature. It is two-stage process. In the first chamber at deficiency of air and at relatively low temperatures (450–800°C, the fuel is being degasified, resulting in creating combustible gas and a mineral residue (charcoal. In the second stage, secondary combustion chamber and at a temperature of about 1000–1200°C and in the presence of excess of oxygen resultant gas is burned. A further process is pyrolysis. It consists of the steps of drying fuel to a moisture level below 10%, milling the biomass into very small particles, the pyrolysis reaction, separation of solid products, cooling and collecting bio-oil. Then discusses co-generation, which is combined production of heat and electricity. In this situation where the biomass contains too much water it can be used for energy purposes through biochemical processes. The alcoholic fermentation results in decomposition of carbohydrates taking place under anaerobic conditions, and the product is bioethanol. Another biochemical process used for the production of liquid biofuels is esterification of vegetable oils. Methane fermentation in turn causes a decomposition of macromolecular organic substances with limited oxygen available. As a result, we obtain alcohols, lower organic acids, methane, carbon dioxide and water. There was analysis of economic increasing of solid biomass energy, biogas and liquid biofuels in the following article.

  13. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  14. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  15. Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel

    Directory of Open Access Journals (Sweden)

    Zhiwen Hu

    2015-01-01

    Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.

  16. Detailed modelling of biomass pyrolysis: biomass structure and composition

    International Nuclear Information System (INIS)

    Hugony, F.; Migliavacca, G.; Faravelli, T.; Ranzi, E.

    2007-01-01

    The research routes followed in the field of numerical modelling development for biomass devolatilization are here summarised. In this first paper a wide introduction concerning the description of the chemical nature of the main classes of compounds which constitute biomasses is reported, it is the starting point for the subsequent description of the developed models, described in the companion paper [it

  17. Chemicals from biomass - The U.S. prospects for the turn of the century

    Science.gov (United States)

    Sarbolouki, M. N.; Moacanin, J.

    1980-01-01

    Historically, chemicals from biomass have been and are expected to be economical in three major areas: byproducts, specialty items and polymers. Assessments of producing major chemicals from biomass in a processing plant based on the available conversion techniques indicate that they are not economically attractive, with the possible exception of conversion to ammonia and ethanol. The deterrents are the heavy capital investments, dependability of raw material supply and transportation costs for large plants, lack of operation experience, inadaptability of market variations, and competition from petroleum and coal. More importantly, it is also shown that even if chemicals from biomass were economical today, the resultant savings in petroleum would be far less than those achieved through other options available for the utilization of biomass as fuel and structural material. Thus, it is concluded that near-term research and development must be toward improved conversion processes, recovery of valuable products from waste streams at existing plants, more efficient use of biomass of energy and more efficient production of superior material products.

  18. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  19. Second Generation Gaseous Biofuels: from Biomass to Gas Grid

    International Nuclear Information System (INIS)

    Guerrini, O.; Perrin, M.; Marchand, B.; Prieur-Vernat, A.

    2013-01-01

    Gaseous biofuels and biomethane production by thermochemical pathway has many assets and, already, it should be seen as an essential component of future French and European energy panorama by 2020. As a biomass gasification process is used, a very wide range of biomass is accessible, guaranteeing a significant development potential of the sector. Because of the inherent advantages of the methanation reaction, methanation processes have very high overall energy efficiency, today comparable to other technologies for energy recovery from biomass. Moreover, these can be further enhanced by a waste heat valorization. The existence of technology adapted to installations of medium size (20-80 MW biomethane) promotes strong integration in the local area and is exemplary in a framework of sustainable development. Most of the steps of the process of biomethane production from biomass are at present commercially available. However, the technical feasibility of the whole production line of biomethane was not demonstrated to an industrial scale yet. (authors)

  20. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  1. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  2. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H.

    2009-01-01

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  3. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  4. The weight of nations: an estimation of adult human biomass

    Directory of Open Access Journals (Sweden)

    Walpole Sarah

    2012-06-01

    Full Text Available Abstract Background The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity. Methods For each country we used data on body mass index (BMI and height distribution to estimate average adult body mass. We calculated total biomass as the product of population size and average body mass. We estimated the percentage of the population that is overweight (BMI > 25 and obese (BMI > 30 and the biomass due to overweight and obesity. Results In 2005, global adult human biomass was approximately 287 million tonnes, of which 15 million tonnes were due to overweight (BMI > 25, a mass equivalent to that of 242 million people of average body mass (5% of global human biomass. Biomass due to obesity was 3.5 million tonnes, the mass equivalent of 56 million people of average body mass (1.2% of human biomass. North America has 6% of the world population but 34% of biomass due to obesity. Asia has 61% of the world population but 13% of biomass due to obesity. One tonne of human biomass corresponds to approximately 12 adults in North America and 17 adults in Asia. If all countries had the BMI distribution of the USA, the increase in human biomass of 58 million tonnes would be equivalent in mass to an extra 935 million people of average body mass, and have energy requirements equivalent to that of 473 million adults. Conclusions Increasing population fatness could have the same implications for world food energy demands as an extra half a billion people living on the earth.

  5. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  6. ENDOGENOUS CYTOKININS IN MEDICINAL BASIDIOMYCETES MYCELIAL BIOMASS

    Directory of Open Access Journals (Sweden)

    N. P.

    2016-02-01

    Full Text Available The aim of the research was to study the cytokinins production by medicinal basidial mushrooms. Cytokinins were for the first time identified and quantified in mycelial biomass of six species (Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa using HPLC. Trans- and cis-zeatin, zeatin riboside, zeatin-O-glucoside, isopentenyladenosine, isopentenyladenine were found but only one species (G. lucidum, strain 1900 contained all these substances. The greatest total cytokinin quantity was detected in F. officinalis, strain 5004. S. crispa, strain 314, and F. officinalis, strain 5004, mycelial biomass was revealed to have the highest level of cytokinin riboside forms (zeatin riboside and isopentenyladenosine. The possible connection between medicinal properties of investigated basidiomycetes and of cytokinins is discussed. S. crispa, strain 314, and F. officinalis, strain 5004, are regarded as promising species for developing biotechnological techniques to produce biologically active drugs from their mycelial biomass. As one of the potential technological approaches there is proposed fungal material drying.

  7. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  8. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials.

  9. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  10. TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Olofsson

    2017-10-01

    Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  11. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  13. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  14. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

    Directory of Open Access Journals (Sweden)

    Dengsheng Lu

    2012-01-01

    Full Text Available Landsat Thematic mapper (TM image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.

  15. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  16. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  17. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    Gardette, Yves-Marie; Dieckhoff, Lea; Lorne, Daphne; Postec, Gwenael; Cherisey, Hugues de; RANTIEN, Caroline

    2014-11-01

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  18. Will biomass be the environmentally friendly fuel of the future?

    International Nuclear Information System (INIS)

    Hall, D.O.; Scrase, J.I.

    1998-01-01

    Many influential organisations foresee biomass playing a key role in a future, more sustainable, global energy supply matrix. Countries such as Austria, Brazil, Denmark, Finland, Sweden, India, the USA and the UK are actively encouraging the use of biomass for energy, and pushing forward the development of the necessary knowledge and technology for modern biomass energy systems. There is a growing consensus that renewable energy must progressively displace the use of fossil fuels, with fears of global climate change adding urgency to this need. Among the available types of renewable energy biomass is unique in its ability to provide solid, liquid and gaseous fuels which can be stored and transported. The potential resource for bioenergy is large, especially in forest-rich nations, in richer countries where there is a surplus of agricultural land, and in many low latitude countries where high biomass yields are possible. Therefore we expect biomass to be an important fuel of the future, but this cannot be taken for granted. The systems adopted must demonstrate clear environmental and social benefits relative to alternatives if the potential is to be realised. These benefits are not inherent to biomass energy, but depend on site- and fuel cycle-specific factors. Life-cycle analysis and evaluation of external costs are important means for assessing the social and environmental pros and cons of bioenergy systems. (author)

  19. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  20. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  1. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  2. Woody biomass policies and location decisions of the woody bioenergy industry in the southern United States

    International Nuclear Information System (INIS)

    Guo, Zhimei; Hodges, Donald G.; Young, Timothy M.

    2013-01-01

    Woody biomass for bioenergy production has been included in relatively few renewable energy policies since the 1970s. Recently, however, several states have implemented a variety of new woody biomass policies to spur the establishment of new bioenergy industry. Establishing new woody biomass-based facilities in a specific state is affected by a number of factors such as the strength of these new policy incentives, resource availability, business tax climate, and the available labor force. This study employs a conditional logit model (CLM) to explore the effects of woody biomass policies on the siting decisions of new bioenergy projects relative to some of these other state attributes. The CLM results suggest that state government incentives are significantly related to state success in attracting new plants. The results have substantial implications regarding woody biomass policies and the creation of a new bioenergy industry. -- Highlights: •This study explores the effects of state attributes on the siting decisions of new woody bioenergy projects. •Results suggest that state woody biomass policies are significantly related to state success in attracting new plants. •Other factors related to the siting of woody bioenergy facilities include resource availability, taxes, and wage rate

  3. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  4. Biomass energy development in California: Accomplishments and challenges

    International Nuclear Information System (INIS)

    Miller, W.G.

    1994-01-01

    The recent and rapid growth of biomass power development in California has created the largest contiguous biomass fueled electrical generating capacity in U.S. This growth has been fostered by resource availability, federal (PURPA) incentives, and the entrepeneurial response of independent power producers. California's environment has benefited from reduced air emissions, wildfire suppression, landfill reduction and the sequestering of carbon. The state has benefited economically through capital investment, employment for several thousand, and the generation of over $100 million in state and local tax revenues. Along with the benefits have come serious challenges brought about largely due to changes in the utility and regulatory environment. These changes threaten the continued existence and economic viability of the developed biomass power industry in California and threatens to establish national precedents. Specific issues are identified and recommended actions are presented

  5. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  6. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  7. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration.

    Science.gov (United States)

    Rui, Yichao; Murphy, Daniel V; Wang, Xiaoli; Hoyle, Frances C

    2016-10-18

    Rebuilding 'lost' soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO 2 . Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha -1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha -1 ] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha -1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO 2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.

  8. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  9. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  10. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  11. BENEFIT COST FOR BIOMASS CO-FIRING IN ELECTRICITY GENERATION: CASE OF UTAH, U.S.

    Directory of Open Access Journals (Sweden)

    Man-Keun Kim

    2015-07-01

    Full Text Available Policy making regarding biomass co-firing is difficult. The article provides a benefit-cost analysis for decision makers to facilitate policy making process to implement efficient biomass co-firing policy. The additional cost is the sum of cost of the biomass procurement and biomass transportation. Co-benefits are sales of greenhouse gas emission credits and health benefit from reducing harmful air pollutants, especially particulate matter. The benefit-cost analysis is constructed for semi-arid U.S. region, Utah, where biomass supply is limited. Results show that biomass co-firing is not economically feasible in Utah but would be feasible when co-benefits are considered. Benefit-cost ratio is critically dependent upon biomass and carbon credit prices. The procedure to build the benefit-cost ratio can be applied for any region with other scenarios suggested in this study.

  12. Soil microbial biomass in an agroforestry system of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosane C. Rodrigues

    2015-01-01

    Full Text Available Agroforestry systems (AFS are considered alternative land use options to help prevent soil degradation and improve soil microbial biomass and organic C status. However, it is unclear how different densities of babassu palm [Attalea speciosa (syn. Orbignya phalerata], which is an important tree in Northeast Brazil, affect the soil microbial biomass. We investigated the soil microbial biomass C and activity under AFS with different densities of babassu palm associated with Brachiaria brizantha grass. Soil microbial biomass C (MBC, soil microbial biomass N (MBN, MBC:total organic C ratio, fluorescein diacetate hydrolysis and dehydrogenase activity showed highest values in plots with high density of babassu palm. On the other hand, the respiratory quotient (qCO2 was significantly greater in plots without babassu palm. Brachiaria brizantha in monoculture may promote C losses from the soil, but AFS with high density of babassu palm may increase the potential of soils to accumulate C.Keywords: Enzyme activity, tropical soil, babassu palm, silvopastoral system, soil quality.DOI: 10.17138/TGFT(341-48

  13. Quantitative assessment of microalgae biomass and lipid stability post cultivation

    Directory of Open Access Journals (Sweden)

    Katerine eNapan

    2015-04-01

    Full Text Available Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4°, 40° or 70°C, on biomass and lipid content (as fatty acid methyl esters of the harvested microalgae was evaluated over a 156 hour time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 hours. Short time periods, 24 hours, and low temperatures are shown to have little effect on the harvested biomass.

  14. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  15. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions

    International Nuclear Information System (INIS)

    Mafakheri, Fereshteh; Nasiri, Fuzhan

    2014-01-01

    Reducing dependency on fossil fuels and mitigating their environmental impacts are among the most promising aspects of utilizing renewable energy sources. The availability of various biomass resources has made it an appealing source of renewable energy. Given the variability of supply and sources of biomass, supply chains play an important role in the efficient provisioning of biomass resources for energy production. This paper provides a comprehensive review and classification of the excising literature in modeling of biomass supply chain operations while linking them to the wider strategic challenges and issues with the design, planning and management of biomass supply chains. On that basis, we will present an analysis of the existing gaps and the potential future directions for research in modeling of biomass supply chain operations. - Highlights: • An extensive review of biomass supply chain operations management models presented in the literature is provided. • The models are classified in line with biomass supply chain activities from harvesting to conversion. • The issues surrounding biomass supply chains are investigated manifesting the need to novel modeling approaches. • Our gap analysis has identified a number of existing shortcomings and opportunities for future research

  16. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  17. Biorefineries: Relocating Biomass Refineries to the Rural Area

    Directory of Open Access Journals (Sweden)

    Franka Papendiek

    2012-07-01

    Full Text Available The field for application of biomass is rising. The demand for food and feeding stuff rises while at the same time energy, chemicals and other materials also need to be produced from biomass because of decreasing fossil resources. However, the biorefinery ideas and concepts can help to use the limited renewable raw materials more efficiently than today. With biorefineries, valuable products, such as platform chemicals, can be produced from agricultural feedstock, which can subsequently be further processed into a variety of substances by the chemical industry. Due to the role they play as producers of biomass, rural areas will grow in importance in the decades to come. Parts of the biorefinery process can be relocated to the rural areas to bring a high added value to these regions. By refining biomass at the place of production, new economic opportunities may arise for agriculturists, and the industry gets high-grade pre-products. Additionally, an on-farm refining can increase the quality of the products because of the instant processing. To reduce competition with the food production and to find new possibilities of utilisation for these habitats, the focus for new agricultural biomass should be on grasslands. But also croplands can provide more renewable raw materials without endangering a sustainable agriculture, e.g. by implementing legumes in the crop rotation. To decide if a region can provide adequate amounts of raw material for a biorefinery, new raw material assessment procedures have to be developed. In doing so, involvement of farmers is inevitable to generate a reliable study of the biomass refinery potentials.

  18. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Directory of Open Access Journals (Sweden)

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  19. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  20. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan

    International Nuclear Information System (INIS)

    Matsumura, Yukihiko; Minowa, Tomoaki; Yamamoto, Hiromi

    2005-01-01

    This paper discusses the use of agricultural residue in Japan as an energy resource, based on the amounts produced and availability. The main agricultural residues in Japan are rice straw and rice husk. Based on a scenario wherein these residues are collected as is the rice product, we evaluate the size, cost, and CO 2 emission for power generation. Rice residue has a production potential of 12 Mt-dry year -1 , and 1.7 kt of rice straw is collected for each storage location. As this is too small an amount even for the smallest scale of power plant available, 2-month operation per year is assumed. Assuming a steam boiler and turbine with an efficiency of 7%, power generation from rice straw biomass can supply 3.8 billion(kW)h of electricity per year, or 0.47% of the total electricity demand in Japan. The electricity generated from this source costs as much as 25 JPY (kW h) -1 (0.21 US$ (kW h) -1 , 1 US$=120 JPY), more than double the current price of electricity. With heat recovery at 80% efficiency, the simultaneous heat supplied via cogeneration reaches 10% of that supplied by heavy oil in Japan. Further cost incentives will be required if the rice residue utilization is to be introduced. It will also be important to develop effective technologies to achieve high efficiency even in small-scale processes. If Japanese technologies enable the effective use of agricultural residue abroad as a result of Japanese effort from the years after 2010, the resulting reduction of greenhouse gas emission can be counted under the framework of the Kyoto Protocol

  1. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in botswana.

    Science.gov (United States)

    Nkambwe, Musisi; Sekhwela, Mogodisheng B M

    2006-02-01

    This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.

  2. Solid biomass barometer 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The winter of 2011 was exceptionally mild, even in Northern Europe, with unusually warm temperatures. As a result the demand for firewood and solid biomass fuel was low. The European Union's primary energy production from solid biomass contracted by 2.9% slipping to 78.8 Mtoe. The first 4 countries are Germany (11.690 Mtoe), France (9.223 Mtoe), Sweden (8.165 Mtoe) and Finland (7.476 Mtoe) and when the production is relative to the population the first 4 countries become: Finland (1.391 toe/inhab.), Sweden (0.867 toe/inhab.), Latvia (0.784 toe/inhab.) and Estonia (0.644 toe/inhab.). Solid biomass electricity production continued to grow, driven by the additional take-up of biomass co-firing, to reach 72.800 TWh at the end of 2011, it means +2.6% compared to 2010. The energy policy of various states concerning solid biomass is analyzed

  3. Affine Lie algebraic origin of constrained KP hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-07-01

    It is presented an affine sl(n+1) algebraic construction of the basic constrained KP hierarchy. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and we show that these approaches are equivalent. The model is recognized to be generalized non-linear Schroedinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Backlund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. The construction uncovers origin of the Toda lattice structure behind the latter hierarchy. (author). 23 refs

  4. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  5. Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2017-12-01

    Full Text Available Softwoods represent a significant fraction of the available lignocellulosic biomass for conversion into a variety of bio-based products. Its inherent recalcitrance, however, makes its successful utilization an ongoing challenge. In the current work the research efforts for the fractionation and utilization of softwood biomass with the organosolv process are reviewed. A short introduction into the specific challenges of softwood utilization, the development of the biorefinery concept, as well as the initial efforts for the development of organosolv as a pulping method is also provided for better understanding of the related research framework. The effect of organosolv pretreatment at various conditions, in the fractionation efficiency of wood components, enzymatic hydrolysis and bioethanol production yields is then discussed. Specific attention is given in the effect of the pretreated biomass properties such as residual lignin on enzymatic hydrolysis. Finally, the valorization of organosolv lignin via the production of biofuels, chemicals, and materials is also described.

  6. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  7. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Nordlinger, D.E.; Shaw, F.C.

    1995-01-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  8. Introduction to biomass energy project financing, funding sources and government strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinger, D E [Skadden, Arps, Slate, Meagher and Flom, London (United Kingdom); Shaw, F C [Skadden, Arps, Slate, Meagher and Flom, Washington, D.C. (United States)

    1995-12-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  9. Spatially and Temporally Optimal Biomass Procurement Contracting for Biorefineries

    Directory of Open Access Journals (Sweden)

    Subbu Kumarappan

    2014-02-01

    Full Text Available This paper evaluates the optimal composition of annual and perennial biomass feedstocks for a biorefinery. A generic optimization model is built to minimize costs – harvest, transport, storage, seasonal, and environmental costs – subject to various constraints on land availability, feedstock availability, processing capacity, contract terms, and storage losses. The model results are demonstrated through a case study for a midwestern U.S. location, focusing on bioethanol as the likely product. The results suggest that high-yielding energy crops feature prominently (70 to 80% in the feedstock mix in spite of the higher establishment costs. The cost of biomass ranges from 0.16 to 0.20 $ l-1 (US$ 0.60 to $0.75 per gallon of biofuel. The harvest shed shows that high-yielding energy crops are preferably grown in fields closer to the biorefinery. Low-yielding agricultural residues primarily serve as a buffer crop to meet the shortfall in biomass requirement. For the case study parameters, the model results estimated a price premium for energy crops (2 to 4 $ t-1 within a 16 km (10-mile radius and agricultural residues (5 to 17 $ t-1 in a 16 to 20 km (10 to 20 mile radius.

  10. Regional supply, demand and utilization of forest biomass in South-East Finland; Metsaeenergian kaeytoen kasvun liiketoimintamahdollisuudet Kaakkois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Laihanen, M.; Karhunen, A.; Ranta, T.

    2011-07-01

    Rising demand of forest biomass in South-East Finland has created need to evaluate the impact for different energy users and producers. The aim of this study is to settle the current demand and availability of forest biomass and to evaluate the opportunities the growth offers. Initial data of study base on current structure of energy supply and on current energy demand. The information can be used as a guideline when evaluating local sufficiency of energy wood and business opportunities for local actors such as energy producers and forest fuel suppliers. Main aim of the study is to create prosperity and entrepreneurship to South-East Finland. Analysis included following tasks: gathering data about the current and potential use and users of forest biomass (logging residues, stumps and small diameter energy wood), settling local availability of forest fuels, creating forest biomass balance to indicate the sufficiency of local resources and to identify the effects of current business opportunities around forest biomass sector. Results of the study illustrate local balance between use and availability of energy wood, need for labor and revenue of forest biomass supply in South-East Finland. Evaluation analysis constructed for regional and local needs combine the current and potential use of forest biomass with local availability. Analysis represents model for evaluating local possibilities of utilization of forest biomass. Co-operation with Forestry Centre of South-East Finland was productive through entire study. (orig.)

  11. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  12. Analysis of multi cloud storage applications for resource constrained mobile devices

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bedi

    2016-09-01

    Full Text Available Cloud storage, which can be a surrogate for all physical hardware storage devices, is a term which gives a reflection of an enormous advancement in engineering (Hung et al., 2012. However, there are many issues that need to be handled when accessing cloud storage on resource constrained mobile devices due to inherent limitations of mobile devices as limited storage capacity, processing power and battery backup (Yeo et al., 2014. There are many multi cloud storage applications available, which handle issues faced by single cloud storage applications. In this paper, we are providing analysis of different multi cloud storage applications developed for resource constrained mobile devices to check their performance on the basis of parameters as battery consumption, CPU usage, data usage and time consumed by using mobile phone device Sony Xperia ZL (smart phone on WiFi network. Lastly, conclusion and open research challenges in these multi cloud storage apps are discussed.

  13. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  14. Sustainability of biomass for cofiring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    There are many items to include when considering the sustainability of biomass for cofiring, and some of them are hard to quantify. The focus of this report is on the greenhouse gas emission aspects of sustainability. The reduction of greenhouse gas emissions achieved by substituting biomass for coal depends on a number of factors such as the nature of the fossil fuel reference system, the source of the biomass, and how it is produced. Relevant issues in biomass production include the energy balance, the greenhouse gas balance, land use change, non-CO2 greenhouse gas emission from soils, changes to soil organic carbon, and the timing of emissions and removal of CO2 which relates to the scale of biomass production. Certification of sustainable biomass is slow to emerge at the national and international level, so various organisations are developing and using their own standards for sustainable production. The EU does not yet have sustainability standards for solid biomass, but the UK and Belgium have developed their own.

  15. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-03-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  16. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  18. Biomass power as a strategic business investment

    International Nuclear Information System (INIS)

    Turnbull, J.H.

    1996-01-01

    During 1994 and 1995 the Electric Power Research Institute collaborated with the US Department of Energy's National Renewable Energy Laboratory in support of seven feasibility studies of integrated biomass systems. The goal of the studies was to assess the economic viability and environmental implications of each system. The products were comprehensive business plans for implementation of the proposed systems. One general conclusion from these studies is that the feasibility of any biomass power system is determined by the costs and unique characteristics intrinsic to the specific system. Because of the limited need for new electric capacity in most of the US, and the relatively low capital investment required for implementation, cofiring currently holds more appeal than any of the more advanced conversion options. Cofiring savings accrue from offsets of coal, along with SO x allowances and any available NO x or carbon credits. The closed loop tax credit authorized by the Energy Policy Act of 1992 serves to make energy crops more nearly cost-competitive with coal and natural gas. Biomass gasification combined-cycle units give promise of economic viability after the turn of the century, and as energy crops become more cost-competitive with waste feedstocks, agricultural constituencies will become more integrally involved in the establishment of biomass energy systems. At present, corollary benefits are critical if a system is to be economically feasible. A valid no-regrets policy for global climate-change mitigation that includes near-term investments in biomass technologies should result in large payoffs over the next several decades

  19. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  20. Using temporal seeding to constrain the disparity search range in stereo matching

    CSIR Research Space (South Africa)

    Ndhlovu, T

    2011-11-01

    Full Text Available for reusing computed disparity estimates on features in a stereo image sequence to constrain the disparity search range. Features are detected on a left image and their disparity estimates are computed using a local-matching algorithm. The features...

  1. Managing pressures ulcers in a resource constrained situation: A holistic approach

    Directory of Open Access Journals (Sweden)

    Abhijit Dam

    2011-01-01

    Full Text Available Managing pressure ulcers remain a challenge and call for a multidisciplinary team approach to care. Even more daunting is the management of such patients in remote locations and in resource constrained situations. The management of pressure sores in a patient with progressive muscular atrophy has been discussed using resources that were locally available, accessible, and affordable. Community participation was encouraged. A holistic approach to care was adopted.

  2. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  3. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  4. Mature Basin Development Portfolio Management in a Resource Constrained Environment

    International Nuclear Information System (INIS)

    Mandhane, J. M.; Udo, S. D.

    2002-01-01

    Nigerian Petroleum industry is constantly faced with management of resource constraints stemming from capital and operating budget, availability of skilled manpower, capacity of an existing surface facility, size of well assets, amount of soft and hard information, etceteras. Constrained capital forces the industry to rank subsurface resource and potential before proceeding with preparation of development scenarios. Availability of skilled manpower limits scope of integrated reservoir studies. Level of information forces technical and management to find low-risk development alternative in a limited time. Volume of either oil or natural gas or water or combination of them may be constrained due to design limits of the existing facility, or an external OPEC quota, requires high portfolio management skills.The first part of the paper statistically analyses development portfolio of a mature basin for (a) subsurface resources volume, (b) developed and undeveloped and undeveloped volumes, (c) sweating of wells, and (d) facility assets. The analysis presented conclusively demonstrates that the 80/20 is active in the statistical sample. The 80/20 refers to 80% of the effect coming from the 20% of the cause. The second part of the paper deals with how 80/20 could be applied to manage portfolio for a given set of constraints. Three application examples are discussed. Feedback on implementation of them resulting in focussed resource management with handsome rewards is documented.The statistical analysis and application examples from a mature basin form a way forward for a development portfolio management in an resource constrained environment

  5. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than...

  6. Implementation of Forestry Best Management Practices on Biomass and Conventional Harvesting Operations in Virginia

    Directory of Open Access Journals (Sweden)

    Scott M. Barrett

    2016-03-01

    Full Text Available Logging residues are often utilized as a Best Management Practice (BMP for stabilizing bare soil on forest harvesting operations. As utilization of woody biomass increases, concern has developed regarding availability of residues for implementing BMPs. The Virginia Department of Forestry (VDOF inspects all logging operations in Virginia and randomly selects a portion of harvests for more intensive audits. The VDOF BMP audit process intensively evaluates implementation of BMPs in seven categories (84 specific BMPs on 240 sites per year. This research analyzed three years of audit data (2010–2012 to quantify differences in BMP implementation between biomass and conventional harvesting operations. Among 720 audited tracts, 97 were biomass harvests, with 88 occurring in the Piedmont region. Only the streamside management zone (SMZ category had significant implementation percentage differences between biomass (83.1% and conventional harvests (91.4% (p = 0.0007 in the Piedmont. Specific areas where biomass harvesting operations had lower implementation were generally not related to a lack of residues available for implementing BMPs, but rather were from a lack of appropriate SMZs, overharvesting within SMZs, or inadequate construction of roads, skid trails, and stream crossings. Existing BMP recommendations already address these areas and better implementation would have negated these issues.

  7. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  8. Superalloy design - A Monte Carlo constrained optimization method

    CSIR Research Space (South Africa)

    Stander, CM

    1996-01-01

    Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...

  9. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  10. Fire emissions constrained by the synergistic use of formaldehyde and glyoxal SCIAMACHY columns in a two-compound inverse modelling framework

    Science.gov (United States)

    Stavrakou, T.; Muller, J.; de Smedt, I.; van Roozendael, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.

    2008-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are carbonyls formed in the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. They are also directly emitted by fires. Although this primary production represents only a small part of the global source for both species, yet it can be locally important during intense fire events. Simultaneous observations of formaldehyde and glyoxal retrieved from the SCIAMACHY satellite instrument in 2005 and provided by the BIRA/IASB and the Bremen group, respectively, are compared with the corresponding columns simulated with the IMAGESv2 global CTM. The chemical mechanism has been optimized with respect to HCHO and CHOCHO production from pyrogenically emitted NMVOCs, based on the Master Chemical Mechanism (MCM) and on an explicit profile for biomass burning emissions. Gas-to-particle conversion of glyoxal in clouds and in aqueous aerosols is considered in the model. In this study we provide top-down estimates for fire emissions of HCHO and CHOCHO precursors by performing a two- compound inversion of emissions using the adjoint of the IMAGES model. The pyrogenic fluxes are optimized at the model resolution. The two-compound inversion offers the advantage that the information gained from measurements of one species constrains the sources of both compounds, due to the existence of common precursors. In a first inversion, only the burnt biomass amounts are optimized. In subsequent simulations, the emission factors for key individual NMVOC compounds are also varied.

  11. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  12. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  13. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  14. Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda

    Directory of Open Access Journals (Sweden)

    Henry Matieu

    2011-10-01

    Full Text Available Abstract Background Assessing biomass is gaining increasing interest mainly for bioenergy, climate change research and mitigation activities, such as reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+. In response to these needs, a number of biomass/carbon maps have been recently produced using different approaches but the lack of comparable reference data limits their proper validation. The objectives of this study are to compare the available maps for Uganda and to understand the sources of variability in the estimation. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. Results The comparison of the biomass/carbon maps show strong disagreement between the products, with estimates of total aboveground biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Compared to the reference map based on country-specific field data and a national Land Cover (LC dataset (estimating 468 Tg, maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change (IPCC default values, and global LC datasets tend to strongly overestimate biomass availability of Uganda (ranging from 578 to 2201 Tg, while maps based on satellite data and regression models provide conservative estimates (ranging from 343 to 443 Tg. The comparison of the maps predictions with field data, upscaled to map resolution using LC data, is in accordance with the above findings. This study also demonstrates that the biomass estimates are primarily driven by the biomass reference data while the type of spatial maps used for their stratification has a smaller, but not negligible, impact. The differences in format, resolution and biomass definition used by the maps, as well as the fact that some datasets are not independent from the

  15. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  16. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  17. An applied methodology for assessment of the sustainability of biomass district heating systems

    Science.gov (United States)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  18. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  19. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  20. BIOMASS AND MICROBIAL ACTIVITY UNDER DIFFERENT FOREST COVERS

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2016-06-01

    Full Text Available This study evaluated the soil fertility, biomass and microbial activity of the soil under forest cover of Eucalyptus grandis, Eucalyptus pilularis, Eucalyptus cloeziana and Corymbia maculata; Pinus Caribbean var. hondurensis, 40 years old, and a fragment of Semideciduous Forest, located on the campus of the Federal University of Lavras. In soil samples collected in the 0-5 cm layer were determined fertility parameters, basal respiration and microbial biomass carbon. The results showed that for the species E. grandis and E. cloeziana the carbon of biomass microbial content was higher than for any other ecosystem evaluated, and equal to those observed under native forest. In contrast, the ground under Pinus had the lowest microbiological indexes. Under C. maculata and E. pilularis the contents were intermediate for this parameter. The basal respiration of all ecosystems was equal. The fertility level was very low in all types of evaluated vegetation.