WorldWideScience

Sample records for constitutively active notch1

  1. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  2. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  3. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells.

    Science.gov (United States)

    Wang, L; Qin, H; Chen, B; Xin, X; Li, J; Han, H

    2007-01-01

    Human cervical carcinoma is one of the most common malignant tumors, but the mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression are not clear. Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, but perturbed Notch signaling may contribute to tumorigenesis. We now show that Notch1 is detected in all cervical cancer, including advanced diseases. We also constitutively overexpressed active Notch1 in human cervical carcinoma to explore the effects of Notch1 signaling on human cervical carcinoma cell growth and to investigate the underlying molecular mechanisms. The signaling may participate in the development of human cervical carcinoma cells, but overexpressed active Notch1 inhibits their growth through induction of cell cycle arrest. Increased Notch1 signaling induced a downmodulation of human papillomavirus transcription through suppression of activator protein (AP)-1 activity by upregulation of c-Jun and the decreased expression of c-Fos. Thus, Notch1 signaling plays a key role and exerts dual effects, functioning in context-specific manner.

  4. Murine leukemia provirus-mediated activation of the Notch1 gene leads to induction of HES-1 in a mouse T lymphoma cell line, DL-3.

    Science.gov (United States)

    Lee, J S; Ishimoto, A; Honjo, T; Yanagawa, S

    1999-07-23

    Constitutive activation of Notch signaling is known to be associated with tumorigenesis. In a mouse T lymphoma cell line, DL-3, we found that a murine leukemia provirus was inserted in the Notch1 locus, which led to marked expression of a virus-Notch1 fusion mRNA encoding an intracellular portion of the Notch1 protein. Furthermore, expression and nuclear localization of this constitutively active form of Notch1 protein were confirmed. Corresponding to this finding, the transcription of the hairy/enhancer of split (HES-1) gene, a known target of Notch1 signaling, was elevated in this cell line. A potential role for overexpressed HES-1 in the development of the lymphoma was discussed.

  5. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway.

    Science.gov (United States)

    Li, Li; Zhang, Jing; Xiong, Niya; Li, Shun; Chen, Yu; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-04-01

    Breast cancer has a high incidence in the world and is becoming a leading cause of death in female patients due to its high metastatic ability. High expression of Notch-1 and its ligand Jagged-1 correlates with poor prognosis in breast cancer. Our previous work has shown that Notch-1 signaling pathway upregulates NF-κB transcriptional activity and induces the adhesion, migration and invasion of human breast cancer cell line MDA-MB-231. However, the role of Notch-1 in NF-κB activation is still poorly understood. Here, we aim to understand the exact mechanism that Notch-1 regulates NF-κB activity. In MDA-MB-231 cells where Notch-1 is constitutively activated, the phosphorylation of p85 and AKT (Tyr308/Ser473) is upregulated, indicating PI3K/AKT pathway is activated. Notch-1 activation caused the increase of PP2A phosphorylation at Tyr307, indicating Notch-1 inhibits PP2A activity. NF-κB transcriptional activity was evaluated by dual-luciferase reporter assay, and the results showed that, while silencing of Notch-1, PP2A activity was upregulated and NF-κB activity was downregulated, whereas PP2A inhibitor okadaic acid (OA) restored NF-κB activity. Immunofluorescence and Western blots showed that OA treatment antagonized the decrease of p65 nuclear translocation caused by Notch-1 silencing. Moreover, OA treatment also upregulated MMP-2, MMP-9 and VEGF mRNA expression levels, indicating OA rescues Notch-1 silencing that caused low cell invasion. Taken together, our results suggest that Notch-1-activating PI3K/AKT/NF-κB pathway is PP2A dependent; PP2A may be a potential therapeutic target in breast cancer.

  6. Notch1 signaling regulates the proliferation and self-renewal of human dental follicle cells by modulating the G1/S phase transition and telomerase activity.

    Directory of Open Access Journals (Sweden)

    Xuepeng Chen

    Full Text Available Multipotent human dental follicle cells (HDFCs have been intensively studied in periodontal regeneration research, yet the role of Notch1 in HDFCs has not been fully understood. The aim of the current study is to explore the role of Notch1 signaling in HDFCs self-renewal and proliferation. HDFCs were obtained from the extracted wisdom teeth from adolescent patients. Regulation of Notch1 signaling in the HDFCs was achieved by overexpressing the exogenous intracellular domain of Notch1 (ICN1 or silencing Notch1 by shRNA. The regulatory effects of Notch1 on HDFC proliferation, cell cycle distribution and the expression of cell cycle regulators were investigated through various molecular technologies, including plasmid construction, retrovirus preparation and infection, qRT-PCR, western blot, RBP-Jk luciferase reporter and cell proliferation assay. Our data clearly show that constitutively activation of Notch1 stimulates the HDFCs proliferation while inhibition of the Notch1 suppresses their proliferation in vitro. In addition, the HDFCs proliferation is associated with the increased expression of cell cycle regulators, e.g. cyclin D1, cyclin D2, cyclin D3, cyclin E1, CDK2, CDK4, CDK6, and SKP2 and the decreased expression of p27 (kip1. Moreover, our data show that the G1/S phase transition (indicating proliferation and telomerase activity (indicating self-renewal can be enhanced by overexpression of ICN1 but halted by inhibition of Notch1. Together, the current study provides evidence for the first time that Notch1 signaling regulates the proliferation and self-renewal capacity of HDFCs through modulation of the G1/S phase transition and the telomerase activity.

  7. Activated NOTCH1 induces lung adenomas in mice and cooperates with MYC in the generation of lung adenocarcinoma

    OpenAIRE

    ALLEN, THADDEUS D.; Rodriguez, Elena M.; Jones, Kirk D.; Bishop, J. Michael

    2011-01-01

    NOTCH1 encodes the canonical member of the mammalian Notch receptor family. Activating lesions frequently affect NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL) and recently have been found in non-small cell lung cancer (NSCLC) as well. We explored the oncogenic potential of activated NOTCH1 in the lung by developing a transgenic mouse model in which activated NOTCH1 was overexpressed in the alveolar epithelium. The initial response to activated NOTCH1 was proliferation and the accumula...

  8. Friend or foe: can activating mutations in NOTCH1 contribute to a favorable treatment outcome in patients with T-ALL?

    Science.gov (United States)

    Goldshtein, Aviya; Berger, Michael

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Despite significant improvement in the treatment of T-ALL, approximately 20% of children and most adults succumb to resistant or relapsed disease. Transformation events occur during crucial steps of thymocyte development and have been related to the expression of certain oncogenes such as TAL2, TLX1, LYL1, LMO1, and NOTCH1. Mutations that lead to constitutive activation of NOTCH1 are most commonly found in human patients with T-ALL. Moreover, overexpression of the intracellular portion of NOTCH1 can lead to the initiation of T-ALL in mouse models. These findings suggest that NOTCH1 may promote tumorigenesis through the regulation of differentiation of leukemic cells, and, potentially, of leukemia-initiating cell identity and function. Multiple studies and clinical trials aimed at targeting NOTCH1 in T-ALL or using NOTCH1 mutations as a prognostic tool are currently underway. Recent studies unexpectedly found that activating mutations in NOTCH1 are correlated with better treatment outcome. Here we review these studies and discuss possible explanations for these findings.

  9. Notch1 Activation or Loss Promotes HPV-Induced Oral Tumorigenesis.

    Science.gov (United States)

    Zhong, Rong; Bao, Riyue; Faber, Pieter W; Bindokas, Vytautas P; Bechill, John; Lingen, Mark W; Spiotto, Michael T

    2015-09-15

    Viral oncogene expression is insufficient for neoplastic transformation of human cells, so human papillomavirus (HPV)-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes, including Notch1, which unexpectedly was scored by gain- or loss-of-function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in a manner associated with increased expression of matrix metalloproteinases and other proinvasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. Although Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors.

  10. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  11. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma.

    Science.gov (United States)

    Allen, Thaddeus D; Rodriguez, Elena M; Jones, Kirk D; Bishop, J Michael

    2011-09-15

    Notch1 encodes the canonical member of the mammalian Notch receptor family. Activating lesions frequently affect Notch1 in T-cell acute lymphoblastic leukemia (T-ALL) and, recently, have been found in non-small-cell lung cancer (NSCLC) as well. We explored the oncogenic potential of activated Notch1 in the lung by developing a transgenic mouse model in which activated Notch1 was overexpressed in the alveolar epithelium. The initial response to activated Notch1 was proliferation and the accumulation of alveolar hyperplasia, which was then promptly cleared by apoptosis. After an extended latency period, however, pulmonary adenomas appeared in the transgenic mice but failed to progress to become carcinomas. Interestingly, Myc and MycL1 were expressed in the adenomas, suggesting that selection for enhanced Myc activity may facilitate tumorigenesis. Using mice engineered to coexpress activated Notch1 and Myc, we found that supplementing Myc expression resulted in increased frequency of Notch1 intracellular domain (N1ICD)-induced adenoma formation and enabled progression to adenocarcinoma and metastases. Cooperation stemmed from synergistic activation of tumor cell cycling, a process that apparently countered any impedance to tumorigenesis posed by Myc and/or activated Notch1-induced apoptosis. Significantly, cooperation was independent of RAS activation. Taken together, the data suggest that activated Notch1 substitutes for RAS activation synergistically with Myc in the development of NSCLC. These tumor models should be valuable for exploring the role of activated Notch1 in the genesis of NSCLC and for testing therapies targeting either activated Notch1 or its downstream effectors.

  12. Notch1 Activation Up-Regulates Pancreatic and Duodenal Homeobox-1

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-07-01

    Full Text Available Transcription factor pancreatic and duodenal homeobox-1 (PDX-1 plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD, an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.

  13. Notch1 activation up-regulates pancreatic and duodenal homeobox-1.

    Science.gov (United States)

    Liu, Shi-He; Zhou, Guisheng; Yu, Juehua; Wu, James; Nemunaitis, John; Senzer, Neil; Dawson, David; Li, Min; Fisher, William E; Brunicardi, F Charles

    2013-07-19

    Transcription factor pancreatic and duodenal homeobox-1 (PDX-1) plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD), an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA) and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.

  14. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  15. NOTCH1 can initiate NF-kappaB activation via cytosolic interactions with components of the T cell signalosome

    Directory of Open Access Journals (Sweden)

    Lisa M Minter

    2014-05-01

    Full Text Available T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10 and MALT1, which is required for TCR-mediated NF-kappaB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-kappaB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-kappaB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCtheta, a T cell-specific kinase important for CBM assembly and classical NF-kappaB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCtheta and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10 and MALT1 were lost. This failure in CBM assembly reduced IkappaBalpha phosphorylation and diminished NF-kappaB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-kappaB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-kappaB signaling.

  16. Xanthohumol-Mediated Suppression of Notch1 Signaling Is Associated with Antitumor Activity in Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kunnimalaiyaan, Selvi; Trevino, Jose; Tsai, Susan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-06-01

    Pancreatic cancer remains a lethal disease with limited treatment options. At the time of diagnosis, approximately 80% of these patients present with unresectable tumors caused by either locally advanced lesions or progressive metastatic growth. Therefore, development of novel treatment strategies and new therapeutics is needed. Xanthohumol (XN) has emerged as a potential compound that inhibits various types of cancer, but the molecular mechanism underlying the effects of XN remains unclear. In the present study, we have assessed the efficacy of XN on pancreatic cancer cell lines (AsPC-1, PANC-1, L3.6pl, MiaPaCa-2, 512, and 651) against cell growth in real time and using colony-forming assays. Treatment with XN resulted in reduction in cellular proliferation in a dose- and time-dependent manner. The growth suppression effect of XN in pancreatic cancer cell lines is due to increased apoptosis via the inhibition of the Notch1 signaling pathway, as evidenced by reduction in Notch1, HES-1, and survivin both at mRNA as well as protein levels. Notch1 promoter reporter analysis after XN treatment indicated that XN downregulates Notch promoter activity. Importantly, overexpression of active Notch1 in XN-treated pancreatic cancer cells resulted in negation of growth suppression. Taken together, these findings demonstrate, for the first time, that the growth suppressive effect of XN in pancreatic cancer cells is mainly mediated by Notch1 reduction.

  17. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2.

    Directory of Open Access Journals (Sweden)

    Wendy R Gordon

    Full Text Available Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which

  18. Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    Science.gov (United States)

    Gordon, Wendy R.; Vardar-Ulu, Didem; L'Heureux, Sarah; Ashworth, Todd; Malecki, Michael J.; Sanchez-Irizarry, Cheryll; McArthur, Debbie G.; Histen, Gavin; Mitchell, Jennifer L.; Aster, Jon C.; Blacklow, Stephen C.

    2009-01-01

    Background Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. Principal Findings The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. Conclusions/Significance S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with

  19. Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Wendy R.; Vardar-Ulu, Didem; L' Heureux, Sarah; Ashworth, Todd; Malecki, Michael J.; Sanchez-Irizarry, Cheryll; McArthur, Debbie G.; Histen, Gavin; Mitchell, Jennifer L.; Aster, Jon C.; Blacklow, Stephen C.; (BWH); (Wellesley)

    2009-09-25

    Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or

  20. Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-liang; WAN Li; LIU Ji-chun

    2013-01-01

    Background Ischemic postconditioning (IPost),able to significantly attenuate myocardial ischemia reperfusion injury,is dependent on RISK signaling.Studies have shown that Notch signaling repairs damaged myocardium,and this study aimed to investigate the effect of Notch signaling in myocardial IPost.Methods We used H9c2 cells to establish the myocardial IPost and Hypoxia/Reoxygenation (H/R) model in vitro,which were randomly divided into control,H/R,IPost,Hepatocyte growth factor (HGF)+IPost and DAPT+IPost,N1ICD+IPost,miRNA+lPost,and Mock treatment groups.The myocardial cell viability was assessed by MTT,the cell apoptosis was detected using Annexin V/PI double staining and flow cytometry analyses.The expression of N1ICD,Hes1,PTEN Phospho-Akt/Akt,Phospho-GSK-3β/GSK-3β were detected by Western blotting.Finally,we assessed the changes in Ψm using the potential-sensitive dye JC-1 and measured using flow cytometry analyses.Results The Notch1 signaling is activated by HGF and ectopic expression of N1ICD during myocardial IPost,which increased myocardial cell viability,prevented cardiomyocyte apoptosis,and reduced loss of the mitochondrial membrane potential.However,myocardial ischemia reperfusion injury was increased in IPost when Notch1 signaling was inhibited using DAPT or with knockdown by Notch1-miRNA.Western blotting found that PTEN was down-regulated by Hes1 when Notch1 was activated,which consequently promoted Akt and GSK-3β phosphorylation.Conclusions Notch1 crosstalk with RISK signaling may be dependent on PTEN,which plays a cardioprotective role during IPost.This mechanism could provide a promising therapeutic target for the treatment of ischemic heart disease.

  1. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.

    Science.gov (United States)

    Pettersson, Susanne; Sczaniecka, Matylda; McLaren, Lorna; Russell, Fiona; Gladstone, Karen; Hupp, Ted; Wallace, Maura

    2013-03-15

    The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its oncogenic effects on the Notch signalling pathway by directly interacting with the Notch 1 receptor through dual-site binding. This involves both the N-terminal and acidic domains of MDM2 and the RAM [RBP-Jκ (recombination signal-binding protein 1 for Jκ)-associated molecule] and ANK (ankyrin) domains of Notch 1. Although the interaction between Notch1 and MDM2 results in ubiquitination of Notch1, this does not result in degradation of Notch1, but instead leads to activation of the intracellular domain of Notch1. Furthermore, MDM2 can synergize with Notch1 to inhibit apoptosis and promote proliferation. This highlights yet another target for MDM2-mediated ubiquitination that results in activation of the protein rather than degradation and makes MDM2 an attractive target for drug discovery for both the p53 and Notch signalling pathways.

  2. Overexpression of Pofut1 and activated Notch1 may be associated with poor prognosis in breast cancer.

    Science.gov (United States)

    Wan, Guoxing; Tian, Lin; Yu, Yuandong; Li, Fang; Wang, Xuanbin; Li, Chen; Deng, Shouheng; Yu, Xiongjie; Cai, Xiaojun; Zuo, Zhigang; Cao, Fengjun

    2017-09-09

    The present study was to evaluate the prognostic value of protein expression of Pofut1 and Notch1 signaling in breast cancer. Formalin-fixed paraffin-embedded 314 breast specimens including 174 infiltrating ductal carcinoma(IDC), 50 ductal carcinoma in situ(DCIS) and 90 adjacent normal tissue(ANT) were immunohistochemically examined to evaluate the protein expression of Pofut1, activated Notch1(N1IC) and Slug on specimens. Survival analysis was performed by Kaplan-Meier method and Cox's proportional-hazards model. A online database was computationally used to further explore the prognostic role of Pofut1 and Notch1 mRNA expression by Kaplan-Meier Plotter. Pofut1, Slug and N1IC expression were significantly increased in IDC compared to ANT(all p < 0.05). High expression of Pofut1, Slug and N1IC were associated with tumor aggressiveness including lymph node metastasis (LNM: p = 0.005 for Pofut1, p < 0.001 for N1IC, p = 0.017 for Slug), advanced stage(p = 0.039 for Pofut1, p = 0.025 for N1IC) and higher histological grade(p = 0.001 for N1IC). Additionally, high expression of Pofut1 was found to be significantly associated with high expressions of N1IC and Slug in IDC(r = 0.244, p = 0.001; r = 0.374, p < 0.001, respectively), similar correlation was also observed between high N1IC and Slug expression(r = 0.496, p < 0.001). Moreover, Kaplan-Meier and Cox's regression analysis indicated the significant prognostic value of elevated Pofut1, N1IC, Slug expressions, positive LNM and advanced tumor stage for the prediction of a shorter disease-free survival (DFS) and overall survival(OS). The web-based analysis also suggested a significant association of high Pofut1 and Notch1 mRNA expression with worse survival outcome. Our findings suggested that overexpression of Pofut1 and activated Notch1 signaling may be associated with a poor prognosis in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    Science.gov (United States)

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death.

  4. Molecular cross talk between Notch1, Shh and Akt pathways during erythroid differentiation of K562 and HEL cell lines.

    Science.gov (United States)

    Roy, Anita; Haldar, Srijan; Basak, Nandini Pal; Banerjee, Subrata

    2014-01-01

    Erythropoiesis is a tightly regulated process dependent on extrinsic signals conveyed by the bone marrow niche. The signalling pathways thus activated or repressed do not act in isolation; rather an intricate cross talk among these pathways ensues homoeostasis within the erythroid compartment. In this study, we describe the effects of two such signalling pathways namely the Notch1 and the Shh pathway on erythropoiesis in immortalised K562 and HEL cell lines as well as the cross talk that ensues between them. We show that while activation of the Notch1 pathway inhibits differentiation of erythroid lineage cell lines as well as in in-vitro primary erythroid cultures from the human CD34(+) cells; Shh pathway favours erythroid differentiation. Further, the Notch1 pathway activates the Akt pathway and constitutively active Akt partially mimics the effect of Notch1 activation on erythropoiesis. Moreover, the Notch1, Akt and Shh pathways were found to cross talk with each other. In this process, activation of Notch1 was found to down regulate the Shh pathway independent of Akt activation. Significantly, Notch1 not only down regulated the Shh pathway, but also inhibited recombinant Shh mediated erythropoiesis. Our study thus reveals an intricate crosstalk among the Notch1, Shh and Akt pathways wherein Notch1 emerges as a key regulator of erythropoiesis.

  5. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  6. Notch1通路活化抑制EC109细胞的增殖及机制探讨%Activated Notch1 signaling inhibits growth of EC109 cell line and its mechanism

    Institute of Scientific and Technical Information of China (English)

    张永利; 张可杰; 闵祥辉; 鹿全意; 刘文励

    2009-01-01

    Background and purpose: It has been reported that activation of Notch1 could strongly inhibit proliferation of HPV (human papilloma virus)-positive HeLa cells by down-regulation of the E6 and E7 genes. The aim of this paper was to investigate the role of the Notch signaling pathway in growth arrest of EC109 cells in vitro and the molecular mechanism. Methods: EC109 cell lines, a well differentiated human ESCC (esophageal squamous cell carcinoma) cell line with HPV18-positive, was used in the study. Exogenous intracellular domain of Notch1(ICN) was transfected into cultured EC109 cells by lipofectamine transfection, the proliferation of the transfected cells was measured by an MTT assay. Cell cycle distribution was analyzed by flow cytometry. Human papilloma virus type 18 (HPV18) E6/E7 mRNA expression was detected by RT-PCR, and p53 protein expression was detected by Western blot.Results: Activation of Notchl signaling resulted in inhibition of EC109 cell proliferation with the induction of G_2/ M arrest. There was a significant difference in terms of the percentage of G_2/M phase cells among the ICN-transfected group (42.57±1.57)% and the non-transfected group (1.88±0.66)% or the empty plasmid transfected group (1.99±1.02)% (P<0.01). Down modulation of HPV18 E6/E7 gene expression and upregulation of p53 expression was (2.15±0.23) in ICN-transfected group higher than non- transfected group (0.45±0.07) and empty plasmid transfected group (0.46±0.02) (P<0.01). Conclusion: Repression of HPV18 E6/E7 expression by Notch1 signaling results in growth suppression of HPV18-positive EC109 cells with concomitant activation of p53-mediated pathways.%背景与目的:Notch1的活化可以通过下调人类乳头状瘤病毒(human papillomavirus,HPV)早期蛋白E6和E7基因的表达抑制HPV阳性HeLa细胞系的增殖.人食管鳞状细胞癌细胞系EC109细胞为HPV18阳性细胞.本研究将Notch1胞内段(intracellular domain of Notch,ICN)转入EC109细胞,导致EC109

  7. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Wendy R.; Roy, Monideepa; Vardar-Ulu, Didem; Garfinkel, Megan; Mansour, Marc R.; Aster, Jon C.; Blacklow, Stephen C.; (BWH); (Wellesley); (UCL)

    2009-09-02

    Proteolytic resistance of Notch prior to ligand binding depends on the structural integrity of a negative regulatory region (NRR) of the receptor that immediately precedes the transmembrane segment. The NRR includes the 3 Lin12/Notch repeats and the juxtamembrane heterodimerization domain, the region of Notch1 most frequently mutated in T-cell acute lymphoblastic leukemia lymphoma (T-ALL). Here, we report the x-ray structure of the Notch1 NRR in its autoinhibited conformation. A key feature of the Notch1 structure that maintains its closed conformation is a conserved hydrophobic plug that sterically occludes the metalloprotease cleavage site. Crystal packing interactions involving a highly conserved, exposed face on the third Lin12/Notch repeat suggest that this site may normally be engaged in intermolecular or intramolecular protein-protein interactions. The majority of known T-ALL-associated point mutations map to residues in the hydrophobic interior of the Notch1 NRR. A novel mutation (H1545P), which alters a residue at the crystal-packing interface, leads to ligand-independent increases in signaling in reporter gene assays despite only mild destabilization of the NRR, suggesting that it releases the autoinhibitory clamp on the heterodimerization domain imposed by the Lin12/Notch repeats. The Notch1 NRR structure should facilitate a search for antibodies or compounds that stabilize the autoinhibited conformation.

  8. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondro­sarcoma cell via activating Notch-1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Xu FQ

    2016-04-01

    Full Text Available Fengqin Xu,1,* Zhi-qiang Zhang,2,* Yong-chao Fang,2 Xiao-lei Li,2 Yu Sun,2 Chuan-zhi Xiong,2 Lian-qi Yan,2 Qiang Wang2 1Department of Orthopaedics, Hongquan Hospital, 2Department of Orthopaedics, Subei People’s Hospital, Yangzhou, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1 is identified to be overexpressed in several cancers. However, the role of MALAT-1 in chondrosarcoma is poorly understood.Methods: The expression of MALAT-1 and Notch-1 signaling pathway was detected in chondrosarcoma tissues and chondrosarcoma cells by quantitative real-time polymerase chain reaction (qRT-PCR and Western blot. 3-(4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay was performed to examine the cell viability of chondrosarcoma cells transfected with si-MALAT-1 or pcDNA-MALAT-1. Then the expression of Notch-1 signaling pathway was detected when MALAT-1 was upregulated or downregulated in chondrosarcoma cells. A subcutaneous chondrosarcoma cells xenograft model was used to confirm the effect of MALAT-1 on tumor growth in vivo.Results: We found the increased expression of MALAT-1 and Notch-1 signaling pathway in chondrosarcoma tissue and cells. MALAT-1 promoted the proliferation of chondrosarcoma cells. In addition, MALAT-1 activated the Notch-1 signaling pathway at posttranscriptional level in chondrosarcoma cells. Meanwhile, overexpression of Notch-1 reversed the effect of si-MALAT-1 on the proliferation of chondrosarcoma cells. Finally, we found that MALAT-1 promoted the tumor growth in a subcutaneous chondrosarcoma cells xenograft model, which confirmed the promoted effect of MALAT-1 on the tumor growth in vivo.Conclusion: Taken together, our study demonstrated that MALAT-1 promoted the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. Keywords: MALAT-1, cell proliferation

  9. Tyrosine kinase Src mediates Notch-1 activation in BxPC3 pancreatic cancer cells%胰腺癌BxPC3细胞中Src激酶对Notch-1活化的调节

    Institute of Scientific and Technical Information of China (English)

    杨小燕; 张玉祥; 王泽生

    2008-01-01

    目的 探讨在胰腺癌细胞BxPC3中,Src激酶对Notch-1活化的影响.方法 用siRNA干扰的方法分别抑制Notch-1和c-Src的表达;加入Src激酶抑制剂PP2抑制Src激酶活性;MTT法检测细胞的生长;Western blot检测Notch-1蛋白活性形式NICD水平的变化.结果 抑制Notch-1表达及抑制Src激酶活性可明显抑制BxPC3细胞生长;抑制Src激酶活性及抑制c-Src蛋白表达可下调Notch-1 NICD水平.结论 Src激酶在胰腺癌细胞BxPC3中促进Notch-1的活化,促进BxPc3细胞的生长.

  10. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice.

    Science.gov (United States)

    Klinakis, Apostolos; Szabolcs, Matthias; Politi, Katerina; Kiaris, Hippokratis; Artavanis-Tsakonas, Spyros; Efstratiadis, Argiris

    2006-06-13

    To explore the potential involvement of aberrant Notch1 signaling in breast cancer pathogenesis, we have used a transgenic mouse model. In these animals, mouse mammary tumor virus LTR-driven expression of the constitutively active intracellular domain of the Notch1 receptor (N1(IC)) causes development of lactation-dependent mammary tumors that regress upon gland involution but progress to nonregressing, invasive adenocarcinomas in subsequent pregnancies. Up-regulation of Myc in these tumors prompted a genetic investigation of a potential Notch1/Myc functional relationship in breast carcinogenesis. Conditional ablation of Myc in the mammary epithelium prevented the induction of regressing N1(IC) neoplasms and also reduced the incidence of nonregressing carcinomas, which developed with significantly increased latency. Molecular analyses revealed that both the mouse and human Myc genes are direct transcriptional targets of N1(IC) acting through its downstream Cbf1 transcriptional effector. Consistent with this mechanistic link, Notch1 and Myc expression is positively correlated by immunostaining in 38% of examined human breast carcinomas.

  11. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Energy Technology Data Exchange (ETDEWEB)

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  12. Prox1 regulates the notch1-mediated inhibition of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valeria Kaltezioti

    Full Text Available Activation of Notch1 signaling in neural progenitor cells (NPCs induces self-renewal and inhibits neurogenesis. Upon neuronal differentiation, NPCs overcome this inhibition, express proneural genes to induce Notch ligands, and activate Notch1 in neighboring NPCs. The molecular mechanism that coordinates Notch1 inactivation with initiation of neurogenesis remains elusive. Here, we provide evidence that Prox1, a transcription repressor and downstream target of proneural genes, counteracts Notch1 signaling via direct suppression of Notch1 gene expression. By expression studies in the developing spinal cord of chick and mouse embryo, we showed that Prox1 is limited to neuronal precursors residing between the Notch1+ NPCs and post-mitotic neurons. Physiological levels of Prox1 in this tissue are sufficient to allow binding at Notch1 promoter and they are critical for proper Notch1 transcriptional regulation in vivo. Gain-of-function studies in the chick neural tube and mouse NPCs suggest that Prox1-mediated suppression of Notch1 relieves its inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate. Moreover, loss-of-function in the chick neural tube shows that Prox1 is necessary for suppression of Notch1 outside the ventricular zone, inhibition of active Notch signaling, down-regulation of NPC markers, and completion of neuronal differentiation program. Together these data suggest that Prox1 inhibits Notch1 gene expression to control the balance between NPC self-renewal and neuronal differentiation.

  13. Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

    Science.gov (United States)

    Fan, Xing; Mikolaenko, Irina; Elhassan, Ihab; Ni, Xingzhi; Wang, Yunyue; Ball, Douglas; Brat, Daniel J; Perry, Arie; Eberhart, Charles G

    2004-11-01

    The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

  14. DLL4 overexpression increases gastric cancer stem/progenitor cell self-renewal ability and correlates with poor clinical outcome via Notch-1 signaling pathway activation.

    Science.gov (United States)

    Miao, Zhi-Feng; Xu, Hao; Xu, Hui-Mian; Wang, Zhen-Ning; Zhao, Ting-Ting; Song, Yong-Xi; Xu, Ying-Ying

    2017-01-01

    Gastric cancer is one of the most common malignant diseases, and poses a serious threat to the quality of human life. Gastric cancer stem/progenitor cells (GCSPCs) have critical effects on tumor formation, affecting specific features of self-renewal and differentiation and playing a critical role in metastasis. The Notch-1 pathway is crucially important to GCSPCs and is regulated by DLL4. In this study, DLL4 and Nestin levels were measured in 383 gastric cancer tissue samples by immunohistochemistry, and the clinico-pathological features of patients assessed. After DLL4 silencing in selected gastric cancer cell lines, the expression of GCSPC markers and colony formation ability were analyzed and the self-renewal and differentiation capacities of the cells were evaluated. The relationship between DLL4 levels and Notch-1 signaling pathway effector amounts was assessed via Western blotting and immunofluorescence. Finally, the tumor formation ability of the gastric cancer cells was evaluated with different levels of DLL4 and multiple cell densities in vivo. Our results indicate that DLL4 expression is associated with TNM stage and cancer metastasis, with high amounts of DLL4 leading to poor outcome. DLL4 silencing inhibited the self-renewal ability of GCSPCs and increased their multidifferentiation capacity, resulting in reduced GCSPC ratios. DLL4 knockdown also blocked the Notch-1 pathway, weakening invasion ability and resistance to 5-FU chemotherapy. In vivo, DLL4 silencing inhibited the tumor formation ability of GCSPCs. In conclusion, DLL4 affects GCSPC stemness, altering their pathological behavior. DLL4 silencing inhibits GCSPC metastatic potential both in vitro and in vivo by impeding Notch-1 signaling pathway activation, indicating that DLL4 may be a new potential therapeutic target.

  15. NOTCH1基因3'-UTR段双荧光素酶报告载体的构建及其活性鉴定%Construction 3'-UTR of NOTCH1 dual luciferase recombintant vector and evaluation of its activity

    Institute of Scientific and Technical Information of China (English)

    邵新宏; 韩渊; 于游; 张才全

    2013-01-01

    目的:构建含NOTCH1基因3'-UTR段双荧光素酶报告载体,并验证其活性.方法:使用PCR方法扩增含NOTCH1基因3'-UTR区序列,插入到双酶切的双荧光素酶报告载体中;使用生物信息学方法预测可能与NOTCH1基因3'-UTR相互作用的miRNA;使用lipofectamine 2000转染试剂将重组质粒或空质粒和miR-34a inhibitor或control真核表达载体共转染HEK293T细胞,双荧光素酶检测试剂盒测定荧光素酶活性.结果:得到含NOTCH1基因3'-UTR(1 648 bp)序列的双荧光素酶报告重组质粒,并用凝胶电泳和基因测序的方法验证.NOTCH1基因3'-UTR上可能有miR-34a的调控作用靶点;用重组质粒和miR-34a inhibitor共转染的HEK293T组的荧光素酶活性比空质粒组高45%.结论:含NOTCH1基因3'-UTR双荧光素酶报告载体构建成功,miR-34a对NOTCH1基因有调控作用.%Objective:To construct the dual-luciferase recombinant vector which contain 3'-UTR of N0TCH1 gene and verify its activity. Methods:3'-UTR of NOTCH1 gene was amplified through PCR method, and was inserted in the dual luciferase reporter vector which was digested by enzyme. 3'-UTR of NOTCH1 which targeting effect miRNA was predicted by bioinformation. HEK293T cells was treated with recombinant vector or empty vector and miR-34a inhibitor or control by transfection reagent. The dual Luciferase Reporter Assay System was used to evaluate the activity of luciferase. Results:3'-UTR of NOTCH1 gene was successfully cloned into the pmiR-RB-REPORT? vector, which was vertified by Gel electrophoresis and DNA sequencing methods. 3'-UTR of N0TCH1 gene may has a binding site of miR-34a. Comparing with HEK293T cells was treated with the empty vector , the luciferase activity of HEK293T cells which was cotransfected with recombinant vector and miRNA-34a inhibitor was increased to 45%. Conclusion: 3'-UTR of N0TCH1 gene dual luciferase combintant vector was successfully constructed, preliminary evidence show that miR-34a could

  16. PrPSc accumulation in neuronal plasma membranes links Notch-1 activation to dendritic degeneration in prion diseases

    Directory of Open Access Journals (Sweden)

    DeArmond Stephen J

    2010-01-01

    Full Text Available Abstract Prion diseases are disorders of protein conformation in which PrPC, the normal cellular conformer, is converted to an abnormal, protease-resistant conformer rPrPSc. Approximately 80% of rPrPSc accumulates in neuronal plasma membranes where it changes their physical properties and profoundly affects membrane functions. In this review we explain how rPrPSc is transported along axons to presynaptic boutons and how we envision the conversion of PrPC to rPrPSc in the postsynaptic membrane. This information is a prerequisite to the second half of this review in which we present evidence that rPrPSc accumulation in synaptic regions links Notch-1 signaling with the dendritic degeneration. The hypothesis that the Notch-1 intracellular domain, NICD, is involved in prion disease was tested by treating prion-infected mice with the γ-secretase inhibitor (GSI LY411575, with quinacrine (Qa, and with the combination of GSI + Qa. Surprisingly, treatment with GSI alone markedly decreased NICD but did not prevent dendritic degeneration. Qa alone produced near normal dendritic trees. The combined GSI + Qa treatment resulted in a richer dendritic tree than in controls. We speculate that treatment with GSI alone inhibited both stimulators and inhibitors of dendritic growth. With the combined GSI + Qa treatment, Qa modulated the effect of GSI perhaps by destabilizing membrane rafts. GSI + Qa decreased PrPSc in the neocortex and the hippocampus by 95%, but only by 50% in the thalamus where disease was begun by intrathalamic inoculation of prions. The results of this study indicate that GSI + Qa work synergistically to prevent dendrite degeneration and to block formation of PrPSc.

  17. Notch1 functions as a tumor suppressor in mouse skin.

    Science.gov (United States)

    Nicolas, Michael; Wolfer, Anita; Raj, Kenneth; Kummer, J Alain; Mill, Pleasantine; van Noort, Mascha; Hui, Chi-chung; Clevers, Hans; Dotto, G Paolo; Radtke, Freddy

    2003-03-01

    Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

  18. Chemotherapeutic treatment is associated with Notch1 induction in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Biskup, Edyta; Manfè, Valentina

    2017-01-01

    level in MyLa2000 and Hut78. Upregulation of well-established Notch targets supported the functional activity of Notch1. Transfection of Notch1 siRNA into MyLa2000 cells was not able to suppress the effects of chemotherapy on Notch1 activation significantly. Notch1 knockdown in combination...... with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p family members. Our results...

  19. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells : involvement of nuclear factor kappa B inhibition

    NARCIS (Netherlands)

    Yao, J.; Duan, L.; Fan, M.; Yuan, J.; Wu, X.

    2007-01-01

    Notch signaling can serve as a tumor suppressor or tumor promoter in the same kind of cancer, such as human papillomavirus-positive cervical cancer cells. However, the exact mechanisms remain poorly characterized. Our studies demonstrated that constitutively overexpressed active Notch1 via stable tr

  20. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells : involvement of nuclear factor kappa B inhibition

    NARCIS (Netherlands)

    Yao, J.; Duan, L.; Fan, M.; Yuan, J.; Wu, X.

    2007-01-01

    Notch signaling can serve as a tumor suppressor or tumor promoter in the same kind of cancer, such as human papillomavirus-positive cervical cancer cells. However, the exact mechanisms remain poorly characterized. Our studies demonstrated that constitutively overexpressed active Notch1 via stable tr

  1. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Wang, Miao [Department of Oral and Maxillofacial Surgery, Kiang Wu Hospital, Macao (China); Chen, Mu [Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen (China); Hou, Jinsong [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Huang, Hongzhang, E-mail: drhuang52@163.com [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China)

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.

  2. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis.

    Science.gov (United States)

    Qi, Runzi; An, Huazhang; Yu, Yizhi; Zhang, Minghui; Liu, Shuxun; Xu, Hongmei; Guo, Zhenghong; Cheng, Tao; Cao, Xuetao

    2003-12-01

    Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis; hence, perturbed Notch signaling may contribute to tumorigenesis. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in Africa and Asia. The mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression of HCC are not clear. We constitutively overexpressed active Notch1 in human HCC to explore the effects of Notch1 signaling on HCC cell growth and to investigate the underlying molecular mechanisms. We show here that overexpression of Notch1 was able to inhibit the growth of HCC cells in vitro and in vivo. Biochemical analysis revealed the involvement of cell cycle regulated proteins in Notch1-mediated G(0)/G(1) arrest of HCC cells. Compared with green fluorescent protein (GFP) control, transient transfection of Notch1 ICN decreased expression of cyclin A (3.5-fold), cyclin D1 (2-fold), cyclin E (4.5-fold), CDK2 (2.8-fold), and the phosphorylated form of retinoblastoma protein (3-fold). Up-regulation of p21(waf/cip1) protein expression was observed in SMMC7721-ICN cells stably expressing active Notch1 but not in SMMC7721-GFP cells, which only express GFP. Furthermore, a 12-fold increase in p53 expression and an increase (4.8-fold) in Jun-NH(2)-terminal kinase activation were induced in SMMC7721-ICN cells compared with SMMC7721-GFP cells. In contrast, expression of the antiapoptotic Bcl-2 protein could not be detected in SMMC7721-ICN cells. These findings suggest that Notch1 signaling may participate in the development of HCC cells, affecting multiple pathways that control both cell proliferation and apoptosis.

  3. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway.

    Science.gov (United States)

    Chen, Jinhuang; Yuan, Wenzheng; Wu, Liang; Tang, Qiang; Xia, Qinghua; Ji, Jintong; Liu, Zhengyi; Ma, Zhijun; Zhou, Zili; Cheng, Yifeng; Shu, Xiaogang

    2017-02-07

    Platelet-derived growth factor-D (PDGF-D) plays a crucial role in the progression of several cancers. However, its role in colorectal cancer (CRC) remains unclear. Our study showed that PDGF-D was highly expressed in CRC tissues and was positively associated with the clinicopathological features. Down-regulation of PDGF-D inhibited the tumor growth, migration and angiogenesis of SW480 cells in vitro and in vivo. Whereas up-regulation of PDGF-D promoted the malignant behaviors of HCT116 cells. Moreover, PDGF-D up-regulated the expression of Notch1 and Twist1 in CRC cells. In addition, PDGF-D expression promoted Epithelial to mesenchymal transition (EMT), which was accompanied with decreased E-cadherin and increased Vimentin expression. Consistently, PDGF-D, Notch1, and Twist1 are obviously up-regulated in transforming growth factor-beta 1 (TGF-β1) treated HCT116 cells. Since Notch1 and Twist1 play an important role in EMT and tumor progression, we examined whether there is a correlation between Notch1 and Twist1 in EMT status. Our results showed that up-regulation of Notch1 was able to rescue the effects of PDGF-D down-regulation on Twist1 expression in SW480 cells, whereas down-regulation of Notch1 reduced Twist1 expression in HCT116 cells. Furthermore, we found that Twist1 promoted EMT and aggressiveness of CRC cells. These results suggest that PDGF-D promotes tumor growth and aggressiveness of CRC, moreover, down-regulation of PDGF-D inactivates Notch1/Twist1 axis, which could reverse EMT and prevent CRC progression.

  4. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress

    Science.gov (United States)

    Zhang, Meng; Yu, Li-ming; Zhao, Hang; Zhou, Xuan-xuan; Yang, Qian; Song, Fan; Yan, Li; Zhai, Meng-en; Li, Bu-ying; Zhang, Bin; Jin, Zhen-xiao; Duan, Wei-xun; Wang, Si-wang

    2017-01-01

    2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg−1·d−1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1–1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis. PMID:28112174

  5. Notch1 augments intracellular trafficking of adeno-associated virus type 2.

    Science.gov (United States)

    Ren, Changchun; White, April F; Ponnazhagan, Selvarangan

    2007-02-01

    We report here the significance of the Notch1 receptor in intracellular trafficking of recombinant adeno-associated virus type 2 (rAAV2). RNA profiling of human prostate cancer cell lines with various degrees of AAV transduction indicated a correlation of the amount of Notch1 with rAAV transgene expression. A definitive role of Notch1 in enhancing AAV transduction was confirmed by developing clonal derivatives of DU145 cells overexpressing either full-length or intracellular Notch1. To discern stages of AAV2 transduction influenced by Notch1, competitive binding with soluble heparin and Notch1 antibody, intracellular trafficking using Cy3-labeled rAAV2, and blocking assays for proteasome and dynamin pathways were performed. Results indicated that in the absence or low-level expression of Notch1, only binding of virus was found on the cell surface and internalization was impaired. However, increased Notch1 expression in these cells allowed efficient perinuclear accumulation of labeled capsids. Nuclear transport of the vector was evident by transgene expression and real-time PCR analyses. Dynamin levels were not found to be different among these cell lines, but blocking dynamin function abrogated AAV2 transduction in DU145 clones overexpressing full-length Notch1 but not in clones overexpressing intracellular Notch1. These studies provide evidence for the role of activated Notch1 in intracellular trafficking of AAV2, which may have implications in the optimal use of AAV2 in human gene therapy.

  6. Effect of Trastuzumab on Notch-1 Signaling Pathway in Breast Cancer SK-BR3 Cells

    Institute of Scientific and Technical Information of China (English)

    Ming Han; Hua-yu Deng; Rong Jiang

    2012-01-01

    Objective:To investigate the effects and mechanisms of trastuzumab on Notch-1 pathway in breast cancer cells,recognizing the significance of Notch-1 signaling pathway in trastuzumab resistance.Methods:Immunocytochemistry staining and Western blotting were employed to justify the expression of Notch-1 protein in HER2-overexpressing SK-BR3 cells and HER2-non-overexpressing breast cancer MDA-MB-231 cells.Western blotting and reverse transcription PCR (RT-PCR) were used to detect the activated Notch-1 and Notch-1 target gene HES-1 mRNA expression after SK-BR3 cells were treated with trastuzumab.Double immunofluorescence staining and co-immunoprecipitation were used to analyze the relationship of Notch-1 and HER2 proteins.Results:The level of Notch-1 nuclear localization and activated Notch-1 proteins in HER2-overexpressing cells were significantly lower than in HER2-non-overexpressing cells (P<0.01),and the expressions of activated Notch-1 and HES-1 mRNA were obviously increased after trastuzumab treatment (P<1.05),but HER2 expression did not change significantly for trastuzumab treating (P>0.05).Moreover,Notch-1 was discovered to co-localize and interact with HER2 in SK-BR3 cells.Conclusion:Overexpression of HER2 decreased Notch-1 activity by the formation of a HER2-Notch1 complex,and trastuzumab can restore the activity of Notch-1 signaling pathway,which could be associated with cell resistance to trastuzumab.

  7. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6–Abundant Breast Cancer Cells by Regulating γ-Secretase–Mediated Notch1 Activation in Caveolae

    Directory of Open Access Journals (Sweden)

    En-Chi Hsu

    2015-06-01

    Full Text Available Interleukin-6 (IL-6 and Notch signaling are important regulators of breast cancer stem cells (CSCs, which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159 and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs.

  8. Gamma-Secretase Inhibitors Abrogate Oxaliplatin-Induced Activation of the Notch-1 Signaling Pathway in Colon Cancer Cells Resulting in Enhanced Chemosensitivity

    OpenAIRE

    Meng, Raymond D.; Shelton, Christopher C.; Li, Yue-Ming; Qin, Li-Xuan; Paty, Philip B.; Schwartz, Gary K.

    2009-01-01

    Because Notch signaling is implicated in colon cancer tumorigenesis and protects from apoptosis by inducing pro-survival targets, it was hypothesized that inhibition of Notch signaling with gamma-secretase inhibitors (GSIs) may enhance the chemosensitivity of colon cancer cells. We first show that the Notch-1 receptor and its downstream target Hes-1 is upregulated with colon cancer progression, similar to other genes involved in chemoresistance. We then report that chemotherapy induces Notch-...

  9. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-03-01

    contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f.

  10. Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling.

    Science.gov (United States)

    Jue, Chen; Lin, Cui; Zhisheng, Zhang; Yayun, Qian; Feng, Jin; Min, Zhao; Haibo, Wang; Youyang, Shi; Hisamitsu, Tadashi; Shintaro, Ishikawa; Shiyu, Guo; Yanqing, Liu

    2017-01-10

    Hypervascularity is one of the main characteristics of hepatocellular carcinoma (HCC). However, the mechanisms of angiogenesis in HCC remain controversial. In this study, we investigate the role of Notch1 in angiogenesis of HCC. We found that Notch1 expression was correlated with formation of vasculogenic mimicry (VM) and expression of biomarkers of epithelial-to-mesenchymal transition (EMT) in the tumor specimens. Two HCC cell lines, HepG2 and MHCC97-H, with low and high Notch1 expression, respectively, were used to study the mechanism of VM formation both in vitro and in vivo. It was found that MHCC97-H cells, but not HepG2 cells form VM when they grow on matrigel in vitro. HepG2 cells gained the power of forming VM when they were overexpressed with Notch1, while knockdown Notch1 expression in MHCC97-H cells led to the loss of VM forming ability of the cells. Similar results were found in in vivo study. High expression of Notch1 in HepG2 promoted xenograft growth in nude mice, with abundant VM formation in the tumor samples. Moreover, we observed Notch1 was associated with the EMT and malignant behavior of hepatocellular carcinoma by analyzing clinical specimens, models for in vitro and in vivo experiments. HepG2 presented EMT phenomenon when induced by TGF-β1, accompanied by Notch1 activation while MHCC97-H with knockdown of Notch1 lost the responsiveness to TGF-β1 induction. Our results suggest that Notch1 promotes HCC progression through activating EMT pathway and forming VM. Our results will guide targeting Notch1 in new drug development.

  11. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    Science.gov (United States)

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.

  12. NOTCH1 and FBXW7 mutations favor better outcome in pediatric South Indian T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Natarajan, Valliyammai; Bandapalli, Obul R; Rajkumar, Thangarajan; Sagar, Tenali Gnana; Karunakaran, Nirmala

    2015-01-01

    The NOTCH1 signaling pathway is essential for hematopoiesis and a critical regulatory step for T-cell proliferation and maturation. The E3 ubiquitin ligase FBXW7 controls NOTCH1 protein stability. Mutations in NOTCH1/FBXW7 activate NOTCH signaling and are of prognostic significance in patients with T-cell acute lymphoblastic leukemia (T-ALL). In this study we analyzed NOTCH1 and FBXW7 mutations in 50 South Indian T-ALL patients treated by a modified ALL BFM 95 regimen. The hot spot exons (HD-N, HD-C, TAD, and PEST) of NOTCH1 and exons 9 of the 10 of FBXW7 were polymerase chain reaction amplified and sequenced. In total, 20 of the 50 (40%) T-ALL patients revealed heterozygous mutations in the NOTCH1 domains, and a predominance of missense mutations in HD-N (70%) and PEST (15%) domains. FBXW7 mutations were detected in 5 of the 50 (10%) T-ALL patients. T-ALL patients with NOTCH1/FBXW7 mutations expressed higher protein level of NOTCH1 compared with patients without NOTCH1/FBXW7 mutations. Six of the mutations detected in NOTCH1 were not reported previously. When tested in a Dual Luciferase Renilla reporter assay some of these conferred increased NOTCH activity, suggesting that these are activating mutations. Importantly, 13 of the 20 (65%) NOTCH1/FBXW7-mutated T-ALL patients showed a good prednisone response (P=0.01) and a better clinical outcome compared with NOTCH1/FBXW7 nonmutated patients (P=0.03). These data suggest that NOTCH1/FBXW7 mutations are present in T-ALL patients from Southern India and may be useful biomarkers to predict prognosis in T-ALL.

  13. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE.

    Science.gov (United States)

    Vooijs, Marc; Ong, Chin-Tong; Hadland, Brandon; Huppert, Stacey; Liu, Zhenyi; Korving, Jeroen; van den Born, Maaike; Stappenbeck, Thaddeus; Wu, Yumei; Clevers, Hans; Kopan, Raphael

    2007-02-01

    The four highly conserved Notch receptors receive short-range signals that control many biological processes during development and in adult vertebrate tissues. The involvement of Notch1 signaling in tissue self-renewal is less clear, however. We developed a novel genetic approach N(1)IP-CRE (Notch1 Intramembrane Proteolysis) to follow, at high resolution, the descendents of cells experiencing Notch1 activation in the mouse. By combining N(1)IP-CRE with loss-of-function analysis, Notch activation patterns were correlated with function during development, self-renewal and malignancy in selected tissues. Identification of many known functions of Notch1 throughout development validated the utility of this approach. Importantly, novel roles for Notch1 signaling were identified in heart, vasculature, retina and in the stem cell compartments of self-renewing epithelia. We find that the probability of Notch1 activation in different tissues does not always indicate a requirement for this receptor and that gradients of Notch1 activation are evident within one organ. These findings highlight an underappreciated layer of complexity of Notch signaling in vivo. Moreover, NIP-CRE represents a general strategy applicable for monitoring proteolysis-dependent signaling in vivo.

  14. Effect of the activation and secretion function of macrophage Notch1 after the stimulation of severe ;burn rat serum%重度烧伤大鼠血清对巨噬细胞 Notch1的激活及分泌功能的影响

    Institute of Scientific and Technical Information of China (English)

    王姝月; 樊磊; 白晓智; 杨龙龙; 蔡维霞; 赵彬; 苏琳琳; 石继红; 胡大海

    2015-01-01

    目的:研究重度烧伤大鼠血清刺激后巨噬细胞 Notch1蛋白表达变化,及其细胞分泌因子白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的水平变化。方法选取成年雄性 SD 大鼠24只,随机分为假伤组、烧伤24 h 组和烧伤7 d 组,每组8只。烧伤组 SD 大鼠造成约30%总体表面积(TBSA)Ⅲ度烧伤,分别于伤后24 h、7 d 收集血清;假伤组大鼠用37℃水浴,水浴后24 h 取其血清作为对照。用上述各组血清制成20%培养液,刺激小鼠源巨噬细胞系 RAW264.7,分别于加入血清刺激后即刻和刺激4、8、12、24、48 h 后收取细胞及其上清液。另外用含20%假伤血清+脂多糖(100 ng/mL)培养液刺激巨噬细胞,于相同时间点收样。Western Blot 检测各时间点巨噬细胞中Notch1蛋白表达变化,酶联免疫吸咐试验检测刺激24 h 后培养上清液中 IL-6及 TNF-α的含量变化。结果(1)假伤组血清刺激后即刻和刺激4、8、12、24、48 h 后,Notch1蛋白表达无明显变化;(2)烧伤24 h 组血清刺激后,Notch1蛋白表达明显升高,并随时间延长而达高峰;(3)烧伤7 d 组血清刺激后, Notch1蛋白表达无明显变化,与假伤组血清刺激结果类似;(4)假伤组血清+脂多糖混合刺激后, Notch1蛋白表达明显增加;(5)烧伤24 h 组血清及假伤组血清+脂多糖,上清液中 IL-6和 TNF-α含量均明显高于假伤组血清及烧伤7 d 组血清。结论烧伤血清刺激下的巨噬细胞 Notch1信号被激活,IL-6及 TNF-α分泌能力增强,且这种激活可被脂多糖刺激所模拟。%Objective To investigate the dynamic expression of Notch1 signaling and the secretion of interleukin-6 (IL-6)and tumor necrosis factor alpha(TNF-α)from macrophage RAW264.7 cells induced by severe burn rat serum.Methods Twenty-four male Sprague-Dawley rats were divided into sham burn group and burn at 24 h and 7

  15. Notch1-promoted TRPA1 expression in erythroleukemic cells suppresses erythroid but enhances megakaryocyte differentiation

    Science.gov (United States)

    Chen, Ji-Lin; Ping, Yueh-Hsin; Tseng, Min-Jen; Chang, Yuan-I; Lee, Hsin-Chen; Hsieh, Rong-Hong; Yeh, Tien-Shun

    2017-01-01

    The Notch1 pathway plays important roles in modulating erythroid and megakaryocyte differentiation. To screen the Notch1-related genes that regulate differentiation fate of K562 and HEL cells, the expression of transient receptor potential ankyrin 1 (TRPA1) was induced by Notch1 receptor intracellular domain (N1IC), the activated form of Notch1 receptor. N1IC and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1) bound to TRPA1 promoter region to regulate transcription in K562 cells. Transactivation of TRPA1 promoter by N1IC depended on the methylation status of TRPA1 promoter. N1IC and Ets-1 suppressed the DNA methyltransferase 3B (DNMT3B) level in K562 cells. Inhibition of TRPA1 expression after Notch1 knockdown could be attenuated by nanaomycin A, an inhibitor of DNMT3B, in K562 and HEL cells. Functionally, hemin-induced erythroid differentiation could be suppressed by TRPA1, and the reduction of erythroid differentiation of both cells by N1IC and Ets-1 occurred via TRPA1. However, PMA-induced megakaryocyte differentiation could be enhanced by TRPA1, and the surface markers of megakaryocytes could be elevated by nanaomycin A. Megakaryocyte differentiation could be reduced by Notch1 or Ets-1 knockdown and relieved by TRPA1 overexpression. The results suggest that Notch1 and TRPA1 might be critical modulators that control the fate of erythroid and megakaryocyte differentiation. PMID:28220825

  16. Colocalization of β-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation.

    Science.gov (United States)

    Gopalakrishnan, Natarajan; Saravanakumar, Marimuthu; Madankumar, Perumal; Thiyagu, Mani; Devaraj, Halagowder

    2014-11-01

    The Wnt and Notch1 signaling pathways play major roles in intestinal development and tumorigenesis. Sub-cellular localization of β-catenin has been implicated in colorectal carcinogenesis. However, the β-catenin and Notch intracellular domain (NICD) interaction has to be addressed. Immunohistochemistries of β-catenin, NICD, and dual immunofluorescence of β-catenin and NICD were analyzed in colorectal tissues and HT29 cell line. Moreover, real-time PCR analysis of CyclinD1, Hes1 and MUC2 was done in HT29 cells upon N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment. Dual staining emphasized the strong interaction of β-catenin and NICD in adenoma and adenocarcinoma than in normal tissues. Hes1 transcript levels were decreased 1.5- and 7.1-fold in 12.5 and 25 µM DAPT-treated HT29 cells. CyclinD1 transcript levels decreased 1.2- and 1.6-fold, and MUC2 transcript level increased 4.3- and 7.5-fold in 12.5 and 25 µM DAPT-treated HT29 cells. The results of this study showed that the sub-cellular localization of β-catenin converges with NICD inducing proliferation through the activation of CyclinD1 and Hes1. Moreover, the inhibition of Notch1 signaling by DAPT leads to the arrest of cell proliferation and induces apoptosis leading to the upregulation of MUC2, a secretory cell lineage marker.

  17. Inhibitory role of Notch1 in calcific aortic valve disease.

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    Full Text Available Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs. We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.

  18. Chemotherapeutic treatment is associated with Notch1 induction in cutaneous T-cell lymphoma.

    Science.gov (United States)

    Kamstrup, Maria R; Biskup, Edyta; Manfè, Valentina; Savorani, Cecilia; Liszewski, Walter; Wirèn, Johan; Specht, Lena; Gniadecki, Robert

    2017-01-01

    The Notch pathway is important for survival of cutaneous T-cell lymphoma (CTCL) cells. We investigated the effect of chemotherapy (doxorubicin, etoposide, and gemcitabine) and radiation modalities on Notch signaling in CTCL cell lines. Chemotherapy induced Notch1 expression at the mRNA and protein level in MyLa2000 and Hut78. Upregulation of well-established Notch targets supported the functional activity of Notch1. Transfection of Notch1 siRNA into MyLa2000 cells was not able to suppress the effects of chemotherapy on Notch1 activation significantly. Notch1 knockdown in combination with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p < 0.05). Additionally, X-rays (in MyLa2000 but not SeAx) and psoralen plus UVA (PUVA) (in MyLa2000, Hut78, and SeAx) increased the expression of Notch1 family members. Our results indicate that CTCL cells activate the Notch pathway in vitro in response to chemotherapy and radiation modalities as a possible protective mechanism.

  19. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.

    Science.gov (United States)

    Lefort, Karine; Ostano, Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, G Paolo; Chiorino, Giovanna

    2016-07-26

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.

  20. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling.

    Science.gov (United States)

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.

  1. Notch-1 signaling pathway and drug resistance of human tumors%Notch-1信号通路与肿瘤耐药研究进展

    Institute of Scientific and Technical Information of China (English)

    黄佳圆; 王锐; 陈龙邦

    2011-01-01

    恶性肿瘤往往通过多种机制对抗化疗药物的作用,即产生肿瘤耐药.Notch-1信号通路与细胞增殖、分化及凋亡密切相关,该通路的异常激活不仅直接参与肿瘤的发生发展,还与肿瘤耐药密切相关.Notch-1广泛表达于多种肿瘤细胞,通过促进上皮间质转换(epithelial-mesenchymal transition,EMT)、肿瘤干细胞(cancer stem cells,CSC)表型的发生和调节微小RNA( microRNAs,miRNA)等途径,导致肿瘤对多种化疗药物产生抗药性.因此,Notch-1是对抗肿瘤耐药的潜在靶点,特异性抑制肿瘤细胞Notch-1活性,联合化疗药物的应用有望成为有效的肿瘤治疗策略.%Recent studies indicate that malignant tumors resist chemotherapy drugs through a variety of mechanisms. As one of the most important receptors of the Notch signaling pathway, Notch-1 is related with the processing of cell proliferation, differentiation and apoptosis. Activation of Notch-1 is not only directly involved in tumor development, but also closely related with tumor resistance. Notch-1 is widely expressed in many kinds of tumor cells, and can cause tumor resistance to chemotherapy drugs by EMT promotion, occurrence of cancer stem cell phenotypes and regulation of microRNAs. Therefore, Notch-1 is a potential target for anti-tumor drug resistance. Specific inhibition of Notch-1 activity in tumor cells combined with chemotherapy is expected to be an effective cancer treatment strategy.

  2. Analysis list: Notch1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Notch1 Blood + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Notch1.1.t...sv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Notch1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Notch1....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Notch1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Blood.gml ...

  3. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Science.gov (United States)

    Yuan, Xun; Zhang, Mingsheng; Wu, Hua; Xu, Hanxiao; Han, Na; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2015-01-01

    Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07) and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS) to invasive cancer (OR=3.75; 95% CI, 1.8-7.78). Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43). Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  4. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Directory of Open Access Journals (Sweden)

    Xun Yuan

    Full Text Available Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07 and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS to invasive cancer (OR=3.75; 95% CI, 1.8-7.78. Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43. Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  5. NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL

    Science.gov (United States)

    Zhiduleva, Ekaterina; Freylikhman, Olga; Rotar, Oxana; Tarnovskaya, Svetlana; Kostareva, Anna; Moiseeva, Olga

    2017-01-01

    Background. The NOTCH pathway is known to be important in the pathogenesis of calcific aortic valve disease, possibly through regulators of osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK), and its ligand (RANKL) system. The purpose of the present study was to search for possible associations between NOTCH1 gene mutations and circulating levels of OPG and soluble RANKL (sRANKL) in patients with aortic stenosis (AS). Methods. The study was performed on 61 patients with AS including 31 with bicuspid and 30 with tricuspid aortic valves. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Serum OPG and sRANKL levels were assessed. Results. In total, 6 genetic variants of the NOTCH1 gene including two new mutations were identified in the study group. In an age- and arterial hypertension-adjusted multivariable regression analysis, the serum OPG levels and the OPG/sRANKL ratio were correlated with NOTCH1 missense variants. All studied missense variants in NOTCH1 gene were found in Ca(2+)-binding EGF motif of the NOTCH extracellular domain bound to Delta-like 4. Conclusion. Our results suggest that the OPG/RANKL/RANK system might be directly influenced by genetic variants of NOTCH1 in aortic valve calcification.

  6. Developmental Exposure To 2,3,7,8 Tetrachlorodibenzo-p-Dioxin Attenuates Later-Life Notch1-Mediated T Cell Development and Leukemogenesis

    Science.gov (United States)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-01-01

    Over half of T-cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (NotchICN-TG). Following exposure of adult NotchICN-TG mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed NotchICN-TG offspring have a peripheral T-cell pool heavily biased toward the CD4 lineage, while TCDD-exposed NotchICN-TG offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. PMID:25585350

  7. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chao [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Yu, Jianchun, E-mail: yu_jchpumch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Kang, Weiming [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Liu, Yuqin [Cell Culture Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 (China); Ma, Zhiqiang; Zhou, Li [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China)

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.

  8. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D., E-mail: laiosa@uwm.edu

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch

  9. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    Science.gov (United States)

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  10. Aberrant Expression of Notch1 in Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Li Sun; Qimin Zhan; Wenhua Zhang; Yongmei Song; Tong Tong

    2007-01-01

    OBJECTIVE To investigate the putative role of the Notch1 receptor in cervical cancer carcinogenesis and progression.METHODS The expression of the Notch1 protein was analyzed by a Western-blotting approach in 40 cervical cancer and 30 normal cervical tissues.Some tissues were examined using RT-PCR To determine Mrna levels.Celluar localization of the Notch1 protein in the paraffin-embedded cervical tissues was also analyzed by immunohistochemistry.RESULTS The Notch1 protein was detected in all 30 normal cervical tissues.In contrast.only 6 samples of 40 cervical cancer tissues showed Notch1 expression.The level of the Notch1 protein expression was significantly lower in cervical cancer tissues than that in normal tissue samples.In agreement with these observations.levels of Notch1 Mrna were found to be substantially down-regulated in cervical cancer tissues.In the immunohistochemistry staining assay,the Notch1 protein was shown to localize predominantly in the cytoplasm and nucleoli of the normal cervical squamous epithelium of the cervix,but no staining was observed in the cervical cancer cells.Notch1 expression was observed to correlate with the clinical disease stage.but there were no correlations with age,tumor size,grade or lymph node metastasis (P>0.05).The levels of Notchl protein expression were significantly higher in early stages(I~lla,66.7%) compared to those in the advanced stages (Iib~IV,12.6%)(P=0.001).CONCLUSION Notch1 may play a role as a tumor suppressor in cervical tumorigenesis.Determination of Notch1 expression may be helpful for preoperative diagnosis and accuracy of staging.But its clinical use for cervical cancer requires further investigation.

  11. Role of Notch1/2 signaling pathway in the apoptosis process of SGC-7901 induced by Oxaliplatin

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ling Tang; Ke-Quan Chen; Fan-Bao Yao; Hao Chen

    2015-01-01

    Objective:To explore the role of Notch1/2 signaling pathway in the apoptosis process of SGC-7901 induced by oxaliplatin.Methods:The cell viability was detected by CCK8 and the expression of Notch1/2 and Caspase9 was detected by Western Blotting before and after treatment of oxaliplatin.Results:Oxaliplatin medication decreased the viability of SCG-7901 and increased the Notch1/2 as well as Caspase9 expression. Notch signaling pathway inhibitor L685458 normalized those abnormalities greatly.Conclusion: Oxaliplatin promotes SGC-7901 apoptosis by activating Notch signaling pathway and up-regulating Caspase9 protein.

  12. The impact of neuronal Notch-1/JNK pathway on intracerebral hemorrhage-induced neuronal injury of rat model.

    Science.gov (United States)

    Chen, Maohua; Sun, Jun; Lu, Chuan; Chen, Xiandong; Ba, Huajun; Lin, Qun; Cai, Jianyong; Dai, Junxia

    2016-11-08

    Notch signaling is a highly conserved pathway that regulates cell fate decisions during embryonic development. Notch activation endangers neurons by modulating NF-κB and HIF-1α pathways, however, the role of Notch signaling in activating JNK/c-Jun following intracerebral hemorrhage (ICH) has not been investigated. In this study, we used rat ICH models and thrombin-induced cell models to investigate the potential role of Notch-1/JNK signals. Our findings revealed that Notch-1 and JNK increased in hematoma-surrounding neurons tissues following ICH during ischemic conditions (all pNotch-1, p-JNK, and active caspase-3 were all up-regulated in cell viability-decreasing ICH cell models (all pNotch-1 or JNK suppressed the phosphorylation of JNK and the expression of active caspase-3, and cell viability was obviously ameliorated. In conclusion, this work suggested Notch-1 activates JNK pathway to induce the active caspase-3, leading to neuronal injury when intracerebral hemorrhage or ischemia occurred. Thus the Notch-1/JNK signal pathway has an important role in ICH process, and may be a therapeutic target to prevent brain injury.

  13. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression.

    Science.gov (United States)

    Yan, Chao; Yu, Jianchun; Kang, Weiming; Liu, Yuqin; Ma, Zhiqiang; Zhou, Li

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Romanian Constitutional Court and its Active Role in Assuring the Supremacy of the Constitution

    Directory of Open Access Journals (Sweden)

    Emil Balan

    2015-12-01

    Full Text Available Having read this paper, someone should have a general idea of some main constitutional concepts and principles and how they relate to the Romanian legal system. Romanian Constitutional Court is - according to art. 142 (1 of the Romanian Constitution - the guarantor of the Constitution’s supremacy. By virtue of this role, the Constitutional Court shall exercise general control of the compliance with the Constitution and the constitutionality of laws. The quality of guarantor allows the Constitutional Court to exercise an active role so that, throughout the provision of the decisions, but also throughout their considerations, which are imposed with equal force to all the legal issues/all subjects of law, it is put in view that the public authorities have the obligation of conform application of decisions, including of effects determined by them.

  15. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM.

    Science.gov (United States)

    Bone, Robert A; Bailey, Charlotte S L; Wiedermann, Guy; Ferjentsik, Zoltan; Appleton, Paul L; Murray, Philip J; Maroto, Miguel; Dale, J Kim

    2014-12-01

    During somitogenesis, epithelial somites form from the pre-somitic mesoderm (PSM) in a periodic manner. This periodicity is regulated by a molecular oscillator, known as the 'segmentation clock', that is characterised by an oscillatory pattern of gene expression that sweeps the PSM in a caudal-rostral direction. Key components of the segmentation clock are intracellular components of the Notch, Wnt and FGF pathways, and it is widely accepted that intracellular negative-feedback loops regulate oscillatory gene expression. However, an open question in the field is how intracellular oscillations are coordinated, in the form of spatiotemporal waves of expression, across the PSM. In this study, we provide a potential mechanism for this process. We show at the mRNA level that the Notch1 receptor and Delta-like 1 (Dll1) ligand vary dynamically across the PSM of both chick and mouse. Remarkably, we also demonstrate similar dynamics at the protein level; hence, the pathway components that mediate intercellular coupling themselves exhibit oscillatory dynamics. Moreover, we quantify the dynamic expression patterns of Dll1 and Notch1, and show they are highly correlated with the expression patterns of two known clock components [Lfng mRNA and the activated form of the Notch receptor (cleaved Notch intracellular domain, NICD)]. Lastly, we show that Notch1 is a target of Notch signalling, whereas Dll1 is Wnt regulated. Regulation of Dll1 and Notch1 expression thus links the activity of Wnt and Notch, the two main signalling pathways driving the clock.

  16. Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer.

    Science.gov (United States)

    Mohammadi-Yeganeh, Samira; Mansouri, Ardalan; Paryan, Mahdi

    2015-11-01

    Many reports have indicated deregulation of a variety of microRNAs (miRNAs) in human cancers. In this study, we appraised miR-9 correlation with NOTCH1 involved in Notch signaling in metastatic breast cancer. The Notch signaling pathway has been approved to be associated with the development and progression of many human cancers, including breast cancer, but the precise mechanism has remained unknown. To the best of our knowledge, this is the first study that introduces miR-9 and NOTCH1 correlation as an effective factor in breast cancer. We found that miR-9 expression was decreased in MDA-MB-231 breast cancer cells compared with MCF-10A normal breast cell line. However, NOTCH1 was upregulated in the metastatic breast cancer cells. Furthermore, luciferase assay revealed a significant inverse correlation between miR-9 and NOTCH1. Overexpression of Notch signaling via Notch1 intracellular domain in MDA-MB-231 cell line was suppressed by lentiviruses expressing miR-9. Taken together, the results obtained by MTT, flow cytometry, migration, and wound healing assays showed that it is possible to inhibit metastasis and induce pro-apoptotic state by induction of miR-9 expression in MDA-MB-231 cells but with no effect on cell proliferation. These results shows that miR-9, by direct targeting of NOTCH1, can reveal a suppressor-like activity in metastatic breast cancer cells.

  17. Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling

    Directory of Open Access Journals (Sweden)

    Emanuele eBrai

    2015-11-01

    Full Text Available Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, ApoER2, and the ionotropic receptor, NMDAR. Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced CREB signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia.

  18. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    Science.gov (United States)

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  19. Notch1调控Srcasm在人食管鳞状细胞癌TE1细胞株中的表达%Notch1 up-regulates srcasm expression in human esophageal squamous cell carcinoma TE1 cell line

    Institute of Scientific and Technical Information of China (English)

    齐宇; 李鑫

    2014-01-01

    Objective To study the Src-activating and signaling molecule (Srcasm) expression regulated by Notchl in human esophageal squamous cell carcinoma (ESCC) TE1 cell line.Methods We transfected pcDNA3.1-Srcasm plasmid DNA (2 μg),pcDNA3.1-Srcasm plasmid NDA (2 μg),double (pcDNA3.1-Notch1 plasmid DNA 1 μg and pcDNA3.1-Srcasm plasmid DNA 1 μg) and mock (2 μg) into TE1 cells and examined Notch1/Srcasm expression by using Western blotting.Results Notch1 increased the Srcasm protein expression in TE1 cells.Conclusion Notch1 may act as a positive regulator of Fyn in human ESCC,and play an important role in human ESCC progress.%目的 探讨人食管鳞状细胞癌中Notch1参与调节人食管鳞状细胞癌TE1细胞株中Srcasm负调控Src家族酪氨酸激酶Fyn的机制.方法 分别转染pcDNA3.1-Notch1质粒DNA(2 μg)、pcDNA3.1-Srcasm质粒DNA(2μg)、Double(pcDNA3.1-Notch1质粒DNA 1μg和pcDNA3.1-Srcasm质粒DNA 1 μg)、pcDNA3.1空载体(2μg)至人食管鳞状细胞癌TE1细胞株中,观察Notch1对Srcasm表达的影响.结果 pcDNA3.1-Notch1质粒DNA的转染,原来低表达Srcasm的TE1细胞株中,Srcasm蛋白的表达明显增高.结论 人食管鳞状细胞癌TE1细胞株中Notch1可能是Srcasm的上游信号分子.

  20. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells.

    Science.gov (United States)

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-08-01

    Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.

  1. Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis.

    Science.gov (United States)

    Xu, Wei; Liang, Chao-Ge; Li, Yi-Fan; Ji, Yun-Han; Qiu, Wen-Jun; Tang, Xian-Zhong

    2015-01-01

    We aimed to investigate the role of Notch1/Hes signaling pathway in the pathogenesis of abnormal ossification of hip ligament in patients with ankylosing spondylitis (AS). 22 AS patients scheduled for artificial hip arthroplasty were randomly chosen as AS group. As controls, we used 4 patients diagnosed with transcervical fracture who underwent hip replacement surgery. Notch1 and Hes mRNA expressions were detected by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). Immunohistochemistry (IHC) was used to detect Notch1 and Hes protein expression. Correlation analyses of Notch-l and Hes with AS-related clinical factors were conducted with spearman's correlation analysis and partial correlation analysis. RFQ-PCR results showed significant differences in Notch1 and Hes mRNA expressions between AS group and the control group (all Phip joint ligaments of AS patients, Hes protein expression was associated with the clinical course of AS. Taken together, we suggest that signaling pathways mediated by Notch1-Hes may contribute to ligament ossification of hip joints in AS patients.

  2. Mutational analysis of NOTCH1, 2, 3 and 4 genes in common solid cancers and acute leukemias.

    Science.gov (United States)

    Lee, Sung Hak; Jeong, Eun Goo; Yoo, Nam Jin; Lee, Sug Hyung

    2007-12-01

    NOTCH proteins (NOTCH1, NOTCH2, NOTCH3 and NOTCH4) play crucial roles in embryonic development. Also, mounting evidence indicates that NOTCH contributes to the pathogenesis of hematopoietic and solid malignancies. Recent studies reported a high incidence of gain-of-function mutations of the NOTCH1 gene in T-cell acute lymphoblastic leukemias (ALL). To see whether NOTCH1 mutation occurs in other malignancies, we analyzed NOTCH1 for the detection of somatic mutations in 334 malignancies, including 48 lung, 48 breast, 48 colorectal and 48 gastric carcinomas, and 142 acute leukemias (105 acute myelogenous leukemias, 32 B-ALLs and 4 T-ALLs) by single-strand conformation polymorphism assay. Also, to see whether other NOTCH genes harbor somatic mutations, we analyzed NOTCH2, NOTCH3 and NOTCH4 genes in the same tissue samples. Overall, we detected three NOTCH mutations in the cancers, which consisted of one NOTCH1 mutation in the T-ALLs (25.0%), one NOTCH2 mutation in the breast carcinomas (2.1%), and one NOTCH3 mutation in the colorectal carcinomas (2.0%). There was no NOTCH mutation in other malignancies analyzed. Our data indicate that NOTCH1 is mutated in T-ALL, but not in other common human cancers, and that NOTCH2, NOTCH3 and NOTH4 genes are rarely mutated in common human cancers. Despite the importance of NOTCH activation in many types of human cancers, mutation of NOTCH genes, except for NOTCH1 mutation in T-ALL, may not play an important role in the tumorigenesis of common cancers.

  3. The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma

    OpenAIRE

    Zhou, Qi; Wang, Yafeng; Peng, Baogang; Liang, Lijian; Li, Jiaping

    2013-01-01

    Background Notch signaling, a critical pathway for tissue development, contributes to tumorigenesis in many tissues; however, the roles of Notch signaling in Intrahepatic Cholangiocarcinoma (ICC) remains unclear. In this study, we evaluated the expression and effects of Notch1 on cell migration in ICC. Methods Multiple cellular and molecular approaches were performed including gene transfection, siRNA transfection, RT-PCR, Western blotting, Rac activation assays and immunofluorescence. Result...

  4. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus.

    Science.gov (United States)

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Horita, Nobukatsu; Todisco, Andrea; Turgeon, D Kim; Siebel, Christian W; Samuelson, Linda C

    2017-02-01

    The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem

  5. Mutations in NOTCH1 PEST-domain orchestrate CCL19-driven homing of Chronic Lymphocytic Leukemia cells by modulating the tumor suppressor gene DUSP22.

    Science.gov (United States)

    Arruga, F; Gizdic, B; Bologna, C; Cignetto, S; Buonincontri, R; Serra, S; Vaisitti, T; Gizzi, K; Vitale, N; Garaffo, G; Mereu, E; Diop, F; Neri, F; Incarnato, D; Coscia, M; Allan, J; Piva, R; Oliviero, S; Furman, R R; Rossi, D; Gaidano, G; Deaglio, S

    2016-12-26

    Even if NOTCH1 is commonly mutated in Chronic Lymphocytic Leukemia (CLL), its functional impact in the disease remains unclear. Using CRISPR/Cas9-generated Mec-1 cell line models, we show that NOTCH1 regulates growth and homing of CLL cells by dictating expression levels of the tumor suppressor gene DUSP22. Specifically, NOTCH1 affects the methylation of DUSP22 promoter by modulating a nuclear complex, which tunes the activity of DNA methyltransferase 3A (DNMT3A). These effects are enhanced by PEST-domain mutations, which stabilize the molecule and prolong signaling. CLL patients with a NOTCH1-mutated clone showed low levels of DUSP22 and active chemotaxis to CCL19. Lastly, in xenograft models, NOTCH1-mutated cells displayed a unique homing behavior, localizing preferentially to the spleen and brain. These findings connect NOTCH1, DUSP22, and CCL19-driven chemotaxis within a single functional network, suggesting that modulation of the homing process may provide a relevant contribution to the unfavorable prognosis associated with NOTCH1 mutations in CLL.Leukemia accepted article preview online, 26 December 2016. doi:10.1038/leu.2016.383.

  6. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells

    Science.gov (United States)

    Liu, Hao; Zhou, Ping; Lan, Hong; Chen, Jia; Zhang, Yu-xiang

    2017-01-01

    Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the canonical Notch signaling pathway, ligand binding induces the release and nuclear translocation of Notch receptor intracellular domains (NICDs), which then interact with the transcription factor CSL, resulting in subsequent activation of the canonical Notch target genes. We investigated the binding site profiles of Notch1and Notch2 in the BxPC3 genome using CHIP-Seq and bioinfomatics. We found that Notch1, Notch2 and CSL generally bound to different target genes. We also found that only a small subset of Notch1 and Notch2 binding sites overlap with that of CSL, but about half of the CSL binding overlap with that of Notch1 or Notch2, indicating most Notch signaling activities are CSL-independent.

  7. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhou, Ping; Lan, Hong; Chen, Jia; Zhang, Yu-Xiang

    2017-01-01

    Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the canonical Notch signaling pathway, ligand binding induces the release and nuclear translocation of Notch receptor intracellular domains (NICDs), which then interact with the transcription factor CSL, resulting in subsequent activation of the canonical Notch target genes. We investigated the binding site profiles of Notch1and Notch2 in the BxPC3 genome using CHIP-Seq and bioinfomatics. We found that Notch1, Notch2 and CSL generally bound to different target genes. We also found that only a small subset of Notch1 and Notch2 binding sites overlap with that of CSL, but about half of the CSL binding overlap with that of Notch1 or Notch2, indicating most Notch signaling activities are CSL-independent.

  8. Structure and dynamics of a constitutively active neurotensin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, Brian E. [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Lee, Sangbae [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Bhattacharya, Supriyo [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Botos, Istvan [National Inst. of Health (NIH), Bethesda, MD (United States). National Inst. of Diabetes and; White, Courtney F. [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Du, Haijuan [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Vaidehi, Nagarajan [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Grisshammer, Reinhard [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.

  9. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders

    DEFF Research Database (Denmark)

    Kamstrup, M.R.; Ralfkiaer, E.; Skovgaard, G.L.;

    2008-01-01

    to coexpress Notch1 and activated Akt kinase. Conclusions These results imply a potential role for the Notch signalling pathway in the pathogenesis of primary cutaneous CD30+ lymphoproliferative disorders and provide a rationale for the exploration of the activity of Notch antagonists in the therapy...

  10. Influence and Significance of Herceptin on the Notch-1 Signaling Pathway in Breast Cancer SK-BR3 Cells%赫赛汀对乳腺癌SK-BR3细胞Notch-1信号通路的影响及意义

    Institute of Scientific and Technical Information of China (English)

    韩铭; 邓华瑜; 隆玲; 姜蓉

    2011-01-01

    Objective: To investigate the effects and mechanism of action of herceptin on Notch-1 protein in breast cancer SK-BR3 cells, and to explore the significance of Notch-1 signaling pathway in breast cancer cell resistance to herceptin.Methods: The breast cancer cells SK-BR3 with HER2 overexpression and MDA-MB-231 overexpression with HER2 non-overexpression were selected.Immunocytochemistry and Western-blot analysis were used to detect the expression of Notch-1 protein and activate Notch-1 ( Notch-1IC ) in the SK-BR3 and MDA-MB-231 cells, respectively.SK-BR3 cells were treated with herceptin.Western blot analysis was used to detect the expression of Notch-1IC and HER2 proteins.Reverse transcriptase polymerase chain reaction was used to assay HES-1 mRNA expression.Co-immunoprecipitation detected the interaction between HER2 and Notch-1 proteins in the SK-BR3 cells.Results: The level of Notch-1IC nucleic localization and the expression of Notch-1IC protein in SK-BR3 cells ( 9.37 ± 0.64 ) were significantly lower than in the MDA-MB-231 cells ( 21.665 ± 1.11 ) ( P < 0.01 ).SK-BR3 cells were treated with herceptin.Compared with the controls, the expression of Notch-1IC protein and HES-1 mRNA was significantly increased ( P < 0.01 ).There was no apparent change in HER2 protein expression after herceptin treatment ( F = 0.973, P > 0.05 ).Co-immunoprecipitation showed coprecipitation between the Notch-1 and HER2 proteins.Conclusion: The activity of Notch-1 protein was decreased in the breast cancer cells with HER2 overexpression.HER2 could combine with Notch-1, thereby negatively regulating Notch-1 activity.Herceptin could increase the activity of Notch-1, which could be associated with the cell resistance.%目的:探讨赫赛汀对乳腺癌SK-BR3细胞Notch-1蛋白的影响及其作用机制,认识Notch-1信号通路在乳腺癌细胞形成赫赛汀耐药中的意义.方法:选用HER-2过表达乳腺癌SK-BR3细胞及HER-2非过表达乳腺癌MDA-MB-231细

  11. File list: Oth.ALL.20.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Notch1.AllCell mm9 TFs and others Notch1 All cell types SRX702806,SRX070...891,SRX070894,SRX702807,SRX516185,SRX114992,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Notch1.AllCell.bed ...

  12. File list: Oth.Bld.50.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.Notch1.AllCell mm9 TFs and others Notch1 Blood SRX070891,SRX070894,SRX70...2806,SRX702807,SRX516185,SRX114992,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.Notch1.AllCell.bed ...

  13. File list: Oth.ALL.05.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Notch1.AllCell mm9 TFs and others Notch1 All cell types SRX114992,SRX702...806,SRX702807,SRX070891,SRX070894,SRX516185,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Notch1.AllCell.bed ...

  14. File list: Oth.Bld.20.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.Notch1.AllCell mm9 TFs and others Notch1 Blood SRX702806,SRX070891,SRX07...0894,SRX702807,SRX516185,SRX114992,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.Notch1.AllCell.bed ...

  15. File list: Oth.Bld.10.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.Notch1.AllCell mm9 TFs and others Notch1 Blood SRX114992,SRX702807,SRX70...2806,SRX070891,SRX070894,SRX516185,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.Notch1.AllCell.bed ...

  16. File list: Oth.ALL.10.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Notch1.AllCell mm9 TFs and others Notch1 All cell types SRX114992,SRX702...807,SRX702806,SRX070891,SRX070894,SRX516185,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Notch1.AllCell.bed ...

  17. File list: Oth.Bld.05.Notch1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.Notch1.AllCell mm9 TFs and others Notch1 Blood SRX114992,SRX702806,SRX70...2807,SRX070891,SRX070894,SRX516185,SRX884571,SRX884572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.Notch1.AllCell.bed ...

  18. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  19. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress1

    Science.gov (United States)

    Alimirah, Fatouma; Panchanathan, Ravichandran; Davis, Francesca J; Chen, Jianming; Choubey, Divaker

    2007-01-01

    Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53-mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53-mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress. PMID:17534448

  20. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  1. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Lambertini

    Full Text Available In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.

  2. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background.

    Science.gov (United States)

    Koenig, Sara N; Bosse, Kevin M; Nadorlik, Holly A; Lilly, Brenda; Garg, Vidu

    Thoracic aortic aneurysms (TAA) are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV) and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1(+/-); Nos3(-/-) mice. Echocardiographic analysis of Notch1(+/-); Nos3(-/-) mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1(+/-); Nos3(-/-) mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  3. MicroRNA-146a inhibits glioma development by targeting Notch1.

    Science.gov (United States)

    Mei, Jie; Bachoo, Robert; Zhang, Chun-Li

    2011-09-01

    Dysregulated epidermal growth factor receptor (EGFR) signaling through either genomic amplification or dominant-active mutation (EGFR(vIII)), in combination with the dual inactivation of INK4A/ARF and PTEN, is a leading cause of gliomagenesis. Our global expression analysis for microRNAs revealed that EGFR activation induces miR-146a expression, which is further potentiated by inactivation of PTEN. Unexpectedly, overexpression of miR-146a attenuates the proliferation, migration, and tumorigenic potential of Ink4a/Arf(-/-) Pten(-/-) Egfr(vIII) murine astrocytes. Its ectopic expression also inhibits the glioma development of a human glioblastoma cell line in an orthotopic xenograft model. Such an inhibitory function of miR-146a on gliomas is largely through downregulation of Notch1, which plays a key role in neural stem cell maintenance and is a direct target of miR-146a. Accordingly, miR-146a modulates neural stem cell proliferation and differentiation and reduces the formation and migration of glioma stem-like cells. Conversely, knockdown of miR-146a by microRNA sponge upregulates Notch1 and promotes tumorigenesis of malignant astrocytes. These findings indicate that, in response to oncogenic cues, miR-146a is induced as a negative-feedback mechanism to restrict tumor growth by repressing Notch1. Our results provide novel insights into the signaling pathways that link neural stem cells to gliomagenesis and may lead to new strategies for treating brain tumors.

  4. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  5. Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Skrtić, Anita; Korać, Petra; Krišto, Delfa Radić; Ajduković Stojisavljević, Radmila; Ivanković, Davor; Dominis, Mara

    2010-12-01

    Notch signaling is implicated in the pathogenesis of multiple myeloma expressing high level of active Notch proteins NOTCH1 and JAGGED1 in tumor plasma cells. We investigated expression of NOTCH1 and JAGGED1 in bone marrow trephine biopsies of 80 newly diagnosed multiple myeloma and 20 monoclonal gammopathy of undetermined significance patients using immunohistochemical methods. The number of positive tumor cells was counted per 1000 tumor cells and the intensity of staining was assessed semi quantitatively. Multiple myelomas expressed NOTCH1 in 92.31% (72/78) and JAGGED1 in 92.21% (71/77) cases. NOTCH1 staining was strong in the majority of cases (59.7%), whereas JAGGED1 was predominately weak (67.6% of cases). In contrast, both markers were negative in all monoclonal gammopathy of undetermined significance cases. However, upon progression of disease from monoclonal gammopathy of undetermined significance to multiple myeloma (seen in 4 patients), analysis of the subsequent bone marrow biopsy showed weak expression of both markers in tumorous plasma cells. Immunohistochemistry results were compared with the pattern of bone marrow infiltration, plasma cell differentiation, and the presence of t(11;14)(q13,q32), t(14;16)(q32;q23),and t(4;14)(p16.3;q23) and overall survival in multiple myeloma patients. A significant correlation was found between strong NOTCH1 staining in multiple myeloma plasma cells and the diffuse type of bone marrow infiltration (P = .002) and an immature morphologic type of plasma cells (P = .043). After a median follow-up of 20.3 months, in multiple myeloma patients no difference in overall survival between NOTCH1 (P = .484) and JAGGED1 (P = .822) positive and negative cases were found. In conclusion, our results indicate importance of NOTCH1 and JAGGED1 expression in plasma cell neoplasia and a possible diagnostic value of their immunohistochemical evaluation of bone marrow infiltrates for multiple myeloma. Copyright © 2010 Elsevier Inc. All

  6. Recent progress of Notch-1 signaling pathway in tumor research%Notch-1信号通路在肿瘤中的研究进展

    Institute of Scientific and Technical Information of China (English)

    张庆庆(综述); 陈伟; 张森林(审校)

    2014-01-01

    As one of members of the Notch gene family , Notch-1 signaling pathway plays an important role in the processing of cell proliferation , differentiation , survival and apoptosis .The abnormal expression of Notch-1 is closely related to tumorigenesis and de-velopment .In recent years , many studies have focused on the relationship between the Notch-1 signaling pathway and tumor .This arti-cle reviews the achievement of Notch-1 signaling pathway in recent tumor researches .%Notch-1是Notch基因家族的成员之一,Notch-1信号通路在细胞的增殖、分化、生存和凋亡中起着重要作用,其异常表达与肿瘤的发生、发展密切相关。近年来, Notch-1信号通路和肿瘤的关系研究颇多。文中就该信号通路在肿瘤中的研究进展作一综述。

  7. Inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Ma Yongjie; Gu Feng; Fu Li

    2014-01-01

    Background Paclitaxel (PAC) is the first-line chemotherapy drug for most breast cancer patients,but clinical studies showed that some breast cancer patients were insensitive to PAC,which led to chemotherapy failure.It was reported that Notch1 signaling participated in drug resistance of breast cancer.Here,we show whether Notch1 expression is related to PAC sensitivity of breast cancer.Methods We employed Notch1 siRNA and Notch1 inhibitor,N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT),to down regulate Notch1 expression in human breast cancer cells MDA-MB-231,and detected the inhibition effect by Western blotting and reverse trans cription-polymerase chain reaction,respectively.After 24 hours exposure to different concentration of PAC (0,1,5,10,15,20,and 25 μg/ml),the viability of the control group and experimental group cells was tested by MTT.We also examined the expression of Notch1 in PAC sensitive and nonsensitive breast cancer patients,respectively by immunohistochemistry (IHC).The PAC sensitivity of breast cancer patients were identified by collagen gel droplet embedded culture-drug sensitivity test (CD-DST).Results Down regulation of Notch1 expression by Notch1siRNA interference or Notch1 inhibitor increased the PAC sensitivity in MDA-MB-231 cells (P <0.05).Also,the expression of Notch1 in PAC sensitive patients was much lower than that of PAC non-sensitive patients (P <0.01).Conclusion Notch1 expression has an effect on PAC sensitivity in breast cancer patients,and the inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer.

  8. The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling.

    Science.gov (United States)

    De Ford, C; Heidersdorf, B; Haun, F; Murillo, R; Friedrich, T; Borner, C; Merfort, I

    2016-01-28

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits.

  9. New constitutive latex osmotin-like proteins lacking antifungal activity.

    Science.gov (United States)

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.

  10. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    Science.gov (United States)

    Zhao, Yun-Chun; Zhang, Li; Feng, Shi-Sen; Hong, Lu; Zheng, Hai-Li; Chen, Li-Li; Zheng, Xiao-Ling; Ye, Yi-Qing; Zhao, Meng-Dan; Wang, Wen-Xi; Zheng, Cai-Hong

    2016-01-01

    A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells.

  11. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE.

    NARCIS (Netherlands)

    Vooijs, M.; Ong, C.T.; Hadland, B.; Huppert, S.; Liu, Z.; Korving, J.; Born, M. van den; Stappenbeck, T.; Wu, Y.; Clevers, J.C.; Kopan, R.

    2007-01-01

    The four highly conserved Notch receptors receive short-range signals that control many biological processes during development and in adult vertebrate tissues. The involvement of Notch1 signaling in tissue self-renewal is less clear, however. We developed a novel genetic approach N(1)IP-CRE (Notch1

  12. Increased expression of Notch1 in temporal lobe epilepsy:animal models and clinical evidence

    Institute of Scientific and Technical Information of China (English)

    Xijin Liu; Zhiyong Yang; Yaping Yin; Xuejun Deng

    2014-01-01

    Temporal lobe epilepsy is associated with astrogliosis. Notch1 signaling can induce astrogliosis in glioma. However, it remains unknown whether Notch1 signaling is involved in the pathogenesis of epilepsy. This study investigated the presence of Notch1, hairy and enhancer of split-1, and glial fibrillary acidic protein in the temporal neocortex and hippocampus of lithium-pilocar-pine-treated rats. The presence of Notch1 and hairy and enhancer of split-1 was also explored in brain tissues of patients with intractable temporal lobe epilepsy. Quantitative electroencephalo-gram analysis and behavioral observations were used as auxiliary measures. Results revealed that the presence of Notch1, hairy and enhancer of split-1, and glial ifbrillary acidic protein were en-hanced in status epilepticus and vehicle-treated spontaneous recurrent seizures rats, but remain unchanged in the following groups:control, absence of either status epilepticus or spontaneous recurrent seizures, and zileuton-treated spontaneous recurrent seizures. Compared with patient control cases, the presences of Notch1 and hairy and enhancer of split-1 were upregulated in the temporal neocortex of patients with intractable temporal lobe epilepsy. Therefore, these results suggest that Notch1 signaling may play an important role in the onset of temporal lobe epilepsy via astrogliosis. Furthermore, zileuton may be a potential therapeutic strategy for temporal lobe epilepsy by blocking Notch1 signaling.

  13. The Expression of Notch 1 and Notch 3 in Gallbladder Cancer and Their Clinicopathological Significance.

    Science.gov (United States)

    Liu, Luyao; Yang, Zhu-Lin; Wang, Chunwei; Miao, Xiongying; Liu, Zhiyu; Li, Daiqiang; Zou, Qiong; Li, Jinghe; Liang, Lufeng; Zeng, Guixiang; Chen, Senlin

    2016-07-01

    Gallbladder cancers (GBCs) are highly malignant gastrointestinal cancers. The biological makers for the prognosis and targeting therapy of GBCs have not been established. The protein expression of Notch 1 and Notch 3 in 46 squamous cell/adenosquamous carcinomas (SC/ASCs) and 80 adenocarcinomas (AC) was measured using immunohistochemistry. Positive Notch 1 and Notch 3 expression in both SC/ASC and AC was significantly associated with large tumor size, invasion, metastasis, and low surgical curability (P Notch 1 and Notch 3 expression was significantly associated with mean survival of SC/ASC and AC patients (P Notch 1 and Notch 3 expression, as well as low differentiation, large tumor size, high TNM stage, invasion, lymph node metastasis, and surgical curability are independent poor-prognostic factors in both SC/ASC and AC patients. Positive Notch 1 and Notch 3 expression is closely correlated with severe clinicopathological characteristics and poor prognosis in both SC/ASC and AC patients.

  14. Notch1-Snail1-E-cadherin pathway in metastatic hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Xiao Qi; Zhang, Wu; Lui, Eric L H; Zhu, Yongqiang; Lu, Ping; Yu, Xiaoming; Sun, Jisan; Yang, Sitian; Poon, Ronnie T P; Fan, Sheung Tat

    2012-08-01

    Notch signaling, a critical pathway for tissue development, also contributes to tumorigenesis in many cancers, but its pathological function in liver cancer is not well defined. In our study, Notch1 expression and its clinicopathological parameters were evaluated in 82 human hepatocellular carcinoma (HCC) patients. Plasmid-based siNotch1 shRNA was transiently or stably transfected into metastatic HCC cells and subsequently evaluated for the effects on orthotopic liver tumor metastasis in a mouse model as well as the effects on downstream pathways. Aberrant high expression of Notch1 was significantly associated with metastatic disease parameters in HCC patients, such as tumor-node-metastasis Stages III-IV and tumor venous invasion. Knocking-down Notch1 reduced cell motility in vitro and orthotopic tumor metastasis from the liver to the lung in vivo in a mouse model. In metastatic HCC cells, abnormal expression of Notch1 was associated with increased expression of Snail1 and repressed expression of E-cadherin; the Notch1-Snail1-E-cadherin association can also be found in HCC patient tumors. Inhibition of Notch1 by shRNA abolished Snail1 expression, which further resulted in the re-establishment of repressed E-cadherin in metastatic HCC cells. Thus, abnormal Notch1 expression was strongly associated with HCC metastatic disease, which might be mediated through the Notch1-Snail1-E-cadherin pathway. Knock-down of Notch1 reversed HCC tumor metastasis in a mouse model. Therefore, these data suggest that effective targeting of Notch signaling might also inhibit tumor metastasis.

  15. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    Science.gov (United States)

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.

  16. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    Science.gov (United States)

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2010-01-01

    Summary The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339–345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity. PMID:21220114

  17. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Science.gov (United States)

    Aleem, Saadat U; Craddock, Barbara P; Miller, W Todd

    2015-01-01

    The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  18. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Directory of Open Access Journals (Sweden)

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  19. Inhibitory effects of microRNA-34a on proliferation of bladder tumor cell line T24 by targeting Notch1

    Directory of Open Access Journals (Sweden)

    Chao ZHANG

    2012-05-01

    Full Text Available Objective  To explore the correlation between microRNA-34a (miR-34a and Notch1, and evaluate the influence of miR-34a overexpression on proliferation of bladder cancer cell line T24. Methods  Bioinformatics software were used for predicting the binding site of miR-34a and Notch1, and luciferase assay was performed for confirming the direct regulatory relationship between them. miR-34a plasmid was transfected into bladder cancer cell line T24. Notch1 expression was detected by quantitative real-time polymerase chain reaction and Western blotting. Cell proliferation was assayed by 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay. Apoptosis and cell cycle were assessed by flow cytometry. Results  Luciferase assays showed that miR-34a transfection significantly down-regulated the normalized Notch1 3'UTR luciferase activity (P=0.006. Transfection of miR-34a reduced the RNA and protein levels of Notch1. Cell proliferation assay revealed that miR-34a transfection suppressed the proliferation of T24 cells in a time-dependent manner (P < 0.001. Ectopic expression of miR-34a caused significant increase of apoptotic cells (P=0.003 and induced cell cycle arrest at G0-G1 phase in T24 cells (P=0.002. Conclusion  Overexpressed miRNA-34a can inhibit proliferation of bladder cancer cells by antagonizing Notch1, thus indicating its tumor-suppressive function in bladder cancer.

  20. Evidence of non-canonical NOTCH signaling: Delta-like 1 homolog (DLK1) directly interacts with the NOTCH1 receptor in mammals.

    Science.gov (United States)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads; Beck, Hans Christian; Mortensen, Sussi B; Laborda, Jorge; Baladrón, Victoriano; Sheikh, Søren P; Andersen, Ditte C

    2016-04-01

    Canonical NOTCH signaling, known to be essential for tissue development, requires the Delta-Serrate-LAG2 (DSL) domain for NOTCH to interact with its ligand. However, despite lacking DSL, Delta-like 1 homolog (DLK1), a protein that plays a significant role in mammalian development, has been suggested to interact with NOTCH1 and act as an antagonist. This non-canonical interaction is, however controversial, and evidence for a direct interaction, still lacking in mammals. In this study, we elucidated the putative DLK1-NOTCH1 interaction in a mammalian context. Taking a global approach and using Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (siRNA) setup in a mammalian cell line, NOTCH signaling was substantially inhibited by DLK1. Using a mammalian two-hybrid system, we firmly established that the effect of DLK1 on NOTCH signaling was due to a direct interaction between DLK1 and NOTCH1. By careful dissection of this mechanism, we found this interaction to occur between EGF domains 5 and 6 of DLK1 and EGF domains 10-15 of NOTCH1. Thus, our data provide the first evidence for a direct interaction between DLK1 and NOTCH1 in mammals, and substantiate that non-canonical NOTCH ligands exist, adding to the complexity of NOTCH signaling.

  1. Relaxin Prevents Cardiac Fibroblast-Myofibroblast Transition via Notch-1-Mediated Inhibition of TGF-β/Smad3 Signaling

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Pini, Alessandro; Tani, Alessia; Nistri, Silvia; Nosi, Daniele; Zecchi-Orlandini, Sandra; Bani, Daniele; Formigli, Lucia

    2013-01-01

    The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion

  2. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available The hormone relaxin (RLX is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT, a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this

  3. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  4. Therapeutic efficacy by targeting correction of Notch1-induced aberrants in uveal tumors.

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    Full Text Available There is a need for more effective treatments for uveal melanoma. The recombinant oncolytic adenovirus H101 replicates specifically in p53-depleted tumor cells, and has been approved for use by the Chinese State Food and Drug Administration. However, this treatment is associated with subsequent remission. Transfection of uveal melanoma cells with a small interfering RNA against Notch1 (siNotch1 effectively suppressed Notch1 expression, resulting in significant cell growth inhibition when combined with H101 treatment. Combined treatment with siNotch1 and H101 (H101-Notch1-siRNA greatly enhanced apoptosis and cell cycle arrest in vitro as compared to treatment with H101 or siNotch1 alone. For in vivo treatments, the combined treatment of siNotch1 and H101 showed remarkable tumor growth inhibition and prolonged mouse survival in the OCM1 xenograft model. We predict that Notch pathway deregulation could be a feature of uveal melanoma, and could be a therapeutic target, especially if p53 is concurrently targeted.

  5. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background

    Directory of Open Access Journals (Sweden)

    Sara N. Koenig

    2015-03-01

    Full Text Available Thoracic aortic aneurysms (TAA are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  6. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    Science.gov (United States)

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.

  7. Notch1 signaling inhibits growth of EC109 esophageal carcinoma cells through downmodulation of HPV18 E6/E7 gene expression

    Institute of Scientific and Technical Information of China (English)

    Kejie ZHANG; Quanyi LU; Xiaoqing NIU; Peng ZHANG; Jiangning ZHAO; Zhao WANG; Jiasheng HU; Pu LI; Wenli LIU

    2009-01-01

    Aim:To investigate the role of the Notch1 signaling pathway in growth arrest of an esophageal carcinoma cell line (EC109)in vitro and the mechanism involved.Methods: An intracellular domain of Notch1 (ICN) was transfected into cultured EC109 cells by lipofectamine transfection.Subsequently,the proliferation of the transfected cells was measured by an MTF assay.Cell cycle distribution was ana-lyzed by flow cytometry.Human papillomavirus type 18 (HPV18) E6/E7 mRNA expression was detected by RT-PCR,and p53 protein expression was detected by Western blot.Results: Activation of Notch1 signaling resulted in inhibition of EC109 cell proliferation with the induction of G2/M arrest,downmodulation of HPV18 E6/E7 gene expression,and upregulation of p53 expression.Conclusion: Repression of HPV18 E6/E7 expression by Notch1 signaling results in the activation of p53-mediated pathways with concomitant growth suppression of HPV18-positive EC109 cells.

  8. Prognostic value of Notch-1 expression in hepatocellular carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu T

    2015-10-01

    Full Text Available Tao Wu,1 Min Jiao,1 Li Jing,1 Min-Cong Wang,1 Hai-Feng Sun,2 Qing Li,1 Yi-Yang Bai,1 Yong-Chang Wei,1 Ke-Jun Nan,1 Hui Guo1 1Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 2Department of Oncology, Shaanxi Cancer Hospital, Xi’an, People’s Republic of China Abstract: Association of Notch-1 expression with prognosis of patients with hepatocellular carcinoma (HCC remains controversial. We conducted a meta-analysis to reevaluate the association of Notch-1 expression with clinicopathological characteristics and prognosis of HCC. PubMed, Embase, Web of Science, and China National Knowledge Infrastructure were searched to look for relevant studies. The association between Notch-1 expression and clinicopathological parameters and overall survival (OS was then reassessed using the meta-analysis for odds ratio (OR or hazard ratio (HR and 95% confidence interval (CI. A total of seven studies, including 810 HCC patients, were eligible for the meta-analysis. Our data showed that high Notch-1 expression was able to predict poor OS (HR 1.50, 95% CI 1.17–1.83, P=0.0001. The pooled OR showed that high Notch-1 expression was significantly associated with tumor metastasis (OR 0.37, 95% CI 0.16–0.86, P=0.02 and tumor size >5 cm (OR 0.48, 95% CI 0.26–0.88, P=0.02. In contrast, there was no association between high Notch-1 expression and tumor differentiation, late TNM stage, tumor number, and portal vein invasion of HCC. In conclusion, Notch-1 overexpression might predict poorer survival and more aggressive behavior in patients with HCC. Keywords: hepatocellular carcinoma, Notch-1, prognosis, clinicopathological features, meta-analysis

  9. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma

    Science.gov (United States)

    Giovannini, Catia; Minguzzi, Manuela; Genovese, Filippo; Baglioni, Michele; Gualandi, Alessandra; Ravaioli, Matteo; Milazzo, Maddalena; Tavolari, Simona; Bolondi, Luigi; Gramantieri, Laura

    2016-01-01

    Hepatocellular carcinoma (HCC) ranks fifth in frequency worldwide amongst all human cancers causing one million deaths annually. Despite many promising treatment options, long-term prognosis remains dismal for the majority of patients who develop recurrence or present with advanced disease. Notch signaling is an evolutionarily conserved pathway crucial for the development and homeostasis of many organs including liver. Herein we showed that aberrant Notch1 is linked to HCC development, tumor recurrence and invasion, which might be mediated, at least in part, through the Notch1-E-Cadherin pathway. Collectively, these findings suggest that targeting Notch1 has important therapeutic value in hepatocellular carcinoma. In this regard, comparative analysis of the secretome of HepG2 and HepG2 Notch1 depleted cells identified novel secreted proteins related to Notch1 expression. Soluble E-Cadherin (sE-Cad) and Thrombospondin-1 (Thbs1) were further validated in human serum as potential biomarkers to predict response to Notch1 inhibitors for a tailored individualized therapy. PMID:27167202

  10. Effects of Notch-1 down-regulation on malignant behaviors of breast cancer stem cells.

    Science.gov (United States)

    Peng, Gong-ling; Tian, Ye; Lu, Chong; Guo, Hui; Zhao, Xiang-wang; Guo, Ya-wen; Wang, Long-qiang; Du, Qiu-li; Liu, Chun-ping

    2014-04-01

    This study examined the effect of Notch-1 signaling on malignant behaviors of breast cancer cells by regulating breast cancer stem cells (BCSCs). BCSCs were enriched by using serum-free medium and knocked out of Notch-1 by using a lentiviral vector. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to detect the Notch-1 expression levels in breast cancer cell lines and BCSCs, and flow cytometry to detect the proportion of BCSCs in BCSC spheres. The BCSC self-renewal, migration, invasion, and tumorigenicity were examined by the tumor microsphere-forming assay and transwell assay and after xenotransplantation. The results showed that the Notch-1 silencing reduced the number of BCSC spheres, the proportion of BCSCs, and the number of cells penetrating through the transwell membrane. It also decreased the size of tumors that were implanted in the nude mice. These results suggest that Notch-1 signaling is intimately linked to the behaviors of BCSCs. Blocking Notch-1 signaling can inhibit the malignant behaviors of BCSCs, which may provide a promising therapeutical approach for breast cancer.

  11. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo.

    Science.gov (United States)

    Xu, Peng; Qiu, Mingzhe; Zhang, Zhiyong; Kang, Chunsheng; Jiang, Rongcai; Jia, Zhifan; Wang, Guangxiu; Jiang, Hao; Pu, Peiyu

    2010-03-01

    Notch receptors play an essential role in cellular processes during embryonic and postnatal development, including maintenance of stem cell self-renewal, proliferation, and determination of cell fate and apoptosis. Deregulation of Notch signaling has been implicated in some genetic diseases and tumorigenesis. The function of Notch signaling in a variety of tumors can be either oncogenic or tumor-suppressive, depending on the cellular context. In this study, Notch1 overexpression was observed in the majority of 45 astrocytic gliomas with different grades and in U251MG glioma cells. Transfection of siRNA targeting Notch1 into U251 cells in vitro downregulated Notch1 expression, associated with inhibition of cell growth, arrest of cell cycle, reduction of cell invasiveness, and induction of cell apoptosis. Meanwhile, tumor growth was delayed in established subcutaneous gliomas in nude mice treated with Notch1 siRNA in vivo. These results suggest that Notch1 plays an important oncogenic role in the development and progression of astrocytic gliomas. Furthermore, knockdown of Notch1 expression by siRNA simultaneously downregulated the expression of EGFR and the important components of its downstream pathways, including PI3K, p-AKT, K-Ras, cyclin D1 and MMP9, indicating the crosstalk and interaction of Notch and EGFR signaling pathways.

  12. Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D-induced skin carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Pawel K Mazur

    Full Text Available BACKGROUND: The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, mice with activated Kras(G12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.

  13. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis.

    Science.gov (United States)

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2017-06-01

    We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Structural basis for Notch1 engagement of Delta-like 4

    Science.gov (United States)

    Luca, Vincent C.; Jude, Kevin M.; Pierce, Nathan W.; Nachury, Maxence V.; Fischer, Suzanne; Garcia, K. Christopher

    2015-01-01

    Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor–like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways. PMID:25700513

  15. Notch 1 signaling pathway is the potential target of novel anticancer drugs for the treatment of human nasopharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Guo-Fang Guan

    2014-12-01

    Full Text Available Activation of Notch signaling pathway in cancer stem cells plays a crucial role in the regulation of self–renewal and maintenance of side population cells. In the present study, we have identified cancer stem like 2.7% side population cells from nasopharyngeal carcinoma samples whose prevalence was signifi-cantly reduced to 0.3% upon verapamil treatment. The protein level of Notch1 and Hes-1 are highly up-regulated in fluorescence-activated cell sorting purified side population cells and thus leads to the elevated expression of stem cell surface proteins (Oct-4, Sox2 and Nanog, which are essential for side population cells self-renewal. In addition, these nasopharyngeal carcinoma side population cells are CD133 and CD44 positive and they possess enhanced cell proliferation rate, highly tumorgenic and invasive. Our findings suggest that Notch1 signaling is a potential target of novel anticancer drugs, which could efficiently target and eradicate the cancer stem cells.

  16. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    Science.gov (United States)

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX)(+) neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1(-/-) mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  17. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations

    OpenAIRE

    Kofler, Natalie M.; Henar Cuervo; Uh, Minji K.; Aino Murtomäki; Jan Kitajewski

    2015-01-01

    Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1 +/−; Notch3 −/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothel...

  18. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  19. Expression of Notch 1 receptor associated with tumor aggressiveness in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Fu H

    2016-03-01

    Full Text Available Hongliang Fu,1 Chao Ma,1 Wenbin Guan,2 Weiwei Cheng,1 Fang Feng,1 Hui Wang1 1Department of Nuclear Medicine, 2Department of Pathology, Xin Hua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China Aim: The aim of this study was to assess if the expression of Notch 1 receptor is associated with tumor aggressiveness in papillary thyroid carcinomas (PTCs.Patients and methods: By searching the electronic medical record system of Xin Hua Hospital, all cases of PTC patients who underwent thyroidectomy in the hospital between 2013 and 2014 were retrieved. Then, the cases of patients who had a history of any other malignancy or whose thyroid tumor specimen was not available for assay were rejected. Finally, 68 cases of PTC patients were obtained. Formalin-fixed paraffin-embedded tissue blocks of these patients were studied by immunohistochemistry to learn the expression of Notch 1 receptor. Meanwhile, the clinical data of these patients including sex, age, size of the tumor, presence of node metastasis or distant metastasis, and presence of capsule invasion and tumor multicentricity were collected. Pearson’s chi-square test or Fisher’s exact test was used for measuring statistical differences in categorical variables. All the statistical tests were two-sided. A P-value <0.05 was considered to be statistically significant.Results: A total of 19 male and 49 female PTC patients with a mean age of 44.8±13.6 years (range 18–78 years were studied. Notch 1 receptor expression was found in 15/68 (22% samples of PTC. The expression of Notch 1 receptor was significantly associated with tumor size (P=0.021, distant metastasis (P=0.008, capsule invasion (P=0.001, tumor multicentricity (P=0.018, and age (P=0.033. However, the expression of Notch 1 receptor was not significantly correlated with node metastasis (P=0.096 and sex (P=0.901.Conclusion: The expression of Notch 1 receptor is associated with tumor

  20. Notch-1基因检测在大肠癌中的表达及其临床意义%Expression and clinical significance of Notch-1 in cancer of colon

    Institute of Scientific and Technical Information of China (English)

    窦翠云; 常洪劲; 乔海红

    2011-01-01

    Objective To evaluate the expression of Notch-1 gene and its mechanisms in the development of cancer of colon. Methods The levels of Notch-1 gene in tissues of cancer of colon and normal colon were measured by RT-PCR and Western blot. Results The expression of Notch-1 gene could be detected both in tissues of cancer of colon and normal colon. The expression of Notch-1 was significantly up-regulated in cancer of colon,compared with normal colon tissues(P<0. 05). Conclusion The expression of Notch-1 in cancer of colon was significantly higher than that in normal tissues, indicating that the expression of Notch-1 might be correlated with the carcinogenesis and development of cancer of colon.%目的 探讨Notch-1基因在人大肠癌中的表达水平,并探讨其在大肠癌发生、发展中的作用.方法 采用RT-PCR和Western blot方法检测大肠癌组织和对照组织标本中Notch-1的表达水平.结果 Notch-1在癌组织与对照组织中均有表达,但在癌组织中的表达明显高于对照组织,两者差异有统计学意义.结论 Notch-1基因在大肠癌中的表达水平明显增高,提示在结直肠中,Notch-1高表达对大肠癌的发生和发展具有促进作用.

  1. GHS-R1a constitutive activity and its physiological relevance

    Directory of Open Access Journals (Sweden)

    Yves Louis MEAR

    2013-05-01

    Full Text Available Abundant evidences have shown that ghrelin, by its binding to GHS-R1a, plays an important role for fundamental physiological functions. Increasing attention is given to the GHS-R1a unusually high constitutive activity and its contribution to downstream signalling and physiological processes. Here, we review recent lines of evidences showing that the interaction between ligand-binding pocket TM domains and the ECL2 could be partially responsible for this high constitutive activity. Interestingly, GHSR-1a constitutive activity activates in turn the downstream PLC, PKC and CRE signalling pathways and this activation is reversed by the inverse agonist [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P (MSP. Noteworthy, GHSR-1a exhibits a C-terminal-dependent constitutive internalization. Non-sense GHS-R1a mutation (Ala204Glu, first discovered in Moroccan patients, supports the role of GHSR-1a constitutive activity in physiological impairments. Ala204Glu-point mutation, altering exclusively the GHSR-1a constitutive activity, was associated with familial short stature syndrome. Altogether, these findings suggest that GHS-R1a constitutive activity could contribute to GH secretion or body weight regulation. Consequently, future research on basic and clinical applications of GHS-R1a inverse agonists will be challenging and potentially rewarding.

  2. Nutrition, activity behavior and body constitution in primary school children

    Directory of Open Access Journals (Sweden)

    F Carandente

    2009-12-01

    Full Text Available Child and adolescent obesity currently affects at least 10-25�0of the paediatric population in most developed countries. The BMI value is one of the most appropriate method of defining obesity and has a strong association with body fatness and health risk. Two main environmental factors, nutrition and physical activity, could influence paediatric obesity development. This paper studies the relationship between sedentariness, snack and soft drink intake and overweight or obesity in children. 1194 primary school children (age 8-10 participated in the study. For all the subjects we measured the anthropometric data to calculate the BMI. The overweight and obesity prevalence was estimated using age-specific BMI cutoffs. A questionaire was also submitted to all the children by a single interviewer to obtain data about: a Weekly Physical Activity, b Weekly Sedentary Activity, c Alimentary Style. Spearman rank correlation and the Student’s t-test were used. The data demonstrated that 23.2�0of the children is overweight and the 4.8�0obese. BMI is inversely correlated to the physical activity, while there is positive correlation between BMI and number of double portions. Statistically significant positive correlation is present among eating snacks and hours of sedentariness, while there is a negative correlation between physical activity and TV hours. Physical activity in the childhood could be an important tool to prevent obesity development and adult-onset chronic diseases. It is important to encourage an active lifestyle in order to reduce sedentariness.

  3. Notch 1 as a potential therapeutic target in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria Rørbæk; Gjerdrum, Lise Mette Rahbek; Biskup, Edyta Urszula;

    2010-01-01

    mycosis fungoides (MyLa) and Sezary syndrome (SeAx, HuT-78)and in primary leukemic Sézary cells. Specific downregulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of NF-kappaB, which is the most important prosurvival...

  4. Nutrition, activity behavior and body constitution in primary school children

    OpenAIRE

    Carandente, F.; Roveda, E.; Montaruli, A.; G Pizzini

    2009-01-01

    Child and adolescent obesity currently affects at least 10-25�0of the paediatric population in most developed countries. The BMI value is one of the most appropriate method of defining obesity and has a strong association with body fatness and health risk. Two main environmental factors, nutrition and physical activity, could influence paediatric obesity development. This paper studies the relationship between sedentariness, snack and soft drink intake and overweight or obesity in children. 1...

  5. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D;

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...... sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...

  6. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  7. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    Full Text Available BACKGROUND: Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control. METHODOLOGY/PRINCIPAL FINDINGS: Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. CONCLUSIONS/SIGNIFICANCE: We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  8. The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold

    Energy Technology Data Exchange (ETDEWEB)

    Lubman, Olga Y.; Kopan, Raphael; Waksman, Gabriel; Korolev, Sergey (Birbeck); (St. Louis-MED); (WU-MED)

    2010-07-20

    Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 {angstrom} crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragment adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.

  9. LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1 mutations

    DEFF Research Database (Denmark)

    Kristensen, Louise; Kielsgaard Kristensen, Thomas; Abildgaard, Niels;

    2016-01-01

    these markers. AIM: To evaluate LPL gene expression together with the well-established prognostic markers of CLL and investigate correlations with more recently identified prognostic markers, NOTCH1 and TP53 mutations. METHODS: On 149 patients LPL gene expression was analyzed by real-time RT-PCR. Exon 34...... of NOTCH1 was PCR amplified and directly sequenced. RESULTS: LPL gene expression could be measured as a categorical variable (LPL+/LPL-) and was associated with time to treatment (p... and new prognostic markers, 3 out of 4 patients, who received treatment within 24 months after diagnosis, were LPL+ (p=0.03). There was a strong correlation between NOTCH1 mutation and LPL+ (p=0.005). The unfavorable prognosis of LPL+ was maintained in CLL with wild-type NOTCH1. CONCLUSIONS: NOTCH1...

  10. 出生后小鼠第一磨牙牙胚不同发育阶段的Notch1的表达%Expression of Notch1 at different developmental stages of tooth germ of first molar of postnatal mouse

    Institute of Scientific and Technical Information of China (English)

    包志凡; 丁振江; 陈旭

    2012-01-01

    目的 分析出生后小鼠的第一磨牙牙胚发育不同阶段的Notch1的表达,进一步揭示Notch信号在牙齿发育,尤其是牙根发育过程中的作用.方法 用Western blot方法检测出生后1 d(PN1)、PN3、PN5、PN7、PN10、PN14和PN21的小鼠下颌第一磨牙牙胚中Notch1的表达,以β- actin作为内参,对阳性条带的强度用NIH ImageJ图像分析软件进行分析,应用SPSS11.0软件进行统计学处理.结果 在小鼠PN1和PN3,Notch1表达都较强,在PN5和PN7,Notch1的表达迅速下降,但在PN10,Notch1的表达又开始增强,PN14开始逐渐降低,到PN21达到最低水平,但仍可检测到Notch1的微弱表达.结论 Notch1信号在出生后小鼠牙齿的发育过程中继续发挥作用,尤其在牙冠开始钙化,牙根形成的启动等阶段可能发挥重要作用;在牙根发育接近完成时牙髓中仍有Notch1的表达,提示其可能参与牙髓损伤后的修复过程.%Objective To analyze the expression of Notchl in the first molar tooth germ of postnatal mouse at different stages of tooth development and to further indicate the role of Notch signaling in the tooth development, especially in the tooth root development. Methods The expression levels of Notchl were detected in the first molar tooth germ of the mouse during postnatal stages PN1 (1 day ) , PN3, PN5, PN7, PN10, PN14, and PN21 by Western blot, β-actin was used for reference. Bands intensities were compared using NIH ImageJ software. The statistical software package SPSS 11.0 wag used for the statistical analysis. Results Expression of Notch 1 was strong at PN1 and PN3 stages. In PN5 and PN7,Notchl expression decreased rapidly,but increased in PN10 and then decreased slightly in PN14,and dropped to its lowest level in PN21 when it could still be detected in a weak fashion. Conclusions Notchl signaling continued its role in tooth development in mouse postnatal stages. In PN1 and PN3 of mouse,Notchl signaling might be in active status because

  11. Notch-1信号通路与甲状腺乳头状癌的关系%The Relationship of Notch-1 Signaling Pathway with Human Papillary Carcinoma of Thyroid

    Institute of Scientific and Technical Information of China (English)

    杨晶金; 姚军; 沈峰清; 陈佳玉; 杨林军; 张强; 金晓燕; 梁勇

    2012-01-01

    To approach the role of Notch-1 signaling pathway in the pathological development of hu-man papillary carcinoma of thyroid, the expression levels of Notch-1, Hesl and c-Myc mRNA were determined by Real Time PCR in 35 specimen of human papillary carcinoma of thyroid and 35 specimen of normal thyroid tissues around the nodular goiter. The Notch-1, NICD, Hesl and c-Myc protein levels were determined by immu-nohistochemistry and Western blot. The expression of Notch-1 and Hesl was significantly lower in the papillary carcinoma of thyroid than that in the normal thyroid tissues, but the expression of c-Myc was higher in the papillary carcinoma of thyroid. It suggested that Notch-1 and Hesl may play a role in the pathological development of human papillary carcinoma of thyroid, and the expression of oncogene c-Myc may be unconcerned with the Notch-1 signaling pathway.%研究Notch-1信号通路中Notch-1、NICD、Hes1、c-Myc与人甲状腺乳头状癌的关系,探讨Notch-1信号通路在甲状腺乳头状癌中的分子机制.对照人甲状腺乳头状癌及正常甲状腺组织标本各35例,采用Real Time PCR检测Notch-1、Hes1、c-Myc的mRNA表达情况,采用免疫组织化学、Western blot方法检测组织标本中Notch-1、NICD、Hes1、c-Myc蛋白的表达情况.Notch-1、Hes1在甲状腺乳头状癌中的mRNA表达水平明显降低,c-Myc rnRNA的表达在甲状腺乳头状癌中升高,Notch-1、NICD、Hes1蛋白在人甲状腺乳头状癌中的表达低于正常甲状腺组织p<0.05),c-Myc蛋白在甲状腺乳头状癌中的表达高于正常甲状腺组织(P<0.05).甲状腺乳头状癌组织标本中,Notch-1信号通路中Notch-1、NICD、Hes1在基因转录和蛋白质表达水平上均明显下调,而c-Myc的基因转录和蛋白质表达水平均升高,提示Notch-1信号通路在甲状腺乳头状癌的发生发展中起抑癌作用,c-Myc基因表达升高与Notch-1信号通路可能无关.

  12. A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling.

    Science.gov (United States)

    Wang, Rui; Ye, Xiangcang; Bhattacharya, Rajat; Boulbes, Delphine R; Fan, Fan; Xia, Ling; Ellis, Lee M

    2016-03-01

    Evidence is accumulating for the role of cancer stem cells (CSCs) in mediating chemoresistance in patients with metastatic colorectal cancer (mCRC). A disintegrin and metalloproteinase domain 17 (ADAM17; also known as tumor necrosis factor-α-converting enzyme [TACE]) was shown to be overexpressed and to mediate cell proliferation and chemoresistance in CRC cells. However, its role in mediating the CSC phenotype in CRC has not been well-characterized. The objective of the present study was to determine whether ADAM17 regulates the CSC phenotype in CRC and to elucidate the downstream signaling mechanism that mediates cancer stemness. We treated established CRC cell lines and a newly established human CRC cell line HCP-1 with ADAM17-specific small interfering RNA (siRNA) or the synthetic peptide inhibitor TAPI-2. The effects of ADAM17 inhibition on the CSC phenotype and chemosensitivity to 5-fluorouracil (5-FU) in CRC cells were examined. siRNA knockdown and TAPI-2 decreased the protein levels of cleaved Notch1 (Notch1 intracellular domain) and HES-1 in CRC cells. A decrease in the CSC phenotype was determined by sphere formation and ALDEFLUOR assays. Moreover, TAPI-2 sensitized CRC cells to 5-FU by decreasing cell viability and the median lethal dose of 5-FU and increasing apoptosis. We also showed the cleavage and release of soluble Jagged-1 and -2 by ADAM17 in CRC cells. Our studies have elucidated a role of ADAM17 in regulating the CSC phenotype and chemoresistance in CRC cells. The use of drugs that inhibit ADAM17 activity might increase the therapeutic benefit to patients with mCRC and, potentially, those with other solid malignancies.

  13. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.

  14. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer

    OpenAIRE

    Lefort, Karine; Ostano, Gian Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, Gian Paolo; Chiorino, Giovanna

    2016-01-01

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is signi...

  15. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2010-06-01

    Full Text Available Yuan Li1, Janine A Burns1, Carol A Cheney1, Ningyan Zhang1, Salvatore Vitelli1, Fubao Wang1, Andrew Bett2, Michael Chastain2, Laurent P Audoly1, Zhi-Qiang Zhang1,31Department of Biologics Research, 2Department of Vaccine Research, Merck Research Laboratories, West Point, PA, USA; 3Clinical Development Laboratory, Merck Research Laboratories, Rahway, NJ, USAAbstract: Biological therapies, such as monoclonal antibodies (mAbs that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1 whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2 the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC, but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.Keywords: Notch

  16. KRT6 interacting with notch1 contributes to progression of renal cell carcinoma, and aliskiren inhibits renal carcinoma cell lines proliferation in vitro

    OpenAIRE

    Hu, Jing; Zhang, Li-Chao; Song, Xu; Lu, Jian-Rao; Jin, Zhu

    2015-01-01

    Notch signaling is a conserved and widely expressed signaling pathway, which mediates various physiological processes including tumorigenesis. This study aims to explore the potential role and mechanism of notch1 interacting with KRT6B in the progression of RCC. The results indicated that the mRNA and protein expression of notch1 and KRT6 were significantly increased in tumor tissues, and highly positive correlation existed between notch1 and KRT6. Moreover, the patients with high notch1 expr...

  17. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    OpenAIRE

    Lanfen Huo; Shaoling Wu; Zhonghai Chi; Xindong Zhao

    2016-01-01

    Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling path...

  18. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  19. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2.

    Science.gov (United States)

    Lam, Hoa; Maga, Matthew; Pradhan, Amynah; Evans, Christopher J; Maidment, Nigel T; Hales, Tim G; Walwyn, Wendy

    2011-04-12

    Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs) over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2) augments the constitutive coupling of μ receptors to voltage-activated Ca²+ channels in primary afferent dorsal root ganglion neurons from β-arr2⁻/⁻ mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2⁻/⁻ mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2⁻/⁻ mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2⁻/⁻ and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  20. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  1. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway.

    Science.gov (United States)

    Chong, Lei; Zhang, Weixi; Nie, Ying; Yu, Gang; Liu, Liu; Lin, Li; Wen, Shunhang; Zhu, Lili; Li, Changchong

    2014-10-01

    Curcumin, a natural product derived from the plant Curcuma longa, has been found to have anti-inflammatory, antineoplastic and antifibrosis effects. It has been reported that curcumin attenuates allergic airway inflammation in mice through inhibiting NF-κB and its downstream transcription factor GATA3. It also has been proved the antineoplastic effect of curcumin through down-regulating Notch1 receptor and its downstream nuclear transcription factor NF-κB levels. In this study, we aimed to investigate the anti-inflammatory effect of curcumin on acute allergic asthma and its underlying mechanisms. 36 male BALB/c mice were randomly divided into four groups (normal, asthma, asthma+budesonide and asthma+curcumin groups). BALF (bronchoalveolar lavage fluid) and lung tissues were analyzed for airway inflammation and the expression of Notch1, Notch2, Notch3, Notch4 and the downstream transcription factor GATA3. Our findings showed that the levels of Notch1 and Notch2 receptors were up-regulated in asthma group, accompanied by the increased expression of GATA3. But the expression of Notch2 receptor was lower than Notch1 receptor. Curcumin pretreatment improved the airway inflammatory cells infiltration and reversed the increasing levels of Notch1/2 receptors and GATA3. Notch3 receptor was not expressed in all of the four groups. Notch4 receptor protein and mRNA expression level in the four groups had no significant differences. The results of the present study suggested that Notch1 and Notch2 receptor, major Notch1 receptor, played an important role in the development of allergic airway inflammation and the inhibition of Notch1-GATA3 signaling pathway by curcumin can prevent the development and deterioration of the allergic airway inflammation. This may be a possible therapeutic option of allergic asthma.

  2. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail.

    Science.gov (United States)

    Wang, Tao; Xuan, Xiaoyan; Pian, Linping; Gao, Ping; Hu, Hong; Zheng, Yuling; Zang, Wenqiao; Zhao, Guoqiang

    2014-02-01

    Notch has recently been shown to promote epithelial-to-mesenchymal transition (EMT) by involving in the EMT process that occurs during tumor progression and converts polarized epithelial cells into motile, invasive cells. However, it is still unclear whether the Notch signaling pathway is associated with the regulation of EMT in esophageal carcinoma. The present study explored Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial–mesenchymal transition through Snail. The results demonstrated that the inhibition of Notch-1 expression in the esophageal carcinoma cell line EC-9706 could suppress the occurrence of EMT and at the same time could decrease the invasion and metastasis ability of the EC-9706 cells, indicative of its role in EMT. Snail is a transcriptional repressor of E-cadherin. We found that with the inhibition of Notch-1 expression in the esophageal carcinoma cell line EC-9706, the expression of Snail also decreased. Mechanistic studies showed that the up-expression of Snail in the EC-9706 cells restored the suppression of EMT regulated by Notch-1 inhibition, suggesting the role of Snail in Notch-1-mediated EMT. At the same time, the up-expression of Snail in the EC-9706 cells could also rescue the invasion and metastasis ability inhibited by Notch-1 siRNA. Taken together, our results had revealed that Notch-1 could participate in the invasion and metastasis of esophageal carcinoma through EMT via Snail. This study indicated that Notch-1 might be a useful target for esophageal carcinoma prevention and therapy.

  3. A continuum constitutive model for the active behaviour of skeletal muscle

    Science.gov (United States)

    Ehret, Alexander E.; Böl, Markus; Itskov, Mikhail

    2011-03-01

    In the present paper we propose a continuum constitutive model for the passive and active mechanical behaviour of skeletal muscle. Unlike most works in this field, the model is not based on an additive split between passive and active components but considers muscle tissue as one continuous biological material, which alters its properties when activated. This alteration also allows for a kinematic interpretation on the muscle fibre level and is described by a single activation-dependent model parameter. This as well as the other material parameters are obtained from standard experiments on resting and activated muscle or from microstructural information such as fibre type and twitch characteristics. In the passive state, the constitutive equations are governed by a transversely isotropic polyconvex and coercive strain-energy function. The model shows excellent agreement with experimental stress-stretch data of a passive and activated rat tibialis anterior muscle.

  4. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    OpenAIRE

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression comp...

  5. Patterns of notch-1 expression in papillary thyroid cancer and their oncological significance%Notch-1在甲状腺乳头状癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    金晓燕; 梁勇; 陈佳玉; 姚军; 杨林军; 周健; 王旭林

    2011-01-01

    Objective:To study the Notch - 1 mRNA and its protein expression in papillary thyroid cancer and analyze its clinical biological significance. Methods:Using RT - PCR technology and immunofluorescence in exactly the same experimental conditions, were used to detect human thyroid papillary carcinoma tissues, compare with normal thyroid tissues. Results: RT- PCR in thyroid papillary cancer tissues,the expression of Notch - 1 mRNA were significantly weaker than normal thyroid tissue ( P <0.05 ); In immunofluorescence, Notch - 1 in thyroid carcinoma and normal thyroid tissue were expressed, but in thyroid cancer tissue is more weaker expressed than in normal thyroid tissue 。 Notch - 1 gene expression in papillary thyroid carcinoma and normal thyroid tissue was statistically significant difference between (P < 0. 001 ). Conclusion: Notch signaling pathway in thyroid cancer tissues showed steady - state inactivation, and thyroid cancer occurrence and development are closely linked. Notch - 1 in papillary thyroid carcinomas with low expression, it may be the process in the thyroid cancer is a tumor suppressor gene.%目的:探讨Notch-1在甲状腺乳头状癌中的表达特点及其生物学意义.方法:应用免疫荧光法和RT-PCR 法,分别检测人甲状腺乳头状癌组织标本中,Notch-1基因和蛋白的表达情况.结果:RT-PCR检测,甲状腺乳头状癌组织中Notch-lmRNA的表达明显低于正常甲状腺组织;免疫荧光法测定,Notch-1在正常甲状腺组织中表达呈强阳性,甲状腺乳头状癌组织中呈弱阳性.Notch-1基因及蛋白表达在甲状腺乳头状癌组织和正常甲状腺组织之间有明显差别(P<0.001).结论:在甲状腺乳头状癌组织中,Notch-1在mRNA及蛋白表达水平均低调.提示notch-1信号通路受到普遍抑制,该基因在甲状腺癌发生、发展中起抑癌作用.

  6. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    Directory of Open Access Journals (Sweden)

    Lanfen Huo

    2016-09-01

    Full Text Available Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling pathways. Currently, using RNA interference technology (RNAi synthesizing small interference RNA (siRNA targeting Notch1 gene(siNotch1)has become a hot topic, and clinical application of gene silencing has also obtained a certain therapeutic effect. In this paper, the application of Notch1 gene silencing in tumor progress was reviewed.

  7. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.

    Science.gov (United States)

    Grimm, P Richard; Coleman, Richard; Delpire, Eric; Welling, Paul A

    2017-09-01

    Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt. Copyright © 2017 by the American Society of Nephrology.

  8. Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, Devin P., E-mail: devin.champagne@uvm.edu; Shockett, Penny E., E-mail: pshockett@selu.edu

    2014-03-15

    similar for both genes and consistent with results at the TCRβ locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (P{sub r} nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.

  9. Notch1在喉癌组织中的表达及意义%The expression of Notch 1 in laryngeal squamous cell carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    徐成志; 董频; 王珮华; 阎小军

    2011-01-01

    Objective To investigate the expression of Notch 1 in laryngeal squamous cell carcinoma ( LSCC ) , while determine the relationship with clinicopathologic characteristics and prognosis. Methods Expression of Notch 1 in 6 2 specimens of laryngeal squamous cell carcinoma and 3 5 control tissues (15 cases of atypical hyperplasia , 10 cases of leukoplakia of vocal cord and 1 0 cases of polyp of vocal cord ) was examined by immunohistochemical staining ( Envision DAKO ) . The relationship between the expression of Notch 1 and the clinicopathological features in LSCC was analysed. Results Over - expression of Notch 1 was detected in 3 8 specimens (61.3%), the rate of over - expressions in LSCC was significantly higher than that in atypical hyperplasia , leukoplakia and polyp of vocal cord ( P 0. 0 5 ) . With multivariate analysis , recurrence , advanced stage and low expression of Notch 1 were unfavorable prognostic factors. Conclusion The expression ofNotch 1 plays an important role in the process of tumorigenesis and development of LSCC , and has potential value in prognostic evaluation.%目的 探讨喉癌组织中Notch1蛋白的表达及与患者临床病理资料的关系和对预后的影响.方法 采用免疫组化Envision二步法检测62例喉癌标本中Notch1的表达,同时选取15例不典型增生、10例声带白斑、10例声带息肉标本作对照,结合患者临床病理资料分别进行分析.结果 62例喉癌组织中Notch1蛋白高表达率61.3% (38/62),低表达38.7%(24/62),其高表达率与不典型增生、声带白斑及声带息肉相比差异均有统计学意义(P<0.01),Notch1高表达与T分级、临床分期及病理分级显著相关(P<0.05).单因素分析Notch1高表达组总生存率较低表达组高(P<0.05),无瘤生存率两组差异无统计学意义(P>0.05),多因素分析复发、临床分期及Notch1表达情况对生存率影响较大,复发、高分期患者和Notch1低表达组生存期短.结论 Notch1在喉

  10. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent sig......, the structural basis for which is determined by an aromatic cluster on the inner face of the extracellular ends of TMs VI and VII.......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G......(q), phospholipase C pathway was approximately 50% of their maximal capacity as determined through inositol phosphate accumulation. These two receptors also showed very high constitutive activity in activation of cAMP response element-driven transcription. GPR39 displayed a clear but lower degree of constitutive...

  11. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Benned-Jensen, Tau; Holst, Peter J

    2006-01-01

    Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Galpha(i) as determined by a receptor-mediate...

  12. Rho/ROCK-dependent inhibition of 3T3-L1 adipogenesis by G-protein-deamidating dermonecrotic toxins: differential regulation of Notch1, Pref1/Dlk1, and β-catenin signaling

    Directory of Open Access Journals (Sweden)

    Yuka eBannai

    2012-06-01

    Full Text Available The dermonecrotic toxins from Pasteurella multocida (PMT, Bordetella (DNT, Escherichia coli (CNF1-3 and Yersinia (CNFY modulate their G-protein targets through deamidation and/or transglutamination of an active site Gln residue, which results in activation of the G protein and its cognate downstream signaling pathways. Whereas DNT and the CNFs act on small Rho GTPases, PMT acts on the α subunit of heterotrimeric Gq, Gi and G12/13 proteins. We previously demonstrated that PMT potently blocks adipogenesis and adipocyte differentiation in a calcineurin-independent manner through downregulation of Notch1 and stabilization of β-catenin and Pref1/Dlk1, key proteins in signaling pathways strongly linked to cell fate decisions, including fat and bone development. Here, we report that similar to PMT, DNT and CNF1 completely block adipogenesis and adipocyte differentiation by preventing upregulation of adipocyte markers, PPARγ and C/EBPα, while stabilizing the expression of Pref1/Dlk1 and β-catenin. We show that the Rho/ROCK inhibitor Y-27632 prevented or reversed these toxin-mediated effects, strongly supporting a role for Rho/ROCK signaling in dermonecrotic toxin-mediated inhibition of adipogenesis and adipocyte differentiation. Toxin treatment was also accompanied by downregulation of Notch1 expression, although this inhibition was independent of Rho/ROCK signaling. We further show that PMT-mediated downregulation of Notch1 expression occurs primarily through G12/13 signaling. Our results reveal new details of the pathways involved in dermonecrotic toxin action on adipocyte differentiation, and the role of Rho/ROCK signaling in mediating toxin effects on Wnt/β-catenin and Notch1 signaling, and in particular the role of Gq and G12/13 in mediating PMT effects on Rho/ROCK and Notch1 signaling.

  13. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.

    Science.gov (United States)

    de Voux, Alex; Chan, Mei-Chi; Folefoc, Asongna T; Madziva, Michael T; Flanagan, Colleen A

    2013-01-01

    The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV) into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵) and Arg⁶·³²(²²⁵) residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸²), in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸²) mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²)Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²)Lys mutation with an Arg⁶·³²(²²⁵)Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²)Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²)Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²)Lys and Thr²·⁶⁵(⁸²)Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82) stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated conformations

  14. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.

    Directory of Open Access Journals (Sweden)

    Alex de Voux

    Full Text Available The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵ and Arg⁶·³²(²²⁵ residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸², in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸² mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²Lys mutation with an Arg⁶·³²(²²⁵Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²Lys and Thr²·⁶⁵(⁸²Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82 stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated

  15. Quantitative DNA hypomethylation of ligand Jagged1 and receptor Notch1 signifies occurrence and progression of breast carcinoma.

    Science.gov (United States)

    Cao, Yuwen; Li, Yixiao; Zhang, Na; Hu, Jianming; Yin, Liang; Pan, Zemin; Li, Yucong; Du, Xiaoming; Zhang, Wenjie; Li, Feng

    2015-01-01

    Methylation alterations of Jagged1 and Notch1 genes have been reported in non-tumor lesions and a few cancers. However, methylation profiles of Jagged1 promoter and Notch1 exon25 in breast cancer and matched normal tissue and the association of methylation with clinicopathological characteristics still remain unclear. To explore the potential effects of aberrant DNA methylation of Jagged1 and Notch1 on occurrence and progression of breast cancer, we detected the quantitative DNA methylation of Jagged1 and Notch1 in 73 breast cancer (BC) and 20 adjacent normal breast tissues (ANBT) by using MassARRAY spectrometry. The methylation level of overall and majority individual CpG sites of the two genes were synergistically significantly lower in BC than in ANBT. The overall hypomethylation of the two genes, particularly of Jagged1 CpG_8.9.10 and Notch1 CpG_14.15.16 in primary tumors, were markedly associated with lymph node metastasis, advanced stage and high grade. The protein expressions of the both genes were examined by immunohistochemical staining in same cohorts. The expression was significantly inverse correlation with methylation. The two proteins in primary tumor were synergistically up-regulated and dramatically related to lymph node metastasis, advanced stage and high grade. Our findings suggest that the synergetic hypomethylation of Jagged1 and Notch1 genes, especially of Jagged1 CpG_8.9.10 and Notch1 CpG_14.15.16, may involve tumorigenesis and development of breast cancer. The negative relationship between methylation and expression indicates methylation role for expression regulation. The synergetic overexpression of the two proteins further indicates the effects on occurrence and progression of breast cancer.

  16. The neuro-glial properties of adipose-derived adult stromal (ADAS cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Directory of Open Access Journals (Sweden)

    Philip C Wrage

    Full Text Available We investigated whether adipose-derived adult stromal (ADAS are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH; and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be

  17. 小细胞肺癌Notch-1表达相关性及预后分析%The correlation of notch-1 expression and comprehensive analysis with prognosis in small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    肖维华; 马海芬; 李君强; 虞继红; 贺吉; 陈国荣

    2011-01-01

    目的 研究Notch-1抗体在小细胞肺癌(SCLC)及非小细胞肺癌(NSCLC)中表达的临床意义,并分析其对预后的影响.方法 采用SP免疫组化分别检测43例SCLC及40例NSCLC患者癌组织Notch-1抗体的表达,分析Notch-1抗体表达缺失与SCLC临床病理特征、淋巴结转移及患者预后的关系.结果 Notch-1抗体在SCLC中的表达率为20.93%( 9/43),而在NSCLC中则高达65.00%( 26/40).Notch-1抗体在SCLC中的表达与临床分期及有无淋巴结转移相关(分别x2=5.42和P<0.05,x2=4.88,P<0.05),但与患者年龄、性别、肿瘤位置、肿瘤大小无关(P均>0.05);与NSCLC比较,Notch-1抗体在SCLC中的表达差异有统计学意义(x2 =16.50,P<0.05).Kaplan-Meier生存分析证实Notch-1抗体阳性患者5年生存率较阴性患者为高(x2=19.87,P<0.05);Cox比例风险回归分析显示Notch-1抗体阳性可明显降低SCLC患者的死亡风险.结论 Notch-1抗体在SCLC与NSCLC中的阳性表达率有明显差异,与SCLC临床分期、淋巴结转移及预后有关.因此,Notch-1表达在SCLC的诊断及预后评估方面具有较好的应用价值. .%Objective To investigate the clinical significance of Notch-1 expression in small cell lung cancer(SCLC) and non-small cell lung cancer(NSCLC),and analyze the role of it in prognosis.Methods SP immunohistochemistry was used to detect the expression of Notch-1 antibody in 43 of SCLC and 40 of NSCLC tissues.Further analysis was carried out to interpret the association of Notch-1 antibody expression with clinicopathological features,lymph node metastasis and prognosis in SCLC.Results The positive rate of Notch-1 expression was 20.93% ( 9/43 ) in SCLC,while 65.00% ( 26/40 ) in NSCLC.The expression of Notch-1 antibody was associated with clinical stage and lymph node metastasis ( x2 =5.42,P < 0.05 ; x2 =4.88,P < 0.05respectively),but was not associated with age,sex,tumor location,tumor size ( Ps > 0.05 ).Compared with NSCLC,the expression

  18. 下调Notch-1基因表达抑制胶质母细胞瘤的增殖活性研究%Down- regulation of Notch- 1 gene expression inhibits growth of TJ- 905 glioblastoma

    Institute of Scientific and Technical Information of China (English)

    王建鹏; 姚维成; 栗世方; 孙晓朋

    2011-01-01

    Objective To study the inhibitory effect of siRNA on glioblastoma (GBM) Notch-1 gene expression in addition to the growth of TJ- 905 glioblastoma.Methods Three Small interference RNAs (siRNAs) targeting Notch- 1 gene named siRNA1,siRNA2,siRNA3 were synthesized chemically in vitro with gene bank BLAST.TJ-905 cells were transfectedtwice with the siRNA by using OligofectamineTM2000.The nontransfected cells and nonspecific siRNAs transfected cells were taken as blank and nonsense controls.Down - regulation of Notch- 1 was demonstrated by real- time RT- PCR,according to the result of QRT- PCR we therefore selected the most effective siRNA for further study.Cell proliferation was measured by MTT analysis.Male Balb/C nude mice were injected subcutaneously with Notch- 1 siRNA- or nonsense siRNA- transfected TJ-905 cells,tumor sizes were measured every 4 days.HE stain was used to determine the property of tumor.Resuts(1) The expression of Notch- 1 mRNA in blank,nonsense controls,siRNA1,2,3 groups were 1.00±0.07,1.04±0.05,0.11 ±0.02,0.12 ±0.01,0.77 ±0.03 by real-time RT- PCR scan analysis,the most effective siRNA was siRNA1.(2) An inhibitory proliferation and growth can be induced in siRNA1 transfected group.(3)Nude mice xenografted with cell suspensions from the nonsense siRNA group developed tumors with a significantly increased volume (from the 18th days) as compared to mice that received the Notch- 1 siRNA1- treated cells.The final tumor volume were less in nude mice injected with Notch- 1 siRNA (748.3 ±154.3 )mm3 compared to nonsense si RNA injection (1739.2 ± 249.7 )mm3,HE stain demonstrate that tumor was multiformity glioblastoma.Conclusion The chemically synthesized siRNA targeted Notch- 1 gene could down -regulate the expression of Notch- 1.In addition,an inhibitory proliferation and growth were induced when compared with the control cells in vitro and in vivo.It was suggested that the suppression of Notch- 1 expression and the inhibition of growth provide a

  19. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9.

    Science.gov (United States)

    Bertrand, Carol A; Mitra, Shalini; Mishra, Sanjay K; Wang, Xiaohui; Zhao, Yu; Pilewski, Joseph M; Madden, Dean R; Frizzell, Raymond A

    2017-03-30

    Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. This association is thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia. However, it's unclear which PDZ-domain protein(s) interact with SLC26A9, a SLC26A family member found in airway epithelia. We have previously shown that primary, human bronchial epithelia (HBE) from non-CF donors exhibit constitutive anion secretion attributable to SLC26A9. However, constitutive anion secretion is absent in HBE from CF donors. We examined whether changes in SLC26A9 constitutive activity could be attributed to a loss of CFTR trafficking, and what role PDZ interactions played. HEK293 co-expressing SLC26A9 with the trafficking mutant F508del CFTR exhibited a significant reduction in constitutive current compared to cells co-expressing SLC26A9 and wt CFTR. We found that SLC26A9 exhibits complex glycosylation when co-expressed with F508del CFTR, but its expression at the plasma membrane is decreased. SLC26A9 interacted with both NHERF-1 and CAL, and its interaction with both significantly increased with co-expression of wt CFTR. However, co-expression with F508del CFTR only increased SLC26A9's interaction with CAL. Mutation of SLC26A9's PDZ motif decreased this association with CAL, and restored its constitutive activity. Correcting aberrant F508del CFTR trafficking in CF HBE with corrector VX-809 also restored SLC26A9 activity. We conclude that when SLC26A9 is co-expressed with F508del CFTR, its trafficking defect leads to a PDZ motif-sensitive intracellular retention of SLC26A9.

  20. Buyang Huanwu decoction up-regulates Notch1 gene expression in injured spinal cord.

    Science.gov (United States)

    Guo, Zhan-Peng; Huang, Mi-Na; Liu, An-Qi; Yuan, Ya-Jiang; Zhao, Jian-Bo; Mei, Xi-Fan

    2015-08-01

    Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 mL of 0.8 g/mL Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury.

  1. Buyang Huanwu decoction up-regulatesNotch1 gene expression in injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Zhan-peng Guo; Mi-na Huang; An-qi Liu; Ya-jiang Yuan; Jian-bo Zhao; Xi-fan Mei

    2015-01-01

    Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates thatNotch participates in repair after spinal cord injury.Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve ifbers;however, it is unclear whetherBuyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 mL of 0.8 g/mLBuyang Huanwu decoction daily until sacriifce. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression ofNotch1 was increased in the Buyang Huanwu decoction group compared with controls. These ifndings conifrm thatBuyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury.

  2. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study)

    Science.gov (United States)

    Meliou, E; Kerezoudis, NP; Tosios, KI; Kiaris, H

    2010-01-01

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion. PMID:21116324

  3. Constitutive expression and activity of cytochrome P450 in conventional pigs.

    Science.gov (United States)

    Nielsen, Søren Drud; Bauhaus, Yvonne; Zamaratskaia, Galia; Junqueira, Matheus Antunes; Blaabjerg, Karoline; Petrat-Melin, Bjørn; Young, Jette Feveile; Rasmussen, Martin Krøyer

    2017-04-01

    Pigs have often been suggested to be a useful model for humans, when investigating CYP dependent events, like drug metabolism. However, comprehensive knowledge about the constitutive expression of the major CYP and corresponding transcription factors is limited. We compared the constitutive mRNA expression of aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor and CYP1A1, CYP1A2, CYP2A, CYP2E1 and CYP3A in liver, adipose tissue, muscle and small intestine in pigs, as well as the expression along the length of the small intestine and colon. Tissue samples were taken from female pigs, and analyzed for gene expression, as well as CYP dependent activity using qPCR and specific probe substrates, respectively. For all investigated transcription factors and CYPs the mRNA expression and activity was highest in the liver. CYP1A1 and CYP3A mRNA expression and activity was shown in all investigated tissues. Along the small intestine and colon the mRNA expression and activity of CYP1A1 and CYP3A was gradually decreased. The results demonstrated, similarity to that reported for humans, and hence adds to the use of pigs as a model for humans.

  4. Adverse Effects of Osteocytic Constitutive Activation of ß-Catenin on Bone Strength and Bone Growth.

    Science.gov (United States)

    Chen, Sixu; Feng, Jianquan; Bao, Quanwei; Li, Ang; Zhang, Bo; Shen, Yue; Zhao, Yufeng; Guo, Qingshan; Jing, Junjun; Lin, Shuxian; Zong, Zhaowen

    2015-07-01

    The activation of the canonical Wnt/β-catenin signaling pathway in both mesenchymal stem cells and osteoblasts has been demonstrated to increase bone mass, showing promise for the treatment of low bone volume conditions such as osteoporosis. However, the possible side effects of manipulating this pathway have not been fully addressed. Previously, we reported that the constitutive activation of ß-catenin in osteoblasts impaired vertebral linear growth. In the present study, β-catenin was constitutively activated in osteocytes by crossing Catnb+/lox(exon 3) mice with dentin matrix protein 1(DMP1)-Cre transgenic mice, and the effects of this activation on bone mass, bone growth and bone strength were then observed. DMP1-Cre was found to be predominantly expressed in osteocytes, with weak expression in a small portion of osteoblasts and growth plate chondrocytes. After the activation, the cancellous bone mass was dramatically increased, almost filling the entire bone marrow cavity in long bones. However, bone strength decreased significantly. Thinner and more porous cortical bone along with impaired mineralization were responsible for the decrease in bone strength. Furthermore, the mice showed shorter stature with impaired linear growth of the long bones. Moreover, the concentration of serum phosphate decreased significantly after the activation of ß-catenin, and a high inorganic phosphate (Pi) diet could partially rescue the phenotype of decreased mineralization level and impaired linear growth. Taken together, the constitutive activation of β-catenin in osteocytes may increase cancellous bone mass; however, the activation also had adverse effects on bone strength and bone growth. These adverse effects should be addressed before the adoption of any therapeutic clinical application involving adjustment of the Wnt/β-catenin signaling pathway. © 2015 American Society for Bone and Mineral Research.

  5. Expression and significance of Notch1 and Bmi-1 protein in lung cancer tissue%Notch1和Bmi-1蛋白在肺癌组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    蔡华荣; 江跃全

    2016-01-01

    BACKGROUND:Studies have found that Notch pathway and Bmi-1 gene both have the ability to regulate stem cel self-renew. Functional dysfunction of the both may have a great relationship with tumorigenesis. OBJECTIVE:To investigate the expression and clinical significance of Notch1 and Bmi-1 protein in lung tissue. METHODS:Eighty-seven lung cancer tissue samples (lung cancer group) and forty pathologicaly confirmed normal lung tissue samples (normal group) were obtained from related surgeries and included as research objects. The protein expression of Notch1 and Bmi-1 in specimens of these two groups was measured by immunohistochemistry SP method. The relationship between Notch1 and Bmi-1 protein expression and clinicopathological features of lung cancer patients was analyzed. RESULTS AND CONCLUSION: The positive rate of Notch1, Bmi-1 protein expression was respectively 61% and 47%, which was significantly higher in the lung cancer group than that in the normal group (P 0.05);低分化肺癌、发生淋巴结转移、TNM分期Ⅲ-Ⅳ级患者的Notch1、Bmi-1蛋白阳性表达率显著高于高中分化肺癌、无淋巴结转移、TNM分期Ⅰ、Ⅱ级患者(P <0.05)。结果表明Notch1基因和Bmi-1基因可能与肺癌的发生、发展有一定的关系。

  6. Non-Linear and Flexible Regions of the Human Notch1 Extracellular Domain Revealed by High-Resolution Structural Studies.

    Science.gov (United States)

    Weisshuhn, Philip C; Sheppard, Devon; Taylor, Paul; Whiteman, Pat; Lea, Susan M; Handford, Penny A; Redfield, Christina

    2016-04-05

    The Notch receptor is a key component of a core metazoan signaling pathway activated by Delta/Serrate/Lag-2 ligands expressed on an adjacent cell. This results in a short-range signal with profound effects on cell-fate determination, cell proliferation, and cell death. Key to understanding receptor function is structural knowledge of the large extracellular portion of Notch which contains multiple repeats of epidermal growth factor (EGF)-like domains. Here we investigate the EGF4-13 region of human Notch1 (hN1) using a multidisciplinary approach. Ca(2+)-binding measurements, X-ray crystallography, {(1)H}-(15)N heteronuclear nuclear Overhauser effects, and residual dipolar couplings support a non-linear organization for the EGF4-13 region with a rigid, bent conformation for EGF4-7 and a single flexible linkage between EGF9 and EGF10. These data allow us to construct an informed model for EGF10-13 which, in conjunction with comparative binding studies, demonstrates that EGF10 has an important role in determining Notch receptor sensitivity to Dll-4.

  7. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  8. Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells

    OpenAIRE

    Liu, Hao; Zhou, Ping; Lan, Hong; Chen, Jia; Yu-xiang ZHANG

    2017-01-01

    Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal interesting functional differences between them. Notch proteins do not have DNA-binding domain. In the...

  9. Autogenous control of PspF, a constitutively active enhancer-binding protein of Escherichia coli.

    OpenAIRE

    Jovanovic, G; Dworkin, J; Model, P

    1997-01-01

    Escherichia coli sigma54-dependent phage shock protein operon (pspA to -E) transcription is under the control of PspF, a constitutively active activator. Sigma70-dependent transcription of pspF is under autogenous control by wild-type PspF but not by a DNA-binding mutant, PspF deltaHTH. Negative autoregulation of PspF is continual and not affected by stimuli, like f1 pIV, that induce the pspA to -E operon. PspF production is independent of PspA (the negative regulator of the pspA to -E operon...

  10. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects

    OpenAIRE

    Krobert, Kurt A; Levy, Finn Olav

    2002-01-01

    Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT7 receptor splice variants (h5-HT7(a), h5-HT7(b) and h5-HT7(d)), we compared their abilities to constitutively activate adenylyl cyclase (AC).All h5-HT7 splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT7 antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT7 antagonist) indic...

  11. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.

    2006-01-01

    activation. Here, we show that, in a series of human colorectal adenomas, those with deregulation of cyclin D1 and/or p16(Ink4a) showed little evidence of constitutive DNA damage response (DDR), contrary to cyclin E-overexpressing higher-grade cases. These observations were consistent with diverse cell...... culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...

  12. Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Kahl Brad S

    2008-05-01

    Full Text Available Abstract Background The proteasome inhibitor bortezomib can inhibit activation of the transcription factor NF-κB, a mechanism implicated in its anti-neoplastic effects observed in mantle cell lymphoma (MCL. However, NF-κB can be activated through many distinct mechanisms, including proteasome independent pathways. While MCL cells have been shown to harbor constitutive NF-κB activity, what fraction of this activity in primary MCL samples is sensitive or resistant to inhibition by bortezomib remains unclear. Results Proteasome activity in the EBV-negative MCL cell lines Jeko-1 and Rec-1 is inhibited by greater than 80% after exposure to 20 nM bortezomib for 4 hours. This treatment decreased NF-κB activity in Jeko-1 cells, but failed to do so in Rec-1 cells when assessed by electrophoretic mobility shift assay (EMSA. Concurrently, Rec-1 cells were more resistant to the cytotoxic effects of bortezomib than Jeko-1 cells. Consistent with a proteasome inhibitor resistant pathway of activation described in mouse B-lymphoma cells (WEHI231 and a breast carcinoma cell line (MDA-MB-468, the bortezomib-resistant NF-κB activity in Rec-1 cells is inhibited by calcium chelators, calmodulin inhibitors, and perillyl alcohol, a monoterpene capable of blocking L-type calcium channels. Importantly, the combination of perillyl alcohol and bortezomib is synergistic in eliciting Rec-1 cell cytotoxicity. The relevance of these results is illuminated by the additional finding that a considerable fraction of primary MCL samples (8 out of 10 displayed bortezomib-resistant constitutive NF-κB activity. Conclusion Our findings show that bortezomib-resistant NF-κB activity is frequently observed in MCL samples and suggest that this activity may be relevant to MCL biology as well as serve as a potential therapeutic target.

  13. Voluntary running-enhanced synaptic plasticity, learning and memory are mediated by Notch1 signal pathway in C57BL mice.

    Science.gov (United States)

    Zhang, Xiaochen; Yang, Chunxiao; Gao, Jing; Yin, Hongqiang; Zhang, Hui; Zhang, Tao; Yang, Zhuo

    2017-09-20

    It is well known that voluntary running can enhance synaptic plasticity and improve learning and memory abilities. The Notch1 receptor is also reported to be associated with these processes, but its role in running-induced alterations is unclear. In this study, we aimed to investigate whether the Notch1 signalling pathway was involved in voluntary running-induced enhancement of synaptic plasticity, learning and memory. Notch1 heterozygous deficient (Notch1(+/-)) mice and wildtype (WT) C57BL littermates were randomly divided into runner group and non-runner group. Mice were given free access to running wheels for 14 days in both the Notch1(+/-) runner group and the WT runner group. Our results demonstrate that Notch1 knockdown impairs the performance in the novel object recognition (NOR) test and Morris water maze test and decreases the synaptic plasticity. Voluntary running improves spatial learning and memory abilities, promotes synaptic plasticity and increases expressions of postsynaptic proteins in WT mice but not in Notch1(+/-) mice. Our results suggest that Notch1 plays a vital role in spatial learning and memory, synaptic plasticity under normal physiological conditions and voluntary running conditions. These findings will set the groundwork and fill in some gaps for understanding the role of Notch1 signalling in voluntary running-induced phenomena.

  14. Notch-1和Jagged-2基因在先天性巨结肠中的表达及意义%Expression and significance of Notch-1 and Jagged-2 in patients with Hirschsprung disease

    Institute of Scientific and Technical Information of China (English)

    贾慧敏; 韩秀芳; 白玉作; 王维林

    2011-01-01

    Objective To investigate the expression of Notch-1 and Jagged-2 in the normal and spastic segments of colon in patients with Hirschsprung disease (HD),and to explore the conrelation of Notch-1 and Jagged-2 with pathogenesis of HD.Methods From 2005 to 2010,resected colon specimens of 30 cases with HD were selected for this study.Normal colonic segments were served as control group,while the transitional and spastic segments as experimental group.Immunohistochemical staining,Western blotting,and RT-PCR were applied to detect the expression of Notch-1 and Jagged-2.Results A large number of Notch-1 and Jagged-2 positive gangliocytes were observed in the control group,while none was observed in spastic segments.Significantly less Notch-1 and Jagged-2 positive gangliocytes were found in the transitional segments.Western blotting revealed that Notch-1 and Jagged-2 protein levels in spastic segments (0.19±0.02 and 0.13±0.04) were less than that in transitional segments and normal segments (0.58±0.05 and 0.52±0.04,0.72±0.04 and 0.69±0.04,respectively)(P<0.05).RT-PCR revealed that Notch-1 and Jagged-2 mRNA levels were consistent with protein expression.Conclusion Notch-1 and Jagged-2 are not expressed in spastic colon segments,which may be associated with the pathogenesis of HD.%目的 研究先天性巨结肠症(HD)患儿各段肠管中Notch-1及Jagged-2的表达情况,初步探讨Notch-1及Jagged-2表达与HD发生的可能关系.方法 选取2005-2010年间在中国医科大学附属盛京医院行手术治疗的HD患儿结肠标本共30例,将HD患儿正常段肠管设为对照组,移行段及痉挛段肠管设为实验组,应用免疫组织化学(免疫组化)染色、Western blot及RT-PCR法观察Notch-1及Jagged-2在各肠段的表达情况.结果 免疫组化染色示HD患儿正常段肠管的神经节细胞中有大量Notch-1及Jagged-2阳性细胞的表达,而在痉挛段肠管中没有这两种细胞的表达,移行段肠管中可见少量Notch-1

  15. 宫颈癌 HeLa 细胞抗顺铂作用的 Notch1 机制研究%Notch1 Mediates the Anti-cisplatin Character of Cervical Cancer LeLa Cell Line

    Institute of Scientific and Technical Information of China (English)

    杨晶; 张军红; 马慧娟; 王志华; 王琼; 王川

    2015-01-01

    目的 利用宫颈癌HeLa细胞系探讨宫颈癌的抗化疗机制. 方法 利用球形成试验( sphere forming assay )和Western blot法检测顺铂对癌症干细胞形成的影响以及 Notch1在HeLa细胞系的表达. 基因沉默试验分析Notch1基因是否在宫颈癌HeLa癌症干细胞中发挥关键作用. 结果 顺铂能促进球结构(意味着癌症干细胞形成)的形成. 5μmol/L顺铂较1μmol/L顺铂能促进更多球结构形成(P<0.05). 10μmol/L顺铂会抑制球结构形成. 5μmol/L顺铂还能提高HeLa中Notch1的表达(P<0.05),而沉默HeLa细胞的Notch1后,HeLa细胞中形成的球数量降低1.7倍(P<0.05). 结论 宫颈癌HeLa细胞系具有抗顺铂治疗的特性,尤其是5μmol/L的顺铂,该抗化疗作用与宫颈癌HeLa细胞中的Notch1表达升高,最终促进癌症干细胞自我更新有关.%Objective To explore the anti -chemotherapy mechanism of cervical cancer using the cervical cancer HeLa cell line . Methods Sphere forming assay and Western blotting were used to measure the potential effects of Cisplatin on cancer stem cell formation and Notch1 expression in HeLa cells .Gene silencing assay was performed to analyze whether Notch 1 played a key role in the proliferation of HeLa cancer stem cells .Results Cispaltin basically promoted the formation of ball structures ( an indicator of cancer stem cells ) ex-cept at larger concentration (10μmol/L).Cispaltin at 5μmol/L exerted greater promoting effect on the ball structures compared with that at 1μmol/L (P<0.05).Cispaltin at 10μmol/L inhibited the formation of ball structures .Cispaltin at 5μmol/L also promoted Notch1 ex-pression in HeLa cells (P<0.05), while silencing Notch1 decreased ball structure formation by 1.7 folds (P<0.05).Conclusion Cervical cancer HeLa cell line behaves an character of anti -Cispaltin therapy especially at 5μmol/L, and this tendency is likely associat-ed the promoting effect of Cisplatin on the expression of the self -renewal factor

  16. Constitutive STAT5 Activation Correlates With Better Survival in Cervical Cancer Patients Treated With Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Helen H.W. [Department of Radiation Oncology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Chou, Cheng-Yang [Department of Obstetrics and Gynecology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Wu, Yuan-Hua; Hsueh, Wei-Ting; Hsu, Chiung-Hui [Department of Radiation Oncology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Guo, How-Ran [Department of Environmental and Occupational Health, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Lee, Wen-Ying, E-mail: 7707@so-net.net.tw [Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan (China) and Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Su, Wu-Chou, E-mail: sunnysu@mail.ncku.edu.tw [Department of Internal Medicine, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China)

    2012-02-01

    Purpose: Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3, and STAT5, have been detected in a wide variety of human primary tumors and have been demonstrated to directly contribute to oncogenesis. However, the expression pattern of these STATs in cervical carcinoma is still unknown, as is whether or not they have prognostic significance. This study investigated the expression patterns of STAT1, STAT3, and STAT5 in cervical cancer and their associations with clinical outcomes in patients treated with radical radiation therapy. Methods and Materials: A total of 165 consecutive patients with International Federation of Gynecology and Obstetrics (FIGO) Stages IB to IVA cervical cancer underwent radical radiation therapy, including external beam and/or high-dose-rate brachytherapy between 1989 and 2002. Immunohistochemical studies of their formalin-fixed, paraffin-embedded tissues were performed. Univariate and multivariate analyses were performed to identify and to evaluate the effects of these factors affecting patient survival. Results: Constitutive activations of STAT1, STAT3, and STAT5 were observed in 11%, 22%, and 61% of the participants, respectively. While STAT5 activation was associated with significantly better metastasis-free survival (p < 0.01) and overall survival (p = 0.04), STAT1 and STAT3 activation were not. Multivariate analyses showed that STAT5 activation, bulky tumor ({>=}4 cm), advanced stage (FIGO Stages III and IV), and brachytherapy (yes vs. no) were independent prognostic factors for cause-specific overall survival. None of the STATs was associated with local relapse. STAT5 activation (odds ratio = 0.29, 95% confidence interval = 0.13-0.63) and advanced stage (odds ratio = 2.54; 95% confidence interval = 1.03-6.26) were independent predictors of distant metastasis. Conclusions: This is the first report to provide the overall expression patterns and prognostic significance of

  17. A bioluminescence reporter mouse that monitors expression of constitutively active β-catenin

    Science.gov (United States)

    Kommagani, Ramakrishna; Peavey, Mary C.; Hai, Lan; Lonard, David M.; Lydon, John P.

    2017-01-01

    This short technical report describes the generation and characterization of a bioluminescence reporter mouse that is engineered to detect and longitudinally monitor the expression of doxycycline-induced constitutively active β-catenin. The new responder transgenic mouse contains the TetO-ΔN89β-CatTMILA transgene, which consists of the tet-operator followed by a bicistronic sequence encoding a stabilized form of active β-catenin (ΔN89β-catenin), an internal ribosome entry site, and the firefly luciferase gene. To confirm that the transgene operates as designed, TetO-ΔN89β-CatTMILA transgenic mouse lines were crossed with an effector mouse that harbors the mouse mammary tumor virus-reverse tetracycline transactivator (MMTV-rtTA) transgene (termed MTB hereon), which primarily targets rtTA expression to the mammary epithelium. Following doxycycline administration, the resultant MTB/CatTMILA bigenic reporter exhibited precocious lobuloalveologenesis, ductal hyperplasia, and mammary adenocarcinomas, which were visualized and monitored by in vivo bioluminescence detection. Therefore, we predict that the TetO-ΔN89β-CatTMILA transgenic responder mouse—when crossed with the appropriate effector transgenic—will have wide-applicability to non-invasively monitor the influence of constitutively active β-catenin expression on cell-fate specification, proliferation, differentiation, and neoplastic transformation in a broad spectrum of target tissues. PMID:28253313

  18. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  19. Notch-1基因RNA干扰慢病毒载体的构建及鉴定%Construction and identification of a lentiviral vector of RNA interference containing human Notch-1 gene

    Institute of Scientific and Technical Information of China (English)

    张庆庆; 张森林; 朱迎兰; 董震; 曹罡; 陈伟

    2014-01-01

    目的:构建及鉴定人Notch-1基因的RNA干扰(RNAi)慢病毒载体,寻找最佳RNAi慢病毒载体。方法针对人Notch-1基因序列,按照RNAi序列设计原则,设计3段RNAi靶点序列(shRNA1~3),通过限制性内切酶BamHⅠ和EcoRⅠ双酶切、T4DNA连接酶连接,将Notch-1基因序列插入慢病毒载体pLenOR-THM,构建pLenOR-THM-Notch-1重组载体。质粒转化感受态DH5α细菌,筛选阳性克隆,经KpnⅠ和EcoRⅠ双酶切及测序鉴定正确后通过脂质体将慢病毒四质粒系统共转染293T细胞,进行慢病毒包装并测定病毒滴度,观察感染效率。各组病毒载体转染ACC-M细胞后,运用定量逆转录聚合酶链反应和Westernblot检测Notch-1基因mRNA和蛋白的表达水平。结果成功构建慢病毒载体pLenOR-THM-Notch-1,四质粒共转染293T细胞后可见大量绿色荧光;浓缩后的病毒滴度为5.8×108TU·mL-1;以复感染系数为1时感染293T细胞,感染效率在90%以上。QRT-PCR和Westernblot检测结果表明,pLenOR-Notch-1-shRNA3组受抑制程度最高。结论成功构建了人Notch-1RNAi慢病毒载体。%Objective To construct and identify a lentiviral vector of RNA interference targeting human Notch-1 gene. Methods To determine the Notch-1 gene sequences, three RNAi target sequences (shRNA1-3) were designed in accordance with the RNAi sequence design principles and cloned into the lentiviral vector pLenOR-THM by endonuclease BamHⅠres-triction, EcoRⅠdouble digestion, and T4 DNA-ligase ligation. After the transformation into competent DH5αbacteria, the candidate clones were identified by KpnⅠand EcoRⅠdouble digestion and DNA sequencing. The recombinant and three packaging plasmids were co-transfected into human embryonic kidney cell line 293T cells by lipofectamine to produce the lentiviral particles. The viral titer was determined. The 293T cells were infected by the lentiviral particles obtained, and trans-fection efficiency

  20. A dark and constitutively active mutant of the tiger salamander UV pigment.

    Science.gov (United States)

    Kono, Masahiro; Crouch, Rosalie K; Oprian, Daniel D

    2005-01-18

    A triple mutant (F86L/T93P/S118T; bovine rhodopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformation that is metarhodopsin-II-like. The pigment is able to activate transducin in the dark, and the ligand-free apoprotein is also able to activate transducin constitutively. The pigment permits protons and chloride ions from solution access to the active site as it displays a pH- and NaCl-dependent absorption spectrum not observed with the wild-type pigment. However, the wild-type properties of light-dependent activity and a pH-independent absorption spectrum are recovered upon reconstitution of the triple mutant with 11-cis-9-demethyl retinal. These results suggest that binding the native chromophore cannot deactivate the protein because of steric interactions between the protein, possibly residue 118, and the 9-methyl group of the chromophore. Furthermore, the absorption spectrum of the 9-demethyl retinal regenerated pigment exhibits a band broader and with lower extinction at the absorption maximum than either the human blue or salamander UV wild-type pigments generated with the same retinal analogue. The broad spectrum appears to be comprised of two or more species and can be well-fit by a sum of scaled spectra of the two wild-type pigments. Binding the chromophore appears to trap the pigment in two or more conformations. The triple mutant reported here represents the first example of a dark-active cone pigment and constitutively active cone opsin.

  1. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  2. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current.

    Science.gov (United States)

    Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L; Pijnappels, Daniël A; Panfilov, Alexander V

    2016-06-01

    Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities.

  3. Constitutive activity of the human TRPML2 channel induces cell degeneration.

    Science.gov (United States)

    Lev, Shaya; Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Bach, Gideon; Minke, Baruch

    2010-01-22

    The mucolipin (TRPML) ion channel proteins represent a distinct subfamily of channel proteins within the transient receptor potential (TRP) superfamily of cation channels. Mucolipin 1, 2, and 3 (TRPML1, -2, and -3, respectively) are channel proteins that share high sequence homology with each other and homology in the transmembrane domain with other TRPs. Mutations in the TRPML1 protein are implicated in mucolipidosis type IV, whereas mutations in TRPML3 are found in the varitint-waddler mouse. The properties of the wild type TRPML2 channel are not well known. Here we show functional expression of the wild type human TRPML2 channel (h-TRPML2). The channel is functional at the plasma membrane and characterized by a significant inward rectification similar to other constitutively active TRPML mutant isoforms. The h-TRPML2 channel displays nonselective cation permeability, which is Ca(2+)-permeable and inhibited by low extracytosolic pH but not Ca(2+) regulated. In addition, constitutively active h-TRPML2 leads to cell death by causing Ca(2+) overload. Furthermore, we demonstrate by functional mutation analysis that h-TRPML2 shares similar characteristics and structural similarities with other TRPML channels that regulate the channel in a similar manner. Hence, in addition to overall structure, all three TRPML channels also share common modes of regulation.

  4. miR-200b Suppresses Cell Growth, Migration and Invasion by Targeting Notch1 in Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-11-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNA molecules that play important roles in carcinogenesis and tumor progression. We investigated the roles and mechanisms of miR-200b in human nasopharyngeal carcinoma (NPC. Methods: We used quantitative real-time polymerase chain reaction (qRT-PCR analyses to measure levels of miR-200b and Notch1 in NPC specimens and cell lines. Human NPC cell lines stably expressing miR-200b or control were used to analyze the tumour-suppressive effect of miR-200b. Luciferase reporter assays were used to determine the association between miR-200b and the Notch1 3' untranslated region. Results: We found that miR-200b is significantly downregulated in NPC tissues and cell lines. Gain-of-function and loss-of-function studies demonstrated that miR-200b suppresses NPC cell growth, migration and invasion in vitro. Importantly, overexpression of miR-200b effectively repressed tumor growth in nude mouse models. Integrated analysis identified Notch1 as a direct and functional target of miR-200b. Overexpression of Notch1 reversed the inhibitory effect of miR-200b on NPC cell growth and invasion. Conclusion: These results indicate that miR-200b exerts tumor-suppressive effects in NPC carcinogenesis through the suppression of Notch1 expression and suggest a therapeutic application of miR-200b in NPC.

  5. KRT6 interacting with notch1 contributes to progression of renal cell carcinoma, and aliskiren inhibits renal carcinoma cell lines proliferation in vitro.

    Science.gov (United States)

    Hu, Jing; Zhang, Li-Chao; Song, Xu; Lu, Jian-Rao; Jin, Zhu

    2015-01-01

    Notch signaling is a conserved and widely expressed signaling pathway, which mediates various physiological processes including tumorigenesis. This study aims to explore the potential role and mechanism of notch1 interacting with KRT6B in the progression of RCC. The results indicated that the mRNA and protein expression of notch1 and KRT6 were significantly increased in tumor tissues, and highly positive correlation existed between notch1 and KRT6. Moreover, the patients with high notch1 expression had a significantly poorer prognosis than those of low expression patients. In vitro, KRT6 loss-of-function could inhibit the expression of notch1 and induce renal carcinoma cell death. Eventually, we found that renin inhibitor, aliskiren, could inhibit cell proliferation and decrease the expression of notch1 and KRT6 as well as regulate apoptosis-related protein expression in 786-O and ACHN renal carcinoma cell lines. These results suggested that the upregulation of notch1 and KRT6B might be involved in the development, progression and prognosis of human RCC, and aliskiren could suppress renal carcinoma cell proliferation, at least partially, through downregulation the expression of notch1 and KRT6.

  6. Notch-1 Confers Chemoresistance in Lung Adenocarcinoma to Taxanes through AP-1/microRNA-451 Mediated Regulation of MDR-1.

    Science.gov (United States)

    Huang, Jiayuan; Chen, Yitian; Li, Junyang; Zhang, Kai; Chen, Jing; Chen, Dongqin; Feng, Bing; Song, Haizhu; Feng, Jifeng; Wang, Rui; Chen, Longbang

    2016-01-01

    We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.

  7. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.

    Science.gov (United States)

    Cecon, Erika; Fernandes, Pedro A; Pinato, Luciana; Ferreira, Zulma S; Markus, Regina P

    2010-01-01

    In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h:12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic

  8. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F.

    Science.gov (United States)

    Lu, Xiaohui; Huang, Lily Jun-Shen; Lodish, Harvey F

    2008-02-29

    The majority of the BCR-ABL-negative myeloproliferative disorders express the mutant JAK2, JAK2V617F. Previously we showed that constitutive activation of this oncogenic JAK2 mutant in Ba/F3 or 32D cells requires coexpression of a cognate homodimeric cytokine receptor, such as the EpoR. However, overexpression of JAK2V617F in Ba/F3 cells renders them cytokine-independent for growth in the absence of an exogenous cytokine receptor. Here, we demonstrated that JAK2V617F domains required for receptor association are essential for cytokine-independent growth by overexpressed JAK2V617F, suggesting JAK2V617F is binding to an unknown endogenous cytokine receptor(s) for its activation. We further showed that disruption of EpoR dimerization by coexpressing a truncated EpoR disrupted JAK2V617F-mediated transformation, indicating that EpoR dimerization plays an essential role in the activation of JAK2V617F. Interestingly, coexpression of JAK2V617F with EpoR mutants that retain JAK2 binding but are defective in mediating Epo-dependent JAK2 activation due to mutations in a conserved juxtamembrane motif does lead to cytokine-independent activation of JAK2V617F. Overall, these findings confirm that JAK2V617F requires binding to a dimerized cytokine receptor for its activation, and that the key EpoR juxtamembrane regulatory motif essential for Epo-dependent JAK2 activation is not essential for the activation of JAK2V617F. The structure of the activated JAK2V617F is thus likely to be different from that of the activated wild-type JAK2, raising the possibility of developing a specifically targeted therapy for myeloproliferative disorders.

  9. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.

    Science.gov (United States)

    Zhang, Xiaoyue; Li, Yonghao; Zhao, Xinqing; Bai, Fengwu

    2017-01-01

    The high cost of cellulase production presents biggest challenge in biomass deconstruction. Cellulase production by Trichoderma reesei using low cost carbon source is of great interest. In this study, an artificial transcription activator containing the Cre1 binding domain linked to the Xyr1 effector and binding domains was designed and constitutively overexpressed in T. reesei RUT C30. The recombinant strain T. reesei zxy-2 displayed constitutive cellulase production using glucose as a sole carbon source, and the production titer was 12.75-fold of that observed with T. reesei RUT C30 in shake flask culture. Moreover, FPase and xylanase titers of 2.63 and 108.72IU/mL, respectively, were achieved using glucose as sole carbon source within 48h in a 7-L fermenter by batch fermentation using T. reesei zxy-2. The crude enzyme obtained was used to hydrolyze alkali pretreated corn stover, and a high glucose yield of 99.18% was achieved. Copyright © 2016. Published by Elsevier Ltd.

  10. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    Science.gov (United States)

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  11. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  12. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice

    National Research Council Canada - National Science Library

    Neuhold, L A; Killar, L; Zhao, W; Sung, M L; Warner, L; Kulik, J; Turner, J; Wu, W; Billinghurst, C; Meijers, T; Poole, A R; Babij, P; DeGennaro, L J

    2001-01-01

    ...). We have used tetracycline-regulated transcription in conjunction with a cartilage-specific promoter to target a constitutively active human MMP-13 to the hyaline cartilages and joints of transgenic mice...

  13. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    Science.gov (United States)

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  14. Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119

    DEFF Research Database (Denmark)

    Engelstoft, Maja Storm; Norn, C; Pedersen, Maria Hauge

    2014-01-01

    BACKGROUND AND PURPOSE: GPR119 is a Gαs-coupled 7TM receptor activated by endogenous lipids such as oleoylethanolamide (OEA) and by the dietary triglyceride metabolite 2-monoacylglycerol. GPR119 stimulates enteroendocrine hormone and insulin secretion. But despite massive drug discovery efforts...... the centre of the receptor out to extracellular loop-2b. CONCLUSIONS AND IMPLICATIONS: The high constitutive activity of GPR119 should be taken into account in future drug discovery efforts, which can now be guided by the detailed knowledge of the physiochemical properties of the extended ligand...

  15. Receptor conformation and constitutive activity in CCR5 chemokine receptor function and HIV infection.

    Science.gov (United States)

    Flanagan, Colleen A

    2014-01-01

    The CCR5 chemokine receptor mediates the effects of proinflammatory β-chemokines that stimulate chemotaxis, activation, and proliferation of macrophages and T cells. CCR5 is also the major coreceptor that mediates HIV infection in combination with CD4. Chemokine agonists of CCR5 stimulate the activation of cellular calcium and protein kinase signaling pathways that depend on the activation of Gαi and probably also Gαq in some cells. Chemokines also stimulate the recruitment of β-arrestin, which is required for clathrin-dependent receptor internalization and acts as a scaffold protein for the chemotaxis signaling complex that mobilizes the actin cytoskeleton. CCR5 is partially constitutively active for the activation of Gαi, but the physiological significance has not been studied. HIV binding to CCR5 also activates G protein and protein kinase signaling but, in addition, stimulates the production of proinflammatory cytokines, including TNF-α, and mobilizes the actin cytoskeleton to form the fusion pore that allows viral entry and subsequently supports viral replication in the cell. The CCR5 conformation that mediates the fusion of the viral and cell membranes is unknown, but it is probably distinct from the conformation that mediates G protein signaling. Nonpeptide CCR5 blockers are allosteric inverse agonists that increase dissociation of both chemokines and HIV envelope proteins, but this does not correlate with their ability to inhibit HIV infection. Nevertheless, the inverse agonist activity may ameliorate the immune activation that exacerbates AIDS pathogenesis. Inverse agonists of CCR5 have established efficacy for the treatment of AIDS, but may also be useful in preventing HIV infection.

  16. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    DEFF Research Database (Denmark)

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A

    2007-01-01

    . Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal...... and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7....... In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity...

  17. 强力霉素对胃癌细胞增殖及Notch1、MMP-9表达的影响%Effect of Doxycycline on Gastric Cancer Cell Proliferation and Notch1, MMP-9 Expression

    Institute of Scientific and Technical Information of China (English)

    许敏; 李红

    2014-01-01

    Objective To investigate the effect of Doxycycline on gastric cancer cell line BGC-823 proliferation and Notch1, Matrix metalloproteinase-9(MMP-9)expression in order to shine a light on new anticancer drugs. Methods Final concentration of 0, 5, 10, 20, 40 mg/L doxycycline were added into human gastric cancer cell line BGC-823. Cell pro-liferation was detected by MTT;Cell cycle distribution was assessed by flow cytometry;Notch1, MMP-9 protein expression was revealed by Immunoblot. Results Doxycycline can inhibit proliferation of human gastric cancer cells line BGC-823, and its effect is dose and time-dependent(P<0.01). Doxycycline alters distribution of gastric cancer cell line BGC-823. With increasing drug concentration, the proportion of cells in S phase dropped(P<0.01). Notch1 expression rose and MMP-9 expression decreased(P<0.01). Conclusion Doxycyclinecan inhibited gastric cancer cell line BGC-823 prolif-eration and up-regulating Notch1 might be one mechanisms.%目的:研究强力霉素对胃癌细胞BGC-823细胞的增殖及Notch1、基质金属蛋白酶-9(MMP-9)蛋白表达的影响,为胃癌的治疗提供新的抗肿瘤药物。方法分别以0、5、10、20、40 mg/L终浓度的强力霉素作用于人胃癌细胞系BGC-823,运用MTT法检测细胞增殖程度;流式细胞仪检测细胞周期分布的影响;Western Blot检测Notch1、MMP-9蛋白水平的表达。结果强力霉素能够抑制人胃癌细胞BGC-823细胞的增殖,且有剂量及时间依赖性(P<0.01);强力霉素能够改变胃癌细胞BGC-823周期的分布,随着浓度的增加,S期所占比例降低;并且随着浓度的增加,Notch1的表达增强,MMP-9的表达降低(P<0.01)。结论强力霉素能够抑制胃癌细胞BGC-823的增殖,促进Notch1上调为可能的机制之一。

  18. Notch-1和Survivin在甲状腺乳头状癌中的表达及意义%Expression and clinical significance of Notch-1 and Survivin in papillary thyroid carcinoma

    Institute of Scientific and Technical Information of China (English)

    史永亮

    2013-01-01

    目的 探讨Notch-1、Survivin在甲状腺乳头状癌组织中的表达及临床意义.方法 收集80例甲状腺乳头状癌、70例甲状腺腺瘤和50例正常甲状腺组织石蜡标本,采用免疫组织化学SP法检测Notch-1、Survivin蛋白的表达水平.结果 在甲状腺乳头状癌、甲状腺腺瘤和正常甲状腺组织中,Notch-1的阳性表达率分别为22.5%、78.6%、88.0%,Survivin的阳性表达率分别为70.0%、12.9%、0%,与甲状腺腺瘤和正常甲状腺组织比较,甲状腺乳头状癌组织Notch-1、Survivin分别呈低表达和高表达状态(P<0.05),且二者表达呈明显负相关(r=-0.512,P<0.01).Notch-1和Survivin在甲状腺乳头状癌组织的异常表达与肿瘤临床分期、淋巴结转移有关(P<0.05).结论 在甲状腺乳头状癌的侵袭转移过程中存在Notch-1、Survivin的异常表达,对二者的联合检测有助于判断疾病的预后和转归.%Objective To explore the expression and clinical significance of Notch 4 and Survivin in papillary thyroid carcinoma tissues. Methods The expression levels of Notch-1 and Survivin were detected by immunohistochemistry in 80 cases of papillary thyroid carcinoma , 70 cases of thyroid adenoma and 50 cases of normal thyroid gland tissues. The correlation between the expression levels and clinical pathological parameters was analyzed. Results The positive expression rate of Notch-1 in papillary thyroid carcinoma, thyroid adenoma and normal thyroid gland tissues was 22. 5% ,78. 6% ,88. 0% ,respectively,and the positive expression rate of Survivin was 70.0% ,12.9% ,0% ,respectively, in papillary thyroid carcinoma , thyroid adenoma and normal thyroid gland tissues. As compared with that in thyroid adenoma and normal thyroid gland tissues , Notch4 in papillary thyroid carcinoma was low-expressed, however, Survivin was over-expressed ( P < 0. 05 ) , furthermore the expression of Notch4 was closely correlated to that of Survivin ( P <0. 01). The abnormal expression of

  19. Constitutive Models

    DEFF Research Database (Denmark)

    2011-01-01

    procedure is introduced for the analysis and solution of property models. Models that capture and represent the temperature dependent behaviour of physical properties are introduced, as well as equation of state models (EOS) such as the SRK EOS. Modelling of liquid phase activity coefficients are also......This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...... covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...

  20. Structure-dependent activity of phthalate esters and phthalate monoesters binding to human constitutive androstane receptor.

    Science.gov (United States)

    Zhang, Hong; Zhang, Zhaobin; Nakanishi, Tsuyoshi; Wan, Yi; Hiromori, Youhei; Nagase, Hisamistu; Hu, Jianying

    2015-06-15

    The present study investigated the human constitutive androstane receptor (CAR) binding activities of 23 phthalate esters and 10 phthalate monoesters using a fast and sensitive human CAR yeast two-hybrid assay. Of 23 phthalate esters, 16 were evaluated as positive, and the 10% relative effective concentrations (REC10) ranged from 0.28 (BBP) to 29.51 μM (DEHP), whereas no obvious binding activities were found for the phthalate esters having alkyl chains more than six carbons in length. Of 10 phthalate monoesters, only monoethyl phthalate (MEP), monoisobutyl phthalate (MIBP), and mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) elicited human CAR binding activities. The REC10 values of MEP and MIBP were 4.27 and 14.13 μM, respectively, higher than those of their corresponding phthalate esters (1.45 μM for DEP and 0.83 μM for DIBP), whereas TBMEHP (0.66 μM) was much lower than TBHP (>10(2) μM). A molecular docking method was performed to simulate the interaction modes between phthalates and human CAR, and active phthalates were found to lie at almost the same site in the human CAR pocket. The docking results suggest that the strong binding of phthalates to human CAR arises primarily from hydrophobic interactions, π-π interactions, and steric effects and that weak hydrogen bonds and weak halogen bonds greatly contribute to the high binding activity of TBMEHP. In conclusion, the current study clarified that an extensive array of phthalates are activators of human CAR.

  1. Constitutive MAP kinase activation in hematopoietic stem cells induces a myeloproliferative disorder.

    Directory of Open Access Journals (Sweden)

    Eva Chung

    Full Text Available Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL, suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development.

  2. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available BACKGROUND: Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury. METHODS: Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system. RESULTS: I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells. CONCLUSION: The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  3. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    OpenAIRE

    Li, Yuan; Burns, Janine A.; Carol A Cheney; Zhang, Ningyan; Vitelli, Salvatore; Wang, Fubao; Bett, Andrew; Chastain, Michael; Audoly, Laurent P.; Zhang, Zhi-Qiang

    2010-01-01

    Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prosta...

  4. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    Science.gov (United States)

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  5. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors.

    Science.gov (United States)

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F

    1996-09-01

    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  6. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  7. Clinical impact of de-regulated Notch-1 and Notch-3 in the development and progression of HPV-associated different histological subtypes of precancerous and cancerous lesions of human uterine cervix.

    Directory of Open Access Journals (Sweden)

    Richa Tripathi

    Full Text Available BACKGROUND: Cervical cancer is the leading cause of cancer related deaths among women in India. Limited reports are available for Notch-1 and Notch-3 protein in cervical carcinoma, which play crucial role in cell proliferation, differentiation, and apoptosis. METHODS: This study was designed to evaluate the role of Notch-1 and Notch-3 with context to HPV infection in cervical carcinoma. A total of 168 tissue biopsy samples comprising of tumor specimens (n = 98, precancer (n = 30 and non-neoplastic cervical tissues (n = 40 were screened for HPV infection by PCR and expression of Notch-1 and Notch-3 protein by Immunohistochemistry and Immunoblotting. RESULTS: 80% (24/30 were found to be positive for HPV in precancer and 86.7% (85/98 in cancer patients. Notch-1 expression of precancer and cancer cases was found to be significantly down-regulated with severity of disease in nuclear (3.43±0.29; 2.04±0.19, p = 0.0001, p = 0.0001 and cytoplasm (3.07±0.29; 2.29±0.17, p = 0.0001, p = 0.0001 obtained from different stages as compared to normal cervix tissue (5.40±0.19, 4.97±0.15; p<0.001; p<0.001. However, Notch-3 expression of above cases was significantly up-regulated with severity of disease and showed intense nuclear (4.17±0.39; 4.74±0.18, p = 0.0001, p = 0.0001 and cytoplasm (3.67±0.36; 4.48±0.18, p = 0.0001, p = 0.0001 of different stages as compared to normal cervix tissue (0.95±0.20, 0.70±0.20; p<0.001; p<0.001 respectively. CONCLUSIONS: These findings suggest that Notch-1 and Notch-3 may play an important role with synergistic effect of HPV in regulating development and proliferation of cervical cancer through the deregulation of Notch signalling. This study also shows the clinical utility of both proteins which may be used as predictable biomarkers in diagnosing different histological sub-types of HPV associated cervical cancer. Nevertheless, abnormal activation of this pathway may provide

  8. Suppression of granzyme B activity and caspase-3 activation in leukaemia cells constitutively expressing the protease inhibitor 9.

    Science.gov (United States)

    Fritsch, Kristina; Finke, Jürgen; Grüllich, Carsten

    2013-12-01

    Immune surveillance against malignant cells is mediated by cytotoxic T-lymphocytes and NK-cells (CTL/NK) that induce apoptosis through the granzyme-B-dependent pathway. The serine protease inhibitor serpinB9/protease inhibitor-9 (PI-9) is a known inhibitor of granzyme B. Ectopic expression of PI-9 in tumour cells has been reported. However, the impact of PI-9 on granzyme-B-induced apoptosis in tumour cells remains unclear. The aim of this study was to investigate the influence of constitutive PI-9 expression in leukaemia cell lines on the activity of granzyme B and apoptosis induction. PI-9 negative (lymphoblastic Jurkat cells; myeloblastic U937 cells) and PI-9-expressing cell lines (myeloblastic K562 cells, EBV-transformed LCL-1 and LCL-2 B-cells, lymphoblastic Daudi cells, AML-R cells f leukaemia and the U937 subclone U937PI-9(+)). For accurate granzyme B activity determination a quantitative substrate (Ac-IEPD-pNA) cleavage assay was established and caspase-3 activation measured for apoptosis assessment. Cells were treated with a cytotoxic granule isolate that has previously been shown to induce apoptosis through granzyme B signalling. We found a robust correlation between constitutive PI-9 expression levels and the suppression of granzyme B activity. Further, inhibition of granzyme B translated into reduced caspase-3 activation. We conclude, suppression of granzyme B initiated apoptosis in PI-9-expressing cells could contribute to immune evasion and the measurement of granzyme B activity with our assay might be a useful predictive marker in immune-therapeutic approaches against cancer.

  9. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    Science.gov (United States)

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  10. Notch1 activation or loss promotes HPV-induced oral tumorigenesis

    OpenAIRE

    Zhong, Rong; Bao, Riyue; Faber, Pieter W.; Bindokas, Vytautas P.; Bechill, John; Lingen, Mark W.; Spiotto, Michael T.

    2015-01-01

    Viral oncogene expression is insufficient for neoplastic transformation of human cells, so HPV-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induce...

  11. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    Science.gov (United States)

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  12. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  13. Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion.

    Science.gov (United States)

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Utsugi, Toshihiro; Ohyama, Yoshio; Nakamura, Tetsuya; Tomura, Hideaki; Kawazu, Shoji; Okajima, Fumikazu; Kurabayashi, Masahiko

    2011-06-01

    Weak pancreatic β-cell function is a cause of type 2 diabetes mellitus. Glucokinase regulates insulin secretion via phosphorylation of glucose. The present study focused on a system for the self-protection of pancreatic cell by expressing heat shock factor (HSF) and heat shock protein (HSP) to improve insulin secretion without inducing hypoglycemia. We previously generated a constitutively active form of human HSF1 (CA-hHSF1). An adenovirus expressing CA-hHSF1 using the cytomegalovirus promoter was generated to infect mouse insulinoma cells (MIN6 cells). An adenovirus expressing CA-hHSF1 using a human insulin promoter (Ins-CA-hHSF1) was also generated to infect rats. We investigated whether CA-hHSF1 induces insulin secretion in MIN6 cells and whether Ins-CA-hHSF1 can improve blood glucose and serum insulin levels in healthy Wister rats and type 2 diabetes mellitus model rats. CA-hHSF1 expression increased insulin secretion 1.27-fold compared with the overexpression of wild-type hHSF1 in MIN6 cells via induction of HSP90 expression and subsequent activation of glucokinase. This mechanism is associated with activation of both glucokinase and neuronal nitric oxide synthase. Ins-CA-hHSF1 improved blood glucose levels in neonatal streptozotocin-induced diabetic rats. Furthermore, Ins-CA-hHSF1 reduced oral glucose tolerance testing results in healthy Wister rats because of an insulin spike at 15 minutes; however, it did not induce hypoglycemia. CA-hHSF1 induced insulin secretion both in vitro and in vivo. These findings suggest that gene therapy with Ins-CA-hHSF1 will be able to be used to treat patients with type 2 diabetes mellitus and impaired glucose tolerance without causing hypoglycemia at fasting. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Patricia Hernández-Martínez

    Full Text Available Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.

  15. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma

    Science.gov (United States)

    Mattia, Gianfranco; Errico, M Cristina; Felicetti, Federica; Petrini, Marina; Bottero, Lisabianca; Tomasello, Luisa; Romania, Paolo; Boe, Alessandra; Segnalini, Patrizia; Di Virgilio, Antonio; Colombo, Mario P; Carè, Alessandra

    2011-01-01

    MicroRNAs-221 and -222 are highly upregulated in several solid tumors, including melanomas. We demonstrate that the proto-oncogene ETS-1, involved in the pathogenesis of cancers of different origin, is a transcriptional regulator of miR-222 by direct binding to its promoter region. Differently from 293FT cells or early stage melanomas, where unphosphorylated ETS-1 represses miR-222 transcription, in metastatic melanoma the constitutively Thr-38 phosphorylated fraction of ETS-1 induces miR-222. Despite its stepwise decreased expression along with melanoma progression, the oncogenic activity of ETS-1 relies on its RAS/RAF/ERK-dependent phosphorylation status more than on its total amount. To close the loop, we demonstrate ETS-1 as a direct target of miR-222, but not miR-221, showing the novel option of their uncoupled functions. In addition, a spatial redistribution of ETS-1 protein from the nucleus to the cytoplasm is also evidenced in advanced melanoma cells. Finally, in vivo studies confirmed the contribution of miR-222 to the increased invasive potential obtained by ETS- silencing. PMID:21711453

  16. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens.

    Science.gov (United States)

    Pathuri, Indira Priyadarshini; Zellerhoff, Nina; Schaffrath, Ulrich; Hensel, Götz; Kumlehn, Jochen; Kogel, Karl-Heinz; Eichmann, Ruth; Hückelhoven, Ralph

    2008-12-01

    RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H(2)O(2) production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.

  17. Constitutively active form of natriuretic peptide receptor 2 ameliorates experimental pulmonary arterial hypertension.

    Science.gov (United States)

    Nawa, Nobutoshi; Ishida, Hidekazu; Katsuragi, Shinichi; Baden, Hiroki; Takahashi, Kunihiko; Higeno, Ryota; Torigoe, Fumiko; Mihara, Seiko; Narita, Jun; Miura, Kohji; Nakamura, Kazufumi; Kogaki, Shigetoyo; Ozono, Keiichi

    2016-01-01

    We recently found a constitutively active mutant of natriuretic peptide receptor 2 (caNPR2; V883M), which synthesizes larger amounts of cyclic guanosine monophosphate (cGMP) intracellularly without any ligand stimulation than existing drugs. The aim of this study was to investigate the therapeutic effects of gene transduction using caNPR2 for pulmonary arterial hypertension (PAH). In vitro gene transduction into human pulmonary arterial smooth muscle cells using Sendai virus (SeV) vectors carrying caNPR2 induced 10,000-fold increases in the synthesis of cGMP without ligand stimulation, and the proliferation of caNPR2-expressing cells was significantly attenuated. The PAH model rats generated by hypoxia and the administration of SU5416 were then treated with SeV vectors through a direct injection into the left pulmonary artery. Right ventricular systolic pressure was significantly decreased 2 weeks after the treatment, while systemic blood pressure remained unchanged. Histological analyses revealed that the medial wall thickness and occlusion rate of pulmonary arterioles were significantly improved in caNPR2-treated lungs. Neither the systemic integration of virus vectors nor side effects were observed. The massive stimulation of cGMP synthesis by gene therapy with caNPR2 was safe and effective in a PAH rat model and, thus, has potential as a novel therapy for patients with severe progressive PAH.

  18. LOH at chromosome 9q34.3 and the Notch1 gene methylation are less involved in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Gao, Shan; Krogdahl, Annelise; Eiberg, Hans;

    2007-01-01

    BACKGROUND: Previous studies of oral carcinomas have shown that both loss of heterozygosity (LOH) and hypermethylation at chromosome 9q33 to 9q34.2 are frequent. The present study investigates the frequency of Notch1 gene methylation and LOH at 9q34.3 region. METHODS: Gene promoter hypermethylation...... of the Notch1 gene was analysed by methylation-specific PCR and LOH was analysed using microsatellite markers. RESULTS: We found LOH at 9q34.3 in three patients and methylation of the Notch1 gene only in two patients with oral carcinoma. CONCLUSION: Comparing with the alterations at 9q33 to 34.2 regions, LOH...... at 9q34.3 and methylation of the Notch1 gene was less involved in oral squamous cell carcinomas....

  19. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  20. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Frimurer, Thomas M; Sivertsen, Bjoern

    2012-01-01

    phenotypes as the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of ECL2b to form an extended a-helix was increased from 15% in the wild type to 89% and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively....... Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal-ion site stabilizing an a-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment...

  1. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells.

    Science.gov (United States)

    Yugawa, Takashi; Narisawa-Saito, Mako; Yoshimatsu, Yuki; Haga, Kei; Ohno, Shin-ichi; Egawa, Nagayasu; Fujita, Masatoshi; Kiyono, Tohru

    2010-05-15

    The p53 family member p63 is a master regulator of epithelial development. One of its isoforms, DeltaNp63alpha, is predominantly expressed in the basal cells of stratified epithelia and plays a fundamental role in control of regenerative potential and epithelial integrity. In contrast to p53, p63 is rarely mutated in human cancers, but it is frequently overexpressed in squamous cell carcinomas (SCC). However, its functional relevance to tumorigenesis remains largely unclear. We previously identified the Notch1 gene as a novel transcriptional target of p53. Here, we show that DeltaNp63alpha functions as a transcriptional repressor of the Notch1 gene through the p53-responsive element. Knockdown of p63 caused upregulation of Notch1 expression and marked reduction in proliferation and clonogenicity of both normal human keratinocytes and cervical cancer cell lines overexpressing DeltaNp63alpha. Concomitant silencing of Notch1 significantly rescued this phenotype, indicating the growth defect induced by p63 deficiency to be, at least in part, attributable to Notch1 function. Conversely, overexpression of DeltaNp63alpha decreased basal levels of Notch1, increased proliferative potential of normal human keratinocytes, and inhibited both p53-dependent and p53-independent induction of Notch1 and differentiation markers upon genotoxic stress and serum exposure, respectively. These results suggest that DeltaNp63alpha maintains the self-renewing capacity of normal human keratinocytes and cervical cancer cells partly through transcriptional repression of the Notch1 gene and imply a novel pathogenetical significance of frequently observed overexpression of DeltaNp63alpha together with p53 inactivation in SCCs.

  2. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.

    Science.gov (United States)

    Tsalkova, Tamara; Blumenthal, Donald K; Mei, Fang C; White, Mark A; Cheng, Xiaodong

    2009-08-28

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized "hinge" motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.

  3. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth.

    Science.gov (United States)

    Strock, Christopher J; Park, Jong-In; Rosen, Mark; Dionne, Craig; Ruggeri, Bruce; Jones-Bolin, Susan; Denmeade, Samuel R; Ball, Douglas W; Nelkin, Barry D

    2003-09-01

    All of the cases of medullary thyroid carcinoma (MTC) express the RET receptor tyrosine kinase. In essentially all of the hereditary cases and approximately 40% of the sporadic cases of MTC, the RET kinase is constitutively activated by mutation. This suggests that RET may be an effective therapeutic target for treatment of MTC. We show that the indolocarbazole derivatives, CEP-701 and CEP-751, inhibit RET in MTC cells. These compounds effectively inhibit RET phosphorylation in a dose-dependent manner at concentrations <100 nM in 0.5% serum and at somewhat higher concentrations in the presence of 16% serum. They also blocked the growth of these MTC cells in culture. CEP-751 and its prodrug, CEP-2563, also inhibited tumor growth in MTC cell xenografts. These results show that inhibiting RET can block the growth of MTC cells and may have a therapeutic benefit in MTC.

  4. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R;

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...... proliferation after interleukin 3 withdrawal at a rate equal to maximally stimulated wild type GHR-expressing cells. Activation of STAT 5b was also observed in Fos-Jun-GHR-expressing cells at a level equal to that in chronically GH-treated GHR-expressing cells. Thus, forced dimerization of the transmembrane...... and cytoplasmic domains of the GHR in the absence of the extracellular domain can lead to the constitutive activation of known GH signaling end points, supporting the view that proximity of Janus kinase 2 (JAK2) kinases is the essential element in signaling. Such constitutively active GH receptors may have...

  5. The Constitutively Active V2 Receptor Mutants Conferring NSIAD Are Weakly Sensitive to Agonist and Antagonist Regulation

    Science.gov (United States)

    Perkovska, Sanja; Adra-Delenne, Anne-Laure; Mendre, Christiane; Ranchin, Bruno; Bricca, Giamperro; Geelen, Ghislaine; Mouillac, Bernard; Durroux, Thierry; Morin, Denis

    2009-01-01

    Patients having the nephrogenic syndrome of inappropriate antidiuresis present either the R137C or R137L V2 mutated receptor. While the clinical features have been characterized, the molecular mechanisms of functioning of these two mutants remain elusive. In the present study, we compare the pharmacological properties of R137C and R137L mutants with the wild-type and the V2 D136A receptor, the latter being reported as a highly constitutively active receptor. We have performed binding studies, second messenger measurements and BRET experiments in order to evaluate the affinities of the ligands, their agonist and antagonist properties and the ability of the receptors to recruit β-arrestins, respectively. The R137C and R137L receptors exhibit small constitutive activities regarding the Gs protein activation. In addition, these two mutants induce a constitutive β-arrestin recruitment. Of interest, they also exhibit weak sensitivities to agonist and to inverse agonist in term of Gs protein coupling and β-arrestin recruitment. The small constitutive activities of the mutants and the weak regulation of their functioning by agonist suggest a poor ability of the antidiuretic function to be adapted to the external stimuli, giving to the environmental factors an importance which can explain some of the phenotypic variability in patients having NSIAD. PMID:20027297

  6. Constitutively active IRF7/IRF3 fusion protein completely protects swine against Foot-and-Mouth Disease

    Science.gov (United States)

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...

  7. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle

    NARCIS (Netherlands)

    de Vries, B; Roffel, AF; Zaagsma, J; Meurs, H

    2001-01-01

    In the present study, we investigated the effect of fenoterol-induced constitutive beta (2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 muM fenoterol or vehicle for

  8. MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability Through Modulating Macrophage Polarization by Directly Targeting Notch1.

    Science.gov (United States)

    An, Tian-Hui; He, Quan-Wei; Xia, Yuan-Peng; Chen, Sheng-Cai; Baral, Suraj; Mao, Ling; Jin, Hui-Juan; Li, Ya-Nan; Wang, Meng-Die; Chen, Jian-Guo; Zhu, Ling-Qiang; Hu, Bo

    2016-10-08

    Atherosclerotic plaque vulnerability is the major cause for acute stroke and could be regulated by macrophage polarization. MicroRNA-181b (miR-181b) was involved in macrophage differential. Here, we explore whether miR-181b could regulate atherosclerotic plaque vulnerability by modulating macrophage polarization and the underline mechanisms. In acute stroke patients with atherosclerotic plaque, we found that the serum level of miR-181b was decreased. Eight-week apolipoprotein E knockout (ApoE(-/-)) mice were randomly divided into three groups (N = 10): mice fed with normal saline (Ctrl), mice fed with high-fat diet, and tail vein injection with miRNA agomir negative control (AG-NC)/miR-181b agomir (181b-AG, a synthetic miR-181b agonist). We found that the serum level of miR-181b in AG-NC group was lower than that in Ctrl group. Moreover, 181b-AG could upregulate miR-181b expression, reduce artery burden and attenuate atherosclerotic plaque vulnerability by modulating macrophage polarization. In RAW264.7 cells treated with oxidized low-density lipoprotein (ox-LDL), we found miR-181b could reverse the function of ox-LDL on M1/M2 markers at both mRNA and protein levels. Furthermore, by employing luciferase reporter assay, we found that Notch1 was a direct target of miR-181b and could be regulated by miR-181b in vivo and in vitro. Finally, inhibition of Notch1 could abolish the function of downregulating miR-181b on increasing M2 phenotype macrophages. Our study demonstrates that administration of miR-181b could reduce atherosclerotic plaque vulnerability partially through modulating macrophage phenotype by directly targeting Notch1.

  9. (S)-N-(5-Chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol a Notch-1-sparing gamma-secretase inhibitor.

    Science.gov (United States)

    Cole, Derek C; Stock, Joseph R; Kreft, Anthony F; Antane, Madelene; Aschmies, Suzan H; Atchison, Kevin P; Casebier, David S; Comery, Thomas A; Diamantidis, George; Ellingboe, John W; Harrison, Boyd L; Hu, Yun; Jin, Mei; Kubrak, Dennis M; Lu, Peimin; Mann, Charles W; Martone, Robert L; Moore, William J; Oganesian, Aram; Riddell, David R; Sonnenberg-Reines, June; Sun, Shaiu-Ching; Wagner, Erik; Wang, Zheng; Woller, Kevin R; Xu, Zheng; Zhou, Hua; Jacobsen, J Steven

    2009-02-01

    Accumulation of beta-amyloid (Abeta), produced by the proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase, is widely believed to be associated with Alzheimer's disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) gamma-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol 7.b.2 (Abeta(40/42) EC(50)=28 nM), which is efficacious in reduction of Abeta production in vivo.

  10. NOTCH1 is a poor prognostic factor for breast cancer and is associated with breast cancer stem cells

    OpenAIRE

    Zhong Y; Shen S; Zhou Y.; Mao F; Lin Y; Guan J; Xu Y.; Zhang S.; Liu X; Sun Q.

    2016-01-01

    Ying Zhong,1 Songjie Shen,1 Yidong Zhou,1 Feng Mao,1 Yan Lin,1 Jinghong Guan,1 Yali Xu,1 Shu Zhang,2 Xu Liu,3 Qiang Sun1 1Department of Breast Disease, 2Department of Dermatology, Peking Union Medical College Hospital, 3Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Recently, the human gene NOTCH1 has been found to be implicated in cancer cell metastasis and the maintenance of cancer stem cells. How...

  11. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  12. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    OpenAIRE

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expressio...

  13. Notch1在牙根发育不同阶段牙髓中的表达%Expression of Notch1 in dental pulp at different root development stages

    Institute of Scientific and Technical Information of China (English)

    朱英; 陈旭

    2012-01-01

    目的 研究牙根发育不同阶段的恒牙牙髓中Notch1蛋白的表达,探讨其在牙髓发育和成熟中的作用.方法 收集因正畸而拔除的人健康恒牙,拔除后立即取出牙髓,固定,石蜡包埋.按照牙根发育程度,分为3组:第1组(牙根刚开始发育),牙根发育不足1/3,共10例;第2组(牙根发育中),牙根发育1/3 ~2/3,共15例;第3组(牙根发育完成),根尖孔闭合,共12例.采用SP法,对牙髓标本的石蜡切片进行Notch1的免疫组化染色.利用图像分析仪和Meta Morph/Cool snapfx/AX70软件系统对阳性染色部位的透光强度进行定量分析.应用SPSS 10.0软件包,采用方差分析进行统计学分析.结果 Notch1蛋白在恒牙牙根发育不同阶段的牙髓组织中均有表达,主要在牙髓成纤维细胞和血管内皮细胞的胞质内呈阳性着色;随着牙根的逐渐发育,Notch1在牙髓中的表达强度逐渐减弱(P<0.01).结论 Notch1参与牙髓牙本质复合体的发育和成熟.%Objective To investigate the expression of Notchl protein in dental pulp of permanent teeth at different root development stages and to explore its possible role in the development and maturation of dental pulp. Methods Healthy permanent teeth in need of orthodontic extraction were obtained. The dental pulp was immediately removed after extraction, fixed and embedded in paraffin. Based on the teeth root development statutses,the pulp tissues were classified into three groups. In Group l,the tooth roots just started their development,and their development was less than 1/3. In Group 2,the tooth roots in development had formed 1/3 to 2/3. In Group 3 ,the tooth roots formed fully (apical closed). The sample numbers in each group were 10,15 and 12 respectively. The dental pulp was immunohistochemically stained with Notchl antibody with streptavidin-peroxidase method. Meta Morph/Cool snapfx/AX70 image analysis softwares and image analyzer were used for quantitative analysis of the

  14. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  15. Constitutive Models

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...

  16. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines

    DEFF Research Database (Denmark)

    Nielsen, M; Kaltoft, K; Nordahl, M

    1997-01-01

    , and tyrosine phosphorylation was not enhanced by growth factor stimulation; (ii) band shift assays and immunoprecipitations of DNA/Stat complexes showed constitutive DNA-binding properties of Stat3(sm); and (iii) Stat3(sm) was constitutively associated with Jak3. The abnormal activation of Stat3(sm) was highly....... Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues......-induced growth of MF tumor cells. In conclusion, we have provided evidence for an abnormal Jak/Stat signaling and growth regulation in tumor cells obtained from affected skin of an MF patient....

  17. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...... receptor was highly selective for GRO peptides, with IL-8 being 10,000-fold less potent. The constitutive stimulating activity of ORF-74 on phosphatidylinositol turnover was not influenced by, for example, IL-8 binding. In contrast, GRO peptides acted as potent agonists in stimulating ORF-74 signaling......, whereas IP-10 and stromal cell-derived factor-1alpha surprisingly acted as inverse agonists. These peptides had similar pharmacological properties with regard to enhancing or inhibiting, respectively, the stimulatory effect of ORF-74 on NIH-3T3 cell proliferation. Construction of a high affinity zinc...

  18. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  19. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

    Science.gov (United States)

    Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing

    2012-01-01

    Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892

  20. Notch-1 gene silencing promotes phosphorylations of JNK1 and p53 in human breast cancer MCF-7 cells%沉默Notch1基因促进人乳腺癌MCF-7细胞JNK1和p53磷酸化

    Institute of Scientific and Technical Information of China (English)

    袁磊; 陈旭东; 范文娟; 杨旭光; 王建国

    2013-01-01

    目的:探究沉默Notch1基因对人乳腺癌MCF-7细胞JNK1和p53磷酸化的影响.方法:选取人乳腺癌MCF-7细胞作为研究对象,构建shRNA-Notch1真核表达质粒用于转染MCF-7细胞使Notch1基因沉默.采用Western blotting方法检测MCF-7细胞Notch1、Hes-1、PUMA和NOXA蛋白的表达,JNK1和p53蛋白磷酸化水平以及caspase-3活化水平的改变.应用流式细胞术检测细胞凋亡和线粒体膜电位的变化.结果:人乳腺癌MCF-7细胞Notch1基因被沉默后,Notch1和Hes-1蛋白表达量明显减少(P<0.01),细胞凋亡率显著升高(P<0.01),JNK1和p53的磷酸化水平明显高于对照组(P<0.01),PUMA和NOXA表达量显著升高(P<0.05),cleaved caspase-3蛋白明显多于对照组(P<0.01),线粒体膜电位明显下降(P<0.05).结论:沉默Notch1基因可能通过激活JNK1信号通路活化p53,促进PUMA和NOXA蛋白表达,进而通过线粒体途径导致人乳腺癌MCF-7细胞凋亡.%AIM:To investigate the effect of Notch1 gene silencing on phosphorylations of JNK1 and p53 in human breast cancer MCF-7 cells.METHODS:shRNA-Notch1 eukaryotic expression plasmid was constructed and transfected into MCF-7 cells.The expression of Notch1 and Hes-1 was observed by Western blotting after transfction.Apoptosis and mitochondrial membrane potential were detected by flow cytometry.Western blotting was also used to determine the protein levels of p-JNK1,p-p53,PUMA,NOXA and cleaved caspase-3 after Notch1 silencing was performed in MCF-7 cells.RESULTS:Silencing of Notch1 significantly reduced the expression of Notch1 and Hes-1 in MCF-7 cells (P <0.01).In shNotch1 group,the number of apoptotic cells was much higher (P < 0.01) and mitochondrial membrane potential was much lower (P < 0.05) than those in shControl group.The protein levels of p-JNK1,p-p53,PUMA,NOXA and cleaved caspase-3 increased obviously after silencing of Notch1 was performed in MCF-7 cells (P < 0.05).CONCLUSION:Notch1 silencing induces apoptosis of

  1. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time.

    Science.gov (United States)

    Thang, Nguyen D; Yajima, Ichiro; Ohnuma, Shoko; Ohgami, Nobutaka; Kumasaka, Mayuko Y; Ichihara, Gaku; Kato, Masashi

    2015-02-01

    We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion. © 2013 Wiley Periodicals, Inc.

  2. A constitutively active Gαi3 protein corrects the abnormal retinal pigment epithelium phenotype of Oa1-/- mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Young

    Full Text Available PURPOSE: Ocular Albinism type 1 (OA1 is a disease caused by mutations in the OA1 gene and characterized by the presence of macromelanosomes in the retinal pigment epithelium (RPE as well as abnormal crossing of the optic axons at the optic chiasm. We showed in our previous studies in mice that Oa1 activates specifically Gαi3 in its signaling pathway and thus, hypothesized that a constitutively active Gαi3 in the RPE of Oa1-/- mice might keep on the Oa1 signaling cascade and prevent the formation of macromelanosomes. To test this hypothesis, we have generated transgenic mice that carry the constitutively active Gαi3 (Q204L protein in the RPE of Oa1-/- mice and are now reporting the effects that the transgene produced on the Oa1-/- RPE phenotype. METHODS: Transgenic mice carrying RPE-specific expression of the constitutively active Gαi3 (Q204L were generated by injecting fertilized eggs of Oa1-/- females with a lentivirus containing the Gαi3 (Q204L cDNA. PCR, Southern blots, Western blots and confocal microscopy were used to confirm the presence of the transgene in the RPE of positive transgenic mice. Morphometrical analyses were performed using electron microscopy to compare the size and number of melanosomes per RPE area in putative Oa1-/-, Gαi3 (Q204L transgenic mice with those of wild-type NCrl and Oa1-/- mice. RESULTS: We found a correlation between the presence of the constitutively active Gαi3 (Q204L transgene and the rescue of the normal phenotype of RPE melanosomes in Oa1-/-, Gαi3 (Q204L mice. These mice have higher density of melanosomes per RPE area and a larger number of small melanosomes than Oa1-/- mice, and their RPE phenotype is similar to that of wild-type mice. CONCLUSIONS: Our results show that a constitutively active Gαi3 protein can by-pass the lack of Oa1 protein in Oa1-/- mice and consequently rescue the RPE melanosomal phenotype.

  3. Developmental Constitutionalism

    OpenAIRE

    Skupien, Stefan

    2015-01-01

    The search for adequate political and socio-economic models continues within recent constitutional reforms in Sub-Saharan post-colonial societies since 2005. This discourse goes back to the period of decolonisation but also to the transitions after 1989. Within this study, I assess the problem of representational crisis that come hand in hand with constitution making processes. Especially, I focus on the representation of different groups within the state, the safeguarding and extent of basic...

  4. 敲除ADAR1抑制Notch1诱导小鼠T淋巴细胞白血病的发生%ADAR1 Knockout Inhibits Notch1-induced T-ALL in Mice

    Institute of Scientific and Technical Information of China (English)

    高慧儿; 彭路芸; 杨鑫; 张英驰; 胡甜园; 许静; 袁卫平; 程涛; 高瀛岱

    2016-01-01

    目的:探索ADAR1对于小鼠急性T淋巴细胞白血病(T cell acute lymphoblastic leukemia,T-ALL)发生发展的影响.方法:通过杂交繁殖获得Lck-Cre;ADAR1lox/lox小鼠及对照组ADAR11ox/lox小鼠;采用免疫磁珠法富集两组小鼠的lin-细胞,用携带MSCV-ICN1-IRES-GFP质粒的逆转录病毒分别感染上述lin-细胞,流式细胞术检测感染效率,分选并移植相同数量的GFP+细胞至受体小鼠中.在移植后持续观察并统计两组小鼠生存情况.结果:成功获得了T细胞特异敲除ADAR1的小鼠,并成功建立了Notch1诱导的小鼠T-ALL白血病模型.对照组小鼠在移植后发病,符合T-ALL特征;相反,ADAR1敲除组小鼠没有发生白血病.结论:ADAR1在Notch1诱导的T-ALL白血病的发生过程中起关键作用.

  5. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands.

    Science.gov (United States)

    Taylor, Paul; Takeuchi, Hideyuki; Sheppard, Devon; Chillakuri, Chandramouli; Lea, Susan M; Haltiwanger, Robert S; Handford, Penny A

    2014-05-20

    The Notch signaling pathway is essential for many aspects of development, cell fate determination, and tissue homeostasis. Notch signaling can be modulated by posttranslational modifications to the Notch receptor, which are known to alter both ligand binding and receptor activation. We have modified the ligand-binding region (EGF domains 11-13) of human Notch1 (hN1) with O-fucose and O-glucose glycans and shown by flow cytometry and surface plasmon resonance that the Fringe-catalyzed addition of GlcNAc to the O-fucose at T466 in EGF12 substantially increases binding to Jagged1 and Delta-like 1 (DLL1) ligands. We have subsequently determined the crystal structures of EGF domains 11-13 of hN1 modified with either the O-fucose monosaccharide or the GlcNAc-fucose disaccharide at T466 of EGF12 and observed no change in backbone structure for each variant. Collectively, these data demonstrate a role for GlcNAc in modulating the ligand-binding site in hN1 EGF12, resulting in an increased affinity of this region for ligands Jagged1 and DLL1. We propose that this finding explains the Fringe-catalyzed enhancement of Notch-Delta signaling observed in flies and humans, but suggest that the inhibitory effect of Fringe on Jagged/Serrate mediated signaling involves other regions of Notch.

  6. RNAi干扰Notch-1对人肝癌细胞BEL-7402AFP表达及细胞增殖的影响%Effects of RNAi-mediated gene silencing of Notch-1 transcriptional factor on the expression of AFP overexpression and cell proliferation in hepatocellular carcinoma cells BEL 7402

    Institute of Scientific and Technical Information of China (English)

    刘虹

    2012-01-01

    目的 采用RNAi干扰细胞通讯因子Notch-1对肝癌细胞BEL-7402中AFP表达及细胞增殖的影响.方法 通过siRNA抑制BEL-7402细胞中Notch-1的表达,采用qRT-PCR和Western blotting法,检测其对AFP表达的影响,采用MTI法测定细胞增殖情况.结果 siRNA抑制Notch-1达后,AFP mRNA及其蛋白水平显著下降,RNAi干扰组与对照组比较BEL-7402细胞生长明显受抑制(P<0.01).结论 Notch-1 siRNA可以下调肝癌细胞BEL-7402中AFP mRNA及其蛋白的表达水平,抑制BEL-7402细胞的生长,提示Notch-1基因在肝癌细胞的发生、发展中具有重要作用,Notch-1可能是AFP过量表达肝癌的治疗靶点.

  7. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation.

    Directory of Open Access Journals (Sweden)

    Jia Su

    Full Text Available Constitutive activation of the transcription factor nuclear factor-κB (NF-κB is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found that TCN markedly inhibits the growth of cancer cells with constitutively activated NF-κB. TCN induces G0/G1 cell cycle arrest and apoptosis in cancer cells, activating pro-apoptotic proteins, including caspase-3, -8 and PARP-1, and decreasing the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin. Reporter activity assay and target genes expression analysis illustrated that TCN works as a potent inhibitor of the NF-κB signaling pathway. TCN inhibits the phosphorylation and degradation of IκBα and blocks the nuclear translocation of p65, and thus inhibits the expression of NF-κB target genes XIAP, cyclin D1, and Bcl-xL. Though TCN does not directly interfere with IKKβ kinase, it suppresses the phosphorylation of IKKβ. Overexpression of constitutively activated IKKβ aborted TCN induced cancer cell apoptosis, whereas knockdown of endogenous IKKβ with siRNA sensitized cancer cells toward apoptosis induced by TCN. Moreover, TCN showed a markedly weaker effect on normal cells. These findings suggest that TCN may be a potential therapeutic candidate for cancer treatment, targeting NF-κB signaling.

  8. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    Science.gov (United States)

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice.

  9. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    Science.gov (United States)

    Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  10. Estudio de la función del receptor notch-1 en la activación del macrófago.

    OpenAIRE

    Monsalve Argandoña, Eva María

    2012-01-01

    1- Los macrófagos murinos diferenciados expresan los receptores Notch-1, -2 y -4, y los ligandos Jagged-1 y -2, así como diferentes enzimas implicadas en el procesamiento y glicosilación de estos receptores, como la convertasa Kuzbanian, la g-secretasa presenilina 1, y las glicosidasas Fringe. 2- La expresión del receptor Notch-1 y del ligando Jagged-1 se incrementa tras la activación en los macrófagos murinos de diferentes receptores Toll. Esta inducción es dependiente de p...

  11. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro.

    Science.gov (United States)

    Wu, Wen-Rui; Zhang, Rui; Shi, Xiang-De; Zhu, Man-Sheng; Xu, Lei-Bo; Zeng, Hong; Liu, Chao

    2014-06-01

    The Notch signaling pathway has been reported to play crucial roles in inhibiting hepatocyte differentiation and allowing formation of intrahepatic bile ducts. However, little is known about its significance in intrahepatic cholangiocarcinoma (ICC). The aim of the present study was to investigate the effects of Notch1 expression in ICC tissues and cells. The expression of Notch1 was examined in paraffin-embedded sections of ICC (n=44) by immunohistochemistry. Notch1 was knocked down by RNA interference (RNAi) in cultured ICC cells (RBE and HCCC-9810). The proliferation, invasiveness and sensitivity to 5-fluorouracil (5-FU) were detected by Cell Counting Kit-8 (CCK-8), colony formation assays, Transwell assays and flow cytometry, respectively. The expression levels of several multidrug resistance (MDR)-related genes, MDR1-P-glycoprotein (ABCB‑1), breast cancer resistance protein (ABCG‑2) and the multidrug resistance protein isoform 1 (MRP‑1), were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Notch1 was overexpressed in cell membranes and cytoplasm of ICC compared with the adjacent liver tissue (35/44, 79.5%) and this was more common in cases with tumor size≥5 cm (p=0.021) and HBs-Ag positive (p=0.018). By silencing Notch1, the proliferation and invasiveness of ICC cells were inhibited and the inhibition rate of 5-FU was markedly increased. In addition, IC50 values of 5-FU in RBE cells were decreased from 148.74±0.72 to 5.37±0.28 µg/ml and the corresponding values for HCCC-9810 cells were 326.92±0.87 to 42.60±0.35 µg/ml, respectively. Furthermore, Notch1 silencing clearly increased the percentage of apoptotic cells treated by 5-FU compared with the control. Notch1 knockdown led to diminished expression levels of ABCB‑1 and MRP‑1. Therefore, Notch may play important roles in the development of ICC. Silencing Notch1 can inhibit the proliferation and invasiveness of ICC cells and increase their

  12. Constitutively active Arabidopsis MAP Kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein

    KAUST Repository

    Genot, Baptiste

    2017-04-12

    Mitogen-activated protein kinases (MAPKs) are important regulators of plant immunity. Most of the knowledge about the function of these pathways is derived from loss-of-function approaches. Using a gain-of-function approach, we investigated the responses controlled by a constitutively active (CA) MPK3 in Arabidopsis thaliana. CA-MPK3 plants are dwarfed and display a massive de-repression of defense genes associated with spontaneous cell death as well as accumulation of reactive oxygen species (ROS), phytoalexins and the stress-related hormones ethylene and salicylic acid (SA). Remarkably CA-MPK3/sid2 and CA-MPK3/ein2-50 lines which are impaired in SA synthesis and ethylene signaling, respectively, retain most of the CA-MPK3-associated phenotypes, indicating that constitutive activity of MPK3 can bypass SA and ethylene signaling to activate defense responses. A comparative analysis of the molecular phenotypes of CA-MPK3 and mpk4 autoimmunity suggested convergence between the MPK3 and MPK4-guarding modules. In support of this model, CA-MPK3 crosses with summ1 and summ2, two known suppressors of mpk4, resulted in a partial reversion of the CA-MPK3 phenotypes. Overall, our data unravel a novel mechanism by which the MAPK signaling network contributes to a robust defense response system.

  13. Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides.

    Science.gov (United States)

    Maschietto, Valentina; Lanubile, Alessandra; Leonardis, Silvana De; Marocco, Adriano; Paciolla, Costantino

    2016-08-01

    Fusarium verticillioides is a fungal pathogen of maize that causes ear rot and contaminates the grains with fumonisin mycotoxins. Breeding for resistance to Fusarium emerged as the most economic and environmentally safe strategy; therefore the discovery of resistant sources and effective molecular markers are a priority. Ears of resistant (CO441 and CO433) and susceptible (CO354 and CO389) maize lines were inoculated with F. verticillioides and the expression of pathogenesis-related (PR) genes (PR1, PR5, PRm3, PRm6) and genes that protect from oxidative stress (peroxidase, catalase, superoxide dismutase and ascorbate peroxidase) were evaluated in the kernels at 72h post inoculation. In addition, the oxidation level and the enzymatic activity of ascorbate-glutathione cycle, catalase, superoxide dismutase and cytosolic and wall peroxidases were investigated. The uninoculated kernels of the resistant lines showed higher gene expression and enzymatic activities, highlighting the key role of constitutive resistance in limiting pathogen attack. In contrast, the susceptible lines activated defensive genes only after pathogen inoculation, resulting in increased levels of H2O2 and lipid peroxidation, as well as lower enzymatic activities. The constitutive defenses observed in this study from seed could be profitably exploited to develop markers to speed up conventional breeding programs in the selection of resistant genotypes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Intragenic suppression of a constitutively active allele of Gsα associated with McCune-Albright syndrome.

    Science.gov (United States)

    Tobar-Rubin, Raquel; Sultan, Dahlia; Janevska, Daniela; Turcic, Kyle; Carroll, Julie; Ooms, Laura; Pals-Rylaarsdam, Robin

    2013-04-01

    McCune-Albright syndrome (MAS) is a human genetic disorder caused by a mutation that constitutively activates the G(s)α subunit by abolishing GTP hydrolysis. MAS patients suffer from a range of endocrinopathies as well as polyostotic fibrous dysplasia of bone. We previously identified an intragenic suppressor of the MAS mutation in a yeast system, which substituted two residues in the GTP-binding site of Gpa1: L318P and D319V to suppress the constitutive activity of an R297H mutation, corresponding to the human F222P, D223V, and R201H mutations respectively. To extend these studies, the human GNAS gene was subjected to site-directed mutagenesis. Constructs expressing the MAS mutation (R201H), the MAS mutation plus the mutations homologous to the yeast suppressors (R201H, F222P/D223V), or the yeast suppressor mutation alone (F222P/D223V) were transfected into HEK293 cells, and basal and receptor-stimulated cAMP levels were measured. Expression of R201H increased the basal cAMP levels and decreased the EC(50) for hormone-stimulated cAMP production. These effects were dependent on the amount of R201H protein expressed. R201H, F222P/D223V abolished the constitutive activity of the MAS mutation and caused responses to hormone that were not different from those measured in cells expressing WT G(s)α. Interestingly, F222P/D223V behaved similar to R201H in causing increases in basal cAMP production, thus demonstrating constitutive activity. Substitution of another acidic (E) or polar (N, T, and G) amino acid at position 223 caused no suppression of R201H activity, while substitution of a second nonpolar amino acid (A) at this position partially suppressed, and the larger polar I residue completely suppressed the effects of R201H.

  15. Characterization of the Chemical Constitution and Profile of Pharmacological Activity of PGBx.

    Science.gov (United States)

    1980-04-30

    Mitochondrial Oxydative Phosphorylation System Columna Percent Activity- Comments Fractiorr 20 g 40 4g 7 50 100 slightly lower specific activity 8 115 115...with ether, pithed and artificially ventilated. A stimula- ting electrode was introduced irte the vertebral canal via the right or- bit and an

  16. Constitutional Conservatism

    Science.gov (United States)

    Berkowitz, Peter

    2009-01-01

    After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…

  17. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  18. Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle.

    Science.gov (United States)

    Ferey, Jeremie L A; Brault, Jeffrey J; Smith, Cheryl A S; Witczak, Carol A

    2014-10-15

    Skeletal muscle loading/overload stimulates the Ca²⁺-activated, serine/threonine kinase Ca²⁺/calmodulin-dependent protein kinase kinase-α (CaMKKα); yet to date, no studies have examined whether CaMKKα regulates muscle growth. The purpose of this study was to determine if constitutive activation of CaMKKα signaling could stimulate muscle growth and if so whether CaMKKα is essential for this process. CaMKKα signaling was selectively activated in mouse muscle via expression of a constitutively active form of CaMKKα using in vivo electroporation. After 2 wk, constitutively active CaMKKα expression increased muscle weight (~10%) and protein content (~10%), demonstrating that activation of CaMKKα signaling can stimulate muscle growth. To determine if active CaMKKα expression stimulated muscle growth via increased mammalian target of rapamycin complex 1 (mTORC1) signaling and protein synthesis, [³H]phenylalanine incorporation into proteins was assessed with or without the mTORC1 inhibitor rapamycin. Constitutively active CaMKKα increased protein synthesis ~60%, and this increase was prevented by rapamycin, demonstrating a critical role for mTORC1 in this process. To determine if CaMKKα is essential for growth, muscles from CaMKKα knockout mice were stimulated to hypertrophy via unilateral ablation of synergist muscles (overload). Surprisingly, compared with wild-type mice, muscles from CaMKKα knockout mice exhibited greater growth (~15%) and phosphorylation of the mTORC1 substrate 70-kDa ribosomal protein S6 kinase (Thr³⁸⁹; ~50%), demonstrating that CaMKKα is not essential for overload-induced mTORC1 activation or muscle growth. Collectively, these results demonstrate that activation of CaMKKα signaling is sufficient but not necessary for activation of mTORC1 signaling and growth in mouse skeletal muscle. Copyright © 2014 the American Physiological Society.

  19. Subclinical Nonautoimmune Hyperthyroidism in a Family Segregates with a Thyrotropin Receptor Mutation with Weakly Increased Constitutive Activity

    Science.gov (United States)

    Chen, Chun-Rong; Higashiyama, Takuya; Mizutori-Sasai, Yumiko; Ito, Mitsuru; Kubota, Sumihisa; Amino, Nobuyuki; Miyauchi, Akira; Rapoport, Basil

    2010-01-01

    Background Subclinical hyperthyroidism is usually associated with Graves' disease or toxic nodular goiter. Here we report a family with hereditary subclinical hyperthyroidism caused by a constitutively activating germline mutation of the thyrotropin receptor (TSHR) gene. Methods The proband was a 64-year-old Japanese woman who presented with a thyroid nodule and was found to be euthyroid with a suppressed serum TSH. The nodule was not hot. Although antibodies to thyroid peroxidase and thyroglobulin antibodies were present, TSHR antibodies were not detected by TSH-binding inhibition or by bioassay. Two of her middle-aged sons, but not her daughter, also had subclinical hyperthyroidism without TSHR antibodies. Without therapy, the clinical condition of the affected individuals remained unchanged over 3 years without development of overt hyperthyroidism. Results A novel heterozygous TSHR point mutation causing a glutamic acid to lysine substitution at codon 575 (E575K) in the second extracellular loop was detected in the three family members with subclinical hyperthyroidism, but was absent in her one daughter with normal thyroid function. In vitro functional studies of the E575K TSHR mutation demonstrated a weak, but significant, increase in constitutive activation of the cAMP pathway. Conclusion Although hereditary nonautoimmune overt hyperthyroidism is very rare, TSHR activating mutations as a cause of subclinical hyperthyroidism may be more common and should be considered in the differential diagnosis, especially if familial. PMID:20929407

  20. Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium.

    Directory of Open Access Journals (Sweden)

    Rui Hua

    Full Text Available Phosphodiesterases (PDEs are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca(2+ current (I(Ca,L is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP properties and I(Ca,L in the sinoatrial node (SAN and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on I(Ca,L in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA, the PDE3 inhibitor milrinone (Mil and the PDE4 inhibitor rolipram (Rol. In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased I(Ca,L in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate I(Ca,L in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased I(Ca,L in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial I(Ca,L. In complete contrast, no selective PDE inhibitors increased I(Ca,L in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.

  1. Constitutive Activity of the Arabidopsis MAP Kinase 3 Confers Resistance to Pseudomonas syringae and Drives Robust Immune Responses

    KAUST Repository

    Lang, Julien

    2017-08-02

    Mitogen Activated Protein Kinases (MAPKs) are known to be important mediators of plant responses to biotic and abiotic stresses. In a recent report, we enlarged the understanding of the Arabidopsis thaliana MPK3 functions showing that the expression of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation of several defense genes. Consistently with these data, we present here results demonstrating that, compared to wild type controls, CA-MPK3 plants are more resistant to the hemibiotrophic pathogen Pseudomonas syringae DC3000. Based on our previous work, we also discuss the mechanisms of robust plant immunity controlled by sustained MPK3 activity, focusing especially on the roles of disease resistance proteins.

  2. Influence of activators on constitutes of diffusion layer at boronizing pressed samples from iron powder

    Directory of Open Access Journals (Sweden)

    Požega Emina D.

    2008-01-01

    Full Text Available In this paper, results of experimental investigation which contributes to study of quantitative changes of porosity during chemical-thermical process, apropos boronizing of pressed samples from iron powder, with variation of boronizing mixture composition are presented. The basic mixture is modified by the addition of activators with different chemical composition and in different percentage rate (0-4 wt%. Mixtures with ammonium chloride, ammonium bifluoride and boron potassium fluoride were investigated. According to the results of the experiments it is found that the content of activators has an influence on the porosity of pressed samples from iron powder. In order to obtain better boride layers it was necessary to choose a mixture for boronizing and to determine the most useful activators and their ratio. The results of research and mathematical processing enable the choice of optimal mixture composition for boroning. .

  3. Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5.

    Directory of Open Access Journals (Sweden)

    Ferenc A Scheeren

    Full Text Available BACKGROUND: Fully human monoclonal antibodies directed against specific pathogens have a high therapeutic potential, but are difficult to generate. METHODOLOGY/PRINCIPAL FINDINGS: Memory B cells were immortalized by expressing an inducible active mutant of the transcription factor Signal Transducer and Activator of Transcription 5 (STAT5. Active STAT5 inhibits the differentiation of B cells while increasing their replicative life span. We obtained cloned B cell lines, which produced antibodies in the presence of interleukin 21 after turning off STAT5. We used this method to obtain monoclonal antibodies against the model antigen tetanus toxin. CONCLUSIONS/SIGNIFICANCE: Here we describe a novel and relatively simple method of immortalizing antigen-specific human B cells for isolation of human monoclonal antibodies. These results show that STAT5 overexpression can be employed to isolate antigen specific antibodies from human memory B cells.

  4. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Nobe, Hiromi [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Department of Physical Therapy, Bunkyo-Gakuin University (Japan); Yoshida, Hiroko [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Kolodney, Michael S. [Dermatology Division, Department of Medicine, UCLA, Los Angeles, CA (United States); Paul, Richard J. [Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Honda, Kazuo [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan)

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  5. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors.

    Science.gov (United States)

    Aigle, Bertrand; Corre, Christophe

    2012-01-01

    Streptomycete bacteria are renowned as a prolific source of natural products with diverse biological activities. Production of these metabolites is often subject to transcriptional regulation: the biosynthetic genes remain silent until the required environmental and/or physiological signals occur. Consequently, in the laboratory environment, many gene clusters that direct the biosynthesis of natural products with clinical potential are not expressed or at very low level preventing the production/detection of the associated metabolite. Genetic engineering of streptomycetes can unleash the production of many new natural products. This chapter describes the overexpression of pathway-specific activators, the genetic disruption of pathway-specific repressors, and the main strategy used to identify and characterize new natural products from these engineered Streptomyces strains.

  6. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    RATNA KUMARI; SURBHI CHOUHAN; SNAHLATA SINGH; RISHI RAJ CHHIPA; AMRENDRA KUMAR AJAY; MANOJ KUMAR BHAT

    2017-03-01

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity ofcells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-typep53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell lineMCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53status, pERK contributes to doxorubicin-induced cell death.

  7. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer.

    Science.gov (United States)

    Sheen, M R; Marotti, J D; Allegrezza, M J; Rutkowski, M; Conejo-Garcia, J R; Fiering, S

    2016-10-31

    The gene encoding phosphatidylinositol 3-kinase catalytic subunit α-isoform (PIK3CA, p110α) is frequently activated by mutation in human cancers. Based on detection in some breast cancer precursors, PIK3CA mutations have been proposed to have a role in tumor initiation. To investigate this hypothesis, we generated a novel mouse model with a Cre-recombinase regulated allele of p110α (myristoylated-p110α, myr-p110α) along with p53(fl/fl) deletion and Kras(G12D) also regulated by Cre-recombinase. After instillation of adenovirus-expressing Cre-recombinase into mammary ducts, we found that myr-p110α accelerated breast tumor initiation in a copy number-dependent manner. Breast tumors induced by p53(fl/fl);Kras(G12D) with no or one copy of myr-p110α had predominantly sarcomatoid features, whereas two copies of myr-p110α resulted in tumors with a carcinoma phenotype. This novel model provides experimental support for importance of active p110α in breast tumor initiation, and shows that the amount of PI3K activity can affect the rate of tumor initiation and modify the histological phenotype of breast cancer.

  8. Co-existence of PHF6 and NOTCH1 mutations in adult T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Li, Min; Xiao, Lichan; Xu, Jingyan; Zhang, Run; Guo, Jingjing; Olson, Justin; Wu, Yujie; Li, Jianyong; Song, Chunhua; Ge, Zheng

    2016-07-01

    T-cell acute lymphoblastic leukemia (T-ALL) results from the collaboration of multiple genetic abnormalities in the transformation of T-cell progenitors. Plant homeodomain finger protein 6 (PHF6) has recently been established as a key tumor suppressor, which is mutated in T-ALL; however, the clinical significance of PHF6 mutations has not been fully determined in adult T-ALL. In the present study, amplification of the PHF6 exons was performed, followed by DNA sequencing to identify the genomic mutations and examine the expression of PHF6 in adult patients with T-ALL. The correlation between PHF6 mutations and clinical features was also analyzed using a χ(2) test, and between PHF6 mutations and survival curve using the Kaplan-Meier methods. PHF6 mutations were detected in 27.1% of the Chinese adults with T-ALL (16/59), 10 of which were found to be novel mutations. A significantly lower expression level of PHF6 was observed in T-ALL patients with PHF6 mutations compared with those without mutations. Of the observed mutations in PHF6, 6/16 were frame-shift mutations, indicating a PHF6 dysfunction in those patients. Of note, PHF6 mutations were found to be significantly associated with older age, lower hemoglobin levels, higher frequency of CD13 positivity and higher incidence of splenomegaly or lymphadenopathy. Furthermore, PHF6 mutations were found to be significantly correlated with Notch homolog 1, translocation-associated (Drosophila) (NOTCH1) mutations. The patients with T-ALL with co-existence of the two mutations had a significantly shorter event-free survival and a poor prognosis. The present results indicated that PHF6 is inactivated in adult T-ALL, due to its low expression and mutations. The present data indicated the synergistic effect of PHF6 and NOTCH1 mutations, as well as their co-existence, on the oncogenesis of adult T-ALL, and their potential as a prognostic marker for the disease.

  9. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Science.gov (United States)

    Yueh, Mei-Fei; Li, Tao; Evans, Ronald M; Hammock, Bruce; Tukey, Robert H

    2012-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide, TCC) is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs). To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR) and estrogen receptor alpha (ERα) activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR) because no induction occurred in hUGT1Car(-/-) mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for potential human

  10. At High Levels, Constitutively Activated STAT3 Induces Apoptosis of Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Rozovski, Uri; Harris, David M; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Grgurevic, Srdana; Faderl, Stefan; Ferrajoli, Alessandra; Wierda, William G; Martinez, Matthew; Verstovsek, Srdan; Keating, Michael J; Estrov, Zeev

    2016-05-15

    In chronic lymphocytic leukemia (CLL), the increment in PBLs is slower than the expected increment calculated from the cells' proliferation rate, suggesting that cellular proliferation and apoptosis are concurrent. Exploring this phenomenon, we found overexpression of caspase-3, higher cleaved poly (ADP-ribose) polymerase levels (p < 0.007), and a higher apoptosis rate in cells from patients with high counts compared with cells from patients with low counts. Although we previously found that STAT3 protects CLL cells from apoptosis, STAT3 levels were significantly higher in cells from patients with high counts than in cells from patients with low counts. Furthermore, overexpression of STAT3 did not protect the cells. Rather, it upregulated caspase-3 and induced apoptosis. Remarkably, putative STAT3 binding sites were identified in the caspase-3 promoter, and a luciferase assay, chromatin immunoprecipitation, and an EMSA revealed that STAT3 activated caspase-3 However, caspase-3 levels increased only when STAT3 levels were sufficiently high. Using chromatin immunoprecipitation and EMSA, we found that STAT3 binds with low affinity to the caspase-3 promoter, suggesting that at high levels, STAT3 activates proapoptotic mechanisms and induces apoptosis in CLL cells.

  11. Identification of a type 1 diabetes-associated CD4 promoter haplotype with high constitutive activity

    DEFF Research Database (Denmark)

    Kristiansen, O P; Karlsen, A E; Larsen, Z M;

    2004-01-01

    CD4 is a candidate gene in autoimmune diseases, including Type 1 diabetes mellitus (T1DM), because the CD4 receptor is crucial for appropriate antigen responses of CD4(+) T cells. We previously found linkage between a CD4-1188(TTTTC)(5-14) promoter polymorphism and T1DM. In the present study, we...... screened the human CD4 promoter for mutations and identified three frequent single nucleotide polymorphisms (SNPs): CD4-181C/G, CD4-521C/G and CD4-1050T/C. The SNPs are in strong linkage disequilibrium (LD) and association with the CD4-1188(TTTTC)(5-14) alleles, and we observed nine CD4 promoter haplotypes...... promoter activity and (2) the CD4-181G variant encodes higher stimulated promoter activity than the CD4-181C variant. This difference is in part neutralized in the frequently occurring CD4 promoter haplotypes by the more upstream genetic variants. Thus, we report functional impact of a novel CD4-181C/G SNP...

  12. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... that these conditions bypassed the requirement for the meiotic activator Mei3. Since Mei3 is normally needed for inactivation of the meiosis-repressing protein kinase Pat1, this finding suggests that the strong Byr2 signal causes inactivation of Pat1 by an alternative mechanism. Consistent with this possibility, we...

  13. Constitutive spectral EEG peaks in the gamma range: suppressed by sleep, reduced by mental activity and resistant to sensory stimulation

    Directory of Open Access Journals (Sweden)

    Tyler Samuel Grummett

    2014-11-01

    Full Text Available Objective: In a systematic study of gamma activity in neuro-psychiatric disease, we unexpectedly observed distinctive, apparently persistent, electroencephalogram (EEG spectral peaks in the gamma range (25-100 Hz. Our objective, therefore, was to examine the incidence, distribution and some of the characteristics of these peaks.Methods: High sample-rate, 128-channel, EEG was recorded in 603 volunteers (510 with neuropsychiatric disorders, 93 controls, whilst performing cognitive tasks, and converted to power spectra. Peaks of spectral power, including in the gamma range, were determined algorithmically for all electrodes. To determine if peaks were stable, 24-hour ambulatory recordings were obtained from 16 subjects with peaks. In 10 subjects, steady-state responses to stimuli at peak frequency were compared with off-peak-frequency stimulation to determine if peaks were a feature of underlying network resonances and peaks were evaluated with easy and hard versions of oddball tasks to determine if peaks might be influenced by mental effort.Results: 57 % of subjects exhibited peaks > 2 dB above trough power at or above 25 Hz. Larger peaks (> 5 dB were present in 13 % of subjects. Peaks were distributed widely over the scalp, more frequent centrally. Peaks were present through the day and were suppressed by slow-wave-sleep. Steady-state responses were the same with on- or off-peak sensory stimulation. In contrast, mental effort resulted in reductions in power and frequency of gamma peaks, although the suppression did not correlate with level of effort.Conclusions: Gamma EEG can be expressed constitutively as concentrations of power in narrow or wide frequency bands that play an, as yet, unknown role in cognitive activity.Significance: These findings expand the described range of rhythmic EEG phenomena. In particular, in addition to evoked, induced and sustained gamma band activity, gamma activity can be present constitutively in spectral peaks.

  14. Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt.

    Directory of Open Access Journals (Sweden)

    Heidi L Kenerson

    Full Text Available Insulin resistance is an important contributing factor in non-alcoholic fatty liver disease. AKT and mTORC1 are key components of the insulin pathway, and play a role in promoting de novo lipogenesis. However, mTORC1 hyperactivity per se does not induce steatosis in mouse livers, but instead, protects against high-fat diet induced steatosis. Here, we investigate the in vivo mechanism of steatosis-resistance secondary to mTORC1 activation, with emphasis on the role of S6K1-mediated feedback inhibition of AKT. Mice with single or double deletion of Tsc1 and/or S6k1 in a liver-specific or whole-body manner were generated to study glucose and hepatic lipid metabolism between the ages of 6-14 weeks. Following 8 weeks of high-fat diet, the Tsc1-/-;S6k1-/- mice had lower body weights but higher liver TG levels compared to that of the Tsc1-/- mice. However, the loss of S6k1 did not relieve feedback inhibition of Akt activity in the Tsc1-/- livers. To overcome Akt suppression, Pten was deleted in Tsc1-/- livers, and the resultant mice showed improved glucose tolerance compared with the Tsc1-/- mice. However, liver TG levels were significantly reduced in the Tsc1-/-;Pten-/- mice compared to the Pten-/- mice, which was restored with rapamycin. We found no correlation between liver TG and serum NEFA levels. Expression of lipogenic genes (Srebp1c, Fasn were elevated in the Tsc1-/-;Pten-/- livers, but this was counter-balanced by an up-regulation of Cpt1a involved in fatty acid oxidation and the anti-oxidant protein, Nrf2. In summary, our in vivo models showed that mTORC1-induced resistance to steatosis was dependent on S6K1 activity, but not secondary to AKT suppression. These findings confirm that AKT and mTORC1 have opposing effects on hepatic lipid metabolism in vivo.

  15. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.

    2006-01-01

    Loss of G(1)-S control and aberrations of the p16(Ink4a)-cyclin D1/cyclin-dependent kinase (CDK) 4(6)-pRb-E2F-cyclin E/CDK2 pathway are common in human cancer. Previous studies showed that oncogene-induced aberrant proliferation, such as on cyclin E overexpression, causes DNA damage and checkpoint...... culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... cells, analogous to elevated cyclin E. These results highlight differential effect of diverse oncogenic events on driving the 'cancer cell cycles' and their ability to deregulate the replication-driving CDK2 kinase and to alarm the DDR as a potential anticancer barrier in accordance...

  16. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum.

    Science.gov (United States)

    Higuchi, Yohei; Hisamatsu, Tamotsu

    2015-08-01

    Chrysanthemums require repeated cycles of short-day (SD) photoperiod for successful anthesis, but their vegetative state is strictly maintained under long-day (LD) or night-break (NB) conditions. We have previously demonstrated that photoperiodic flowering of a wild diploid chrysanthemum (Chrysanthemum seticuspe f. boreale) is controlled by a pair of systemic floral regulators, florigen (CsFTL3) and anti-florigen (CsAFT), produced in the leaves. Here, we report the functional characterisation of a local floral regulator, CsTFL1, a chrysanthemum orthologue of TERMINAL FLOWER 1 gene in Arabidopsis. Constitutive expression of CsTFL1 in C. seticuspe (CsTFL1-ox) resulted in extremely late flowering under SD and prevented up-regulation of floral meristem identity genes in shoot tips and leaves. Bimolecular fluorescence complementation assay showed that both CsTFL1 and CsFTL3 interacted with CsFDL1, a bZIP transcription factor FD homologue, in the nucleus. The transient gene expression assay indicated that CsTFL1 suppresses flowering by directly antagonising the flower inductive activity of the CsFTL3-CsFDL1 complex. Our results suggest that strict maintenance of vegetative state under non-inductive photoperiod is achieved by the coordinated action of both the systemic floral inhibitor and local floral inhibitor CsTFL1, which is constitutively expressed in shoot tips.

  17. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.

    Directory of Open Access Journals (Sweden)

    Thomas J Lampert

    Full Text Available Although G-protein coupled receptors (GPCRs are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490. Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba²⁺ and K⁺, suggesting a decrease in basal excitability (decrease in Ca²⁺ channel activity. The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA and proteose peptone (PP, two known chemoattractants in Tetrahymena. Using microsomal [³⁵S]GTPγS binding assays, we found that wild-type (CU427 have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor, addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.

  18. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, Mette M

    2008-01-01

    ), in the conserved CW/FxP motif in TM 6, acted as negative regulators as Ala substitutions at these positions increased the constitutive activity 5.7- and 2.3-fold, respectively, compared with EBI2 wild type (wt). In contrast, ArgII:20 (Arg87) in TM-2 acted as a positive regulator, as substitution to Ala......, but not to Lys, decreased the constitutive activity more than 7-fold compared with wt EBI2. IleIII:03 (Ile106) is located only 4 A from ArgII:20, and a favorable electrostatic interaction with ArgII:20 was created by introduction of Glu in III:03, given that the activity increased to 4.4-fold of that wt EBI2....... It is noteworthy that swapping these charges by introduction of Glu in II:20 and Arg in III:03 resulted in a 2.7-fold increase compared with wt EBI2, thereby rescuing the two signaling-deficient single mutations, which exhibited a 3.8- to 4.5-fold decrease in constitutive activity. The uncovering...

  19. The E92K melanocortin 1 receptor mutant induces cAMP production and arrestin recruitment but not ERK activity indicating biased constitutive signaling

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Mokrosinski, Jacek; Rosenkilde, Mette M

    2011-01-01

    The melanocortin 1 receptor (MC1R) constitutes a key regulator of melanism. Consequently, many naturally-occurring MC1R mutations are associated with a change in color. An example is the Glu-to-Lys substitution found at position II:20/2.60 in the top of transmembrane helix II which has been...... identified in melanic mice and several other species. This mutation induces a pronounced increase in MC1R constitutive activity suggesting a link between constitutive activity and melanism which is corroborated by the attenuation of a-melanocyte stimulating hormone (aMSH) induced activation. However......, the mechanism by which the mutation induces constitutive activity is currently not known....

  20. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.;

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... interact physically with Ste11 and also phosphorylate the transcription factor in vitro. Finally, we demonstrate that ste11 is required for pheromone-induced G1 arrest. Interestingly, when we mutated Ste11 in the sites for Pat1 and Spk1 phosphorylation simultaneously, the cells could still arrest in G1...

  1. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor.

    Science.gov (United States)

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes.

  2. Transcriptional Activation of a Constitutive Heterochromatic Domain of the Human Genome in Response to Heat ShockD⃞

    Science.gov (United States)

    Rizzi, Nicoletta; Denegri, Marco; Chiodi, Ilaria; Corioni, Margherita; Valgardsdottir, Rut; Cobianchi, Fabio; Riva, Silvano; Biamonti, Giuseppe

    2004-01-01

    Heat shock triggers the assembly of nuclear stress bodies that contain heat shock factor 1 and a subset of RNA processing factors. These structures are formed on the pericentromeric heterochromatic regions of specific human chromosomes, among which chromosome 9. In this article we show that these heterochromatic domains are characterized by an epigenetic status typical of euchromatic regions. Similarly to transcriptionally competent portions of the genome, stress bodies are, in fact, enriched in acetylated histone H4. Acetylation peaks at 6 h of recovery from heat shock. Moreover, heterochromatin markers, such as HP1 and histone H3 methylated on lysine 9, are excluded from these nuclear districts. In addition, heat shock triggers the transient accumulation of RNA molecules, heterogeneous in size, containing the subclass of satellite III sequences found in the pericentromeric heterochromatin of chromosome 9. This is the first report of a transcriptional activation of a constitutive heterochromatic portion of the genome in response to stress stimuli. PMID:14617804

  3. High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Qing Ai

    Full Text Available BACKGROUND: Although metastasis of clear cell renal cell carcinoma (ccRCC is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1. Compared to the corresponding controls, all cell lines demonstrated significant promotion in cell proliferation and migration while cell cycle remained unaffected. CONCLUSIONS/SIGNIFICANCE: High-level expression of Notch signaling increased the risk of metastasis in T1 stage ccRCC by stimulating the proliferation and migration of tumor cells, which may be helpful for the

  4. Notch1,COX-2,E-cad 在乳腺癌组织中的表达与淋巴结转移的相关性%Expression of Notch1,COX-2 and E-cad in Breast Cancer and Its Relationship with Lymphatic Metastasize

    Institute of Scientific and Technical Information of China (English)

    赵赛; 王晓琳; 董玮

    2014-01-01

    目的:探讨Notch1、环氧化酶-2( COX-2)和E-钙黏附蛋白( E-cad )在乳腺癌组织中的表达与淋巴结转移的关系。方法应用免疫组化S-P法检测20例乳腺腺病和40例乳腺浸润性导管癌组织中Notch1, COX-2和E-cad的表达情况。结果在40例乳腺癌和20例乳腺腺病组织中,Notch1,COX-2,E-cad的阳性表达率有所不同,其差异具有统计学意义;乳腺癌组织中Notch1和COX-2的阳性表达率与腋窝淋巴结转移呈正相关(P<0.01),E-cad阳性表达率与淋巴结转移呈负相关(P<0.01)。 COX-2和Notch1在乳腺浸润性导管癌中的表达呈正相关(P<0.05),COX-2,Notch1在乳腺浸润性导管癌中的表达与E-cad的表达呈负相关(P<0.05)。结论 Notch1和COX-2高表达及E-cad的低表达在乳腺癌的发生、发展及转移过程中起重要的作用, Notch1和COX-2在乳腺癌中的表达呈显著正相关性,提示Notch1和COX-2表达在的检测对判断临床进展、推测预后及制定治疗方案有一定的参考价值。%Objective To investigate the expression of Notch1,COX-2 and E-cad in breast cancer and their relationship with lymphatic metastasize.Methods The expression of Notch1,COX-2 and E-cad was detected by SP immunohistochemistry in 20 cases with ad-enosis of breast and 40 cases with invasive ductal breast cancer.Results The expression rate of Notch1,COX-2 and E-cad had significant difference between invasive ductal breast cancer and adenosis of breast.There was positive relationship between expression of Notch1 and COX-2 in invasive ductal breast cancer and the metastasis of lymph nodes(P<0.01).The expression of E-cad in invasive ductal breast canc-er was negative related with the metastasis of lymph nodes(P<0.01).The expression of Notch1 and COX-2 in ductal breast cancer showed positive relationship(P<0.05).The expression of E-cad in ductal breast cancer showed negative relationship with expression of

  5. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  6. Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2004-07-01

    Full Text Available Abstract Background Although the complete genome sequences of a large number of organisms have been determined, the exact proteomes need to be characterized. More specifically, the extent to which post-translational processes such as proteolysis affect the synthesized proteins has remained unappreciated. We examined this issue in selected protein phosphatases of the protease-rich malaria parasite, Plasmodium falciparum. Results P. falciparum encodes a number of Ser/Thr protein phosphatases (PP whose catalytic subunits are composed of a catalytic core and accessory domains essential for regulation of the catalytic activity. Two examples of such regulatory domains are found in the Ca+2-regulated phosphatases, PP7 and PP2B (calcineurin. The EF-hand domains of PP7 and the calmodulin-binding domain of PP2B are essential for stimulation of the phosphatase activity by Ca+2. We present biochemical evidence that P. falciparum generates these full-length phosphatases as well as their catalytic cores, most likely as intermediates of a proteolytic degradation pathway. While the full-length phosphatases are activated by Ca+2, the processed cores are constitutively active and either less responsive or unresponsive to Ca+2. The processing is extremely rapid, specific, and occurs in vivo. Conclusions Post-translational cleavage efficiently degrades complex full-length phosphatases in P. falciparum. In the course of such degradation, enzymatically active catalytic cores are produced as relatively stable intermediates. The universality of such proteolysis in other phosphatases or other multi-domain proteins and its potential impact on the overall proteome of a cell merits further investigation.

  7. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells.

    Science.gov (United States)

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-11-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. © 2015 British Society for Immunology.

  8. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Heyward, Scott; Moeller, Timothy [Bioreclamation In Vitro Technologies, Baltimore, MD 21227 (United States); Swaan, Peter W. [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Wang, Hongbing, E-mail: hwang@rx.umaryland.edu [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States)

    2014-08-15

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  9. Mechanism of Epac Activation: STRUCTURAL AND FUNCTIONAL ANALYSES OF Epac2 HINGE MUTANTS WITH CONSTITUTIVE AND REDUCED ACTIVITIES*

    OpenAIRE

    Tsalkova, Tamara; Blumenthal, Donald K.; Mei, Fang C.; White, Mark A.; Cheng, Xiaodong

    2009-01-01

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized “hinge” motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Target...

  10. Expression of a constitutively active prolactin receptor causes histone trimethylation of the p53 gene in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Tan Dunyong; Tang Peizhi; Huang Jianjun; Zhang Jie; Zhou Weihua; Ameae M.Walker

    2014-01-01

    Background Prolactin (PRL) is a pituitary polypeptide hormone characterized by multiple biological actions including stimulation of growth in the prostate and formation of secretory alveoli and stimulation of milk protein gene expression in the mammary gland.PRL exerts its effect by dimerizing its receptor (PRLR) on the plasma membrane and regulating gene expression through the JAK-Stat signal pathway.We have previously described a natural variant of the PRLR in which the S2 subdomain of the extracellular domain is missing (Delta S2).Delta S2 PRLRs are dimerized in the absence of PRL and have constitutive activity in the promotion of breast cancer cell growth.Enhancer of zeste homolog 2 (EZH2),as one of the histone-modifying enzymes,is a key factor regulating gene expression by epigenetic modification.We hypothesized that these constitutive activated Delta S2 PRLRs played a pathogenic role in breast cancer in part through alterations in the expression of EZH2 and the trimethylation of histone 3 on lysine 27 (H3K27Me3).Methods In order to verify the clinical significance and to establish the link between Delta S2 PRLR expression and epigenetic change,EZH2,H3K27Me3,and Delta S2 PRLR were detected in both normal and cancerous human breast tissues.Also,overexpression of Delta S2 PRLR in breast epithelial cells was achieved by infection with adenovirus carrying the cDNA.Western blotting and chromatin immunoprecipitation (ChIP assay) and acid histone extraction were applied to detect the expression of EZH2 and the trimethylation of histone 3,respectively.Results In breast tissue,higher EZH2 expression and higher H3K27Me3 were found associated with higher Delta S2 expression in breast cancer samples.In breast epithelial cells,overexpression of Delta S2 PRLR increased EZH2 methyltransferase mRNA and protein,induced EZH2 methyltransferase recruitment to chromatin,increased the trimethylation of H3K27Me3,and decreased the expression of p53 gene.Conclusions Delta S2 PRLR

  11. Effects of constitutive β-catenin activation on vertebral bone growth and remodeling at different postnatal stages in mice.

    Directory of Open Access Journals (Sweden)

    Min Jia

    Full Text Available BACKGROUND AND OBJECTIVE: The Wnt/β-catenin signaling pathway is essential for controlling bone mass; however, little is known about the variable effects of the constitutive activation of β-catenin (CA-β-catenin on bone growth and remodeling at different postnatal stages. The goal of the present study was to observe the effects of CA-β-catenin on vertebral bone growth and remodeling in mice at different postnatal stages. In particular, special attention was paid to whether CA-β-catenin has detrimental effects on these processes. METHODS: Catnblox(ex 3 mice were crossed with mice expressing the TM-inducible Cre fusion protein, which could be activated at designated time points via injection of tamoxifen. β-catenin was stabilized by tamoxifen injection 3 days, and 2, 4, 5, and 7 months after birth, and the effects lasted for one month. Radiographic imaging, micro-computed tomography, immunohistochemistry, and safranin O and tartrate-resistant acid phosphatase staining were employed to observe the effects of CA-β-catenin on vertebral bone growth and remodeling. RESULTS: CA-β-catenin in both early (3 days after birth and late stages (2, 4, 5, and 7 months after birth increased bone formation and decreased bone resorption, which together increased vertebral bone volume. However, when β-catenin was stabilized in the early stage, vertebral linear growth was retarded, and the mice demonstrated shorter statures. In addition, the newly formed bone was mainly immature and located close to the growth plate. In contrast, when β-catenin was stabilized in the late stage, vertebral linear growth was unaffected, and the newly formed bone was mainly mature and evenly distributed throughout the vertebral body. CONCLUSIONS: CA-β-catenin in both early and late stages of growth can increase vertebral bone volume, but β-catenin has differential effects on vertebral growth and remodeling when activated at different postnatal stages.

  12. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    Science.gov (United States)

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  13. The constitutively active Ah receptor (CA-AhR) mouse as a model for dioxin exposure - effects in reproductive organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Poellinger, Lorenz; Hanberg, Annika

    2011-12-01

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.

  14. Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Yu; Hong-Gang Yu; Jie-Ping Yu; He-Sheng Luo; Xi-Ming Xu; Jun-Hua Li

    2004-01-01

    AIM: Activation of transcription factor nuclear factor-κB (NF-κB) has been shown to play a role in cell proliferation,apoptosis, cytokine production, and oncogenesis. The purpose of this study was to determine whether NF-κB was constitutively activated in human colorectal tumor tissues and, if so, to determine the role of NF-κB in colorectal tumorigenesis, and furthermore, to determine the association of RelA expression with tumor cell apoptosis and the expression of Bcl-2 and Bcl-xL.METHODS: Paraffin sections of normal epithelial, adenomatous and adenocarcinoma tissues were analysed immunohistochemically for expression of RelA, Bcl-2 and Bcl-xL proteins.Electrophoretic mobility shift assay (EMSA) was used to confirm the increased nuclear translocation of RelA in colorectal tumor tissues. The mRNA expressions of Bcl-2 and Bcl-xL were determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. Apoptotic cells were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method.RESULTS: The activity of NF-κB was significantly higher in adenocarcinoma tissue in comparison with that in adenomatous and normal epithelial tissues. The apoptotic index (AI)significantly decreased in the transition from adenoma to adenocarcinoma. Meanwhile, the expressions of Bcl-2 and Bcl-xL protein and their mRNAs were significantly higher in adenocarcinoma tissues than that in adenomatous and normal epithelial tissues.CONCLUSION: NF-κB may inhibit apoptosis via enhancing the expression of the apoptosis genes Bcl-2 and BCl-xL. And the increased expression of RelA/nuclear factor-κB plays an important rote in the pathogenesis of colorectal carcinoma.

  15. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.

    Science.gov (United States)

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M

    2013-09-06

    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  16. Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease.

    Science.gov (United States)

    Yu, Xueyan; Espinoza-Lewis, Ramón A; Sun, Cheng; Lin, Lisong; He, Fenglei; Xiong, Wei; Yang, Jing; Wang, Alun; Chen, Yiping

    2010-12-01

    The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.

  17. Development of a Systems Computational Model to Investigate Early Biological Events in Hepatic Activation of Constitutive Androstane Receptor (CAR) by Phenobarbital

    Science.gov (United States)

    Activation of the nuclear receptor CAR (constitutive active/androstane receptor) is implicated in the control several key biological events such as metabolic pathways. Here, we combined data from literature with information obtained from in vitro assays in the US EPA ToxCast dat...

  18. Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Hilda Merino

    Full Text Available Doxorubicin (DOX, an effective chemotherapeutic drug used in the treatment of various cancers, is limited in its clinical applications due to cardiotoxicity. Recent studies suggest that transplanted adult stem cells inhibit DOX-induced cardiotoxicity. However, the effects of transplanted embryonic stem (ES and induced pluripotent stem (iPS cells are completely unknown in DOX-induced left ventricular dysfunction following myocardial infarction (MI. In brief, C57BL/6 mice were divided into five groups: Sham, DOX-MI, DOX-MI+cell culture (CC media, DOX-MI+ES cells, and DOX-MI+iPS cells. Mice were injected with cumulative dose of 12 mg/kg of DOX and 2 weeks later, MI was induced by coronary artery ligation. Following ligation, 5×10(4 ES or iPS cells were delivered into the peri-infarct region. At day 14 post-MI, echocardiography was performed, mice were sacrificed, and hearts were harvested for further analyses. Our data reveal apoptosis was significantly inhibited in ES and iPS cell transplanted hearts compared with respective controls (DOX-MI+ES: 0.48±0.06% and DOX-MI+iPS: 0.33±0.05% vs.1.04±0.07% and DOX-MI+CC: 0.96±0.21%; p<0.05. Furthermore, a significant increase in levels of Notch-1 (p<0.05, Hes1 (p<0.05, and pAkt (p<0.05 were observed whereas a decrease in the levels of PTEN (p<0.05, a negative regulator of Akt, was evident following stem cell transplantation. Moreover, hearts transplanted with stem cells demonstrated decreased vascular and interstitial fibrosis (p<0.05 as well as MMP-9 expression (p<0.01 compared with controls. Additionally, heart function was significantly improved (p<0.05 in both cell-transplanted groups. In conclusion, our data show that transplantation of ES and iPS cells blunt DOX-induced adverse cardiac remodeling, which is associated with improved cardiac function, and these effects are mediated by the Notch pathway.

  19. New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance.

    OpenAIRE

    Fernandes, P B; Baker, W.R.; Freiberg, L A; Hardy, D. J.; McDonald, E J

    1989-01-01

    Macrolide-resistant bacteria can be classified as inducibly resistant or constitutively resistant. Inducibly resistant bacteria are resistant to 14-membered macrolides, such as erythromycin and clarithromycin (A-56268), but are susceptible to the 16-membered macrolides, such as tylosin and spiramycin, as well as to clindamycin. Constitutively resistant bacteria are resistant to macrolide-lincosamide-streptogramin B antibiotics. In this study, the MICs of several erythromycin and clarithromyci...

  20. Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.

    Science.gov (United States)

    Garneau, Line; Klein, Hélène; Banderali, Umberto; Longpré-Lauzon, Ariane; Parent, Lucie; Sauvé, Rémy

    2009-01-02

    In this study we present evidence that residue Val282 in the S6 transmembrane segment of the calcium-activated KCa3.1 channel constitutes a key determinant of channel gating. A Gly scan of the S6 transmembrane segment first revealed that the substitutions A279G and V282G cause the channel to become constitutively active in zero Ca2+. Constitutive activity was not observed when residues extending from Cys276 to Ala286, other than Ala279 and Val282, were substituted to Gly. The accessibility of Cys engineered at Val275 deep in the channel cavity was next investigated for the ion-conducting V275C/V282G mutant and closed V275C channel in zero Ca2+ using Ag+ as probe. These experiments demonstrated that internal Ag+ ions have free access to the channel cavity independently of the channel conducting state, arguing against an activation gate located at the S6 segment C-terminal end. Experiments were also conducted where Val282 was substituted by residues differing in size and/or hydrophobicity. We found a strong correlation between constitutive activity in zero Ca2+ and the hydrophobic energy for side chain burial. Single channel recordings showed finally that constitutive activation in zero Ca2+ is better explained by a model where the channel is locked in a low conducting state with a high open probability rather than resulting from a change in the open/closed energy balance that would favor channel openings to a full conducting state in the absence of Ca2+. We conclude that hydrophobic interactions involving Val282 constitute key determinants to KCa3.1 gating by modulating the ion conducting state of the selectivity filter through an effect on the S6 transmembrane segment.

  1. New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance.

    Science.gov (United States)

    Fernandes, P B; Baker, W R; Freiberg, L A; Hardy, D J; McDonald, E J

    1989-01-01

    Macrolide-resistant bacteria can be classified as inducibly resistant or constitutively resistant. Inducibly resistant bacteria are resistant to 14-membered macrolides, such as erythromycin and clarithromycin (A-56268), but are susceptible to the 16-membered macrolides, such as tylosin and spiramycin, as well as to clindamycin. Constitutively resistant bacteria are resistant to macrolide-lincosamide-streptogramin B antibiotics. In this study, the MICs of several erythromycin and clarithromycin analogs against macrolide-susceptible and macrolide-resistant Streptococcus pyogenes strains were determined. Four 11,12-carbamate analogs of clarithromycin had lower MICs than erythromycin did against S. pyogenes with the inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance. Five 11,12-carbonate analogs of erythromycin with modifications at the 4" position of cladinose had lower MICs than did erythromycin against S. pyogenes with the constitutive type of resistance, and one of these compounds, which had a naphthyl-glycyl substitution at the 4" position, had a lower MIC than erythromycin against both the inducibly resistant and constitutively resistant strains. Two analogs of erythromycin with a modification on the 4" position of cladinose had lower MICs than erythromycin did against the constitutively resistant organisms but not against the inducibly resistant organisms. Thus, 14-membered macrolides can be modified so as to confer a low MIC when tested in vitro.

  2. Constitutively Active IRF7/IRF3 Fusion Protein Completely Protects Swine against Foot-and-Mouth Disease.

    Science.gov (United States)

    Ramírez-Carvajal, Lisbeth; Diaz-San Segundo, Fayna; Ramirez-Medina, Elizabeth; Rodríguez, Luis L; de Los Santos, Teresa

    2016-10-01

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype-specific vaccine formulations exist, but they require about 5 to 7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine interferon (IFN) regulatory factors (IRF) 7 and 3 [IRF7/3(5D)] strongly induced type I IFN and antiviral genes in vitro and prevented mortality in an FMD mouse model when delivered with a replication-defective adenoviral vector [Ad5-poIRF7/3(5D)]. Here, we demonstrate that pigs treated with 10(8), 10(9), or 10(10) PFU of Ad5-poIRF7/3(5D) 24 h before FMDV challenge were fully protected from FMD clinical signs and did not develop viremia, virus shedding or antibodies against FMDV nonstructural proteins. Pigs treated with Ad5-poIRF7/3(5D) had higher levels of IFN and antiviral activity in serum, and upregulated expression of several IFN-stimulated genes in peripheral blood mononuclear cells, compared to pigs treated with Ad5-Blue vector control. Importantly, treatment of porcine cultured cells with Ad5-poIRF7/3(5D) inhibited the replication of all 7 FMDV serotypes. In vitro experiments using cultured embryonic fibroblasts derived from IFN receptor knockout mice suggested that the antiviral response induced by Ad5-poIRF7/3(5D) was dependent on type I and III IFN pathways; however, experiments with mice demonstrated that a functional type I IFN pathway mediates Ad5-poIRF7/3(5D) protection conferred in vivo Our studies demonstrate that inoculation with Ad5-poIRF7/3(5D) completely protects swine against FMD by inducing a strong type I IFN response and highlights its potential application to rapidly and effectively prevent FMDV replication and dissemination. Foot-and-mouth disease virus (FMDV) causes a fast-spreading disease that affects farm animals, with economically and socially devastating consequences. Our study shows that inoculation with a constitutively active

  3. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ellrichmann Gisa

    2012-01-01

    Full Text Available Abstract The NF-κB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS. The inactive form of NF-κB consists of a heterodimer which is complexed with its inhibitor, IκB. Conditional knockout-mice for IκBα in myeloid cells (lysMCreIκBαfl/fl have been generated and are characterized by a constitutive activation of NF-κB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, a well established experimental model for autoimmune demyelination of the CNS. In comparison to controls, lysMCreIκBαfl/fl mice developed a more severe clinical course of EAE. Upon histological analysis on day 15 p.i., there was an over two fold increased infiltration of T-cells and macrophages/microglia. In addition, lysMCreIκBαfl/fl mice displayed an increased expression of the NF-κB dependent factor inducible nitric oxide synthase in inflamed lesions. These changes in the CNS are associated with increased numbers of CD11b positive splenocytes and a higher expression of Ly6c on monocytes in the periphery. Well in accordance with these changes in the myeloid cell compartment, there was an increased production of the monocyte cytokines interleukin(IL-12 p70, IL-6 and IL-1beta in splenocytes. In contrast, production of the T-cell associated cytokines interferon gamma (IFN-gamma and IL-17 was not influenced. In summary, myeloid cell derived NF-κB plays a crucial role in autoimmune inflammation of the CNS and drives a pathogenic role of monocytes and macrophages independently from T-cells.

  4. Ortho-Aminoazotoluene activates mouse Constitutive Androstane Receptor (mCAR) and increases expression of mCAR target genes

    Science.gov (United States)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car−/−) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car−/− livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. PMID:21672546

  5. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types.

    Science.gov (United States)

    Schimek, Christine; Petzold, Annett; Schultze, Kornelia; Wetzel, Jana; Wolschendorf, Frank; Burmester, Anke; Wöstemeyer, Johannes

    2005-09-01

    4-Dihydromethyltrisporate dehydrogenase (TDH) converts the (+) mating type sex pheromone 4-dihydromethyltrisporate into methyltrisporate. In Mucor mucedo, this conversion is required only in the (-) mating type. Expression of the TDH encoding TSP1 gene was analyzed qualitatively using reverse-transcribed PCR. TSP1 is constitutively transcribed in the (+) and in the (-) mating type, irrespective of the mating situation. By immunodetection, the translation product is also formed constitutively. In contrast to gene expression, TDH enzyme activity depends on the sexual status of the mycelium. Activity is restricted to the sexually stimulated (-) mating type. Non-stimulated (-), as well as stimulated and non-stimulated (+) mycelia exhibit no activity and do not influence activity in stimulated (-) mycelia. Time course analysis shows strongly increased enzyme activity at 80 min after stimulation. Low activity exists from the onset of stimulation, indicating that additional regulation mechanisms are involved in TDH function.

  6. Cardiac overexpression of constitutively active Galpha q causes angiotensin II type1 receptor activation, leading to progressive heart failure and ventricular arrhythmias in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoko Matsushita

    Full Text Available Transgenic mice with transient cardiac expression of constitutively active Galpha q (Gαq-TG exhibt progressive heart failure and ventricular arrhythmias after the initiating stimulus of transfected constitutively active Gαq becomes undetectable. However, the mechanisms are still unknown. We examined the effects of chronic administration of olmesartan on heart failure and ventricular arrhythmia in Gαq-TG mice.Olmesartan (1 mg/kg/day or vehicle was chronically administered to Gαq-TG from 6 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic olmesartan administration prevented the severe reduction of left ventricular fractional shortening, and inhibited ventricular interstitial fibrosis and ventricular myocyte hypertrophy in Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC was frequently (more than 20 beats/min observed in 9 of 10 vehicle-treated Gαq-TG but in none of 10 olmesartan-treated Gαq-TG. The collected QT interval and monophasic action potential duration in the left ventricle were significantly shorter in olmesartan-treated Gαq-TG than in vehicle-treated Gαq-TG. CTGF, collagen type 1, ANP, BNP, and β-MHC gene expression was increased and olmesartan significantly decreased the expression of these genes in Gαq-TG mouse ventricles. The expression of canonical transient receptor potential (TRPC 3 and 6 channel and angiotensin converting enzyme (ACE proteins but not angiotensin II type 1 (AT1 receptor was increased in Gαq-TG ventricles compared with NTG mouse ventricles. Olmesartan significantly decreased TRPC6 and tended to decrease ACE expressions in Gαq-TG. Moreover, it increased AT1 receptor in Gαq-TG.These findings suggest that angiotensin II type 1 receptor activation plays an important role in the development of heart failure and ventricular arrhythmia in Gαq-TG mouse model of heart failure.

  7. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells.

    Science.gov (United States)

    Panepucci, Rodrigo Alexandre; Oliveira, Lucila Habib B; Zanette, Dalila Luciola; Viu Carrara, Rita de Cassia; Araujo, Amélia Goes; Orellana, Maristela Delgado; Bonini de Palma, Patrícia Vianna; Menezes, Camila C B O; Covas, Dimas Tadeu; Zago, Marco Antonio

    2010-03-01

    As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.

  8. p16INK4a, but not constitutively active pRb, can impose a sustained G1 arrest: molecular mechanisms and implications for oncogenesis

    DEFF Research Database (Denmark)

    Lukas, J; Sørensen, Claus Storgaard; Lukas, C

    1999-01-01

    p16ink4 and pRb, two components of a key G1/S regulatory pathway, and tumor suppressors commonly targeted in oncogenesis, are among the candidates for gene therapy of cancer. Wild-type p16 and a constitutively active pRb(delta cdk) mutant both blocked G1 in short-term experiments, but only p16...

  9. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    Science.gov (United States)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  10. EXPRESIÓN DE LOS GENES Serrate1 Y Notch1 DURANTE EL DESARROLLO DEL TERCIO MEDIO FACIAL DEL EMBRIÓN DE POLLO

    OpenAIRE

    Daniel Mauricio MEZA LASSO; Cindy Johana PEÑA BARRERA; Francy Yomara BAYONA RODRIGUEZ; Belfran Alcides CARBONELL MEDINA; Infante Contreras, Clementina

    2016-01-01

    La vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se utiliza...

  11. EXPRESIÓN DE LOS GENES Serrate1 Y Notch1 DURANTE EL DESARROLLO DEL TERCIO MEDIO FACIAL DEL EMBRIÓN DE POLLO

    OpenAIRE

    Daniel Mauricio Meza Lasso; Cindy Johana Peña Barrera; Francy Yomara Bayona Rodriguez; Belfran Alcides Carbonell Medina; Clementina Infante

    2015-01-01

    RESUMENLa vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se ...

  12. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients

    DEFF Research Database (Denmark)

    Mansouri, Larry; Grabowski, Pawel; Degerman, Sofie;

    2013-01-01

    Most previous studies on telomere length (TL) in chronic lymphocytic leukemia (CLL) are based on referral cohorts including a high proportion of aggressive cases. Here, the impact of TL was analyzed in a population-based cohort of newly diagnosed CLL (n = 265) and in relation to other prognostic...... markers. Short telomeres were particularly associated with high-risk genetic markers, such as NOTCH1, SF3B1, or TP53 aberrations, and predicted a short time to treatment (TTT) and overall survival (OS) (both P...

  13. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes;

    2000-01-01

    expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding...

  14. The extracellular loop 2 (ECL2 of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Directory of Open Access Journals (Sweden)

    David Wifling

    Full Text Available In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R shows extraordinarily high constitutive activity. In the extracellular loop (ECL, replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  15. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Science.gov (United States)

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  16. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Damian J Junk

    Full Text Available Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1 occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.

  17. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    Science.gov (United States)

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  18. Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C

    OpenAIRE

    Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Van Der Smissen, Patrick; Veithen, Alex; Courtoy, Pierre J

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selecti...

  19. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C.

    OpenAIRE

    Amyere, Mustapha; Payrastre, B.; Krause, U.; Van Der Smissen, Patrick; Veithen, A.; Courtoy, Pierre J

    2000-01-01

    Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85 alpha constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of flui...

  20. Insulin growth factor 1 receptor expression is associated with NOTCH1 mutation, trisomy 12 and aggressive clinical course in chronic lymphocytic leukaemia.

    Directory of Open Access Journals (Sweden)

    Francesco Maura

    Full Text Available IGF1R is emerging as an important gene in the pathogenesis of many solid and haematological cancers and its over-expression has been reported as frequently associated with aggressive disease and chemotherapy resistance. In this study we performed an investigation of the role of IGF1R expression in a large and representative prospective series of 217 chronic lymphocytic leukaemia (CLL patients enrolled in the multicentre O-CLL1 protocol (clinicaltrial.gov #NCT00917540. High IGF1R gene expression was significantly associated with IGHV unmutated (IGHV-UM status (p<0.0001, high CD38 expression (p<0.0001, trisomy 12 (p<0.0001, and del(11(q23 (p=0.014. Interestingly, higher IGF1R expression (p=0.002 characterized patients with NOTCH1 mutation (c.7541_7542delCT, identified in 15.5% of cases of our series by next generation sequencing and ARMS-PCR. Furthermore, IGF1R expression has been proven as an independent prognostic factor associated with time to first treatment in our CLL prospective cohort. These data suggest that IGF1R may play an important role in CLL biology, in particular in aggressive CLL clones characterized by IGHV-UM, trisomy 12 and NOTCH1 mutation.

  1. Insulin Growth Factor 1 Receptor Expression Is Associated with NOTCH1 Mutation, Trisomy 12 and Aggressive Clinical Course in Chronic Lymphocytic Leukaemia

    Science.gov (United States)

    Maura, Francesco; Mosca, Laura; Fabris, Sonia; Cutrona, Giovanna; Matis, Serena; Lionetti, Marta; Agnelli, Luca; Barbieri, Marzia; D’Anca, Marianna; Manzoni, Martina; Colombo, Monica; Massucco, Carlotta; Reverberi, Daniele; Gentile, Massimo; Recchia, Anna Grazia; Bossio, Sabrina; Ilariucci, Fiorella; Musolino, Caterina; Di Raimondo, Francesco; Cortelezzi, Agostino; Morabito, Fortunato; Ferrarini, Manlio; Neri, Antonino

    2015-01-01

    IGF1R is emerging as an important gene in the pathogenesis of many solid and haematological cancers and its over-expression has been reported as frequently associated with aggressive disease and chemotherapy resistance. In this study we performed an investigation of the role of IGF1R expression in a large and representative prospective series of 217 chronic lymphocytic leukaemia (CLL) patients enrolled in the multicentre O-CLL1 protocol (clinicaltrial.gov #NCT00917540). High IGF1R gene expression was significantly associated with IGHV unmutated (IGHV-UM) status (p<0.0001), high CD38 expression (p<0.0001), trisomy 12 (p<0.0001), and del(11)(q23) (p=0.014). Interestingly, higher IGF1R expression (p=0.002) characterized patients with NOTCH1 mutation (c.7541_7542delCT), identified in 15.5% of cases of our series by next generation sequencing and ARMS-PCR. Furthermore, IGF1R expression has been proven as an independent prognostic factor associated with time to first treatment in our CLL prospective cohort. These data suggest that IGF1R may play an important role in CLL biology, in particular in aggressive CLL clones characterized by IGHV-UM, trisomy 12 and NOTCH1 mutation. PMID:25786252

  2. Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis.

    Science.gov (United States)

    Tyagi, Alpana; Agarwal, Rajesh; Agarwal, Chapla

    2003-03-06

    A loss of functional androgen receptor and an enhanced expression of growth factor receptors and associated ligands are causal genetic events in prostate cancer (PCA) progression. These genetic alterations lead to an epigenetic mechanism where a feedback autocrine loop between membrane receptor and ligand (e.g. EGFR-TGFalpha) results in a constitutive activation of MAPK-Elk1-AP1-mediated mitogenic signaling in human PCA at an advanced and androgen-independent stage. We rationalized that inhibiting these epigenetic events could be useful in controlling advanced PCA growth. Recently, we found that grape seed extract (GSE), a dietary supplement rich in flavonoid procyanidins, inhibits advanced and androgen-independent human PCA DU145 cell growth in culture and nude mice. Here, we performed detailed mechanistic studies to define the effect of GSE on EGFR-Shc-MAPK-Elk1-AP1-mediated mitogenic signaling in DU145 cells. Pretreatment of serum-starved cells with GSE resulted in 70% to almost complete inhibition of EGF-induced EGFR activation and 50% to complete inhibition of Shc activation, which corroborated with a comparable decrease in EGF-induced Shc binding to EGFR. Conversely, EGF-induced ERK1/2 phosphorylation was inhibited only by lower doses of GSE; in fact, higher doses showed an increase. Additional studies showed that GSE alone causes a dose- and time-dependent increase in ERK1/2 phosphorylation in starved DU145 cells that is inhibited by an MEK1 inhibitor PD98059. Independent of this increase in ERK1/2 phosphorylation, GSE showed a strong inhibition of ERK1/2 kinase activity to Elk1 in both cellular and cell-free systems. GSE treatment of cells also inhibited both EGF-induced and constitutively active Elk1 phosphorylation and AP1 activation. GSE treatment also showed DNA synthesis inhibition in starved and EGF-stimulated cells as well as loss of cell viability and apoptotic death that was further increased by adding MEK1 inhibitor. Since GSE strongly induced

  3. Astrocytes, but not neurons, exhibit constitutive activation of P2X7 receptors in mouse acute cortical slices under non-stimulated resting conditions.

    Science.gov (United States)

    Kamatsuka, Yosuke; Fukagawa, Manami; Furuta, Takahiro; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-01

    We previously demonstrated that the P2X7 receptor (P2X7R), a purinergic receptor, expressed by mouse cultured cortical astrocytes is constitutively activated without any exogenous stimulus, differing from the case of neurons. It is well known that astrocytic morphology differs between in vitro and in vivo situations, implying different functionalities. Brain acute slices are widely accepted as an in vitro experimental system that reflects in vivo cell conditions better than in vitro cell culture ones. We examined whether astrocytic P2X7Rs exhibited constitutive activation in mouse cortical slices. In acute cortical slices, P2X7R-immunoreactivity was detected in both glial fibrillary acidic protein-immunopositive astrocytes and microtubule-associated protein 2-immunopositive neurons. Astrocytic, but not neuronal, spontaneous uptake of propidium iodide, an indicator of P2X7R channel/pore activity, was inhibited by representative antagonists of P2X7R, but they had no effect on the uptake by astrocytes in membrane-permeabilized fixed slices. These findings indicate that astrocytes, but not neurons, in acute cortical slices exhibit constitutive activation of P2X7Rs under non-stimulated resting conditions as in the case of cell culture systems.

  4. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance.

    Science.gov (United States)

    Li, X; Clarke, J D; Zhang, Y; Dong, X

    2001-10-01

    The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.

  5. Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3*

    Science.gov (United States)

    Hudson, Brian D.; Tikhonova, Irina G.; Pandey, Sunil K.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency. PMID:23066016

  6. NOTCH1, HIF1A and other cancer-related proteins in lung tissue from uranium miners--variation by occupational exposure and subtype of lung cancer.

    Directory of Open Access Journals (Sweden)

    Beate Pesch

    Full Text Available BACKGROUND: Radon and arsenic are established pulmonary carcinogens. We investigated the association of cumulative exposure to these carcinogens with NOTCH1, HIF1A and other cancer-specific proteins in lung tissue from uranium miners. METHODOLOGY/PRINCIPAL FINDINGS: Paraffin-embedded tissue of 147 miners was randomly selected from an autopsy repository by type of lung tissue, comprising adenocarcinoma (AdCa, squamous cell carcinoma (SqCC, small cell lung cancer (SCLC, and cancer-free tissue. Within each stratum, we additionally stratified by low or high level of exposure to radon or arsenic. Lifetime exposure to radon and arsenic was estimated using a quantitative job-exposure matrix developed for uranium mining. For 22 cancer-related proteins, immunohistochemical scores were calculated from the intensity and percentage of stained cells. We explored the associations of these scores with cumulative exposure to radon and arsenic with Spearman rank correlation coefficients (r(s. Occupational exposure was associated with an up-regulation of NOTCH1 (radon r(s = 0.18, 95% CI 0.02-0.33; arsenic: r(s = 0.23, 95% CI 0.07-0.38. Moreover, we investigated whether these cancer-related proteins can classify lung cancer using supervised and unsupervised classification. MUC1 classified lung cancer from cancer-free tissue with a failure rate of 2.1%. A two-protein signature discriminated SCLC (HIF1A low, AdCa (NKX2-1 high, and SqCC (NKX2-1 low with a failure rate of 8.4%. CONCLUSIONS/SIGNIFICANCE: These results suggest that the radiation-sensitive protein NOTCH1 can be up-regulated in lung tissue from uranium miners by level of exposure to pulmonary carcinogens. We evaluated a three-protein signature consisting of a physiological protein (MUC1, a cancer-specific protein (HIF1A, and a lineage-specific protein (NKX2-1 that could discriminate lung cancer and its major subtypes with a low failure rate.

  7. DISRUPTION OF CIRCADIAN RHYTHMICITY AND SUPRACHIASMATIC ACTION POTENTIAL FREQUENCY IN A MOUSE MODEL WITH CONSTITUTIVE ACTIVATION OF GLYCOGEN SYNTHASE KINASE-3

    Science.gov (United States)

    Paul, Jodi R.; Johnson, Russell L.; Jope, Richard S.; Gamble, Karen L.

    2012-01-01

    Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in psychiatric diseases, neurodevelopment, and circadian regulation. Both GSK3 isoforms, α and β, exhibit a 24-hour variation of inhibitory phosphorylation within the suprachiasmatic nucleus (SCN), the primary circadian pacemaker. We examined the hypothesis that rhythmic GSK3 activity is critical for robust circadian rhythmicity using GSK3α21A/21A/β9A/9A knock-in mice with serine-alanine substitutions at the inhibitory phosphorylation sites, making both forms constitutively active. We monitored wheel-running locomotor activity of GSK3 knock-in mice and used loose-patch electrophysiology to examine the effect of chronic GSK3 activity on circadian behavior and SCN neuronal activity. Double transgenic GSK3α/β knock-in mice exhibit disrupted behavioral rhythmicity, including significantly decreased rhythmic amplitude, lengthened active period, and increased activity bouts per day. This behavioral disruption was dependent on chronic activation of both GSK3 isoforms and was not seen in single transgenic GSK3α or GSK3β knock-in mice. Underlying the behavioral changes, SCN neurons from double transgenic GSK3α/β knock-in mice exhibited significantly higher spike rates during the subjective night compared to those from WT controls, with no differences detected during the subjective day. These results suggest that constitutive activation of GSK3 results in loss of the typical day/night variation of SCN neuronal activity. Together, these results implicate GSK3 activity as a critical regulator of circadian behavior and neurophysiological rhythms. Because GSK3 has been implicated in numerous pathologies, understanding how GSK3 modulates circadian rhythms and neurophysiological activity may lead to novel therapeutics for pathological disorders and circadian rhythm dysfunction. PMID:22986169

  8. Disruption of circadian rhythmicity and suprachiasmatic action potential frequency in a mouse model with constitutive activation of glycogen synthase kinase 3.

    Science.gov (United States)

    Paul, J R; Johnson, R L; Jope, R S; Gamble, K L

    2012-12-13

    Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in psychiatric diseases, neurodevelopment, and circadian regulation. Both GSK3 isoforms, α and β, exhibit a 24-h variation of inhibitory phosphorylation within the suprachiasmatic nucleus (SCN), the primary circadian pacemaker. We examined the hypothesis that rhythmic GSK3 activity is critical for robust circadian rhythmicity using GSK3α(21A/21A)/β(9A/9A) knock-in mice with serine-alanine substitutions at the inhibitory phosphorylation sites, making both forms constitutively active. We monitored wheel-running locomotor activity of GSK3 knock-in mice and used loose-patch electrophysiology to examine the effect of chronic GSK3 activity on circadian behavior and SCN neuronal activity. Double transgenic GSK3α/β knock-in mice exhibit disrupted behavioral rhythmicity, including significantly decreased rhythmic amplitude, lengthened active period, and increased activity bouts per day. This behavioral disruption was dependent on chronic activation of both GSK3 isoforms and was not seen in single transgenic GSK3α or GSK3β knock-in mice. Underlying the behavioral changes, SCN neurons from double transgenic GSK3α/β knock-in mice exhibited significantly higher spike rates during the subjective night compared to those from wild-type controls, with no differences detected during the subjective day. These results suggest that constitutive activation of GSK3 results in the loss of the typical day/night variation of SCN neuronal activity. Together, these results implicate GSK3 activity as a critical regulator of circadian behavior and neurophysiological rhythms. Because GSK3 has been implicated in numerous pathologies, understanding how GSK3 modulates circadian rhythms and neurophysiological activity may lead to novel therapeutics for pathological disorders and circadian rhythm dysfunction. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons.

    Science.gov (United States)

    Walwyn, Wendy; Evans, Christopher J; Hales, Tim G

    2007-05-09

    Beta-arrestins bind to agonist-activated G-protein-coupled receptors regulating signaling events and initiating endocytosis. In beta-arrestin2-/- (beta arr2-/-) mice, a complex phenotype is observed that includes altered sensitivity to morphine. However, little is known of how beta-arrestin2 affects mu receptor signaling. We investigated the coupling of mu receptors to voltage-gated Ca2+ channels (VGCCs) in beta arr2+/+ and beta arr2-/- dorsal root ganglion neurons. A lack of beta-arrestin2 reduced the maximum inhibition of VGCCs by morphine and DAMGO (D-Ala2-N-Me-Phe4-glycol5-enkephalin) without affecting agonist potency, the onset of receptor desensitization, or the functional contribution of N-type VGCCs. The reduction in inhibition was accompanied by increased naltrexone-sensitive constitutive inhibitory coupling of mu receptors to VGCCs. Agonist-independent mu receptor inhibitory coupling was insensitive to CTAP (Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2), a neutral antagonist that inhibited the inverse agonist action of naltrexone. These functional changes were accompanied by diminished constitutive recycling and increased cell-surface mu receptor expression in beta arr2-/- compared with beta arr2+/+ neurons. Such changes could not be explained by the classical role of beta-arrestins in agonist-induced endocytosis. The localization of the nonreceptor tyrosine kinase c-Src appeared disrupted in beta arr2-/- neurons, and there was reduced activation of c-Src by DAMGO. Using the Src inhibitor PP2 [4-amino-5-(4-chlorophenyl)-(t-butyl)pyrazolo[3,4-d]pyrimidine], we demonstrated that defective Src signaling mimics the beta arr2-/- cellular phenotype of reduced mu agonist efficacy, increased constitutive mu receptor activity, and reduced constitutive recycling. We propose that beta-arrestin2 is required to target c-Src to constitutively active mu receptors, resulting in their internalization, providing another dimension to the complex role of beta-arrestin2 and c-Src in G

  10. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription.

    Directory of Open Access Journals (Sweden)

    Krizia Tuand

    Full Text Available Neurobeachin (NBEA is an autism spectrum disorders (ASD candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA, an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088 and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW. Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed.Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression.Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated.Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.

  11. Electroacupuncture promotes neural stem cell proliferation and neurogenesis in the dentate gyrus of rats following stroke via upregulation of Notch1 expression.

    Science.gov (United States)

    Zhao, Junhong; Sui, Minghong; Lü, Xiao; Jin, Dongmei; Zhuang, Zhiqiang; Yan, Tiebin

    2015-11-01

    Neural stem cells (NSCs) are important in rehabilitation following stroke. Electroacupuncture (EA) treatment has been observed to promote the recovery of neurological functions subsequent to stroke, however, the effects of EA on the proliferation and differentiation of NSCs and its potential mechanisms remain to be elucidated. In the present study, rats, in which a stroke was induced through middle cerebral artery occlusion (MCAO), were treated with EA or control manipulation for 21 days. The modified Neurological Severity score and Morris water maze tests were used to assess the neurological functions of the rats. Bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP) or BrdU/neuronal marker (NeuN) double immunofluorescence staining were used to examine the proliferation and differentiation of the NSCs. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were performed to detect the expression levels of Notch1 and Hes1 in the dentate gyrus (DG) of the hippocampus of rats following MCAO. The results demonstrated that EA treatment significantly improved the neurological functional recovery of rats following stroke. A significant increase was observed in the number of BrdU+/GAFP+ and BrdU+/NeuN+ cells in the DG area in the EA‑treated rats compared with that of the control group. RT‑qPCR analysis revealed that EA treatment significantly increased the expression levels of Notch1 and Hes1, which may account for the enhanced proliferation and differentiation of NSCs. In conclusion, to the best of our knowledge, the present study was the first to demonstrate that EA treatment promoted NSC proliferation and neurogenesis in the DG area through the upregulation of Notch signaling following a stroke; therefore, EA may be a useful novel therapeutic strategy in future stroke treatment.

  12. Exploration of the inhibiting effect of Notch-1 blocker on tumor growth in osteosarcoma mouse models as well as related molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Bin Zhou; Wei-Chun Guo

    2016-01-01

    Objective:To explore the inhibiting effect of Notch-1 blocker on tumor growth in osteosarcoma mouse models as well as related molecular mechanisms.Methods: SCID mice were selected as experimental subjects, and osteosarcoma mouse models were built through subcutaneous injection of osteosarcoma cells and divided into GSI group and PBS group who received GSI and PBS intervention respectively. 0 d, 5 d, 10 d, 15 d and 20 d after intervention, tumor tissue volume was detected; 20 d after intervention, the contents of pro-apoptosis, pro-proliferation and invasion-related molecules in tumor tissue were detected.Results: On the 0 d of intervention, tumor volume of GSI group was not significantly different from that of PBS group; 5 d, 10 d, 15 d and 20 d after intervention, tumor volume of GSI group was significantly lower than that of PBS group; 20 d after intervention, the contents of pro-proliferation molecules AEG-1, Orai1, STIM1, PAK5, RIPK4 andβ-catenin as well as invasion-promoting molecules Gab2, DLK1, Scr and B7-H3 in tumor tissue of GSI group were significantly lower than those of PBS group, and the contents of pro-apoptosis molecules RanBP9, PD-1, PD-L1 and PD-L2 as well as invasion-inhibiting molecules TIMP1 and TIMP2 were significantly higher than those of PBS group.Conclusion:Notch-1 blocker can inhibit tumor growth in osteosarcoma mouse models, and the molecular mechanisms involved in the process include reducing the generation of pro-proliferation molecules and invasion-promoting molecules and increasing the generation of pro-apoptosis and invasion-inhibiting molecules.

  13. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity.

    Science.gov (United States)

    Coleman, James L J; Ngo, Tony; Schmidt, Johannes; Mrad, Nadine; Liew, Chu Kong; Jones, Nicole M; Graham, Robert M; Smith, Nicola J

    2016-04-12

    Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue.

  14. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Directory of Open Access Journals (Sweden)

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  15. Nuclear Factor-κB Signaling Pathway Constitutively Activated in Esophageal Squamous Cell Carcinoma Cell Lines and Inhibition of Growth of Cells by Small Interfering RNA

    Institute of Scientific and Technical Information of China (English)

    Fang TIAN; Wei-Dong ZANG; Wei-Hong HOU; Hong-Tao LIU; Le-Xun XUE

    2006-01-01

    Although constitutive nuclear factor (NF)-κB activation has been reported in many human tumors, the role of the NF-κB pathway in esophageal squamous cell carcinoma (ESCC) has not been known.In this study, NF-κB pathway in two ESCC cell lines was investigated using immunocytochemistry, Western blot and reverse transcription-polymerase chain reaction. The activation of NF-κB DNA binding was determined by electrophoretic mobility-shift assay. RNA interference was used to specifically inhibit the expression of p65. Growth of cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.The results showed that p50, p65, Iκ Bα, p-Iκ Bα and Iκ B kinase β were expressed and mainly localized in the cytoplasm. Reverse transcription-polymerase chain reaction results showed the constitutive expressions of p50, p65 and Iκ Bα mRNA in the two ESCC cell lines. Furthermore, the nuclear extracts revealed that p50 and p65 translocated to the nucleus had DNA-binding activity. Finally, small interfering RNA of p65 decreased the expression of p65, and the viability of cells transfected with p65 small interfering RNA was significantly suppressed at the same concentration of 5-fluorouracil (P<0.05) compared to untransfected cells. The results of this study showed that there was the constitutively activated NF-κB signaling pathway in the ESCC cell lines. RNA interference targeting at p65 increased the sensitivity of the ESCC cell lines to 5-fluorouracil,suggesting that NF-κB might be a good target for cancer treatment.

  16. Weight-bearing physical activity, calcium intake, systemic glucocorticoids, chronic inflammation, and body constitution as determinants of lumbar and femoral bone mineral in juvenile chronic arthritis.

    Science.gov (United States)

    Kotaniemi, A; Savolainen, A; Kröger, H; Kautiainen, H; Isomäki, H

    1999-01-01

    The associations between the lumbar and femoral bone mineral and several body constitutional, lifestyle, and disease related variables were studied in 111 children with juvenile chronic arthritis (JCA) by factor and multiple linear regression analyses. In addition to the measurement of bone mineral density (BMD), bone width and bone mineral volumetric density (BMDvol) were determined by dual-x-ray absorptiometry (DXA). Factor analysis of 13 explanatory variables yielded six non-correlating factors, named as body size, physical activity, calcium intake, glucocorticoids, disease duration, and disease activity. These six factors were used as new variables to explain BMD, BMDvol, and bone width by multiple linear regression analyses. These showed body size, physical activity, and calcium intake as significant positive and disease activity and glucocorticoids as significant negative determinants of BMD in JCA. The analyses revealed also considerable differences in the relationships between factors and BM Dvol or bone width.

  17. utilizing constitutional values in constitutional comparison

    African Journals Online (AJOL)

    Administrator

    review, the separation of powers, democratic processes, etc. ... 2 The approach to constitutional comparison followed here, is more extensively dealt with ..... race, national or ethnic origin, color, religion, sex, age or mental or physical disability.

  18. Constitutive activation of AtMEK5, a MAPK kinase, induces salicylic acid-independent cell death in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LIU Hongxia; WANG Ying; ZHOU Tianhong; SUN Yujing; LIU Guoqin; REN Dongtao

    2004-01-01

    AtMEK5DD is an active mutant of AtMEK5, a MAP kinase kinase in Arabidopsis. Induction of AtMEK5DD expression in transgenic plants leads to activation of 44 and 48 kD MAPKs and causes a rapid cell death. To compare the cell death induced by the expression of AtMEK5DD with the HR-cell death induced by avirulence pathogen infection, we analyzed the activation of downstream MAP Kinase and induction of PR genes expression in permanent transgenic Arabidopsis plants. In-gel kinase activity assay revealed that the infection of Pseudomonas syringae DC3000 harboring Avr Rpt2 gene also lead to activation of 44 and 48 kD MAPKs. PAL, PR1 and PR5 were strongly induced in plants undergoing HR-cell death caused by the infection of P. Syringae DC3000, while only the expression of PR5 was strongly induced in transgenic plants expressing AtMEK5DD protein. NahG protein in AtMEK5DD×NahG plants cannot suppress the cell death induced by AtMEK5DD. And AtMEK5DD protein expressed AtMEK5DD×NahG plants showed no significant change in salicylic acid (SA)level.All these suggest that the cell death induced by the activation of AtMEK5 is salicylic acid-independent.

  19. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Methadone induces the expression of hepatic drug-metabolizing enzymes through the activation of pregnane X receptor and constitutive androstane receptor.

    Science.gov (United States)

    Tolson, Antonia H; Li, Haishan; Eddington, Natalie D; Wang, Hongbing

    2009-09-01

    Methadone (MD) is the most established substance abuse pharmacotherapy of choice for the management of heroin dependence. To date, drug-drug interactions involving MD have been characterized asymmetrically among existing reports, which describe how other drugs affect the metabolic or pharmacokinetic profiles of MD; however, limited information is available regarding the potential for MD to influence similar fates of coadministered drugs. Moreover, little to no mechanistic evidence has been explored. Here, we show that MD induces hepatic drug-metabolizing enzymes (DMEs) through the activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Real-time polymerase chain reaction analysis of human hepatocyte cultures revealed that MD induces the mRNA expression of CYP2B6, CYP3A4, UGT1A1, and multidrug resistance 1 in a concentration-related manner, with the maximal induction of CYP2B6 challenging that of the induction by rifampicin. Furthermore, MD-mediated induction of CYP2B6 and CYP3A4 proteins was observed in Western blot analysis. In cell-based reporter assays, MD significantly increased human (h) PXR-mediated CYP2B6 reporter activities but exhibited minimal effect on hCAR activation as a result of the constitutive activity of hCAR in HepG2 cells. Further studies revealed that treatment with MD resulted in significant nuclear accumulation of adenovirus/enhanced yellow fluorescent protein tagged-hCAR in human hepatocytes, which has been regarded as the initial step of CAR activation. Additional analysis of the two enantiomers of MD, R-(-)-MD (active) and S-(+)-MD (inactive), indicates the lack of stereoselectivity pertaining to MD-mediated DME induction. Overall, our results show that MD induces the hepatic expression of multiple DMEs by activating PXR- and CAR-mediated pathways.

  1. Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T cell development.

    Science.gov (United States)

    Felli, M P; Maroder, M; Mitsiadis, T A; Campese, A F; Bellavia, D; Vacca, A; Mann, R S; Frati, L; Lendahl, U; Gulino, A; Screpanti, I

    1999-07-01

    The suggested role of Notch1 or its mutants in thymocyte differentiation and T cell tumorigenesis raises the question of how the different members of the Notch family influence distinct steps in T cell development and the role played by Notch ligands in the thymus. We report here that different Notch receptor-ligand partnerships may occur inside the thymus, as we observed differential expression of Notch1, 2 and 3 receptors, their ligands Jagged1 and 2, and downstream intracellular effectors hairy and Enhancer of Split homolog 1 (HES-1) and hairy and Enhancer of Split homolog 5 (HES-5), depending on ontogenetic stage and thymic cell populations. Indeed, while Jagged2 is expressed in both stromal cells and thymocytes, Jagged1 expression is restricted to stromal cells. Moreover, a differential distribution of Notch3, with respect to Notch1, was observed in distinct age-related thymocyte subsets. Finally, Notch3 was preferentially up-regulated in thymocytes, following the induction of their differentiation by interaction with thymic epithelial cells expressing the cognate Jagged1 and 2 ligands, suggesting that, besides Notch1, Notch3 may also be involved in distinct steps of thymocyte development. Our results suggest that the Notch signaling pathway is involved in a complex interplay of T cell developmental stages, as a consequence of the heterogeneity and specific expression of members of the Notch receptor family and their cognate ligands, in distinct thymic cell compartments.

  2. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death

    DEFF Research Database (Denmark)

    Hollmann, C Annette; Owens, Trevor; Nalbantoglu, Josephine;

    2006-01-01

    CD40 promotes survival, proliferation, and differentiation of normal B cells but can cause activation-induced cell death in malignant B lymphocytes. CD40 ligand and anti-CD40 antibodies have been used successfully to induce apoptosis in lymphoma lines both in vitro and in xenograft tumor models...... a specific cell line or tumor will undergo apoptosis when stimulated with CD40 and to identify targets downstream of CD40 that affect only the apoptotic arm of CD40 signaling. We have analyzed gene expression patterns in CD40-sensitive and CD40-resistant diffuse large B-cell lymphoma (DLBCL) cell lines...... and no increase in ERK activity in response to CD40 stimulation. Our results suggest that constitutive activation of ERK may be required for death signaling by CD40....

  3. Expression and effect of Notch1 during differentiation of human amniotic epithelial cells into neuron-like cells induced by salvia miltiorrhiza bunge in vitro%复方丹参注射液体外诱导人羊膜上皮细胞分化为神经元样细胞及Notch1表达的变化及意义

    Institute of Scientific and Technical Information of China (English)

    陈旭东; 王晓兰; 华新宇

    2012-01-01

    Objective:To explore the expression and effect of Notchl during differentiation of human amniotic epithelial cells (hAECs) into neurons induced by salvia miltiorrhiza bunge (SMB) in vitro. Methods:hAECs were divided into a SMB pre-treatment group and a control group, and SMB group had 5 subgroups. The morphological changes of hAECs were oberved under an optical microscope and the expressions of NSE, MAP-2 and Notchl were identified with the immunocytochemical method. RT-PCR was further used to detect the expression of multiple genes Oct4, Notchl and NSE. The cell viability was measured with methyl thiazolyl tetrazolium (MTT) methods. Results: Under the convert microscope, it was observed that the shape of hAECs started to change, and there were several axon or dendrite-like processes out from the cell body induced by SMB after 24 h. The NSE and MAP-2 positive straining was the strongest in the group of cells in 1. 5 μl/ml at 48 h, while the Notchl positive straining was less than that in the control group. The cell survival rate of every subgroup was decreased compared with the control group. RT-PCR showed that the expression of Oct4 and Notchl was less than that of the control group, wlile NSE was higher than that of the control group. Conclusion: SMB can induce hAECs into neuron-like cells, and the expression of Notchl decreased in the progress (especially at 1. 5μl/ml-48 h). Its possible mechanism may rely on the inhibition of Notch signal pathway.g%目的:探讨复方丹参注射液体外诱导入羊膜上皮细胞(hAECs)向神经细胞分化中Notch1的表达变化的意义.方法:将hAECs分为丹参诱导组和对照组.丹参注射液组设立5个浓度亚组,诱导hAECs分化为神经细胞,观察不同浓度丹参诱导组间细胞形态变化,应用免疫细胞化学显色鉴定神经元特异性烯醇化酶(NSE)、微管相关蛋白2(MAP-2)、Notch1.RT-PCR进一步鉴定细胞多能基因Oct4、Notch1、神经元标记物NSE,四甲基偶氮唑盐比

  4. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  5. C-terminal truncated cannabinoid receptor 1 coexpressed with G protein trimer in Sf9 cells exists in a precoupled state and shows constitutive activity.

    Science.gov (United States)

    Chillakuri, Chandramouli Reddy; Reinhart, Christoph; Michel, Hartmut

    2007-12-01

    We have investigated the existence of a precoupled form of the distal C-terminal truncated cannabinoid receptor 1 (CB1-417) and heterotrimeric G proteins in a heterologous insect cell expression system. CB1-417 showed higher production levels than the full-length receptor. The production levels obtained in our expression system were double the values reported in the literature. We also observed that at least the distal C-terminus of the receptor was not involved in receptor dimerization, as was predicted in the literature. Using fluorescence resonance energy transfer, we found that CB1-417 and Galpha(i1)beta(1)gamma(2) proteins were colocalized in the cells. GTPgammaS binding assays with the Sf9 cell membranes containing CB1-417 and the G protein trimer showed that the receptor could constitutively activate the Galpha(i1) protein in the absence of agonists. A CB1-specific antagonist (SR 141716A) inhibited this constitutive activity of the truncated receptor. We found that the CB1-417/Galpha(i1)beta(1)gamma(2) complex could be solubilized from Sf9 cell membranes and coimmunoprecipitated. In this study, we have proven that the receptor and G proteins can be coexpressed in higher yields using Sf9 cells, and that the protein complex is stable in detergent solution. Thus, our system can be used to produce sufficient quantities of the protein complex to start structural studies.

  6. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  7. Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke.

    Science.gov (United States)

    Lu, Jianli; Zhang, Leichen; Lewis, Ramsey S; Bovet, Lucien; Goepfert, Simon; Jack, Anne M; Crutchfield, James D; Ji, Huihua; Dewey, Ralph E

    2016-07-01

    Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    Directory of Open Access Journals (Sweden)

    Hafner Mathias

    2006-04-01

    Full Text Available Abstract Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT. Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling.

  9. Constitutive Activation of an Anthocyanin Regulatory Gene PcMYB10.6 Is Related to Red Coloration in Purple-Foliage Plum.

    Directory of Open Access Journals (Sweden)

    Chao Gu

    Full Text Available Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum 'Ziyeli' (Prunus cerasifera Ehrhar f. atropurpurea (Jacq. Rehd., which shows red color pigmentation in fruit (flesh and skin and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5 show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin, and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear.

  10. Nuclear Factor-κB/p65 (Rel A Is Constitutively Activated in Human Prostate Adenocarcinoma and Correlates with Disease Progression

    Directory of Open Access Journals (Sweden)

    Sanjeev Shukla

    2004-07-01

    Full Text Available Aberrant nuclear factor-κB (NF-κB activation has been implicated in the pathogenesis of several human malignancies. In this study, we determined whether NF-κB is constitutively activated in human prostate adenocarcinoma, and, if so, whether increased NF-κB activation and its binding to DNA influence tumor progression. Using tissue samples obtained during transurethral prostatic resection and paraffin-embedded sections of benign and cancer specimens, we determined the nuclear expression of NF-κB/p65 and NF-κB/p50, cytoplasmic expression of IκBα, its phosphorylation, and expression of NF-κB-regulated genes, specifically Bcl2, cyclin D1, matrix metalloproteinase-9 (MMP-9, and vascular endothelial growth factor (VEGF. A progressive increase in the expression of NF-κB/p65 (but not of p50 was observed in cancer specimens compared to benign tissue, which correlated with increasing levels of IκBa and its phosphorylation. NF-κB DNA-binding activity increased with increasing tumor grade and the binding complex mainly consisted of NF-κB/p65-p50 heterodimers. Immunohistochemical analysis showed enhanced nuclear staining for NF-κB/p65 in both high-grade (P < .0001 and low-grade (P < .003 cancer specimens, compared to benign tissue. The nuclear levels of NF-κB/p65 correlated with concurrent increase in cytosolic levels of IκBa along with NF-κB-dependent expression of Bcl2, cyclin D1, MMP-9, and VEGF. These results demonstrate that NF-κB/p65 is constitutively activated in human prostate adenocarcinoma and is related to tumor progression due to transcriptional regulation of NF-κB-responsive genes.

  11. Acaricidal activity of Asarum heterotropoides root-derived compounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae).

    Science.gov (United States)

    Kim, Jun-Ran; Perumalsamy, Haribalan; Lee, Ju-Hee; Ahn, Young-Joon; Lee, Young Su; Lee, Sang-Guie

    2016-04-01

    The acaricidal activity of Asarum heterotropoides root-derived principles, methyleugenol, safrole, 3-carene, α-asarone, pentadecane and A. heterotropoides root steam distillate constituents was tested against poultry red mites Dermanyssus gallinae (De Geer). All active principles were identified by spectroscopic analysis. Results were compared with those of two conventional acaricides, benzyl benzoate and N,N-diethyl-3-methylbenzamide (DEET). Methyleugenol (24 h LC50 = 0.57 µg/cm(2)) and safrole (24 h LC50 = 8.54 µg/cm(2)) were the most toxic compounds toward D. gallinae, followed by 3,4,5-trimethoxytoluene, 3,5-dimethoxytoluene, estragole, α-terpineol, verbenone, eucarvone, linalool, and terpinen-4-ol (LC50 = 15.65-27.88 µg/cm(2)). Methyleugenol was 16.7× and 11.0× more toxic than benzyl benzoate (LC50 = 9.52 μg/cm(2)) and DEET (LC50 = 6.28 μg/cm(2)), respectively; safrole was 1.1× and 0.73× more toxic. Asarum heterotropoides root-derived materials, particularly methyleugenol and safrole, merit further study as potential acaricides. Global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments justify further studies on A. heterotropoides root extract and steam distillate preparations containing the active constituents described as potential contact-action fumigants for the control of mites.

  12. Extracellular Vesicles from a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective Immunity.

    Science.gov (United States)

    Coakley, Gillian; McCaskill, Jana L; Borger, Jessica G; Simbari, Fabio; Robertson, Elaine; Millar, Marissa; Harcus, Yvonne; McSorley, Henry J; Maizels, Rick M; Buck, Amy H

    2017-05-23

    Recent studies have demonstrated that many parasites release extracellular vesicles (EVs), yet little is known about the specific interactions of EVs with immune cells or their functions during infection. We show that EVs secreted by the gastrointestinal nematode Heligmosomoides polygyrus are internalized by macrophages and modulate their activation. EV internalization causes downregulation of type 1 and type 2 immune-response-associated molecules (IL-6 and TNF, and Ym1 and RELMα) and inhibits expression of the IL-33 receptor subunit ST2. Co-incubation with EV antibodies abrogated suppression of alternative activation and was associated with increased co-localization of the EVs with lysosomes. Furthermore, mice vaccinated with EV-alum generated protective immunity against larval challenge, highlighting an important role in vivo. In contrast, ST2-deficient mice are highly susceptible to infection, and they are unable to clear parasites following EV vaccination. Hence, macrophage activation and the IL-33 pathway are targeted by H. polygyrus EVs, while neutralization of EV function facilitates parasite expulsion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. EXPRESIÓN DE LOS GENES Serrate1 Y Notch1 DURANTE EL DESARROLLO DEL TERCIO MEDIO FACIAL DEL EMBRIÓN DE POLLO

    Directory of Open Access Journals (Sweden)

    Daniel Mauricio Meza Lasso

    2015-11-01

    Full Text Available RESUMENLa vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se utilizaron embriones de pollo (Gallus gallus seleccionados de acuerdo a los criterios de Hamilton y Hamburger y sobre los cuales se realizó hibridación in situ con ribosondas marcadas con Digoxigenina (DIG, para luego ser detectadas con anticuerpos Anti-Dig. Los resultados mostraron expresión de los genes evaluados, en las prominencias maxilares (pmx y frontonasal (pfn durante el desarrollo del tercio medio facial. Estos resultados sugieren una probable participación de la vía Notch a través de estos genes, en los diferentes procesos celulares que determinan la morfogénesis y el desarrollo del tercio medio facial.ABSTRACTThe Notch signaling pathway is characterized by mediate cell-cell communication, regulating different cellular processes as proliferation, apoptosis and cell fate definition. This pathway has been implicated in craniofacial structures development as palate, teeth and cranial vault. The objective of this research was to identify the genes expression patterns of some Notch signaling pathway components, Serrate1 and Notch1, during the midface development. It was used chicken embryos (Gallus gallus selected according to Hamilton and Hamburger criteria. We performed in situ hybridization with Digoxigenin (DIG-labeled riboprobes and detected with the antibody Anti-Dig. The results showed the expression of the evaluated genes in the maxillary (pmx and frontonasal (pfn prominences during the midface development. These results

  14. Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies.

    Science.gov (United States)

    Treanor, Louise M; Volanakis, Emmanuel J; Zhou, Sheng; Lu, Taihe; Sherr, Charles J; Sorrentino, Brian P

    2011-05-19

    LMO2 is a target of chromosomal translocations in T-cell tumors and was activated by retroviral vector insertions in T-cell tumors from X-SCID patients in gene therapy trials. To better understand the cooperating genetic events in LMO2-associated T-cell acute lymphoblastic leukemia (T-ALL), we investigated the roles of Arf tumor suppressor loss and Notch activation in murine models of transplantation. Lmo2 overexpression enhanced the expansion of primitive DN2 thymocytes, eventually facilitating the stochastic induction of clonal CD4(+)/CD8(+) malignancies. Inactivation of the Arf tumor suppressor further increased the self-renewal capacity of the primitive, preleukemic thymocyte pool and accelerated the development of aggressive, Lmo2-induced T-cell lympholeukemias. Notch mutations were frequently detected in these Lmo2-induced tumors. The Arf promoter was not directly engaged by Lmo2 or mutant Notch, and use of a mouse model in which activation of a mutant Notch allele depends on previous engagement of the Arf promoter revealed that Notch activation could occur as a subsequent event in T-cell tumorigenesis. Therefore, Lmo2 cooperates with Arf loss to enhance self-renewal in primitive thymocytes. Notch mutation and Arf inactivation appear to independently cooperate in no requisite order with Lmo2 overexpression in inducing T-ALL, and all 3 events remained insufficient to guarantee immediate tumor development.

  15. Increased Na⁺/Ca²⁺ exchanger expression/activity constitutes a point of inflection in the progression to heart failure of hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jesica S Rodriguez

    Full Text Available Spontaneously hypertensive rat (SHR constitutes a genetic model widely used to study the natural evolution of hypertensive heart disease. Ca²⁺-handling alterations are known to occur in SHR. However, the putative modifications of Ca²⁺-handling proteins during the progression to heart failure (HF are not well established. Moreover, the role of apoptosis in SHR is controversial. We investigated intracellular Ca²⁺, Ca²⁺-handling proteins and apoptosis in SHR vs. control Wistar rats (W from 3 to 15 months (mo. Changes associated with the transition to HF (i.e. lung edema and decrease in midwall fractional shortening, occurred at 15 mo in 38% of SHR (SHRF. In SHRF, twitch and caffeine-induced Ca²⁺ transients, significantly decreased relative to 6/9 mo and 15 mo without HF signs. This decrease occurred in association with a decrease in the time constant of caffeine-Ca²⁺ transient decay and an increase in Na⁺/Ca²⁺ exchanger (NCX abundance (p<0.05 with no changes in SERCA2a expression/activity. An increased Ca²⁺-calmodulin-kinase II activity, associated with an enhancement of apoptosis (TUNEL and Bax/Bcl2 was observed in SHR relative to W from 3 to 15 mo.1. Apoptosis is an early and persistent event that may contribute to hypertrophic remodeling but would not participate in the contractile impairment of SHRF. 2. The increase in NCX expression/activity, associated with an increase in Ca²⁺ efflux from the cell, constitutes a primary alteration of Ca²⁺-handling proteins in the evolution to HF. 3. No changes in SERCA2a expression/activity are observed when HF signs become evident.

  16. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.;

    2007-01-01

    mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF......Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV...... beta antiproliferative effects. Fibroblasts derived from MMTV-DIK2 tumors secrete factors that stimulate the proliferation of MMTV-D1K2 cancer cells, stimulate c-Met tyrosine phosphorylation, and stimulate the phosphorylation of the downstream signaling intermediates p70(s6k) and Akt on activating...

  17. The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans.

    Science.gov (United States)

    Nousch, Marco; Techritz, Nora; Hampel, Daniel; Millonigg, Sophia; Eckmann, Christian R

    2013-09-15

    Post-transcriptional regulatory mechanisms are widely used to control gene expression programs of tissue development and physiology. Controlled 3' poly(A) tail-length changes of mRNAs provide a mechanistic basis of such regulation, affecting mRNA stability and translational competence. Deadenylases are a conserved class of enzymes that facilitate poly(A) tail removal, and their biochemical activities have been mainly studied in the context of single-cell systems. Little is known about the different deadenylases and their biological role in multicellular organisms. In this study, we identify and characterize all known deadenylases of Caenorhabditis elegans, and identify the germ line as tissue that depends strongly on deadenylase activity. Most deadenylases are required for hermaphrodite fertility, albeit to different degrees. Whereas ccr-4 and ccf-1 deadenylases promote germline function under physiological conditions, panl-2 and parn-1 deadenylases are only required under heat-stress conditions. We also show that the Ccr4-Not core complex in nematodes is composed of the two catalytic subunits CCR-4 and CCF-1 and the structural subunit NTL-1, which we find to regulate the stability of CCF-1. Using bulk poly(A) tail measurements with nucleotide resolution, we detect strong deadenylation defects of mRNAs at the global level only in the absence of ccr-4, ccf-1 and ntl-1, but not of panl-2, parn-1 and parn-2. Taken together, this study suggests that the Ccr4-Not complex is the main deadenylase complex in C. elegans germ cells. On the basis of this and as a result of evidence in flies, we propose that the conserved Ccr4-Not complex is an essential component in post-transcriptional regulatory networks promoting animal reproduction.

  18. Expression of a constitutively active calcineurin encoded by an intron-retaining mRNA in follicular keratinocytes.

    Directory of Open Access Journals (Sweden)

    Atsushi Fujimura

    Full Text Available Hair growth is a highly regulated cyclical process. Immunosuppressive immunophilin ligands such as cyclosporin A (CsA and FK506 are known as potent hair growth modulatory agents in rodents and humans that induce active hair growth and inhibit hair follicle regression. The immunosuppressive effectiveness of these drugs has been generally attributed to inhibition of T cell activation through well-characterized pathways. Specifically, CsA and FK506 bind to intracellular proteins, principally cyclophilin A and FKBP12, respectively, and thereby inhibit the phosphatase calcineurin (Cn. The calcineurin (Cn/NFAT pathway has an important, but poorly understood, role in the regulation of hair follicle development. Here we show that a novel-splicing variant of calcineurin Aß CnAß-FK, which is encoded by an intron-retaining mRNA and is deficient in the autoinhibitory domain, is predominantly expressed in mature follicular keratinocytes but not in the proliferating keratinocytes of rodents. CnAß-FK was weakly sensitive to Ca(2+ and dephosphorylated NFATc2 under low Ca(2+ levels in keratinocytes. Inhibition of Cn/NFAT induced hair growth in nude mice. Cyclin G2 was identified as a novel target of the Cn/NFATc2 pathway and its expression in follicular keratinocytes was reduced by inhibition of Cn/NFAT. Overexpression of cyclin G2 arrested the cell cycle in follicular keratinocytes in vitro and the Cn inhibitor, cyclosporin A, inhibited nuclear localization of NFATc2, resulting in decreased cyclin G2 expression in follicular keratinocytes of rats in vivo. We therefore suggest that the calcineurin/NFAT pathway has a unique regulatory role in hair follicle development.

  19. Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity.

    Science.gov (United States)

    Walwyn, Wendy M; Chen, Wenling; Kim, Hyeyoung; Minasyan, Ani; Ennes, Helena S; McRoberts, James A; Marvizón, Juan Carlos G

    2016-01-06

    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon

  20. Connective tissue growth factor and β-catenin constitute an autocrine loop for activation in rat sarcomatoid mesothelioma.

    Science.gov (United States)

    Jiang, Li; Yamashita, Yoriko; Chew, Shan-Hwu; Akatsuka, Shinya; Ukai, Shun; Wang, Shenqi; Nagai, Hirotaka; Okazaki, Yasumasa; Takahashi, Takashi; Toyokuni, Shinya

    2014-08-01

    Due to the formerly widespread use of asbestos, malignant mesothelioma (MM) is increasingly frequent worldwide. MM is classified into epithelioid (EM), sarcomatoid (SM), and biphasic subtypes. SM is less common than EM but is recognized as the most aggressive type of MM, and these patients have a poor prognosis. To identify genes responsible for the aggressiveness of SM, we induced EM and SM in rats, using asbestos, and compared their transcriptomes. Based on the results, we focused on connective tissue growth factor (Ctgf), whose expression was significantly increased in SM compared with EM; EM itself exhibited an increased expression of Ctgf compared with normal mesothelium. Particularly in SM, Ctgf was a major regulator of MM proliferation and invasion through activation of the β-catenin-TCF-LEF signalling pathway, which is autocrine and formed a positive feedback loop via LRP6 as a receptor for secreted Ctgf. High Ctgf expression also played a role in the epithelial-mesenchymal transition in MM. Furthermore, Ctgf is a novel serum biomarker for both early diagnosis and determining the MM prognosis in rats. These data link Ctgf to SM through the LRP6-GSK3β-β-catenin-TCF-Ctgf autocrine axis and suggest Ctgf as a therapeutic target.

  1. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  2. Movimientos sociales, activismo constitucional y narrativa democrática en la Argentina contemporánea Social movements, constitutional activism and democratic narrative in contemporary Argentina

    Directory of Open Access Journals (Sweden)

    Gabriela Delamata

    2013-04-01

    Full Text Available El artículo analiza tres procesos recientes de movilización socio-legal en Argentina y subraya el rol de la Constitución y la comunidad legal garantista en su despliegue. El enfoque utilizado propone entender los procesos bajo la forma de una reactivación del patrón activista gestado en la transición democrática y señala sus efectos actuales sobre los procedimientos democráticos y la gramática de ciudadanía.The article analyzes three contemporary processes of socio-legal mobilization in Argentina and underlines the role of the Constitution and of the legal community in its enforcement. The adopted approach aims at understanding those processes as a sort of reactivation of the activist tradition born during the transition to democracy, and emphasizing the present effects of this constitutional activism on democratic procedures and the citizenship grammar.

  3. EXPRESIÓN DE LOS GENES Serrate1 Y Notch1 DURANTE EL DESARROLLO DEL TERCIO MEDIO FACIAL DEL EMBRIÓN DE POLLO

    Directory of Open Access Journals (Sweden)

    Daniel Mauricio MEZA LASSO

    2016-01-01

    Full Text Available La vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se utilizaron embriones de pollo (Gallus gallus seleccionados de acuerdo a los criterios de Hamilton y Hamburger y sobre los cuales se realizó hibridación in situ con ribosondas marcadas con Digoxigenina (DIG, para luego ser detectadas con anticuerpos Anti-Dig. Los resultados mostraron expresión de los genes evaluados, en las prominencias maxilares (pmx y frontonasal (pfn durante el desarrollo del tercio medio facial. Estos resultados sugieren una probable participación de la vía Notch a través de estos genes, en los diferentes procesos celulares que determinan la morfogénesis y el desarrollo del tercio medio facial.

  4. A Global Labour Constitution?

    OpenAIRE

    Dukes, R.

    2014-01-01

    This article explores the argument that the idea of the labour constitution, as developed by Hugo Sinzheimer, offers a useful perspective for thinking about labour law today. With reference to the work of Wolfgang Streeck and Karl Polanyi, it highlights the potential benefits of the labour constitution as a framework for analysis. With a view to developing and updating Sinzheimer’s blueprint for a – national – labour constitution, it then engages with two lines of theoretical enquiry into the...

  5. Constitution, 5 October 1988.

    Science.gov (United States)

    1989-01-01

    This document contains major provisions of the constitution adopted by Brazil on 5 October 1988. This constitution seeks to promote the welfare of all citizens without discrimination. The equality of all citizens is guaranteed, and the equal rights of women are specifically mentioned. Property rights are also guaranteed and defined. Female inmates are granted the right to remain with their children while breast feeding. Workers are guaranteed a minimum wage, a family allowance for dependents, maternity/paternity leave, specific incentives to protect the labor market for women, retirement benefits, free day care for preschool-age children, pay equity, and equal rights between tenured and sporadically employed workers. Agrarian reform provisions are given, including the authority to expropriate land. Social and economic policies to promote health are called for, and public health services are to be decentralized, to be integrated, and to foster community participation. Pension plan and social assistance provisions are outlined as are duties of the state in regard to education. The amount of money to be dedicated to education is set out, and a national educational plan is called for to achieve such goals as the eradication of illiteracy, the universalization of school attendance, the improvement of instruction, and the provision of vocational training. Specific measures are set out to protect and preserve the environment. Family policy deals with issues of marriage, the definition of a family, divorce, the right to family planning services, and the deterrence of domestic violence. Social protection provisions cover mothers and children, handicapped persons, and protection of minors. Finally, the customs and rights of Indians are protected, with special provisions given to protect land tenure and to protect the rights of Indians in water resource development and prospecting and mining activities.

  6. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  7. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias.

    Science.gov (United States)

    Ehlert, Frederick J; Stein, Richard S L

    We describe a method for estimating the affinities of ligands for active and inactive states of a G protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling responses of a wild type GPCR and a constitutively active mutant of it under control conditions and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is based on the assumption that the activating mutation increases receptor isomerization into the active state without affecting the affinities of ligands for receptor states. A means of confirming this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active (Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). The latter two parameters define the output response of the receptor, and hence, their ratio (Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of additional agonists can be estimated in subsequent experiments on cells expressing the wild type receptor. We validated our method through computer simulation, an analytical proof, and analysis of previously published data. Our approach provides 1) a more meaningful analysis of structure-activity relationships, 2) a means of validating in silico docking experiments on active and inactive receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.

  8. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    Science.gov (United States)

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver.

  9. Constitutive receptor systems for drug discovery.

    Science.gov (United States)

    Chen, G; Jayawickreme, C; Way, J; Armour, S; Queen, K; Watson, C; Ignar, D; Chen, W J; Kenakin, T

    1999-12-01

    This paper discusses the use of constitutively active G-protein-coupled receptor systems for drug discovery. Specifically, the ternary complex model is used to define the two major theoretical advantages of constitutive receptor screening-namely, the ability to detect antagonists as well as agonists directly and the fact that constitutive systems are more sensitive to agonists. In experimental studies, transient transfection of Chinese hamster ovary cyclic AMP response element (CRE) luciferase reporter cells with cDNA for human parathyroid hormone receptor, glucagon receptor, and glucagon-like peptide (GLP-1) receptor showed cDNA concentration-dependent constitutive activity with parathyroid hormone (PTH-1) and glucagon. In contrast, no constitutive activity was observed for GLP-1 receptor, yet responses to GLP-1 indicated that receptor expression had taken place. In another functional system, Xenopus laevi melanophores transfected with cDNA for human calcitonin receptor showed constitutive activity. Nine ligands for the calcitonin receptor either increased or decreased constitutive activity in this assay. The sensitivity of the system to human calcitonin increased with increasing constitutive activity. These data indicate that, for those receptors which naturally produce constitutive activity, screening in this mode could be advantageous over other methods.

  10. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  11. Interpreting the Constitution.

    Science.gov (United States)

    Brennan, William J., Jr.

    1987-01-01

    Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)

  12. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…

  13. Teaching About the Constitution.

    Science.gov (United States)

    White, Charles S.

    1988-01-01

    Reviews "The U.S. Constitution Then and Now," a two-unit program using the integrated database and word processing capabilities of AppleWorks. For grades 7-12, the units simulate the constitutional convention and the principles of free speech and privacy. Concludes that with adequate time, the program can provide a potentially powerful…

  14. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…

  15. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR or peroxisome proliferator-activated receptor α (PPARα is enhanced by pregnane X receptor (PXR activation in mice.

    Directory of Open Access Journals (Sweden)

    Ryota Shizu

    Full Text Available Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR, constitutive active/androstane receptor (CAR and peroxisome proliferator-activated receptor α (PPARα play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy]benzene (TCPOBOP and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.

  16. Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+

    Directory of Open Access Journals (Sweden)

    Nigou Jérôme

    2007-08-01

    Full Text Available Abstract Background The cell wall of Mycobacterium tuberculosis contains a wide range of phosphatidyl inositol-based glycolipids that play critical structural roles and, in part, govern pathogen-host interactions. Synthesis of phosphatidyl inositol is dependent on free myo-inositol, generated through dephosphorylation of myo-inositol-1-phosphate by inositol monophosphatase (IMPase. Human IMPase, the putative target of lithium therapy, has been studied extensively, but the function of four IMPase-like genes in M. tuberculosis is unclear. Results We determined the crystal structure, to 2.6 Å resolution, of the IMPase M. tuberculosis SuhB in the apo form, and analysed self-assembly by analytical ultracentrifugation. Contrary to the paradigm of constitutive dimerization of IMPases, SuhB is predominantly monomeric in the absence of the physiological activator Mg2+, in spite of a conserved fold and apparent dimerization in the crystal. However, Mg2+ concentrations that result in enzymatic activation of SuhB decisively promote dimerization, with the inhibitor Li+ amplifying the effect of Mg2+, but failing to induce dimerization on its own. Conclusion The correlation of Mg2+-driven enzymatic activity with dimerization suggests that catalytic activity is linked to the dimer form. Current models of lithium inhibition of IMPases posit that Li+ competes for one of three catalytic Mg2+ sites in the active site, stabilized by a mobile loop at the dimer interface. Our data suggest that Mg2+/Li+-induced ordering of this loop may promote dimerization by expanding the dimer interface of SuhB. The dynamic nature of the monomer-dimer equilibrium may also explain the extended concentration range over which Mg2+ maintains SuhB activity.

  17. Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Kavitha Gowrishankar

    Full Text Available Monoclonal antibodies against immune checkpoint blockade have proven to be a major success in the treatment of melanoma. The programmed death receptor-1 ligand-1 (PD-L1 expression on melanoma cells is believed to have an inhibitory effect on T cell responses and to be an important escape mechanism from immune attack. Previous studies have shown that PD-L1 can be expressed constitutively or can be induced by IFN-γ secreted by infiltrating lymphocytes. In the present study we have investigated the mechanism underlying these two modes of PD-L1 expression in melanoma cells including cells that had acquired resistance to the BRAF inhibitor vemurafenib. PD-L1 expression was examined by flow cytometry and immunoblotting. Specific inhibitors and siRNA knockdown approaches were used to examine the roles of the RAF/ MEK, PI3K, NF-κB, STAT3 and AP1/ c-Jun pathways. IFN-γ inducible expression of PD-L1 was dependent on NF-κB as shown by inhibition with BMS-345541, an inhibitor of IκB and the BET protein inhibitor I-BET151, as well as by siRNA knockdown of NF-κB subunits. We were unable to implicate the BRAF/MEK pathway as major regulators in PD-L1 expression on vemurafenib resistant cells. Similarly the PI3K/AKT pathway and the transcription factors STAT3 and c-Jun had only minor roles in IFN-γ induced expression of PD-L1. The mechanism underlying constitutive expression remains unresolved. We suggest these results have significance in selection of treatments that can be used in combination with monoclonal antibodies against PD1, to enhance their effectiveness and to reduce inhibitory effects melanoma cells have against cytotoxic T cell activity.

  18. Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4.

    Science.gov (United States)

    Slack, R J; Hall, D A

    2012-07-01

    BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [(35) S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4(+) CCR4(+) T cells were determined. The basal [(35) S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pK(a) = 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [(35) S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells.

  19. The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure--effects in vital organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Lindstam, Maria; Paulson, Ivar; Poellinger, Lorenz; Hanberg, Annika

    2006-07-25

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most, if not all, toxic effects of dioxins and functions as a ligand-activated transcription factor regulating transcription of a battery of genes. In order to study the mechanisms behind the toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in all organs studied. The purpose of the present study was to characterize histopathologically, the phenotype of the CA-AhR with regard to the liver, kidney, lung, heart, spleen and thymus of male and female transgenic CA-AhR mice. Moreover, cell-specific activity of the CA-AhR using up-regulation of the AhR target gene CYP1A1 as a marker, was also examined. The relative weight of liver, kidney and heart were increased while relative thymus weight was decreased. Furthermore, slight morphological lesions of the liver, kidney and spleen was seen. Expression of CYP1A1 was found in cells corresponding to endothelial cells in all of the organs studied. In some tissues additional cell types, such as hepatocytes, renal tubuli cell and Clara cells expressed CYP1A1. Both the effects on organ weights and the cellular expression of CYP1A1 in CA-AhR mice correspond well to observations in TCDD-exposed mice. In conclusion, this characterization further support that the CA-AhR mouse is a useful model for life-long continuous low-level activity of the AhR, i.e. the dioxin exposure situation of humans of the general population.

  20. The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis.

    Science.gov (United States)

    Shen, Ning; Jiang, Shan; Lu, Jia-Ming; Yu, Xiao; Lai, Shan-Shan; Zhang, Jing-Zi; Zhang, Jin-Long; Tao, Wei-Wei; Wang, Xiu-Xing; Xu, Na; Xue, Bin; Li, Chao-Jun

    2015-02-01

    The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes.

  1. Constitution, 29 October 1987.

    Science.gov (United States)

    1987-01-01

    This document contains provisions of chapter 2 (Rights and Duties of Citizens) of the 1987 Constitution of the Republic of Korea relating to equality of the sexes, freedom of movement, free and compulsory education, equal opportunity at work, social protection, housing, and health care. The Constitution states that all citizens are equal before the law with no discrimination in political, economic, social, or cultural life based on sex, religion, or social status. The Constitution also protects freedom of residence and mobility, the right to an equal education, free compulsory education, and working mothers (with specific protection against discrimination). The Constitution directs the state to promote the welfare and rights of women, enhance the welfare of the aged and the young, and protect those incapable of earning a living. Housing development policies will be used to ensure comfortable housing for all citizens. State protection is afforded to mothers and to the health of all citizens.

  2. Constitutive activation of p46JNK2 is indispensable for C/EBPdelta induction in the initial stage of adipogenic differentiation.

    Science.gov (United States)

    Kusuyama, Joji; Ohnishi, Tomokazu; Bandow, Kenjiro; Amir, Muhammad Subhan; Shima, Kaori; Semba, Ichiro; Matsuguchi, Tetsuya

    2017-09-08

    Adipogenic differentiation plays a vital role in energy homeostasis and endocrine system. Several transcription factors including peroxisome proliferator-activated receptor γ 2 (PPARγ2), CCAAT-enhancer-binding protein (C/EBP) α, β, and δ are important for the process, whereas the stage-specific intracellular signal transduction regulating the onset of adipogenesis remains enigmatic. Here, we explored the functional role of c- jun N-terminal kinases (JNKs) in adipogenic differentiation using in vitro differentiation models of 3T3-L1 cells and primary adipo-progenitor cells. JNK inactivation with either a pharmacological inhibitor or JNK2-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the downregulation of Adiponectin , fatty acid protein 4 ( Fabp4 ), Pparg2 , and C/ebpa expressions. Conversely, increased adipogenesis was observed by the inducible overexpression of p46JNK2 (JNK2-1), whereas it was not observed by that of p54JNK2 (JNK2-2), indicating a distinct role of p46JNK2. The essential role of JNK appears restricted to the early stage of adipogenic differentiation, as JNK inhibition in the later stages did not influence adipogenesis. Indeed, JNK phosphorylation was significantly induced at the onset of adipogenic differentiation. As for the transcription factors involved in early adipogenesis, JNK inactivation significantly inhibited the induction of C/ebpd , but not C/ebpb, during the initial stage of adiogenic differentiation. JNK activation increased C/ebpd mRNA and protein expression through the induction and phosphorylation of activating transcription factor 2 (ATF2) that binds to a responsive element within the C/ebpd gene promoter region. Taken together, these data indicate that constitutive JNK activity is specifically required for the initial stage differentiation events of adipocytes. ©2017 The Author(s).

  3. PPP1R16A, the membrane subunit of protein phosphatase 1beta, signals nuclear translocation of the nuclear receptor constitutive active/androstane receptor.

    Science.gov (United States)

    Sueyoshi, Tatsuya; Moore, Rick; Sugatani, Junko; Matsumura, Yonehiro; Negishi, Masahiko

    2008-04-01

    Constitutive active/androstane receptor (CAR), a member of the nuclear steroid/thyroid hormone receptor family, activates transcription of numerous hepatic genes upon exposure to therapeutic drugs and environmental pollutants. Sequestered in the cytoplasm, this receptor signals xenobiotic exposure, such as phenobarbital (PB), by translocating into the nucleus. Unlike other hormone receptors, translocation can be triggered indirectly without binding to xenobiotics. We have now identified a membrane-associated subunit of protein phosphatase 1 (PPP1R16A, or abbreviated as R16A) as a novel CAR-binding protein. When CAR and R16A are coexpressed in mouse liver, CAR translocates into the nucleus. Close association of R16A and CAR molecule on liver membrane was shown by fluorescence resonance energy transfer (FRET) analysis using expressed yellow fluorescent protein (YFP)-CAR and CFP-R16A fusion proteins. R16A can form dimer through its middle region, where protein kinase A phosphorylation sites are recently identified. Translocation of CAR by R16A correlates with the ability of R16A to form an intermolecular interaction via the middle region. Moreover, this interaction is enhanced by PB treatment in mouse liver. R16A specifically interacted with PP1beta in HepG2 cells despite the highly conserved structure of PP1 family molecules. PP1beta activity was inhibited by R16A in vitro and coexpression of PP1beta in liver can prevent YFP-CAR translocation into mouse liver. Taken together, R16A at the membrane may mediate the PB signal to initiate CAR nuclear translocation, through a mechanism including its dimerization and inhibition of PP1beta activity, providing a novel model for the translocation of nuclear receptors in which direct interaction of ligands and the receptors may not be crucial.

  4. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E; Tom, Veronica J

    2015-08-05

    After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb(+) neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after

  5. Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Seung Ho Baek

    2017-02-01

    Full Text Available Ginkgolic acid C 17:1 (GAC 17:1 extracted from Ginkgo biloba leaves, has been previously reported to exhibit diverse antitumor effect(s through modulation of several molecular targets in tumor cells, however the detailed mechanism(s of its actions still remains to be elucidated. Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that regulates various critical functions involved in progression of diverse hematological malignancies, including multiple myeloma, therefore attenuating STAT3 activation may have a potential in cancer therapy. We determined the anti-tumor mechanism of GAC 17:1 with respect to its effect on STAT3 signaling pathway in multiple myeloma cell lines. We found that GAC 17:1 can inhibit constitutive activation of STAT3 through the abrogation of upstream JAK2, Src but not of JAK1 kinases in U266 cells and also found that GAC can suppress IL-6-induced STAT3 phosphorylation in MM.1S cells. Treatment of protein tyrosine phosphatase (PTP inhibitor blocked suppression of STAT3 phosphorylation by GAC 17:1, thereby indicating a critical role for a PTP. We also demonstrate that GAC 17:1 can induce the substantial expression of PTEN and SHP-1 at both protein and mRNA level. Further, deletion of PTEN and SHP-1 genes by siRNA can repress the induction of PTEN and SHP-1, as well as abolished the inhibitory effect of drug on STAT3 phosphorylation. GAC 17:1 down-regulated the expression of STAT3 regulated gene products and induced apoptosis of tumor cells. Overall, GAC 17:1 was found to abrogate STAT3 signaling pathway and thus exert its anticancer effects against multiple myeloma cells.

  6. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    Science.gov (United States)

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  7. Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity.

    Science.gov (United States)

    Bianchi, Elisabetta; Denti, Simona; Catena, Raffaella; Rossetti, Grazisa; Polo, Simona; Gasparian, Sona; Putignano, Stella; Rogge, Lars; Pardi, Ruggero

    2003-05-30

    RING finger proteins have been implicated in many fundamental cellular processes, including the control of gene expression. A key regulator of light-dependent development in Arabidopsis thaliana is the constitutive photomorphogenesis protein 1 (atCOP1), a RING finger protein that plays an essential role in translating light/dark signals into specific changes in gene transcription. atCOP1 binds the basic leucine zipper factor HY5 and suppresses its transcriptional activity through a yet undefined mechanism that results in HY5 degradation in response to darkness. Furthermore, the pleiotropic phenotype of atCOP1 mutants indicates that atCOP1 may be a central regulator of several transcriptional pathways. Here we report the cloning and characterization of the human orthologue of atCOP1. Human COP1 (huCOP1) distributes both to the cytoplasm and the nucleus of cells and shows a striking degree of sequence conservation with atCOP1, suggesting the possibility of a functional conservation as well. In co-immunoprecipitation assays huCOP1 specifically binds basic leucine zipper factors of the Jun family. As a functional consequence of this interaction, expression of huCOP1 in mammalian cells down-regulates c-Jun-dependent transcription and the expression of the AP-1 target genes, urokinase and matrix metalloproteinase 1. The RING domain of huCOP1 displays ubiquitin ligase activity in an autoubiquitination assay in vitro; however, suppression of AP-1-dependent transcription by huCOP1 occurs in the absence of changes in c-Jun protein levels, suggesting that this inhibitory effect is independent of c-Jun degradation. Our findings indicate that huCOP1 is a novel regulator of AP-1-dependent transcription sharing the important properties of Arabidopsis COP1 in the control of gene expression.

  8. Improving the police activities in ensuring the constitutional rights and freedoms of man and citizen and interaction with civil society institutions: comprehensive measures

    Directory of Open Access Journals (Sweden)

    Kirichek E.V.

    2014-12-01

    Full Text Available Russian police reform is another important step to modernize the country and public administration system. The main purpose of ongoing reforms is to create the modern and efficient law enforcement system, to form a new image of police officer in the XXI century and to change the social role of law enforcement agencies in society. Unfortunately, the results expected by society aren’t achieved. It’s stated that the reform is only at its beginning, many decisions are still to be made and implemented. The main focus is on comprehensive measures aimed at improving the police activities in ensuring the constitutional rights and freedoms of man and citizen and interaction with civil society institutions. Some features and problems of interaction between police and civil society institutions are considered. Statistics is provided. A number of constructive conclusions concerning further progressive development of interaction of police with civil society institutions are made. Despite the significant number of papers devoted to these issues, it’s necessary to note the insufficient elaboration of problems in this area. The reason is the ongoing reforms in Russia in general and police reform in particular, the instability of the current legislation regulating these issues. A lack of a clear concept of the reform, arising from a clear understanding of the police role and functions, is evident. These and other circumstances determine the topicality and practical importance of the research, the necessity of studying the peculiarities of police activities to improve its efficiency. They also indicate the need for scientific and practical recommendations.

  9. Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1α and a phosphate cement scaffold.

    Science.gov (United States)

    Zou, Duohong; Zhang, Zhiyuan; He, Jiacai; Zhu, Siheng; Wang, Shaoyi; Zhang, Wenjie; Zhou, Jian; Xu, Yuanjin; Huang, Yan; Wang, Yuanyin; Han, Wei; Zhou, Yong; Wang, Shuhong; You, Sulan; Jiang, Xinquan; Huang, Yuanliang

    2011-12-01

    Tissue engineering combined with gene therapy represents a promising approach for bone regeneration. The Hypoxia-inducible factor-1α (HIF-1α) gene is a pivotal regulator of vascular reactivity and angiogenesis. Our recent study has showed that HIF-1α could promote osteogenesis of bone mesenchymal stem cells (BMSCs) using a gene point mutant technique. To optimize the function of HIF-1α on inducing stem cells, another constitutively active form of HIF-1α (CA5) was constructed with truncation mutant method and its therapeutic potential on critical-sized bone defects was evaluated with calcium-magnesium phosphate cement (CMPC) scaffold in a rat model. BMSCs were treated with Lenti (lentivirus) -CA5, Lenti-WT (wild-type HIF-1α), and Lenti-LacZ. These genetically modified BMSCs were then combined with CMPC scaffolds to repair critical-sized calvarial defects in rats. The results showed that the overexpression of HIF-1α obviously enhanced the mRNA and protein expression of osteogenic markers in vitro and robust new bone formation with the higher local bone mineral density (BMD) was found in vivo in the CA5 and WT groups. Furthermore, CA5 showed significantly greater stability and osteogenic activity in BMSCs compared with WT. These data suggest that BMSCs transduced with truncation mutanted HIF-1α gene can promote the overexpression of osteogenic markers. CMPC could serve as a potential substrate for HIF-1α gene modified tissue engineered bone to repair critical sized bony defects.

  10. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures.

    Science.gov (United States)

    Lopez-Matas, Maria-Angeles; Nuñez, Paulina; Soto, Alvaro; Allona, Isabel; Casado, Rosa; Collada, Carmen; Guevara, Maria-Angeles; Aragoncillo, Cipriano; Gomez, Luis

    2004-04-01

    Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.

  11. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  12. Beyond the Economic Constitution

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    -twentieth century. In particular, the “turn to corporatism” in the interwar period implied an erosion of the fragile institutionalisation of legally-constituted public power due to its suspension of the legal infrastructure of society and the concomitant breakdown of the distinction between the public and private...... realms of society. The (trans-) national re-constitution of Western Europe in the years immediately after WWII, which the European integration process was an integrated part of, successfully remedied this development. However, over the last decades, Europe, together with the rest of the world, has...

  13. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells

    Science.gov (United States)

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A.; Cheng, Bin

    2016-01-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  14. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    Science.gov (United States)

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-02

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC.

  15. Constitutive Activation of STAT-3 and Neoplasm Invasion and Metastasis%STAT-3持续活化与肿瘤侵袭、转移

    Institute of Scientific and Technical Information of China (English)

    邹黎黎; 韩莉; 柳长柏

    2012-01-01

    The disorder of JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription) is one of the leading causes for the occurrence of tumors. Recent studies showed that STAT-3, an important transcription factor of JAK-STAT signal transduction pathway, can promote the rapid induction of genes by directly transducing signals from the receptor into the nucleus, and to play a pivotal role in mediating the biological response for this ligands. However, STAT-3 appears to have a dark side as well. STAT-3 can sus-tainablely activate in the tumor cells, and serve as a new target for tumor therapy as a protooncogene. Thus, it is helpful to gain a better understanding of the role of STAT-3 in tumorigenesis with the overview of the relationship between the constitutive activation of STAT-3 and the neoplasm invasion, metastasis, and cancer stem cells.%JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription)细胞信号转导途径的紊乱,是肿瘤发生最重要的原因之一.近年来的研究发现,STAT-3作为JAK-STAT信号转导途径中一个重要的调节分子,能够通过将信号直接转导入细胞核而快速激活下游基因,从而保证相应配体顺利完成信号转导过程.然而,STAT-3也有其“黑暗”的一面,其往往在恶性肿瘤细胞中表现为持续活化,作为一种原癌基因,成为肿瘤治疗的新靶标.因而,对近年来有关STAT-3的持续活化与恶性肿瘤细胞的侵袭、转移过程及肿瘤干细胞的关系作一概述,有助于深入了解STAT-3在肿瘤发生发展机制中发挥的作用.

  16. Crushed Salt Constitutive Model

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  17. Sexuality and the Constitution.

    Science.gov (United States)

    Copelon, Rhonda

    1987-01-01

    Argues for abortion rights and protection of intimate decisions and relationships. Describes the role and position of women in eighteenth century American society as a means of exposing the fallacy of the anti-abortion movement's insistence on adherence to constitutional text. Discusses the recent attempts to overturn the Roe v. Wade ruling. (PS)

  18. The Constitutional Heritage.

    Science.gov (United States)

    Baxter, Maurice

    Changing political, social, economic, and intellectual conditions over the past two hundred years have demanded innovation and adjustment of legal doctrine, thus giving the United States Constitution a character which the framers of the document could not have predicted. Historically, one must not only understand developments since 1787 but also…

  19. Constitutional Law--Elective.

    Science.gov (United States)

    Gallagher, Joan; Wood, Robert J.

    The elective unit on Constitutional Law is intended for 11th and 12th grade students. The unit is designed around major course goals which are to develop those concepts whereby students recognize and understand the following three topic areas: 1) Role of the Federal Judicial Branch of Government, 2) Supreme Court Cases Involving the Three Branches…

  20. Communicative Constitution of Organizations

    DEFF Research Database (Denmark)

    Schoeneborn, Dennis; Vasquez, Consuelo

    2017-01-01

    The notion of the communicative constitution of organizations (CCO) is at the center of a growing theoretical development within organizational communication studies. CCO scholarship is based on the idea that organization emerges in and is sustained and transformed by communication. This entry pr...

  1. ~Ylectoral Systems, Constitutionalism

    African Journals Online (AJOL)

    strongly that for democratic governance and constitutionalism to be nurtured and consolidated, SADC states need to 'undergo deliberate electoral system ...... either nmke or hrez1l< the seen1ing_|y emergent tW0—pm"ty ((t|.1opoiy) system in.

  2. The Constitution in Action

    Science.gov (United States)

    Potter, Lee Ann

    2007-01-01

    In this article, the author describes the experiences middle school students on a field trip to the new Constitution in Action Learning Lab in the Boeing Learning Center at the National Archives can expect. There, middle school students take on the roles of archivists and researchers collecting and analyzing primary sources from the holdings of…

  3. The Constitution of Partnering

    DEFF Research Database (Denmark)

    Gottlieb, Stefan Christoffer

    The constitution of partnering. Afhandlingen behandler konstitueringen af ledelseskonceptet partnering og dets anvendelse i dansk byggeri. Partnering er et udbredt koncept i byggeriet som betoner samarbejde, tillid og gensidighed mellem de deltagende parter, og konceptet har de senere år har været...

  4. Calpain 8/nCL-2 and calpain 9/nCL-4 constitute an active protease complex, G-calpain, involved in gastric mucosal defense.

    Directory of Open Access Journals (Sweden)

    Shoji Hata

    2010-07-01

    Full Text Available Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8(-/- and Capn9(-/- mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8(-/- stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9(-/-. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed "G-calpain," in which both were essential for activity. This is the first example of a "hybrid" calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S "knock-in" (Capn8(CS/CS mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8(-/- stomach, that of the Capn8(CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric

  5. Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors.

    Science.gov (United States)

    Gillis, Joanna L; Selth, Luke A; Centenera, Margaret M; Townley, Scott L; Sun, Shihua; Plymate, Stephen R; Tilley, Wayne D; Butler, Lisa M

    2013-05-01

    The development of lethal, castration resistant prostate cancer is associated with adaptive changes to the androgen receptor (AR), including the emergence of mutant receptors and truncated, constitutively active AR variants. AR relies on the molecular chaperone HSP90 for its function in both normal and malignant prostate cells, but the requirement for HSP90 in environments with aberrant AR expression is largely unknown. Here, we investigated the efficacy of three HSP90 inhibitors, 17-AAG, HSP990 and AUY922, against clinically-relevant AR missense mutants and truncated variants. HSP90 inhibition effectively suppressed the signaling of wild-type AR and all AR missense mutants tested. By contrast, two truncated AR variants, AR-V7 and ARv567es, exhibited marked resistance to HSP90 inhibitors. Supporting this observation, nuclear localization of the truncated AR variants was not affected by HSP90 inhibition and AR variant:HSP90 complexes could not be detected in prostate cancer cells. Interestingly, HSP90 inhibition resulted in accumulation of AR-V7 and ARv567es in both cell lines and human tumor explants. Despite the apparent independence of AR variants from HSP90 and their treatment-associated induction, the growth of cell lines with endogenous or enforced expression of AR-V7 or ARv567es remained highly sensitive to AUY922. This study demonstrates that functional AR variant signaling does not confer resistance to HSP90 inhibition, yields insight into the interaction between AR and HSP90 and provides further impetus for the clinical application of HSP90 inhibitors in advanced prostate cancer.

  6. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    Science.gov (United States)

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm ΔactA (LmI), rLm ΔactA ΔinlB (LmII), and rLm ΔactA ΔinlBprfA* (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) (P 2017 American Society for Microbiology.

  7. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2007-12-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  8. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2008-01-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  9. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    Science.gov (United States)

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  10. The Na+/H+ exchanger NHE1, but not the Na+, HCO3- cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2

    DEFF Research Database (Denmark)

    Lauritzen, Gitte; Stock, Christian-Martin; Lemaire, Justine;

    2012-01-01

    We and others have shown central roles of the Na(+)/H(+) exchanger NHE1 in cell motility. The aim of this study was to determine the roles of NHE1 and of the Na(+), HCO(3)(-) cotransporter NBCn1 in motility of serum-starved MCF-7 breast cancer cells expressing constitutively active ErbB2 (¿NErbB2...

  11. Patrones de expresión de Notch1, Serrate2 y genes diana de la vía Notch en prominencias faciales de embriones de pollo (Gallus gallus)

    OpenAIRE

    Belfran Alcides CARBONELL MEDINA

    2012-01-01

    La vía de señalización Notch desempeña un papel fundamental en diferentes etapas del desarrollo embrionario y está involucrada en diversos procesos celulares como apoptosis, proliferación, diferenciación, decisión de destino celular y mantenimiento de células indiferenciadas. Mutaciones en varios genes componentes de la vía Notch, como Notch1, Jagged2 (Serrate2) y Hes1 producen alteraciones en el desarrollo de estructuras craneofaciales como paladar, bóveda craneal y maxilares. El objetiv...

  12. Estudio de la contribución de la vía de notch1 y sus efectores moleculares a la patogénesis de la leucemia t linfoblástica aguda (t-all)

    OpenAIRE

    Mosquera Sáiz, Marta

    2015-01-01

    El desarrollo de los linfocitos T es un proceso estrechamente regulado que tiene lugar en un órgano especializado, el timo, que proporciona señales específicas para una eficiente generación de un amplio repertorio de células T auto-tolerantes. Entre estas señales, la interacción del receptor Notch1, expresado por los progenitores intratímicos, con los ligandos Delta-like, expresados en la superficie de las células epiteliales tímicas (TECs), es crucial para dirigir la especificación al linaje...

  13. The Constitution in Other Lands.

    Science.gov (United States)

    Bill of Rights in Action, 1987

    1987-01-01

    Designed for classroom teaching, this document contains articles on the new constitutions of Japan, South Korea, and the Philippine Islands which were modeled in part on the U.S. Constitution. These countries' experiences with constitutional government are examined, and whether or not the U.S. Constitution can be a suitable model for other…

  14. Testing of constitutive models in LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of e