WorldWideScience

Sample records for constellation observing system

  1. Constellations: A New Paradigm for Earth Observations

    Science.gov (United States)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have

  2. The Solar system.Stars and constellations

    Science.gov (United States)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  3. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    Science.gov (United States)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller

  4. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  5. Water vapor variability and comparisons in the subtropical Pacific from The Observing System Research and Predictability Experiment-Pacific Asian Regional Campaign (T-PARC) Driftsonde, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), and reanalyses

    Science.gov (United States)

    Wang, Junhong; Zhang, Liangying; Lin, Po-Hsiung; Bradford, Mark; Cole, Harold; Fox, Jack; Hock, Terry; Lauritsen, Dean; Loehrer, Scot; Martin, Charlie; Vanandel, Joseph; Weng, Chun-Hsiung; Young, Kathryn

    2010-11-01

    During the THORPEX (The Observing System Research and Predictability Experiment) Pacific Asian Regional Campaign (T-PARC), from 1 August to 30 September 2008, ˜1900 high-quality, high vertical resolution soundings were collected over the Pacific Ocean. These include dropsondes deployed from four aircrafts and zero-pressure balloons in the stratosphere (NCAR's Driftsonde system). The water vapor probability distribution and spatial variability in the northern subtropical Pacific (14°-20°N, 140°E-155°W) are studied using Driftsonde and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) data and four global reanalysis products. Driftsonde data analysis shows distinct differences of relative humidity (RH) distributions in the free troposphere between the Eastern and Western Pacific (EP and WP, defined as east and west of 180°, respectively), very dry with a single peak of ˜1% RH in the EP and bi-modal distributions in the WP with one peak near ice saturation and one varying with altitude. The frequent occurrences of extreme dry air are found in the driftsonde data with 59% and 19% of RHs less than or equal to 5% and at 1% at 500 hPa in the EP, respectively. RH with respect to ice in the free troposphere exhibits considerable longitudinal variations, very low (problems in Driftsonde, two National Center for Environmental Prediction (NCEP) reanalyses and COSMIC data. The moist layer at 200-100 hPa in the WP shown in the ERA-Interim, JRA and COSMIC is missing in Driftsonde data. Major problems are found in the RH means and variability over the study region for both NCEP reanalyses. Although the higher-moisture layer at 200-100 hPa in the WP in the COSMIC data agrees well with the ERA-Interim and JRA, it is primarily attributed to the first guess of the 1-Dimensional (1D) variational analysis used in the COSMIC retrieval rather than the refractivity measurements. The limited soundings (total 268) of Driftsonde data are capable of

  6. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    Science.gov (United States)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  7. Human Systems Integration in Practice: Constellation Lessons Learned

    Science.gov (United States)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  8. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated...

  9. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    OpenAIRE

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated

  10. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  11. Enabling Global Observations of Clouds and Precipitation on Fine Spatio-Temporal Scales from CubeSat Constellations: Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D)

    Science.gov (United States)

    Reising, S. C.; Todd, G.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Kummerow, C.; Chandra, C. V.; Berg, W. K.; Brown, S. T.; Pallas, M.; Radhakrishnan, C.

    2017-12-01

    The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class satellites observing storms at 5 millimeter-wave frequencies with 5-10 minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. Such a small satellite mission would enable the first global measurements of clouds and precipitation on the time scale of tens of minutes and the corresponding spatial scale of a few km. TEMPEST is designed to improve the understanding of cloud processes by providing critical information on temporal signatures of precipitation and helping to constrain one of the largest sources of uncertainty in cloud models. TEMPEST millimeter-wave radiometers are able to perform remote observations of the cloud interior to observe microphysical changes as the cloud begins to precipitate or ice accumulates inside the storm. The TEMPEST technology demonstration (TEMPEST-D) mission is in progress to raise the TRL of the instrument and spacecraft systems from 6 to 9 as well as to demonstrate radiometer measurement and differential drag capabilities required to deploy a constellation of 6U-Class satellites in a single orbital plane. The TEMPEST-D millimeter-wave radiometer instrument provides observations at 89, 165, 176, 180 and 182 GHz using a single compact instrument designed for 6U-Class satellites. The direct-detection topology of the radiometer receiver substantially reduces both its power consumption and design complexity compared to heterodyne receivers. The TEMPEST-D instrument performs precise, end-to-end calibration using a cross-track scanning reflector to view an ambient blackbody calibration target and cosmic microwave background every scan period. The TEMPEST-D radiometer instrument has been fabricated and successfully tested under environmental conditions (vibration, thermal cycling and vacuum) expected in low-Earth orbit. TEMPEST-D began in Aug. 2015, with a

  12. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    Science.gov (United States)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  13. Barometric altimetry system as virtual constellation applied in CAPS

    Science.gov (United States)

    Ai, Guoxiang; Sheng, Peixuan; Du, Jinlin; Zheng, Yongguang; Cai, Xiande; Wu, Haitao; Hu, Yonghui; Hua, Yu; Li, Xiaohui

    2009-03-01

    This work describes the barometric altimetry as virtual constellation applied to the Chinese Area Positioning System (CAPS), which uses the transponders of communication satellites to transfer navigation messages to users. Barometric altimetry depends on the relationship of air pressure varying with altitude in the Earth’s atmosphere. Once the air pressure at a location is measured the site altitude can be found. This method is able to enhance and improve the availability of three-dimensional positioning. The difficulty is that the relation between barometric pressure and altitude is variable in different areas and under various weather conditions. Hence, in order to obtain higher accuracy, we need to acquire the real-time air pressure corresponding to an altimetric region’s reference height. On the other hand, the altimetry method will be applied to satellite navigation system, but the greatest difficulty lies in how to get the real-time air pressure value at the reference height in the broad areas overlaid by satellite navigation. We propose an innovational method to solve this problem. It is to collect the real-time air pressures and temperatures of the 1860 known-altitude weather observatories over China and around via satellite communication and to carry out time extrapolation forecast uniformly. To reduce data quantity, we first partition the data and encode them and then broadcast these information via navigation message to CAPS users’ receivers. Upon the interpolations being done in receivers, the reference air pressure and temperature at the receiver’s nearby place is derived. Lastly, combing with the receiver-observed real air pressure and temperature, the site’s altitude can be determined. The work is presented in the following aspects: the calculation principle, formulae, data collection, encoding, prediction, interpolation method, navigation message transmission together with errors causes and analyses. The advantages and shortcomings of the

  14. Westward tilt of low-latitude plasma blobs as observed by the Swarm constellation

    DEFF Research Database (Denmark)

    Park, Jaeheung; Luehr, Hermann; Michaelis, Ingo

    2015-01-01

    In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0...

  15. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel and a......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  16. SmallSat Constellation Inter-satellite Link System Simulator

    Data.gov (United States)

    National Aeronautics and Space Administration — Goddard Space Flight Center Distributed Space Mission (DSM) seeks to design and develop the technologies required to achieve the mission goals.  For a constellation...

  17. Control system design for the constellation acquisition phase of the LISA mission

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, Francesca; Gath, Peter F, E-mail: francesca.cirillo@astrium.eads.ne, E-mail: peter.gath@astrium.eads.ne [Astrium GmbH Satellites, 88039 Friedrichshafen (Germany)

    2009-03-01

    The objective of the constellation acquisition phase for the LISA mission is to establish the three laser links between the three spacecraft of the LISA constellation so that the interferometric measurements for the science experiment can commence. The laser beam acquisition for LISA is extremely challenging given the 5 million km distance between the spacecraft, the inherent limits of the attitude sensors accuracy, the orbit determination accuracy issues and the time required to phase-lock the incoming and outgoing laser signals. This paper presents the design of the control system for the acquisition phase of the LISA constellation: the acquisition operational procedure is outlined, guidance laws are defined together with the Gyro Mode attitude control principle, which implements a Kalman filter for disturbances rejection purposes. Constellation-wide non-linear simulations demonstrate that the LISA constellation acquisition phase is feasible by means of the proposed control strategy.

  18. Control system design for the constellation acquisition phase of the LISA mission

    International Nuclear Information System (INIS)

    Cirillo, Francesca; Gath, Peter F

    2009-01-01

    The objective of the constellation acquisition phase for the LISA mission is to establish the three laser links between the three spacecraft of the LISA constellation so that the interferometric measurements for the science experiment can commence. The laser beam acquisition for LISA is extremely challenging given the 5 million km distance between the spacecraft, the inherent limits of the attitude sensors accuracy, the orbit determination accuracy issues and the time required to phase-lock the incoming and outgoing laser signals. This paper presents the design of the control system for the acquisition phase of the LISA constellation: the acquisition operational procedure is outlined, guidance laws are defined together with the Gyro Mode attitude control principle, which implements a Kalman filter for disturbances rejection purposes. Constellation-wide non-linear simulations demonstrate that the LISA constellation acquisition phase is feasible by means of the proposed control strategy.

  19. Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010

    Science.gov (United States)

    Dory, Jonathan

    2010-01-01

    The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.

  20. Low-complexity blind equalization for OFDM systems with general constellations

    KAUST Repository

    Al-Naffouri, Tareq Y.; Dahman, Ala A.; Sohail, Muhammad Sadiq; Xu, Weiyu; Hassibi, Babak

    2012-01-01

    This paper proposes a low-complexity algorithm for blind equalization of data in orthogonal frequency division multiplexing (OFDM)-based wireless systems with general constellations. The proposed algorithm is able to recover the transmitted data

  1. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    Science.gov (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  2. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  3. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    Science.gov (United States)

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  4. CarbonSat Constellation

    Science.gov (United States)

    Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John

    1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in

  5. An analytical framework for common-pool resource–large technical system (CPR-LTS constellations

    Directory of Open Access Journals (Sweden)

    Pär Blomkvist

    2013-02-01

    Full Text Available This paper introduces an analytical framework for a special phenomenon: when a common-pool resource (CPR institution and a large technical system (LTS are connected and mutually interdependent. The CPR in this case is a node managed by its appropriators within a centrally planned and managed system; here named CPR-LTS constellations. Our framework is empirically derived from two historical investigations of CPR institutions within two LTSs, the agricultural-technical system and the road transport system of Sweden. By comparing similarities and differences it is possible to identify paths to successes and failures. To understand why one survived and the other disappeared we connect Elinor Ostrom’s theories about management of CPRs with Thomas P. Hughes’s theories about LTSs. We are proposing a framework that can bridge the gap between theories about management of CPRs and LTSs. By combining the two theories it should be possible to better understand how small-scale producers using bottom-up CPRs can be linked to top-down LTSs.We will argue that to fit within an LTS, a CPR needs alignment between different parts or components within the constellation/system and alignment with other systems and institutions in society. We propose three analytical levels to deal with the phenomenon of aligning a CPR project to an existing, large sociotechnical system:Local alignment (CPR: How are CPRs organized and managed at local sites?Sociotechnical alignment (CPR-LTS: How are CPRs connected to the sociotechnical system?Contextual alignment: How are CPR-LTS constellations aligned with neighboring institutions and systems in society?Our work indicates that for successful management of a CPR-LTS constellation it is important that the CPR be included in legislation and that government agencies support the CPR in alignment with the LTS. Legislators must recognize the CPR-part in the CPR-LTS constellation so that its institutional body is firmly established in

  6. The HUMSAT System: a CubeSat-based Constellation for In-situ and Inexpensive Environmental Measurements

    Science.gov (United States)

    Tubío-Pardavila, R.; Vigil, S. A.; Puig-Suari, J.; Aguado Agelet, F.

    2014-12-01

    There is a requirement for low cost in-situ measurements of environmental parameters such as air quality, meteorological data, and water quality in remote areas. Currently available solutions for such measurements include remote sensing from satellite and aircraft platforms, and in-situ measurements from mobile and aircraft platforms. Fixed systems such as eddy covariance networks, tall towers, and the Total Carbon Column Observing Network (TCCON) are providing precision greenhouse gas measurements. Within this context, the HUMSAT system designed by the University of Vigo (Spain) will complement existing high-precision measurement systems with low cost in-situ ground based sensors in remote locations using a constellation of CubeSats as a communications relay. The HUMSAT system standardizes radio communications in between deployed sensors and the CubeSats of the constellation, which act as store and forward satellites to ground stations for uploading to the internet. Current ground stations have been established at the University of Vigo (Spain) and California Polytechnic State University (Cal Poly). Users of the system may deploy their own environmental sensors to meet local requirements. The sensors will be linked to a low-cost satellite data transceiver using a standard HUMSAT protocol. The transceiver is capable of receiving data from the HUMSAT constellation to remotely reconfigure sensors without the need of physically going to the sensor location. This transceiver uses a UHF channel around 437 MHz to exchange short data messages with the sensors. These data messages can contain up to 32 bytes of useful information and are transmitted at a speed around 300 bps. The protocol designed for this system handles the access to the channel by all these elements and guarantees a correct transmission of the information in such an scenario. The University of Vigo has launched the first satellite of the constellation, the HUMSAT-D CubeSat in November 2013 and has

  7. Capacity Maximizing Constellations

    Science.gov (United States)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  8. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  9. The design and networking of dynamic satellite constellations for global mobile communication systems

    Science.gov (United States)

    Cullen, Cionaith J.; Benedicto, Xavier; Tafazolli, Rahim; Evans, Barry

    1993-01-01

    Various design factors for mobile satellite systems, whose aim is to provide worldwide voice and data communications to users with hand-held terminals, are examined. Two network segments are identified - the ground segment (GS) and the space segment (SS) - and are seen to be highly dependent on each other. The overall architecture must therefore be adapted to both of these segments, rather than each being optimized according to its own criteria. Terrestrial networks are grouped and called the terrestrial segment (TS). In the SS, of fundamental importance is the constellation altitude. The effect of the altitude on decisions such as constellation design choice and on network aspects like call handover statistics are fundamental. Orbit resonance is introduced and referred to throughout. It is specifically examined for its useful properties relating to GS/SS connectivities.

  10. CEOS precipitation constellation

    Science.gov (United States)

    Neeck, Steven P.; Oki, Riko

    2007-10-01

    The outcomes of the 19th Committee on Earth Observing Satellites (CEOS) Plenary held in London in November 2005, recognized that the CEOS Implementation Plan for Space-Based Observations for Global Earth Observation System of Systems (GEOSS) should: - identify the supply of space-based observations required to satisfy the requirements expressed by the 10-year implementation plan for GEOSS; and - propose an innovative process whereby the many disparate types of Earth observing programs funded by CEOS Member agencies might contribute to the supply of the required observations. The CEOS Task Force charged with drafting the CEOS Implementation Plan for Space-Based Observations for GEOSS focused its early efforts on the creation of a 'new planning process' which would satisfy the various criteria demanded by member space agencies, and which would hopefully encourage a new phase of specificity and focus in the multi-lateral co-operation efforts undertaken by space agencies under the CEOS umbrella - resulting in improved engagement of all CEOS Members and real implementation results. The CEOS Constellations is the title given to this new process, and four pilot studies have been initiated in order to pioneer and test the concept. The Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) were selected as the lead agencies for the study of the development of a CEOS Precipitation Constellation with the support of other CEOS space agency and user community participants. The goals, approach, and anticipated outcomes for the study will be discussed.

  11. Frontier constellations

    DEFF Research Database (Denmark)

    Eilenberg, Michael

    2014-01-01

    expansion, population resettlement and securitization, and the confluence of these dynamic processes creates special frontier constellations. Through the case of the Indonesian-Malaysian borderlands, I explore how processes of frontier colonization through agricultural expansion have been a recurrent...

  12. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  13. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  14. A Terrestrial Reference Frame realised on the observation level using a GPS-LEO satellite constellation

    Science.gov (United States)

    Koenig, Daniel

    2018-02-01

    Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level

  15. Lessons Learned for Cx PRACA. Constellation Program Problem Reporting, Analysis and Corrective Action Process and System

    Science.gov (United States)

    Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil

    2009-01-01

    This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.

  16. Crater Constellation

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    (the Cup; abbrev. Crt, gen. Crateris; area 282 sq. deg.) A southern constellation which lies to the south-west of Virgo, and culminates at midnight in mid-March. It represents the cup of the god Apollo in Greek mythology (see Corvus). Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  17. What the Heliophysics System Observatory is teaching us about future constellations

    Science.gov (United States)

    Angelopoulos, V.

    2017-12-01

    Owing to the benign space weather during the recent solar cycle numerous Heliophysics missions have outlived their original purpose and have exceeded expectations in terms of science return. The simultaneous availability of several multi-spacecraft fleets also offers conjunction opportunities that compounds their science yield. It allows the Heliophysics System, a vast region of Sun-Earth interactions, to be peered through the colletive eyes of a fortuitous grand Observatory. The success of this Heliophysics/Geospace System Observatory (H/GSO) has been partly due to fuel resources available on THEMIS, allowing it to reconfigure its orbit lines of apsides, apogees and mean anomalies to optimize conjunctions with the rest of the H/GSO. The other part of the success has been a mandatory open data policy, the accessibility of the data though common data formats, unified analysis tools (e.g. SPEDAS) and distributed data repositories. Future constellations are motivated by the recent science lessons learned: Tight connections between dayside and nightside processes, evidenced by fortuitous conjunctions of ground and space-based assets, suggest that regional activations drive classical global modes of circulation. Like regional tornadoes and hurricanes synthesize global atmospheric weather that cannot be studied with 5 weather stations alone, one per continent, so do dayside reconnection, and nightside injections require more than a handful of point measurements. Like atmospheric weather, space weather too requires networks of stations built to meet a minimum set of requirements to "play together" and build on each other over time. Like Argo's >3000 buoys have revolutionized research, modeling and prediction by global circulation models, "space buoys" can study space weather fronts and double-up as monitors and inputs to space weather models, increasing fidelity and advance warning. Reconfigurability can allow versatility as the scientific targets adjust to the knowledge

  18. Low-complexity blind equalization for OFDM systems with general constellations

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2012-12-01

    This paper proposes a low-complexity algorithm for blind equalization of data in orthogonal frequency division multiplexing (OFDM)-based wireless systems with general constellations. The proposed algorithm is able to recover the transmitted data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information about the channel and thus does not suffer from latency normally associated with blind methods. The paper demonstrates how to reduce the complexity of the algorithm, which becomes especially low at high signal-to-noise ratio (SNR). Specifically, it is shown that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of the proposed algorithm. © 2012 IEEE.

  19. Sensor Webs to Constellations

    Science.gov (United States)

    Cole, M.

    2017-12-01

    Advanced technology plays a key role in enabling future Earth-observing missions needed for global monitoring and climate research. Rapid progress over the past decade and anticipated for the coming decades have diminished the size of some satellites while increasing the amount of data and required pace of integration and analysis. Sensor web developments provide correlations to constellations of smallsats. Reviewing current advances in sensor webs and requirements for constellations will improve planning, operations, and data management for future architectures of multiple satellites with a common mission goal.

  20. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  2. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  3. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    Science.gov (United States)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the

  4. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  5. Mapping 3D plasma structure in the solar wind with the L1 constellation: joint observations from Wind, ACE, DSCOVR, and SoHO

    Science.gov (United States)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.

    2017-12-01

    At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.

  6. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  7. Macrosecuritization and Security Constellations

    DEFF Research Database (Denmark)

    Buzan, Barry; Wæver, Ole

    2009-01-01

    the middle and system levels, and asks whether there is not more of substance there than the existing Copenhagen school analyses suggests. It revisits the under-discussed concept of security constellations in Copenhagen school theory, and adds to it the idea of macrosecuritizations as ways of getting...... active both because of the facility with which collective political units can construct each other as threats, and the difficulty of finding audiences for the kinds of securitizations and referent objects that are available at the individual and system levels. This paper focuses on the gap between...

  8. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  9. Methods and Apparatuses for Signaling with Geometric Constellations

    Science.gov (United States)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2018-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  10. Projects as value constellations

    DEFF Research Database (Denmark)

    Laursen, Markus

    Creating value has been outlined as very central to projects applying the organizational perspective to projects. It has been suggested that value is created in value constellations or project networks, where actors work together to create value. However, research on the value creation process...... in value constellations is scarce, and through an exploratory study of two project networks in a cultural setting we investigate how value is created in value constellations. We outline how each project may be a distinct type of value constellation, one project creates value for the partners of the network...... as a consortium, and the project creates value primarily for others as a facilitator....

  11. BICM-based cooperative communication systems with relay selection: Constellation and multiplexer design

    KAUST Repository

    Malik, Muhammad Talha; Hossain, Md Jahangir; Alouini, Mohamed-Slim

    2014-01-01

    We propose a new bit-interleaved coded modulation (BICM)-based cooperative communication system where different BICM modules can be optimized jointly considering the average signal to noise ratios of the direct and the two-hop Rayleigh fading

  12. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  13. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus

    2016-09-19

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet\\'s RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet\\'s dense time-series of RGB imagery.

  14. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2016-01-01

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet's RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet's dense time-series of RGB imagery.

  15. BICM-based cooperative communication systems with relay selection: Constellation and multiplexer design

    KAUST Repository

    Malik, Muhammad Talha

    2014-09-01

    We propose a new bit-interleaved coded modulation (BICM)-based cooperative communication system where different BICM modules can be optimized jointly considering the average signal to noise ratios of the direct and the two-hop Rayleigh fading channels. As such, the full benefit of BICM can be exploited in the context of cooperative communication. Our design considers cooperative communication systems with so called max-min relay selection scheme that has no loss in performance in terms of diversity- multiplexing trade off in orthogonal cooperation. The presented numerical results for rate 1/2 convolutional code with 8-ary pulse amplitude modulation equivalently 64-ary quadrature amplitude modulation show that the proposed design can offer gains up to 1.4 dB over the traditional BICM design for a target bit error rate of 10-6. Moreover the results show that the amount of gain depends on the relays\\' positions and increases with the number of relays available for selection.

  16. Observing farming systems

    DEFF Research Database (Denmark)

    Noe, Egon; Alrøe, Hugo Fjelsted

    2012-01-01

    of analysis from individual farmers to communication and social relations. This is where Luhmann’s social systems theory can offer new insights. Firstly, it can help observe and understand the operational closure and system logic of a farming system and how this closure is produced and reproduced. Secondly...

  17. Longline Observer Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LODS, the Hawaii Longline Observer Data System, is a complete suite of tools designed to collect, process, and manage quality fisheries data and information. Guided...

  18. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  19. Nonlinear pre-coding apparatus of multi-antenna system, has pre-coding unit that extents original constellation points of modulated symbols to several constellation points by using limited perturbation vector

    DEFF Research Database (Denmark)

    2008-01-01

    A Coding/Modulating units (200-1-200-N) outputs modulated symbols by modulating coding bit streams based on certain modulation scheme. The limited perturbation vector is calculated by using distribution of perturbation vectors. The original constellation points of modulated symbols are extended t...

  20. The elusive constellations of poverty.

    Science.gov (United States)

    Breugelmans, Seger M; Plantinga, Arnoud; Zeelenberg, Marcel; Poluektova, Olga; Efremova, Maria

    2017-01-01

    Pepper & Nettle describe possible processes underlying what they call a behavioral constellation of deprivation (BCD). Although we are certain about the application of evolutionary models to our understanding of poverty, we are less certain about the utility of behavioral constellations. The empirical record on poverty-related behaviors is much more divergent and broad than such constellations suggest.

  1. Guidebook to the Constellations Telescopic Sights, Tales, and Myths

    CERN Document Server

    Simpson, Phil

    2012-01-01

    This handbook is a guide to exploring the night sky and its wonderful telescopic sights. All eighty-eight officially recognized constellations in both hemispheres are presented in natural groups, related by their origin and location. The author, a former astronomy instructor and planetarium director, has for over thirty-five years, researched myths from all over the world to identify the most memorable stories which link multiple constellations in a single story. Thus, the interested observer may discover that it will be easier to use already known constellations to locate and remember new constellations. The author has found that showing each constellation figure with a simple line drawing is helpful for remembering each constellation. He includes photographs of many of the brighter celestial objects, as well as many accompanying drawings which illustrate how the telescopic views differ from the photographs. One way to use this handbook, which is useful to beginners as well as experienced astronomers, is to ...

  2. Constellations-driven innovation

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2011-01-01

    The paper presents a science and technology studies and actor-network-theory inspired approach to understanding the development and ongoing re-didactication and re-design of a Danish developed presentation tool called the Theme Board (Tematavlen.dk). It is argued that this approach provides a par...... a particularly useful point of departure for engaging in researching innovation and didactic design of digital teaching and learning instruments such as the Theme Board that are programmed and serviced 'in the sky'. I call this approach: constellation-driven innovations....

  3. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    Science.gov (United States)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  4. Origins of the "Western" Constellations

    Science.gov (United States)

    Frank, Roslyn M.

    The development of the 48 Greek constellations is analyzed as a complex mixture of cognitive layers deriving from different cultural traditions and dating back to different epochs. The analysis begins with a discussion of the zodiacal constellations, goes on to discuss the stellar lore in Homer and Hesiod, and then examines several theories concerning the origins of the southern non-zodiacal constellations. It concludes with a commentary concerning the age and possible cultural significance of stars of the Great Bear constellation in light of ethnohistorical documentation, folklore, and beliefs related to European bear ceremonialism.

  5. OBSCAN Observer Scanning System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program deployed on commercial fishing vessels. After the data...

  6. Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura

    Science.gov (United States)

    Fisher, Dominic

    2017-01-01

    This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.

  7. The elusive constellations of poverty

    NARCIS (Netherlands)

    Breugelmans, S.M.; Plantinga, A.; Zeelenberg, M.; Poluektova, Olga; Efremova, Maria

    2018-01-01

    Pepper & Nettle describe possible processes underlying what they call a behavioral constellation of deprivation (BCD). Although we are certain about the application of evolutionary models to our understanding of poverty, we are less certain about the utility of behavioral constellations. The

  8. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  9. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    Science.gov (United States)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi-constellation

  10. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  11. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    Science.gov (United States)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that

  12. Night sky a field guide to the constellations

    CERN Document Server

    Poppele, Jonathan

    2009-01-01

    Stargazing is among the most peaceful and inspiring outdoor activities. Night Sky, the award-winning book by Jonathan Poppele, makes it more fun than ever! Take a simple approach to finding 62 constellations by focusing on one constellation at a time, instead of attempting to study dizzying charts. Start with the easy-to-find constellations during each season and work toward the more difficult ones. Better yet, you'll learn how to locate any constellation in relation to the Big Dipper, the North Star and the top of the sky. With two ways to locate each constellation, you'll know where in the sky to look and what to look for! Along the way, you'll be introduced to mythology, facts and tidbits, as well as details about the planets, solar system and more! As an added bonus, the book comes with a red-light flashlight for night reading.

  13. Aquarius-Pisces Constellation Boundary Update

    Science.gov (United States)

    Durst, Steve

    2017-06-01

    Observation, mapping and study of Galaxy Stars has provided humanity direction, foundation, clarity and understanding through the ages.Human civilization advances itself using increasing intelligence and knowledge to develop tools and know how, the science of constellation star maps included: All that has been created by humanity, is to serve humanity.When people continue to use constellation star maps that no longer serve people effectively, the maps are updated, as is now the Aquarius-Pisces Constellation Boundary Update (APCBU), which marks 2000 as the year the Sun is in Aquarius at the vernal equinox.The 21st Century APCBU accounts for and incorporates science factors of precession, relativity and galacticity for professional astronomers, and social imperatives of increasing freedom, liberation and egalitarian culture for the 7.5 billion people of Earth.Twenty years into this first century of a new millennium and a new age is an effective time for an APCBU of such elegant simplicity that it changes less than 0.1% of the area of the IAU 1930 official constellation map, which marks 2597 about the year the Sun is in Aquarius at the time of the vernal equinox.The 21st Century APCBU results provide clarity and direction for humanity's next 2,000 years, if not 10,000 or 12,000 years, and advance the official astronomy / science start of the Aquarius Age -- long anticipated, desired, and imperative, especially in America -- by some 600 years.How much attention is increasingly focused on this region of the sky -- such as the recent discovery of 7 Earth-like worlds orbiting the Trappist-1 star in the Aquarius constellation -- will be an epochal 21st Century phenomenon of human science, society, and starlife.

  14. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    Due to the development of faster communication networks and improving computer technology beside postprocessing techniques real-time applications and services are more and more created and used in the eld of precise positioning and navigation using global navigation satellite systems (GNSS) like GPS. Data formats like RTCM (NTRIP) or RTIGS serve in this manner as basic tool to transmit real-time GNSS observation data to a eld of users. To handle this trend to real-time, the International GNSS Service (IGS) or more precisely the Real-Time Working Group (RTWG) of the IGS started to establish a global GNSS station network several years ago. These reference stations (RTIGS stations) transmit their observation data in real-time via the open internet to registerd users to support the development of potential new real-time products and services. One example for such a new real-time application based on the observations of the RTIGS network is the software RTIGU-Control developed within this PHD thesis. RTIGU-Control fulls 2 main tasks. The rst task is the monitoring (integrity) of the predicted IGS orbit and clock products (IGU products) using real-time observations from the station network. The second task deals with calculating more precise satellite and station clock corrections compared to the predicted values of the IGU solutions based on the already very precise IGU orbit solutions. In a rst step RTIGU-Control calculates based on the IGU orbit predictions together with code-smoothed station observations precise values for the satellite and station clock corrections.The code-smoothed observations are additionally corrected for several corrections eecting the GNSS observations (for example the delay of the signal propagation time due to the atmosphere, relativistic eects, etc.). The second calculation step deals with monitoring the IGU predicted orbits using the calculated clock solution in the calculation step before and again the corrected real-time observations

  15. Our Pittsburgh Constellation

    Science.gov (United States)

    Turnshek, Diane

    2015-08-01

    Riding on the Pittsburgh mayor’s keen interest in astronomy and the ongoing change of 40,000 city lights from mercury and sodium vapor to shielded LEDs, we organized a series of city-wide celestial art projects to bring attention to the skies over Pittsburgh. Light pollution public talks were held at the University of Pittsburgh’s Allegheny Observatory and other colleges. Earth Hour celebrations kicked off an intensive year of astronomy outreach in the city. Lights went out on March 28, 2015 from 8:30 to 9:30 pm in over fifty buildings downtown and in Oakland (the “Eds and Meds” center, where many Pittsburgh universities and hospitals are located). Our art contest was announced at the De-Light Pittsburgh celebration at the Carnegie Science Center during Astronomy Weekend. “Our Pittsburgh Constellation” is an interactive Google map of all things astronomical in the city. Different colored stars mark locations of planetariums, star parties, classes, observatories, lecture series, museums, telescope manufacturers and participating art galleries. Contest entrants submitted artwork depicting their vision of the constellation figure that incorporates and connects all the “stars” in our custom city map. Throughout the year, over a dozen artists ran workshops on painting star clusters, galaxies, nebulae, comets, planets and aurorae with discussions of light pollution solutions and scientific explanations of what the patrons were painting, including demonstrations with emission tubes and diffraction grating glasses. We will display the celestial art created in this International Year of Light at an art gallery as part of the City’s Department of Innovation & Performance March 2016 Earth Hour gala. We are thankful for the Astronomical Footprint grant from the Heinz Endowments, which allowed us to bring the worlds of science and art together to enact social change.

  16. BRITE-Constellation Science Operations

    Science.gov (United States)

    Kuschnig, R.

    2017-09-01

    BRITE-Constellation is a nanosatellite mission designed for stellar astrophysical research in collaboration between Austria, Canada and Poland. A fleet of six spacecrafts was funded, built and launched, two from each country, all designed to perform precise time-series photometry of the brightest stars in the sky. While the spacecrafts have the same basic design, three satellites host an instrument sensitive in a red bandpass, the others, for a blue wavelength range. From the six satellites launched, five are operational. The sixth one did not separate from the upper stage of the rocket and remains idle. The first pair, the Austrian satellites, started to collect science measurements with their wide field (˜24°) cameras in early December 2013. Since then, more than 340 stars were observed during 16 campaigns, the majority for more than 100 days (up to 168 days) continuously. In total, more than 2.1 million measurements have been collected so far. Originally, the limiting magnitude for target stars was set to \\mag(V)=4. However, even stars as faint as \\mag(V)=6.5 have been observed with sufficient precision. This is a review of science operations conducted during the past 3.5 years.

  17. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    Science.gov (United States)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  18. CubeSat constellations for disaster management in remote areas

    Science.gov (United States)

    Santilli, Giancarlo; Vendittozzi, Cristian; Cappelletti, Chantal; Battistini, Simone; Gessini, Paolo

    2018-04-01

    In recent years, CubeSats have considerably extended their range of possible applications, from a low cost means to train students and young researchers in space related activities up to possible complementary solutions to larger missions. Increasingly popular, whereas CubeSats are still not a solution for all types of missions, they offer the possibility of performing ambitious scientific experiments. Especially worth considering is the possibility of performing Distributed Space Missions, in which CubeSat systems can be used to increase observation sampling rates and resolutions, as well as to perform tasks that a single satellite is unable to handle. The cost of access to space for traditional Earth Observation (EO) missions is still quite high. Efficient architecture design would allow reducing mission costs by employing CubeSat systems, while maintaining a level of performance that, for some applications, could be close to that provided by larger platforms, and decreasing the time needed to design and deploy a fully functional constellation. For these reasons many countries, including developing nations, agencies and organizations are looking to CubeSat platforms to access space cheaply with, potentially, tens of remote sensing satellites. During disaster management, real-time, fast and continuous information broadcast is a fundamental requirement. In this sense, a constellation of small satellites can considerably decrease the revisit time (defined as the time elapsed between two consecutive observations of the same point on Earth by a satellite) over remote areas, by increasing the number of spacecraft properly distributed in orbit. This allows collecting as much data as possible for the use by Disaster Management Centers. This paper describes the characteristics of a constellation of CubeSats built to enable access over the most remote regions of Brazil, supporting an integrated system for mitigating environmental disasters in an attempt to prevent the

  19. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  20. NASA's Constellation Program: Milestones Towards the Frontier

    Science.gov (United States)

    Hanley, Jeffrey M.; Thomas, Lawrence D.; Rhatigan, Jennifer L.; Boatright, Tony J.

    2009-01-01

    This slide presentation reviews the status and progress made in the Constellation Program's work towards the goal of lunar and Martian exploration flights. It includes views of the various components of the program, and reviews the status of the engine tests, and the development of the Ares I-X towards test launch, the Orion Crew Module, the launch abort system, and the ground operations facilities.

  1. Constellations of gaps in Eratosthenes sieve

    OpenAIRE

    Holt, Fred B.

    2015-01-01

    A few years ago we identified a recursion that works directly with the gaps among the generators in each stage of Eratosthenes sieve. This recursion provides explicit enumerations of sequences of gaps among the generators, which sequences are known as constellations. Over the last year we identified a discrete linear system that exactly models the population of any gap across all stages of the sieve. In August 2014 we summarized our results from analyzing this discrete model on populations of...

  2. Fiscal 2000 survey report. Survey and study of constellation satellites technology; 2000 nendo chosa hokokusho. Konsutereshon eisei gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Demands for constellation satellites were surveyed and satellite systems were studied for extracting basic technical tasks relative to constellation satellite systems and for drafting space verification plans. For a constellation satellite system to accomplish its missions, two or more satellites have to be simultaneously navigated. It is assumed that its field of application will cover earth observation, information communication, risk management, disaster prevention, and the like. With such applications taken into consideration, surveys and studies were conducted about the need and marketability of constellation satellites, need of state-level involvement, and requests for missions to be imposed on a constellation system. For plural satellites to satisfy mission requests by coordinating with each other, it will be necessary to develop basic technologies, such as navigational guidance, communications control, system autonomous management, and operation on the ground. Functions and performance that a constellation satellite system are requested to have and basic technologies to be studied and developed were extracted, and space verification plans were drafted. (NEDO)

  3. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  4. BRITE-Constellation: Nanosatellites for precision photometry of bright stars

    Science.gov (United States)

    Weiss, W. W.; Moffat, A. F. J.; Schwarzenberg-Czerny, A.; Koudelka, O. F.; Grant, C. C.; Zee, R. E.; Kuschnig, R.; Mochnacki, St.; Rucinski, S. M.; Matthews, J. M.; Orleański, P.; Pamyatnykh, A. A.; Pigulski, A.; Alves, J.; Guedel, M.; Handler, G.; Wade, G. A.; Scholtz, A. L.; Scholtz

    2014-02-01

    BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V ~ 4, with precision and time coverage not possible from the ground. The current mission design consists of three pairs of 7 kg nanosats (hence ``Constellation'') from Austria, Canada and Poland carrying optical telescopes (3 cm aperture) and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats (funded by Austria) are UniBRITE, designed and built by UTIAS-SFL (University of Toronto Institute for Aerospace Studies-Space Flight Laboratory) and its twin, BRITE-Austria, built by the Technical University Graz (TUG) with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency, under contract to the Canadian Space Agency. Each BRITE instrument has a wide field of view (~ 24 degrees), so up to 15 bright stars can be observed simultaneously in 32 × 32 sub-rasters. Photometry (with reduced precision but thorough time sampling) of additional fainter targets will be possible through on-board data processing. A critical technical element of the BRITE mission is the three-axis attitude control system to stabilize a nanosat with very low inertia. The pointing stability is better than 1.5 arcminutes rms, a significant advance by UTIAS-SFL over any previous nanosatellite. BRITE-Constellation will primarily measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology. The BRITE sample of many of the brightest stars in the night sky is dominated by the most intrinsically luminous stars: massive stars seen at all evolutionary stages, and evolved medium-mass stars at the very end of their nuclear burning phases (cool giants and AGB stars). The Hertzsprung-Russell diagram for stars brighter than mag V=4 from which the BRITE-Constellation sample

  5. Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2012-11-01

    Full Text Available The main purpose of this study is to investigate the influence of the Arctic Oscillation (AO, the dominant mode of natural variability over the northerly high latitudes, on the spatial (horizontal and vertical distribution of clouds in the Arctic. To that end, we use a suite of sensors onboard NASA's A-Train satellites that provide accurate observations of the distribution of clouds along with information on atmospheric thermodynamics. Data from three independent sensors are used (AQUA-AIRS, CALIOP-CALIPSO and CPR-CloudSat covering two time periods (winter half years, November through March, of 2002–2011 and 2006–2011, respectively along with data from the ERA-Interim reanalysis.

    We show that the zonal vertical distribution of cloud fraction anomalies averaged over 67–82° N to a first approximation follows a dipole structure (referred to as "Greenland cloud dipole anomaly", GCDA, such that during the positive phase of the AO, positive and negative cloud anomalies are observed eastwards and westward of Greenland respectively, while the opposite is true for the negative phase of AO. By investigating the concurrent meteorological conditions (temperature, humidity and winds, we show that differences in the meridional energy and moisture transport during the positive and negative phases of the AO and the associated thermodynamics are responsible for the conditions that are conducive for the formation of this dipole structure. All three satellite sensors broadly observe this large-scale GCDA despite differences in their sensitivities, spatio-temporal and vertical resolutions, and the available lengths of data records, indicating the robustness of the results. The present study also provides a compelling case to carry out process-based evaluation of global and regional climate models.

  6. Constellation Lessons Learned Executive Summary

    Science.gov (United States)

    Thomas, L. Dale; Neubek, Deb

    2011-01-01

    This slide presentation reviews the lessons learned from the Constellation Program (CxP) and identified several factors that contributed to the inability of the CxP to meet the cost and schedule commitments. The review includes a significant section on the context in which the CxP operated since new programs are likely to experience the same constraints.

  7. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  8. Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO). Ocean Surface Topography (OST) Workshop, Ruedesheim an Rhein, Germany. [CEOS SEO Status Report

    Science.gov (United States)

    Killough, Brian D., Jr.

    2008-01-01

    The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment.

  9. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    Science.gov (United States)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  10. Streamlining the Design Tradespace for Earth Imaging Constellations

    Science.gov (United States)

    Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.

    2016-01-01

    Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth

  11. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  12. The NASA CYGNSS Small Satellite Constellation

    Science.gov (United States)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  13. Planning and scheduling algorithms for the COSMO-SkyMed constellation

    NARCIS (Netherlands)

    Bianchessi, Nicola; Righini, Giovanni

    2008-01-01

    The COSMO-SkyMed satellite constellation for the observation of the Earth is made of four satellites equipped with radar instruments and is intended for dual use, i.e. for security as well as for environmental monitoring purpose. The planning and scheduling problem for the COSMO-SkyMed constellation

  14. Optimal Maintenance for Stochastically Degrading Staellite Constellations

    National Research Council Canada - National Science Library

    Cook, Timothy J

    2005-01-01

    .... Previous work has developed a methodology to compute an optimal replacement policy for a satellite constellation in which satellites were viewed as binary entities, either operational or failed...

  15. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. АSTERISM AND CONSTELLATION: TERMINOLOGICAL DILEMMAS

    Directory of Open Access Journals (Sweden)

    Zorica Prnjat

    2017-04-01

    Full Text Available In contemporary astronomical literature, there is no uniform definition of the term asterism. This inconsistency is the consequence of differences between traditional understanding of the term constellation, from the standpoint of the naked eye astronomy, and its contemporary understanding from the standpoint of the International Astronomical Union. A traditional constellation is a recognizable star configuration with a well-established name, whereas the International Astronomical Union defines a constellation as an exactly defined sector of the cosmic space that belongs to a particular traditional constellation. Asterism is a lower rank term in comparison to constellation, and as such it may not denote a whole traditional constellation, as these terms would become synonymous and parts of constellations would become “asterisms of asterisms“. Similarly, asterism cannot define a macro configuration composed of the brightest stars in more constellations, thus, the Summer Triangle and other sky polygons are not asterisms. Therefore, asterisms are neither constellations nor sky polygons, but the third – easily recognizable parts of traditional constellations with historically well-established names, including separate groups of smaller stars that belong to star clusters (autonomous asterisms. Forms and names of asterisms may or may not be consistent with the parent constellation, and accordingly asterisms can be divided into compatible and incompatible. If asterisms have outlived the exact division of the celestial sphere and remained irreplaceable celestial landmarks in the naked eye astronomy, it is high time for the International Astronomical Union to agree on the definition of asterism and to compile their official list.

  17. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  18. OBPRELIM Observer Preliminary Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program and Industry Funded Scallop Program deployed on...

  19. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    Directory of Open Access Journals (Sweden)

    Akram Afifi

    2016-05-01

    Full Text Available This paper introduces a new dual-frequency precise point positioning (PPP model, which combines the observations from three different global navigation satellite system (GNSS constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the

  20. SAC-C Mission and the Morning Constellation

    Science.gov (United States)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, but with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. SAC-C has been designed primarily to fulfill the requirements of countries with large extension of territory or scarcely populated like Argentina. Its design is a good compromise between resolution and swath width that makes SAC-C an appropriate tool for global and high dynamic phenomena studies. There are ten instruments on board of SAC-C that will perform different studies, the Multispectral Medium Resolution Scanner (MMRS), provided by CONAE, Argentina, will help in the studies about desertification processes evaluation and their evolution in time (i.e., Patagonia, Argentina), to identify and predict agriculture production, to monitor flood areas and to make studies in coastal and fluvial areas. The MMRS will be associated with a High Resolution Technological Camera (HRTC), also provided by CONAE that will permit improvement in the MMRS resolution in the areas where it will be required. A High Sensitivity Technological Camera (HSTC) is also included in the mission. SAC-C also carries instruments to monitor the condition and dynamics of the terrestrial and marine biosphere and environment (GPS OccuLtation and Passive reflection Experiment (GOLPE)) from NASA/JPL. The Magnetic Mapping Payload, (MMP) developed by the Danish Space Research Institute helps to better understand the Earth's magnetic field and related Sun -Earth interactions .Italian Star Tracker (IST) and Italian Navigation Experiment (INES) developed by the Italian Space Agency, constitute a technological payload that will permit testing a fully autonomous system for attitude and orbit determination. Influence of space radiation on advanced

  1. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  2. Constellation labeling optimization for bit-interleaved coded APSK

    Science.gov (United States)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  3. Sharing Data in the Global Ocean Observing System (Invited)

    Science.gov (United States)

    Lindstrom, E. J.; McCurdy, A.; Young, J.; Fischer, A. S.

    2010-12-01

    We examine the evolution of data sharing in the field of physical oceanography to highlight the challenges now before us. Synoptic global observation of the ocean from space and in situ platforms has significantly matured over the last two decades. In the early 1990’s the community data sharing challenges facing the World Ocean Circulation Experiment (WOCE) largely focused on the behavior of individual scientists. Satellite data sharing depended on the policy of individual agencies. Global data sets were delivered with considerable delay and with enormous personal sacrifice. In the 2000’s the requirements for global data sets and sustained observations from the likes of the U.N. Framework Convention on Climate Change have led to data sharing and cooperation at a grander level. It is more effective and certainly more efficient. The Joint WMO/IOC Technical Commission on Oceanography and Marine Meteorology (JCOMM) provided the means to organize many aspects of data collection and data dissemination globally, for the common good. In response the Committee on Earth Observing Satellites organized Virtual Constellations to enable the assembly and sharing of like kinds of satellite data (e.g., sea surface topography, ocean vector winds, and ocean color). Individuals in physical oceanography have largely adapted to the new rigors of sharing data for the common good, and as a result of this revolution new science has been enabled. Primary obstacles to sharing have shifted from the individual level to the national level. As we enter into the 2010’s the demands for ocean data continue to evolve with an expanded requirement for more real-time reporting and broader disciplinary coverage, to answer key scientific and societal questions. We are also seeing the development of more numerous national contributions to the global observing system. The drivers for the establishment of global ocean observing systems are expanding beyond climate to include biological and

  4. Information-Theoretic Analysis of a Family of Improper Discrete Constellations

    Directory of Open Access Journals (Sweden)

    Ignacio Santamaria

    2018-01-01

    Full Text Available Non-circular or improper Gaussian signaling has proven beneficial in several interference-limited wireless networks. However, all implementable coding schemes are based on finite discrete constellations rather than Gaussian signals. In this paper, we propose a new family of improper constellations generated by widely linear processing of a square M-QAM (quadrature amplitude modulation signal. This family of discrete constellations is parameterized by κ , the circularity coefficient and a phase ϕ . For uncoded communication systems, this phase should be optimized as ϕ * ( κ to maximize the minimum Euclidean distance between points of the improper constellation, therefore minimizing the bit error rate (BER. For the more relevant case of coded communications, where the coded symbols are constrained to be in this family of improper constellations using ϕ * ( κ , it is shown theoretically and further corroborated by simulations that, except for a shaping loss of 1.53 dB encountered at a high signal-to-noise ratio (snr, there is no rate loss with respect to the improper Gaussian capacity. In this sense, the proposed family of constellations can be viewed as the improper counterpart of the standard proper M-QAM constellations widely used in coded communication systems.

  5. Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations

    Science.gov (United States)

    Hitomi, N.; Selva, D.; Blackwell, W. J.

    2014-12-01

    MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can

  6. BRITE Constellation: data processing and photometry

    Science.gov (United States)

    Popowicz, A.; Pigulski, A.; Bernacki, K.; Kuschnig, R.; Pablo, H.; Ramiaramanantsoa, T.; Zocłońska, E.; Baade, D.; Handler, G.; Moffat, A. F. J.; Wade, G. A.; Neiner, C.; Rucinski, S. M.; Weiss, W. W.; Koudelka, O.; Orleański, P.; Schwarzenberg-Czerny, A.; Zwintz, K.

    2017-09-01

    Context. The BRIght Target Explorer (BRITE) mission is a pioneering space project aimed at the long-term photometric monitoring of the brightest stars in the sky by means of a constellation of nanosatellites. Its main advantage is high photometric accuracy and time coverage which are inaccessible from the ground. Its main drawback is the lack of cooling of the CCD detectors and the absence of good shielding that would protect them from energetic particles. Aims: The main aim of this paper is the presentation of procedures used to obtain high-precision photometry from a series of images acquired by the BRITE satellites in two modes of observing, stare and chopping. The other aim is a comparison of the photometry obtained with two different pipelines and a comparison of the real scatter with expectations. Methods: We developed two pipelines corresponding to the two modes of observing. They are based on aperture photometry with a constant aperture, circular for stare mode of observing and thresholded for chopping mode. Impulsive noise is a serious problem for observations made in the stare mode of observing and therefore in the pipeline developed for observations made in this mode, hot pixels are replaced using the information from shifted images in a series obtained during a single orbit of a satellite. In the other pipeline, the hot pixel replacement is not required because the photometry is made in difference images. Results: The assessment of the performance of both pipelines is presented. It is based on two comparisons, which use data from six runs of the UniBRITE satellite: (I) comparison of photometry obtained by both pipelines on the same data, which were partly affected by charge transfer inefficiency (CTI), (II) comparison of real scatter with theoretical expectations. It is shown that for CTI-affected observations, the chopping pipeline provides much better photometry than the other pipeline. For other observations, the results are comparable only for data

  7. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  8. Satellite constellation design and radio resource management using genetic algorithm.

    OpenAIRE

    Asvial, Muhamad.

    2003-01-01

    A novel strategy for automatic satellite constellation design with satellite diversity is proposed. The automatic satellite constellation design means some parameters of satellite constellation design can be determined simultaneously. The total number of satellites, the altitude of satellite, the angle between planes, the angle shift between satellites and the inclination angle are considered for automatic satellite constellation design. Satellite constellation design is modelled using a mult...

  9. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    Science.gov (United States)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  10. Family constellation as a treatment for overcoming the consequences of violence on victims

    Directory of Open Access Journals (Sweden)

    Hrnčić Jasna

    2017-01-01

    Full Text Available The subject of this paper is the implementation of family constellations by Bert Hellinger in work with clients with special emphasis on victims of physical and sexual violence. Although extremely popular in Europe and the world it has not been presented in Serbian scientific literature. As the approach has been developed in Germany as an answer to the situation where a significant part of population was a victim or perpetrator of violence during the Second World War causing suffering not only to them, but also to their offsprings, it offers a special contribution to the work with victims of violence. The aims of the paper are the presentation and analysis of the implementation of family constellations by Bert Hellinger and their effects generally in work with clients as well as with victims of physical and sexual violence. The technique of family constellations based on systemic and phenomenological approach is presented and discussed. Work is in the group, where participants form the circle and person who seeks problem resolution invites representatives - persons who are crucial for problem solution previously agreed with constellation facilitator - constellator. The constellator communicate with the representatives, encouraging them to express feelings, sensations and movement that will facilitate progress towards finding the optimal solution. The basic theoretical concepts are also analysed, including two types of conscience (individual and family, three basic principles of orders of love (principle of equal right to belong, principle of balance between giving and taking and principle of order and three levels of the soul (individual, family and great soul. The approach to overcoming consequences of violence on victims of physical violence and incest through symbolic interconnecting with the perpetrator is analysed. When it is applied to violence the victim has an opportunity to get a more comprehensive understanding and to experience an

  11. The DUBAISAT-2/DEIMOS-2 constellation: public-private cooperation between Emirates and Spain

    Science.gov (United States)

    Pirondini, Fabrizio; Al Marri, Salem

    2014-10-01

    The Emirates Institution for Advanced Science and Technology (EIAST) was established by the Dubai Government in 2006 with the goal of promoting a culture of advanced scientific research and technology innovation in Dubai and the UAE, and enhancing technology innovation and scientific skills among UAE nationals. EIAST launched in November 2013 the DubaiSat-2, its second Earth Observation satellite, and the first to provide VHR multispectral imagery. The satellite has successfully completed its in-orbit commissioning and it is now fully operational. ELECNOR DEIMOS is a private Spanish company, part of the Elecnor industrial group, which owns and operates DEIMOS-1, the first Spanish Earth Observation satellite, launched in 2009. ELECNOR DEIMOS launched in June 2014 its second satellite, DEIMOS-2, a VHR, agile satellite capable of providing 4-bands multispectral imagery. The whole end-to-end DEIMOS- 2 system has been designed to provide a cost-effective and highly responsive service to cope with the increasing need of fast access to VHR imagery. The two satellites, with a mass of 300 kg each, were developed in cooperation with Satrec-I (South Korea), and are based on the SpaceEye-1 platform. The two satellites have an identical payload, and produce 75- cm resolution pan-sharpened imagery across a 12-km swath. Together, they have a combined collection capacity of more than 300,000 sqkm per day. EIAST and ELECNOR DEIMOS have set up a unique, trans-national public-private partnership to operate the two satellites as a constellation, jointly commercialize the imagery of both satellites, and interchange technical and operational information to increase the efficiency of both systems. The operations of the constellation are based on four ground stations: Al Khawaneej (Dubai), Puertollano (Spain), Kiruna (Sweden) and Inuvik (Canada), which assure at least a contact per orbit with each satellite. The constellation functionalities of the ground segment were developed by EIAST

  12. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  13. NASA Earth Observation Systems and Applications for Health and Air Quality

    Science.gov (United States)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  14. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  15. The lost constellations a history of obsolete, extinct, or forgotten star lore

    CERN Document Server

    Barentine, John C

    2016-01-01

    Casual stargazers are familiar with many classical figures and asterisms composed of bright stars (e.g., Orion and the Plough), but this book reveals not just the constellations of today but those of yesteryear. The history of the human identification of constellations among the stars is explored through the stories of some influential celestial cartographers whose works determined whether new inventions survived. The history of how the modern set of 88 constellations was defined by the professional astronomy community is recounted, explaining how the constellations described in the book became permanently “extinct.”  Dr. Barentine addresses why some figures were tried and discarded, and also directs observers to how those figures can still be picked out on a clear night if one knows where to look. These lost constellations are described in great detail using historical references, ennabling observers to rediscover them on their own surveys of the sky. Treatment of the obsolete constellations as ...

  16. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  17. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  18. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    Science.gov (United States)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  19. International Earth Science Constellation (ESC) Introduction

    Science.gov (United States)

    Guit, William J.; Machado, Michael J.

    2016-01-01

    This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.

  20. Relationships between Social Cognition and Sibling Constellations.

    Science.gov (United States)

    Goebel, Barbara L.

    1985-01-01

    First and second born college students (N=178) responded to measures of four social cognition factors. Multivariate analysis of variance identified relationships of social cognition factors with five sibling constellation components: subject's sex, subject's birth order (first or second), adjacent first or second born sibling's sex, spacing…

  1. Five systems of psychiatric classification for preschool children: do differences in validity, usefulness and reliability make for competitive or complimentary constellations?

    Science.gov (United States)

    Postert, Christian; Averbeck-Holocher, Marlies; Beyer, Thomas; Müller, Jörg; Furniss, Tilman

    2009-03-01

    DSM-IV and ICD-10 have limitations in the diagnostic classification of psychiatric disorders at preschool age (0-5 years). The publication of the Diagnostic Classification 0-3 (DC:0-3) in 1994, its basically revised second edition (DC:0-3R) in 2005 and the Research Diagnostic Criteria-Preschool Age (RDC-PA) in 2004 have provided several modifications of these manuals. Taking into account the growing empirical evidence highlighting the need for a diagnostic classification system for psychiatric disorders in preschool children, the main categorical classification systems in preschool psychiatry will be presented and discussed. The paper will focus on issues of validity, usefulness and reliability in DSM-IV, ICD-10, RDC-PA, DC:0-3, and DC:0-3R. The reasons for including or excluding postulated psychiatric disorder categories for preschool children with variable degrees of empirical evidence into the different diagnostic systems will be discussed.

  2. Sensorless magnetically levitated system with reduced observer

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, T [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Henneberger, G [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Ress, C [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany)

    1996-12-31

    The present paper describes the use of a reduced observer for a hybrid excited magnetic levitation system. The latter is part of a contactless and energy saving driven conveyance system. Thereby one has to select the working point of the system in such a way, that the force due to the weight of the vehicle including its load will be compensated only by the permanent magnets. The linearized model is observable even if only the current in the coils is measured. Therefore it seems reasonable to evaluate the other variables of the state vector by an observer. Thus the sensors for the airgap can be omitted. Using an observer has another advantage as well. It will tune the airgap automatically to the value which is necessary in order to operate the system in the most energy saving way. The whole design was simulated. (orig.)

  3. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro

    2013-01-01

    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  4. Cluster analysis of received constellations for optical performance monitoring

    NARCIS (Netherlands)

    van Weerdenburg, J.J.A.; van Uden, R.; Sillekens, E.; de Waardt, H.; Koonen, A.M.J.; Okonkwo, C.

    2016-01-01

    Performance monitoring based on centroid clustering to investigate constellation generation offsets. The tool allows flexibility in constellation generation tolerances by forwarding centroids to the demapper. The relation of fibre nonlinearities and singular value decomposition of intra-cluster

  5. Operative planning of functional sessions for multisatellite observation and communication systems

    Science.gov (United States)

    Darnopykh, Valeriy V.; Malyshev, Veniamin V.

    2012-04-01

    An important control aspect of modern satellite observation and communication systems is the control of the functional processes. Functional sessions proceed under conditions of restricted technical ability, large amounts or information to be processed by the on-board equipment, practice inequality of the received information, intentions of system management and operators, interests of customers and other factors. A large number of spacecrafts (SC) in orbital constellation is one of the most important factors affecting the functional process also. Besides that some modern projects of satellite systems are multifunctional that is mixed operations of observation and communication. Therefore the functioning of SC on-board equipment must be accurately co-ordinate. That is why the problem of operative planning the functioning of these systems, while directly affecting the efficiency of the system, is very complex and actual at present. A methodical approach and software package for operative planning of functional processes for satellite observation and communication systems, including multifunctional projects, are considered in the paper. The base scheme of this approach consists of four main stages: stage 1—modeling of SC orbital kinematics and dynamics; stage 2—modeling of system functional processes with all kind of restrictions and criterion function values; stage 3—solving an optimization tasks by numerical applicable algorithms and constructing the optimal (or accuracy) plans; stage 4—repeated plan optimization (different variants) and analyzing. Such scheme is the result of authors practical research which have been realized during last 15 years by the operative planning as for any kinds of single SC as for satellite systems with different structure of orbital constellation. The research helps to unify the procedure of operative planning, to formulate basic principles and approaches for its solving, to develop special software package. The main aspects

  6. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  7. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  8. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  9. Level-2 product generation for the Swarm satellite constellation mission

    DEFF Research Database (Denmark)

    Olsen, Poul Erik Holmdahl; Tøffner-Clausen, Lars; Olsen, Nils

    In order to take advantage of the unique constellation aspect of ESA's Swarm constellation mission, considerably advanced data analysis tools have been developed. The Swarm ESL/SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, derives...

  10. Observation impact studies with the Mercator Ocean analysis and forecasting systems

    Science.gov (United States)

    Remy, E. D.; Le Traon, P. Y.; Lellouche, J. M.; Drevillon, M.; Turpin, V.; Benkiran, M.

    2016-02-01

    Mercator Ocean produces and delivers in real-time ocean analysis and forecasts on a daily basis. The quality of the analysis highly relies on the availability and quality of the assimilated observations.Tools are developed to estimate the impact of the present network and to help designing the future evolutions of the observing systems in the context of near real time production of ocean analysis and forecasts. OSE and OSSE are the main approaches used in this context. They allow the assessment of the efficiency of a given data set to constrain the ocean model circulation through the data assimilation process. Illustrations will mainly focus on the present and future evolution of the Argo observation network and altimetry constellation, including the potential impact of future SWOT data. Our systems show clear sensitivities to observation array changes, mainly depending on the specified observation error and regional dynamic. Impact on non observed variables can be important and are important to evaluate. Dedicated diagnostics has to be define to measure the improvements bring by each data set. Alternative approaches to OSE and OSSE are also explored: approximate computation of DFS will be presented and discussed. Limitations of each approach will be discussed in the context of real time operation.

  11. Measures to ensure economic safety of the system of state regulation of social and economic development by the example of the Voronezh region and AO concern "Constellation"

    Directory of Open Access Journals (Sweden)

    Yu. M. Sokolinskaya

    2018-01-01

    Full Text Available Growth of competitiveness and socio-economic development of Russia and its regions are impossible without ensuring economic security of enterprises of all sectors of the economy and forms of ownership, which is especially important in the face of economic sanctions and the negative impact of global economic crises. The program of social and economic development is a unique strategy of the region, focused on security and optimization of the spatial structure and relations between the center and the regions in order to ensure economic security, growth through the most effective use of existing internal and external factors. The institutional influence of the state in order to improve the economic security of regions and enterprises occurs palliatively when the business of the region is supported in direct (subsidies, and more often indirectly (compliance with the laws and regulations of the Russian Federation and the region on the principles of institutional and market synergies. Adaptation of enterprises in the region to the market is difficult, when specific socio-organizational, economic, technical and technological, scientific, information activities in their interrelations function in the field of Russian laws. The search for ways to improve the economic security of the Russian Federation, regions and enterprises takes place in the context of global integration through the improvement of the mechanism of state regulation. An important task of the current stage of economic security of the country and regions is the construction of a system of its institutional organization that would be able to balance the levers of government with the opportunities of private enterprises, provide a quality level of providing the business with protection from terrorism, predation, financial risks, legal competition and.

  12. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  13. SCARF - The Swarm Satellite Constellation Application and Research Facility

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which...... conductivity, thermospheric mass density and winds, field-aligned currents, an ionospheric plasma bubble index, the ionospheric total electron content and the dayside equatorial zonal electrical field will be calculated. This service is expected to be operational for a period of at least 5 years. The present...

  14. Cost Effective Persistent Regional Surveillance with Reconfigurable Satellite Constellations

    Science.gov (United States)

    2015-04-24

    GPIM AF-M315E Propulsion System,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Jose , California, 15-17 July 2013, 2013. [15...earthquakes, floods, and volcanoes . The PDF, shown in Figure 11, is comprised of a 2.5 minute grid of global multi-hazard total economic loss risks...and Mortari, D., “The Lattice Theory of Flower Constellations,” Proceedings of the 2010 Space Flight Mechanics Meeting Conference. San Diego, CA

  15. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  16. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    Science.gov (United States)

    Mandl, D.; Huemmrich, K. F.; Ly, V. T.; Handy, M.; Ong, L.; Crum, G.

    2015-12-01

    With the advent of high performance space networks that provide total coverage for Cubesats, the paradigm for low cost, high temporal coverage with hyperspectral instruments becomes more feasible. The combination of ground cloud computing resources, high performance with low power consumption onboard processing, total coverage for the cubesats and social media provide an opprotunity for an architecture that provides cost-effective hyperspectral data products for natural hazard response and decision support. This paper provides a series of pathfinder efforts to create a scalable Intelligent Payload Module(IPM) that has flown on a variety of airborne vehicles including Cessna airplanes, Citation jets and a helicopter and will fly on an Unmanned Aerial System (UAS) hexacopter to monitor natural phenomena. The IPM's developed thus far were developed on platforms that emulate a satellite environment which use real satellite flight software, real ground software. In addition, science processing software has been developed that perform hyperspectral processing onboard using various parallel processing techniques to enable creation of onboard hyperspectral data products while consuming low power. A cubesat design was developed that is low cost and that is scalable to larger consteallations and thus can provide daily hyperspectral observations for any spot on earth. The design was based on the existing IPM prototypes and metrics that were developed over the past few years and a shrunken IPM that can perform up to 800 Mbps throughput. Thus this constellation of hyperspectral cubesats could be constantly monitoring spectra with spectral angle mappers after Level 0, Level 1 Radiometric Correction, Atmospheric Correction processing. This provides the opportunity daily monitoring of any spot on earth on a daily basis at 30 meter resolution which is not available today.

  17. Observation of SASE in LEBRA FEL system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. E-mail: tanaka@lebra.nihon-u.ac.jp; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K

    2004-08-01

    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  18. The 2-D lattice theory of Flower Constellations

    Science.gov (United States)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  19. TRICLOBS portable triband color lowlight observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2009-01-01

    We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an uncooled longwave infrared

  20. Earth observing system - Concepts and implementation strategy

    Science.gov (United States)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  1. Going Beyond Einstein with the Constellation-X Mission

    Science.gov (United States)

    White, Nicholas

    2007-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.

  2. Earth Observing System, Conclusions and Recommendations

    Science.gov (United States)

    1984-01-01

    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  3. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  4. Global Mercury Observation System (GMOS) surface observation data.

    Data.gov (United States)

    U.S. Environmental Protection Agency — GMOS global surface elemental mercury (Hg0) observations from 2013 & 2014. This dataset is associated with the following publication: Sprovieri, F., N. Pirrone,...

  5. GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).

    Science.gov (United States)

    Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.

    1985-01-01

    Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.

  6. Constellation modulation - an approach to increase spectral efficiency.

    Science.gov (United States)

    Dash, Soumya Sunder; Pythoud, Frederic; Hillerkuss, David; Baeuerle, Benedikt; Josten, Arne; Leuchtmann, Pascal; Leuthold, Juerg

    2017-07-10

    Constellation modulation (CM) is introduced as a new degree of freedom to increase the spectral efficiency and to further approach the Shannon limit. Constellation modulation is the art of encoding information not only in the symbols within a constellation but also by encoding information by selecting a constellation from a set of constellations that are switched from time to time. The set of constellations is not limited to sets of partitions from a given constellation but can e.g., be obtained from an existing constellation by applying geometrical transformations such as rotations, translations, scaling, or even more abstract transformations. The architecture of the transmitter and the receiver allows for constellation modulation to be used on top of existing modulations with little penalties on the bit-error ratio (BER) or on the required signal-to-noise ratio (SNR). The spectral bandwidth used by this modulation scheme is identical to the original modulation. Simulations demonstrate a particular advantage of the scheme for low SNR situations. So, for instance, it is demonstrated by simulation that a spectral efficiency increases by up to 33% and 20% can be obtained at a BER of 10 -3 and 2×10 -2 for a regular BPSK modulation format, respectively. Applying constellation modulation, we derive a most power efficient 4D-CM-BPSK modulation format that provides a spectral efficiency of 0.7 bit/s/Hz for an SNR of 0.2 dB at a BER of 2 × 10 -2 .

  7. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... affected by the use of product configu-ration systems e.g. increased sales, decrease in the number of SKU's, improved ability to introduce new products, and cost reductions.......This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... processes, on-time delivery of the specifica-tions, and resource consumption for making specifications, quality of specifications, optimization of products and services, and other observations. The purpose of the study is partly to identify specific impacts observed from implementing product configuration...

  8. Attribute and topology based change detection in a constellation of previously detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  9. Exploring Database Improvements for GPM Constellation Precipitation Retrievals

    Science.gov (United States)

    Ringerud, S.; Kidd, C.; Skofronick Jackson, G.

    2017-12-01

    The Global Precipitation Measurement Mission (GPM) offers an unprecedented opportunity for understanding and mapping of liquid and frozen precipitation on a global scale. GPM mission development of physically based retrieval algorithms, for application consistently across the constellation radiometers, relies on combined active-passive retrievals from the GPM core satellite as a transfer standard. Radiative transfer modeling is then utilized to compute a priori databases at the frequency and footprint geometry of each individual radiometer. The Goddard Profiling Algorithm (GPROF) performs constellation retrievals across the GPM databases in a Bayesian framework, constraining searches using model data on a pixel-by-pixel basis. This work explores how the retrieval might be enhanced with additional information available within the brightness temperature observations themselves. In order to better exploit available information content, model water vapor is replaced with retrieved water vapor. Rather than treating each footprint as a 1D profile alone in space, information regarding Tb variability in the horizontal is added as well as variability in the time dimension. This additional information is tested and evaluated for retrieval improvement in the context of the Bayesian retrieval scheme. Retrieval differences are presented as a function of precipitation and surface type for evaluation of where the added information proves most effective.

  10. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    Science.gov (United States)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for

  11. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  12. On the optimum signal constellation design for high-speed optical transport networks.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.

  13. The Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.

    2008-12-01

    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  14. Trade-space Analysis for Constellations

    Science.gov (United States)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model

  15. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  16. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  17. Long Term Measurement of the Earth's Radiation Budget using a constellation of Broadband Radiometers hosted on Iridium NEXT

    Science.gov (United States)

    Gupta, Om Prakash; Thoma, Donald; Chaloner, Chris; Russell, Jacqueline; Simpson, Bill; Spilling, David; Morris, Nigel; Caldwell, Martin; Oneill, Alan

    The WMO called for "bringing new missions to operational status" and that "ERB should be measured through a constellation of sensors". A unique opportu-nity exists to host a set of Earth Radiation Budget (ERB) sensors on the Iridium NEXT (NEXT) LEO constellation in a cost effective manner that can deliver these requirements. The NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of Earth observation missions including ERB. Launches are planned to begin in 2014 through 2016. The ERB both drives and responds to global climate and monitoring it can provide much insight into the climate system and how it might be changing. A climate quality measurement of the ERB requires high absolute accuracy and excellent stability and a long-term (decades) data record in order to inform the debate about global warming. Measurement of the ERB in terms of the broadband reflected solar (0.3 to 4 µm) and emitted thermal (4 to 200 µm) components have been identified as high priority by the WMO for climate observations. High temporal resolution is the key advantage offered by the NEXT platform and can provide a great step forward in accurately monitoring the energy balance of the planet. The sensor we propose will consist of a broad band instrument and associated imager for scene identification and cloud classification. There is the chance to place two such sensors in each of six different orbital planes this will improve the product refresh time from currently 12 hours to 3 hours. The increased temporal resolution will allow direct measure-ment of the changes to the broadband radiances that result from rapidly varying components of the climate such as cloud and aerosol, and avoid the need of relying on narrow band sensors to infer such changes. Considering that the prediction of cloud response to climate change is still a major source of uncertainty; improved measurement of the cloud effect and

  18. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation

    Science.gov (United States)

    Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico

    2017-02-01

    Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is

  19. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  20. Uncharted constellations asterisms, single-source and rebrands

    CERN Document Server

    Barentine, John C

    2016-01-01

    This book compiles an array of interesting constellations that fell by the wayside before the IAU established the modern canon of constellations. That decision left out lesser known ones whose history is nevertheless interesting, but at last author John Barentine is giving them their due. This book is a companion to "The Alternate Constellations", highlighting the more obscure configurations.  The 16 constellations found in this volume fall into one or more of three broad categories: asterims, such as the Big Dipper in Ursa Major; single-sourced constellations introduced on surviving charts by a cartographer perhaps currying the favor of sponsors; and re-brands, new figures meant to displace existing constellations, often for an ideological reason. All of them reveal something unique about the development of humanity's map of the sky. .

  1. The Earth Observing System Terra Mission

    Science.gov (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  2. Sibling constellation effects on learning and career aspirations of pupils.

    OpenAIRE

    KOROTVIČKOVÁ, Blanka

    2012-01-01

    The thesis "Sibling Constellation Effects on Learning and Career Aspirations of Pupils" is aimed at the description of a relationship between birth order and personality development. It also deals with the general characteristics of sibling constellation and its historical development. It points out the importance of sibling constellation in human life and presents the personality description with regard to birth order in relation to parents, siblings, peers, education and occupation. The the...

  3. Open Sourcing Social Change: Inside the Constellation Model

    Directory of Open Access Journals (Sweden)

    Tonya Surman

    2008-09-01

    Full Text Available The constellation model was developed by and for the Canadian Partnership for Children's Health and the Environment. The model offers an innovative approach to organizing collaborative efforts in the social mission sector and shares various elements of the open source model. It emphasizes self-organizing and concrete action within a network of partner organizations working on a common issue. Constellations are self-organizing action teams that operate within the broader strategic vision of a partnership. These constellations are outwardly focused, placing their attention on creating value for those in the external environment rather than on the partnership itself. While serious effort is invested into core partnership governance and management, most of the energy is devoted to the decision making, resources and collaborative effort required to create social value. The constellations drive and define the partnership. The constellation model emerged from a deep understanding of the power of networks and peer production. Leadership rotates fluidly amongst partners, with each partner having the freedom to head up a constellation and to participate in constellations that carry out activities that are of more peripheral interest. The Internet provided the platform, the partner network enabled the expertise to align itself, and the goal of reducing chemical exposure in children kept the energy flowing. Building on seven years of experience, this article provides an overview of the constellation model, discusses the results from the CPCHE, and identifies similarities and differences between the constellation and open source models.

  4. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  5. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    Science.gov (United States)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  6. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  7. Drug policy constellations: A Habermasian approach for understanding English drug policy.

    Science.gov (United States)

    Stevens, Alex; Zampini, Giulia Federica

    2018-07-01

    It is increasingly accepted that a view of policy as a rational process of fitting evidence-based means to rationally justified ends is inadequate for understanding the actual processes of drug policy making. We aim to provide a better description and explanation of recent English drug policy decisions. We develop the policy constellation concept from the work of Habermas, in dialogue with data from two contemporary debates in English policy; on decriminalisation of drug possession and on recovery in drug treatment. We collect data on these debates through long-term participant observation, stakeholder interviews (n = 15) and documentary analysis. We show the importance of social asymmetries in power in enabling structurally advantaged groups to achieve the institutionalisation of their moral preferences as well as the reproduction of their social and economic power through the deployment of policies that reflect their material interests and normative beliefs. The most influential actors in English drug policy come together in a 'medico-penal constellation', in which the aims and practices of public health and social control overlap. Formal decriminalisation of possession has not occurred, despite the efforts of members of a challenging constellation which supports it. Recovery was put forward as the aim of drug treatment by members of a more powerfully connected constellation. It has been absorbed into the practice of 'recovery-oriented' drug treatment in a way that maintains the power of public health professionals to determine the form of treatment. Actors who share interests and norms come together in policy constellations. Strategic action within and between constellations creates policies that may not take the form that was intended by any individual actor. These policies do not result from purely rational deliberation, but are produced through 'systematically distorted communication'. They enable the most structurally favoured actors to institutionalise

  8. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    total precipitable water. One year of coincident observations, generating 20 and 80 million database entries, depending upon the sensor, are used in the retrieval algorithm. The remaining areas such as sea ice and high latitude coastal zones are filled with a combination of CloudSat and AMSR-E plus MHS observations together with a model to create the equivalent databases for other radiometers in the constellation. The most noteworthy result from the Day-1 algorithm is the quality of the land products when compared to existing products. Unlike previous versions of land algorithms that depended upon complex screening routines to decide if pixels were precipitating or not, the current scheme is free of conditional rain statements and appears to produce rain rate with much greater fidelity than previous schemes. There results will be shown.

  9. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  10. Conference on Earth Observation and Information Systems

    CERN Document Server

    Morley, Lawrence

    1977-01-01

    The NATO Science Committee and its subsidiary Programme Panels provide support for Advanced Research Institutes (ARI) in various fields. The idea is to bring together scientists of a chosen field with the hope that they will achieve a consensus on research direc­ tions for the future, and make recommendations for the benefit of a wider scientific community. Attendance is therefore limited to those whose experience and expertise make the conclusions significant and acceptable to the wider community. Participants are selected on the basis of substantial track records in research or in the synthesis of research results to serve mankind. The proposal for a one-week ARIon Earth Observation and In­ formation Systems was initiated by the NATO Special Programme Panel on Systems Science (SPPOSS). In approving the ARI, the senior NATO Science Committee identified the subject as one of universal impor­ tance, requiring a broad perspective on the development of opera­ tional systems based on successful experimental s...

  11. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  12. Understanding Business Strategies of Networked Value Constellations Using Goal- and Value Modeling

    NARCIS (Netherlands)

    Gordijn, Jaap; Petit, Michael; Wieringa, Roelf J.

    2006-01-01

    In goal-oriented requirements engineering (GORE), one usually proceeds from a goal analysis to a requirements specification, usually of IT systems. In contrast, we consider the use of GORE for the design of IT-enabled value constellations, which are collections of enterprises that jointly satisfy a

  13. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    DEFF Research Database (Denmark)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, R.

    2013-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution...

  14. NASA's Earth Observing System Data and Information System - EOSDIS

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  15. Cubesat Constellation Design for Air Traffic Monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  16. A 6U CubeSat Constellation for Atmospheric Temperature and Humidity Sounding

    Science.gov (United States)

    Padmanabhan, Sharmila; Brown, Shannon; Kangaslahti, Pekka; Cofield, Richard; Russell, Damon; Stachnik, Robert; Steinkraus, Joel; Lim, Boon

    2013-01-01

    We are currently developing a 118/183 GHz sensor that will enable observations of temperature and precipitation profiles over land and ocean. The 118/183 GHz system is well suited for a CubeSat deployment as 10cm antenna aperture provides sufficiently small footprint sizes (is approx. 25km). This project will enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U CubeSat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters that are needed to improve prediction of extreme weather events. We will take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass and low-power high frequency airborne radiometers. The 35 nm InP enabling technology provides significant reduction in power consumption (Low Noise Amplifier + Mixer Block consumes 24 mW). In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder instrument on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of the temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation consisting of suite of these instruments. The proposed constellation of these 6U CubeSat radiometers would allow sampling of tropospheric temperature and humidity with fine temporal (on the order of minutes) and spatial resolution (is approx. 25 km).

  17. Signal Constellations for Multilevel Coded Modulation with Sparse Graph Codes

    NARCIS (Netherlands)

    Cronie, H.S.

    2005-01-01

    A method to combine error-correction coding and spectral efficient modulation for transmission over channels with Gaussian noise is presented. The method of modulation leads to a signal constellation in which the constellation symbols have a nonuniform distribution. This gives a so-called shape gain

  18. Consumer Perceptions of Service Constellations : Implications for Service Innovation

    NARCIS (Netherlands)

    van Riel, A.C.R.; Calabretta, G.; Driessen, P.H.; Hillebrand, B.; Humphreys, A.; Krafft, M.; Beckers, S.F.M.

    2013-01-01

    Purpose - The purpose of this paper is to investigate how the service constellation perspective affects innovation strategies and potentially contributes to the innovation literature, proposing a research agenda. Design/methodology/approach - By analyzing the notion of a service constellation, the

  19. Earth Observing Data System Data and Information System (EOSDIS) Overview

    Science.gov (United States)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  20. Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  1. Earth Observation System Flight Dynamics System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  2. Analysis and design of Cubesat constellation for the Mediterranean south costal monitoring against illegal immigration

    Science.gov (United States)

    Lazreg, Nissen; Ben Bahri, Omar; Besbes, Kamel

    2018-02-01

    Costal monitoring is focused on fast response to illegal immigration and illegal ship traffic. Especially, the illegal ship traffic has been present in media since April 2015, as the number of reported deaths of immigrants crossing the Mediterranean significantly increased. Satellite images provide a possibility to at least partially control both types of events. This paper defines the principal criteria to select the best satellite constellation architecture for maritime and coastal monitoring, filling the gaps of imagery techniques in term of real-time control. The primary purpose of a constellation is to obtain global measurement improving the temporal resolution. The small size and low-cost are the main factors, which make CubeSats ideal for use in constellations. We propose a constellation of 9 Cubesats distributed evenly in 3 different planes. This reduces the revisit time enhancing the coverage duration. In addition, it also allows observing fire, damage on building and similar disasters. In this analysis, the performance criteria were reported such as the revisit time, the vision duration and the area coverage.

  3. Impact of eccentricity build-up and graveyard disposal Strategies on MEO navigation constellations

    Science.gov (United States)

    Radtke, Jonas; Domínguez-González, Raúl; Flegel, Sven K.; Sánchez-Ortiz, Noelia; Merz, Klaus

    2015-12-01

    With currently two constellations being in or close to the build-up phase, in a few years the Medium Earth Orbit (MEO) region will be populated with four complete navigation systems in relatively close orbital altitudes: The American GPS, Russian GLONASS, European Galileo, and Chinese BeiDou. To guarantee an appropriate visibility of constellation satellites from Earth, these constellations rely on certain defined orbits. For this, both the repeat pattern, which is basically defined by the semimajor axis and inclination, as well as the orbital planes, which are defined by the right ascension of ascending node, are determining values. To avoid an overcrowding of the region of interest, the disposal of satellites after their end-of-life is recommended. However, for the MEO region, no internationally agreed mitigation guidelines exist. Because of their distances to Earth, ordinary disposal manoeuvres leading to a direct or delayed re-entry due to atmospheric drag are not feasible: The needed fuel masses for such manoeuvres are by far above the reasonable limits and available fuel budgets. Thus, additional approaches have to be applied. For this, in general two options exist: disposal to graveyard orbits or the disposal to eccentricity build-up orbits. In the study performed, the key criterion for the graveyard strategy is that the disposed spacecraft must keep a safe minimum distance to the altitude of the active constellation on a long-term time scale of up to 200 years. This constraint imposes stringent requirements on the stability of the graveyard orbit. Similar disposals are also performed for high LEO satellites and disposed GEO payloads. The eccentricity build-up strategy on the other hand uses resonant effects between the Earth's geopotential, the Sun and the Moon. Depending on the initial conditions, these can cause a large eccentricity build-up, which finally can lead to a re-entry of the satellite. In this paper, the effects of applying either the first or

  4. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    Science.gov (United States)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  5. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  6. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture

    Science.gov (United States)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.

    2016-12-01

    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  7. On biases in precise point positioning with multi-constellation and multi-frequency GNSS data

    International Nuclear Information System (INIS)

    El-Mowafy, A; Deo, M; Rizos, C

    2016-01-01

    Various types of biases in Global Navigation Satellite System (GNSS) data preclude integer ambiguity fixing and degrade solution accuracy when not being corrected during precise point positioning (PPP). In this contribution, these biases are first reviewed, including satellite and receiver hardware biases, differential code biases, differential phase biases, initial fractional phase biases, inter-system receiver time biases, and system time scale offset. PPP models that take account of these biases are presented for two cases using ionosphere-free observations. The first case is when using primary signals that are used to generate precise orbits and clock corrections. The second case applies when using additional signals to the primary ones. In both cases, measurements from single and multiple constellations are addressed. It is suggested that the satellite-related code biases be handled as calibrated quantities that are obtained from multi-GNSS experiment products and the fractional phase cycle biases obtained from a network to allow for integer ambiguity fixing. Some receiver-related biases are removed using between-satellite single differencing, whereas other receiver biases such as inter-system biases are lumped with differential code and phase biases and need to be estimated. The testing results show that the treatment of biases significantly improves solution convergence in the float ambiguity PPP mode, and leads to ambiguity-fixed PPP within a few minutes with a small improvement in solution precision. (paper)

  8. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  9. AFSC/FMA/Observer Logistics System (OLS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alaska groundfish fisheries observers have been monitoring domestic groundfish fishing activities in the U.S. Exclusive Economic Zone (EEZ) off Alaska for over...

  10. Power system observability with minimum phasor measurement ...

    African Journals Online (AJOL)

    user

    Due to the high cost of having a PMU at each node, some of the studies performed in ..... through the process of expanding, which makes the observational topologies, ...... FACTS controllers”, International Journal of Engineering, Science and ...

  11. Terra - the Earth Observing System flagship observatory

    Science.gov (United States)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  12. Origins of the ancient constellations: I. The Mesopotamian traditions

    Science.gov (United States)

    Rogers, J. H.

    1998-02-01

    In the sky-map of ancient Babylon, constellations had two different roles, and thus developed into two overlapping traditions. One set of constellations represented the gods and their symbols; the other set represented rustic activities and provided a farming calendar. Many constellations were shared by the two traditions, but in some regions of sky there were alternative divine and rustic figures. These figures developed in stages from ~3200 BC to ~500 BC. Of the divine set, the most important (although the last to be finalised) were the twelve zodiacal signs, plus several associated animals (the serpent, crow, eagle, and fish), which were all transmitted to the classical Greek sky-map that we still use today. Conversely, the rustic constellations of workers and tools and animals were not transmitted to the West. However, a few of them may have survived in Bedouin Arab sky-maps of the first millennium AD.

  13. The Global Emergency Observation and Warning System

    Science.gov (United States)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  14. Pacific Islands Region Observer Program System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This system integrates the longline debriefing steps and procedures for Hawaii and American Samoa into one tool to standardize and streamline the debriefing process....

  15. Open Sourcing Social Change: Inside the Constellation Model

    OpenAIRE

    Tonya Surman; Mark Surman

    2008-01-01

    The constellation model was developed by and for the Canadian Partnership for Children's Health and the Environment. The model offers an innovative approach to organizing collaborative efforts in the social mission sector and shares various elements of the open source model. It emphasizes self-organizing and concrete action within a network of partner organizations working on a common issue. Constellations are self-organizing action teams that operate within the broader strategic vision of a ...

  16. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1)

    Science.gov (United States)

    Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-07-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the ;instrument simulator; step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up

  17. Adaptive Sliding Mode Observer for a Class of Systems

    OpenAIRE

    D.Elleuch; T.Damak

    2010-01-01

    In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown tha...

  18. TRANSIT OBSERVATIONS OF THE WASP-10 SYSTEM

    International Nuclear Information System (INIS)

    Dittmann, J. A.; Close, L. M.; Scuderi, L. J.; Morris, M. D.

    2010-01-01

    We present here observations of the transit of WASP-10b on 2009 October 14 UT taken from the University of Arizona's 1.55 m Kuiper telescope on Mount Bigelow. Conditions were photometric and accuracies of 2.0 mmag rms were obtained throughout the transit. We have found that the ratio of the planet to host star radii is in agreement with the measurements of Christian et al. instead of the refinements of Johnson et al., suggesting that WASP-10b is indeed inflated beyond what is expected from theoretical modeling. We find no evidence for large (>20 s) transit timing variations in WASP-10b's orbit from the ephemeris of Christian et al. and Johnson et al.

  19. George Marinesco in the Constellation of Modern Neuroscience

    Directory of Open Access Journals (Sweden)

    Ioan Opris

    2017-12-01

    Full Text Available George Marinesco is the founder of Romanian School of Neurology and one of the most remarkable neuroscientists of the last century. He was the pupil of Jean-Martin Charcot in Salpêtrière Hospital in Paris, France, but visited many other neurological centers where he met the entire constellation of neurologists of his time, including Camillo Golgi and Santiago Ramón y Cajal. The last made the preface of Nervous Cell, written in French by Marinesco. The original title was “La Cellule Nerveuse” and is considered even now a basic reference book for specialists in the field. He was a refined clinical observer with an integrative approach, as could be seen from the multitude of his discoveries. The descriptions of the succulent hand in syringomyelia, senile plaque in old subjects, palmar jaw reflex known as Marinesco-Radovici sign, or the application of cinematography in medicine are some of his important contributions. He was the first who described changes of locus niger in a patient affected by tuberculosis, as a possible cause in Parkinson disease. Before modern genetics, Marinesco and Sjögren described a rare and complex syndrome bearing their names. He was a hardworking man, focused on his scientific research, did not accepted flattering of others and was a great fighter against the injustice of the time.

  20. George Marinesco in the Constellation of Modern Neuroscience.

    Science.gov (United States)

    Opris, Ioan; Nestianu, Valeriu S; Nestianu, Adrian; Bilteanu, Liviu; Ciurea, Jean

    2017-01-01

    George Marinesco is the founder of Romanian School of Neurology and one of the most remarkable neuroscientists of the last century. He was the pupil of Jean-Martin Charcot in Salpêtrière Hospital in Paris, France, but visited many other neurological centers where he met the entire constellation of neurologists of his time, including Camillo Golgi and Santiago Ramón y Cajal. The last made the preface of Nervous Cell, written in French by Marinesco. The original title was "La Cellule Nerveuse" and is considered even now a basic reference book for specialists in the field. He was a refined clinical observer with an integrative approach, as could be seen from the multitude of his discoveries. The descriptions of the succulent hand in syringomyelia, senile plaque in old subjects, palmar jaw reflex known as Marinesco-Radovici sign, or the application of cinematography in medicine are some of his important contributions. He was the first who described changes of locus niger in a patient affected by tuberculosis, as a possible cause in Parkinson disease. Before modern genetics, Marinesco and Sjögren described a rare and complex syndrome bearing their names. He was a hardworking man, focused on his scientific research, did not accepted flattering of others and was a great fighter against the injustice of the time.

  1. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    Science.gov (United States)

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  2. Dark Energy, Dark Matter and Science with Constellation-X

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  3. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  4. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame

    Science.gov (United States)

    Sośnica, K.; Bury, G.; Zajdel, R.

    2018-03-01

    All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.

  5. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Zhu Xinying; Zhang Xizhen; Zhang Hongbo; Kong Deqing; Qu Huipeng

    2012-01-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  6. Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass

    Science.gov (United States)

    Teichert, Russell W.; Memon, Tosifa; Aman, Joseph W.; Olivera, Baldomero M.

    2014-01-01

    Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging. PMID:24469798

  7. The Earth Observing System (EOS) nickel-hydrogen battery

    Science.gov (United States)

    Bennett, Charles W.

    1992-01-01

    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  8. RapidEye constellation relative radiometric accuracy measurement using lunar images

    Science.gov (United States)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  9. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    Science.gov (United States)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  10. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    Science.gov (United States)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  11. An exponential observer for the generalized Rossler chaotic system

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.

  12. A simple observer of the generalized Chen chaotic systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the generalized Chen chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Chen chaotic system is proposed to guarantee the global exponential stability of the resulting error system. Furthermore, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is provided to illustrate the use of the main result.

  13. A simple observer design of the generalized Lorenz chaotic systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2010-01-01

    In this Letter, the generalized Lorenz chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Lorenz chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is given to show the effectiveness of the obtained result.

  14. Estimation of the magnetic field gradient tensor using the Swarm constellation

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2014-01-01

    For the first time, part of the magnetic field gradient tensor is estimated in space by the Swarm mission. We investigate the possibility of a more complete estimation of the gradient tensor exploiting the Swarm constellation. The East-West gradients can be approximated by observations from...... deviations compared to conventional vector observations at almost all latitudes. Analytical and numerical analysis of the spectral properties of the gradient tensor shows that specific combinations of the East-West and North-South gradients have almost identical signal content to the radial gradient...

  15. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  16. Video Games, Identity, and the Constellation of Information

    Science.gov (United States)

    Martin, Crystle

    2012-01-01

    This article explores the identity of youth in relation to the information sources they choose in the constellation of information of video games, using the massively multiplayer online game "World of Warcraft" as an example. From this study, several identities are recognized that are combinations of the participants skill and level in the game,…

  17. Human Activity Recognition Using Hierarchically-Mined Feature Constellations

    NARCIS (Netherlands)

    Oikonomopoulos, A.; Pantic, Maja

    In this paper we address the problem of human activity modelling and recognition by means of a hierarchical representation of mined dense spatiotemporal features. At each level of the hierarchy, the proposed method selects feature constellations that are increasingly discriminative and

  18. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  19. CubeSat constellation design for air traffic monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  20. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  1. End-to-End Trade-space Analysis for Designing Constellation Missions

    Science.gov (United States)

    LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.

    2017-12-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its

  2. Observing System Simulation Experiments for Fun and Profit

    Science.gov (United States)

    Prive, Nikki C.

    2015-01-01

    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  3. Designing the Climate Observing System of the Future

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald

    2018-01-01

    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  4. Using Combined Marine Spatial Planning Tools and Observing System Experiments to define Gaps in the Emerging European Ocean Observing System.

    Science.gov (United States)

    Nolan, G.; Pinardi, N.; Vukicevic, T.; Le Traon, P. Y.; Fernandez, V.

    2016-02-01

    Ocean observations are critical to providing accurate ocean forecasts that support operational decision making in European open and coastal seas. Observations are available in many forms from Fixed platforms e.g. Moored Buoys and tide gauges, underway measurements from Ferrybox systems, High Frequency radars and more recently from underwater Gliders and profiling floats. Observing System Simulation Experiments have been conducted to examine the relative contribution of each type of platform to an improvement in our ability to accurately forecast the future state of the ocean with HF radar and Gliders showing particular promise in improving model skill. There is considerable demand for ecosystem products and services from today's ocean observing system and biogeochemical observations are still relatively sparse particularly in coastal and shelf seas. There is a need to widen the techniques used to assess the fitness for purpose and gaps in the ocean observing system. As well as Observing System Simulation Experiments that quantify the effect of observations on the overall model skill we present a gap analysis based on (1) Examining where high model skill is required based on a marine spatial planning analysis of European seas i.e where does activity take place that requires more accurate forecasts? and (2) assessing gaps based on the capacity of the observing system to answer key societal challenges e.g. site suitability for aquaculture and ocean energy, oil spill response and contextual oceanographic products for fisheries and ecosystems. The broad based analysis will inform the development of the proposed European Ocean Observing System as a contribution to the Global Ocean Observing System (GOOS).

  5. Chaotic Secure Communication Systems with an Adaptive State Observer

    Directory of Open Access Journals (Sweden)

    Wei-Der Chang

    2015-01-01

    Full Text Available This paper develops a new digital communication scheme based on using a unified chaotic system and an adaptive state observer. The proposed communication system basically consists of five important elements: signal modulation, chaotic encryption, adaptive state observer, chaotic decryption, and signal demodulation. A sequence of digital signals will be delivered from the transmitter to the receiver through a public channel. It is rather reasonable that if the number of signals delivered on the public channel is fewer, then the security of such communication system is more guaranteed. Therefore, in order to achieve this purpose, a state observer will be designed and its function is to estimate full system states only by using the system output signals. In this way, the signals delivered on the public channel can be reduced mostly. According to these estimated state signals, the original digital sequences are then retrieved completely. Finally, experiment results are provided to verify the applicability of the proposed communication system.

  6. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.

    1983-01-01

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  7. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  8. A Model of the Earth's Magnetic Field From Two Year of Swarm Satellite Constellation Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Tøffner-Clausen, Lars

    More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its...... Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm...

  9. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Science.gov (United States)

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment Application for the Calvert Cliffs... Constellation Energy (Constellation) to amend its Special Nuclear Material License No. SNM-2505, under the...

  10. Estimating the Economic Benefits of Regional Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Wellman, Katharine F; Pelsoci, Thomas; Wieand, Kenneth; Pendleton, Linwood; Kaiser, Mark J; Pulsipher, Allan G; Luger, Michael

    2005-01-01

    We develop a methodology to estimate the potential economic benefits from new investments in regional coastal ocean observing systems in US waters, and apply this methodology to generate preliminary...

  11. Estimating the Economic Benefits of Regional Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Wellman, Katharine F; Pelsoci, Thomas; Wieand, Kenneth; Pendleton, Linwood; Kaiser, Mark J; Pulsipher, Allan G; Luger, Michael

    2005-01-01

    ... prediction, offshore energy, power generation, and commercial fishing. Our findings suggest that annual benefits to users from the deployment of ocean observing systems are likely to run in the multiple...

  12. West Coast Observing System (WCOS) Temperature Data, 2004-2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  13. Control landscapes for observable preparation with open quantum systems

    International Nuclear Information System (INIS)

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin

    2008-01-01

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape

  14. An Observation-based Assessment of Instrument Requirements for a Future Precipitation Process Observing System

    Science.gov (United States)

    Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.

    2017-12-01

    Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a

  15. The Coastal Observing System for Northern and Arctic Seas (COSYNA)

    OpenAIRE

    Baschek, Burkard; Schroeder, Friedhelm; Brix, Holger; Riethmüller, Rolf; Badewien, Thomas H.; Breitbach, Gisbert; Brügge, Bernd; Colijn, Franciscus; Doerffer, Roland; Eschenbach, Christiane; Friedrich, Jana; Fischer, Philipp; Garthe, Stefan; Horstmann, Jochen; Krasemann, Hajo

    2017-01-01

    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change. The COSYNA automated observing and modelling system is designed...

  16. Operator symbols in the description of observable-state systems

    International Nuclear Information System (INIS)

    Lassner, G.A.

    1978-01-01

    For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions

  17. The wireless networking system of Earthquake precursor mobile field observation

    Science.gov (United States)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  18. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  19. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    Science.gov (United States)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  20. Maintenance Effectiveness and Target Observation System and its ERP Interface

    International Nuclear Information System (INIS)

    Soon, Han Seong; Kim, Gi Yong; Seo, Mi Ro; Jeong, Hun Jong; Choi, Kwang Hee; Hong, Sung Yull

    2005-01-01

    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS

  1. The GO Cygni system: photoelectric observations and light curves analysis

    International Nuclear Information System (INIS)

    Rovithis, P.; Rovithis-Livaniou, H.; Niarchos, P.G.

    1990-01-01

    Photoelectric observations, in B and V, of the system GO Cygni obtained during 1985 at the Kryonerion Astronomical Station of the National Observatory of Greece are given. The corresponding light curves (typical β Lyrae) are analysed using Frequency Domain techniques. New photoelectric and absolute elements for the system are given, and its period was found to continue its increasing

  2. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  3. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  4. Accelerating assimilation development for new observing systems using EFSO

    Science.gov (United States)

    Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun

    2018-03-01

    To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.

  5. Observations of Warm Water in Young Solar-System Analogs

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm

    dioxide). The amount of warm water is deduced and its origin is observationally constrained. With both isotopologues observed, the HDO/H2O ratio is deduced. This ratio is then compared to other sources, e.g., comets and the Earth’s ocean, to gain understanding of the origin of the water in our own solar...... system. The emission line fluxes are modeled with radiative transfer tools and compared to other results of water abundances in the same source. The observed water emission, both H18(2 O and HDO is compact for all observed sources and traces the emission on R 150 AU scales or less. In one source...

  6. Global communication using a constellation of low earth meridian orbits

    Science.gov (United States)

    Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.

    1993-07-01

    The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.

  7. "New Space Explosion" and Earth Observing System Capabilities

    Science.gov (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  8. Weather Observation Systems and Efficiency of Fighting Forest Fires

    Science.gov (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  9. Construction of a patient observation system using KINECTTM

    International Nuclear Information System (INIS)

    Miyaura, Kazunori; Kumazaki, Yu; Kato, Shingo; Fukushima, Chika; Saitoh, Hidetoshi

    2014-01-01

    Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECT TM . By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECT TM .

  10. Internal-time observable of classical relativistic systems

    International Nuclear Information System (INIS)

    Ben-Ya'acov, Uri

    2006-01-01

    The relativistic framework with its symmetries offers a natural definition for the internal time of classical (non-quantum) physical systems as a Lorentz-invariant observable. The internal-time observable, measuring the system's aging or internal evolution, is identified with the proper time of the system derived from its centre-of-mass (CM) coordinate. For its definition as an observable it is required that the system be symmetric not only under Lorentz-Poincare transformations but also under uniform scaling, with the associated existence of a dilatation function D, and yet that D be a varying-not conserved-quantity. Two alternative definitions are discussed, and it is found that in order to maintain simultaneity of the CM time with the events that define it, it is necessary to split the dilatation function into a CM part and an internal part

  11. Constellation Program: Lessons Learned. Volume 1; Executive Summary

    Science.gov (United States)

    Rhatigan, Jennifer L. (Editor)

    2011-01-01

    This document (Volume I) provides an executive summary of the lessons learned from the Constellation Program. A companion Volume II provides more detailed analyses for those seeking further insight and information. In this volume, Section 1.0 introduces the approach in preparing and organizing the content to enable rapid assimilation of the lessons. Section 2.0 describes the contextual framework in which the Constellation Program was formulated and functioned that is necessary to understand most of the lessons. Context of a former program may seem irrelevant in the heady days of new program formulation. However, readers should take some time to understand the context. Many of the lessons would be different in a different context, so the reader should reflect on the similarities and differences in his or her current circumstances. Section 3.0 summarizes key findings developed from the significant lessons learned at the program level that appear in Section 4.0. Readers can use the key findings in Section 3.0 to peruse for particular topics, and will find more supporting detail and analyses in Section 4.0 in a topical format. Appendix A contains a white paper describing the Constellation Program formulation that may be of use to readers wanting more context or background information. The reader will no doubt recognize some very similar themes from previous lessons learned, blue-ribbon committee reviews, National Academy reviews, and advisory panel reviews for this and other large-scale human spaceflight programs; including Apollo, Space Shuttle, Shuttle/Mir, and the ISS. This could represent an inability to learn lessons from previous generations; however, it is more likely that similar challenges persist in the Agency structure and approach to program formulation, budget advocacy, and management. Perhaps the greatest value of these Constellation lessons learned can be found in viewing them in context with these previous efforts to guide and advise the Agency and its

  12. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  13. Power constellations between Roma pupils and their teachers

    Directory of Open Access Journals (Sweden)

    Iveta Rožníčková

    2017-11-01

    Full Text Available The goal of this empirical study is to describe power constellations that are generated in interactions between Roma pupils and their teachers, and also to summarize the basic findings of this research and to point out some real situations that can occur during the teaching lessons. The first part of the thesis describes the differences in the social interaction of Roma pupils. The second part is focused on the authority of the teachers and also on using this authority during the lessons. The third part is focused on pupils‘ strategies that are created based on the requirements of teachers. The basic findings of the research are selected in the methodological section. The research survey revealed five power constellations, which are the subject of this empirical study. The empirical study suggests how teachers and pupils define and shape relationships. From the present paper, a lot of influences are involved in the formation of power constellation, ranging from the personality of the teachers, socializing in school, through family upbringing to cultural differences.

  14. DSMS investment in support of satellite constellations and formation flying

    Science.gov (United States)

    Statman, J. I.

    2003-01-01

    Over the years, NASA has supported unmanned space missions, beyond earth orbit, through a Deep Space Mission System (DSMS) that is developed and operated by the Jet Propulsion Laboratory (JPL) and subcontractors. The DSMS capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered primarily through three Deep Space Communications Complexes (DSCC 's) near Goldstone, California, Madrid, Spain, and Canberra, Australia and from facilities at JPL. Traditionally, mission support (tracking, command, telemetry, etc) is assigned on an individual-mission basis, between each mission and a ground-based asset, independent of other missions. As NASA, and its international partners, move toward flying fullconstellations and precision formations, the DSMS is developing plans and technologies to provide the requisite support. The key activities under way are: (1) integrated communications architecture for Mars exploration, including relays on science orbiters and dedicated relay satellites to provide continuous coverage for orbiters, landers and rovers. JPL is developing an architecture, as well as protocols and equipment, required for the cost-effective operations of such an infrastructure. (2) Internet-type protocols that will allow for efficient operations across the deep-space distances, accounting for and accommodating the long round-trip-light-time. JPL is working with the CCSDS to convert these protocols to an international standard and will deploy such protocol, the CCSDS File Delivery Protocol (CFDP), on the Mars Reconnaissance Orbiter (MRO) and on the Deep Impact (01) missions. (3) Techniques to perform cross-navigation between spacecrafi that fly in a loose formation. Typical cases are cross-navigation between missions that approach Mars and missionsthat are at Mars, or the determination of a baseline for missions that fly in an earth-lead- lag configuration. (4) Techniques and devices that allow the precise metrology and

  15. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  16. Novel classification system of rib fractures observed in infants.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Pinto, Deborrah C; Greeley, Christopher; Donaruma-Kwoh, Marcella; Bista, Bibek

    2013-03-01

    Rib fractures are considered highly suspicious for nonaccidental injury in the pediatric clinical literature; however, a rib fracture classification system has not been developed. As an aid and impetus for rib fracture research, we developed a concise schema for classifying rib fracture types and fracture location that is applicable to infants. The system defined four fracture types (sternal end, buckle, transverse, and oblique) and four regions of the rib (posterior, posterolateral, anterolateral, and anterior). It was applied to all rib fractures observed during 85 consecutive infant autopsies. Rib fractures were found in 24 (28%) of the cases. A total of 158 rib fractures were identified. The proposed schema was adequate to classify 153 (97%) of the observed fractures. The results indicate that the classification system is sufficiently robust to classify rib fractures typically observed in infants and should be used by researchers investigating infant rib fractures. © 2013 American Academy of Forensic Sciences.

  17. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  18. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  19. OBSERVATIONS OF THE WASP-2 SYSTEM BY THE APOSTLE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Andrew C.; Kundurthy, Praveen; Agol, Eric; Barnes, Rory; Williams, Benjamin F.; Rose, Amy E. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2013-02-10

    We present transit observations of the WASP-2 exoplanet system by the Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) program. Model fitting to these data allows us to improve measurements of the hot-Jupiter exoplanet WASP-2b and its orbital parameters by a factor of {approx}2 over prior studies; we do not find evidence for transit depth variations. We do find reduced {chi}{sup 2} values greater than 1.0 in the observed minus computed transit times. A sinusoidal fit to the residuals yields a timing semi-amplitude of 32 s and a period of 389 days. However, random rearrangements of the data provide similar quality fits, and we cannot with certainty ascribe the timing variations to mutual exoplanet interactions. This inconclusive result is consistent with the lack of incontrovertible transit timing variations (TTVs) observed in other hot-Jupiter systems. This outcome emphasizes that unique recognition of TTVs requires dense sampling of the libration cycle (e.g., continuous observations from space-based platforms). However, even in systems observed with the Kepler spacecraft, there is a noted lack of transiting companions and TTVs in hot-Jupiter systems. This result is more meaningful, and indicates that hot-Jupiter systems, while they are easily observable from the ground, do not appear to be currently configured in a manner favorable to the detection of TTVs. The future of ground-based TTV studies may reside in resolving secular trends, and/or implementation at extreme quality observing sites to minimize atmospheric red noise.

  20. Solar System Observations with the James Webb Space Telescope

    OpenAIRE

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  1. Development of KIAPS Observation Processing Package for Data Assimilation System

    Science.gov (United States)

    Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin

    2015-04-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.

  2. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    Science.gov (United States)

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    International Nuclear Information System (INIS)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M.; Beauvalet, L.; Marchis, F.; Nielsen, E. L.; Vachier, F.

    2016-01-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured

  4. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M. [European Southern Observatory, Santiago (Chile); Beauvalet, L. [National Observatory, Rio de Janeiro (Brazil); Marchis, F.; Nielsen, E. L. [Carl Sagan Center at the SETI Institute, Mountain View, CA (United States); Vachier, F., E-mail: byang@eso.org [Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris (France)

    2016-04-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.

  5. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  6. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  7. On the complete system of observables in quantum mechanics

    Science.gov (United States)

    de Oliveira, César R.

    1990-10-01

    This paper contains a series of remarks about the concept of Complete System of Observables (CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch [Helv. Phys. Acta 33, 711 (1960)] and the other by Prugovecki [Can. J. Phys. 47, 1083 (1968)].

  8. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing

  9. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  10. INVIS : Integrated night vision surveillance and observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Dijk, J.; Son, R. van

    2010-01-01

    We present the design and first field trial results of the all-day all-weather INVIS Integrated Night Vision surveillance and observation System. The INVIS augments a dynamic three-band false-color nightvision image with synthetic 3D imagery in a real-time display. The night vision sensor suite

  11. The Global Ocean Observing System (GOOS): New developments

    International Nuclear Information System (INIS)

    Summerhayes, C.P.

    1999-01-01

    GOOS will provide information about the present and future states of seas and oceans and their living resources, and on the role of the oceans in climate change. Among other things, it will include monitoring the extent to which the sea is polluted, and applying models enabling the behaviour of polluted environments to be forecast given a variety of forcing conditions including anthropogenic and natural changes. Implementation has begun through integration of previously separate existing observing systems into a GOOS Initial Observing System, and through the development of Pilot Projects, most notably in the coastal seas of Europe and North-east Asia. Although the present emphasis is on the measurement of physical properties, plans are underway for increasing the observation of chemical and biological parameters. The main biological thrust at present comes through the Global Coral Reef Monitoring Network (GCRMN). Consideration needs to be given to incorporation into the GOOS Initial Observing System of present national, international and global chemical and biological monitoring systems, and the development and implementation of new chemical and biological monitoring subsystems, especially in coastal seas for monitoring the health of those environments. GOOS will offer marine scientists and other users a scheme of continuing measurements on a scale larger in time and space than can be accomplished by individuals for their own applications, and a vastly improved store of basic marine environmental data for a multitude of purposes. For GOOS news see the GOOS Homepage at http://ioc.unesco.org/GOOS/. (author)

  12. Emerging Methods and Systems for Observing Life in the Sea

    Science.gov (United States)

    Chavez, F.; Pearlman, J.; Simmons, S. E.

    2016-12-01

    There is a growing need for observations of life in the sea at time and space scales consistent with those made for physical and chemical parameters. International programs such as the Global Ocean Observing System (GOOS) and Marine Biodiversity Observation Networks (MBON) are making the case for expanded biological observations and working diligently to prioritize essential variables. Here we review past, present and emerging systems and methods for observing life in the sea from the perspective of maintaining continuous observations over long time periods. Methods that rely on ships with instrumentation and over-the-side sample collections will need to be supplemented and eventually replaced with those based from autonomous platforms. Ship-based optical and acoustic instruments are being reduced in size and power for deployment on moorings and autonomous vehicles. In parallel a new generation of low power, improved resolution sensors are being developed. Animal bio-logging is evolving with new, smaller and more sophisticated tags being developed. New genomic methods, capable of assessing multiple trophic levels from a single water sample, are emerging. Autonomous devices for genomic sample collection are being miniaturized and adapted to autonomous vehicles. The required processing schemes and methods for these emerging data collections are being developed in parallel with the instrumentation. An evolving challenge will be the integration of information from these disparate methods given that each provides their own unique view of life in the sea.

  13. A tethered balloon system for observation of atmospheric temperature inversion

    International Nuclear Information System (INIS)

    Hayashi, Takashi; Kakuta, Michio

    1979-05-01

    In environmental assessment of near-shore nuclear plants, information is often required on the development of internal boundary layer (IBL) and associated fumigation condition. Single tower data is not sufficient to clarify the site-dependent IBL structure that affects the atmospheric diffusion in shoreline-stack-site boundary complex. A tethered balloon system has been developed, which comprises a fixed point kitoon and a car-borne small balloon. The system enables us to measure the detailed time-space distribution of temperature without much man-power. The system and example of field observations with it are described. (author)

  14. The RITMARE Ocean Observing System for the Italian Seas

    Science.gov (United States)

    Crise, A.

    2016-02-01

    Among its objectives, the Italian RITMARE Flagship Programme has the aim to produce a prototype of the RITMARE Ocean observing system explicitelly designed to provide a powerful infrastructure to the Italian marine science community, to help implement national and Europen environmental regulations and to contribute to the future European Ocean Observing System. The projects takes advantage of the existing platforms (fixed-point moorings, HF and X-band radars, gliders, satellite products), that constitute the basic components of the system. The structure of the RITMARE Ocean observing system is composed by a permanent component (mooring network, satellite images, HF radars) and relocatable component (gliders, drifters, relocatable infrastructures). The increasing number of available relocatable/expandable platforms allow a much larger flexibility in term of allocation of observations but requires an sampling strategy the can be modified according the scientific and socio-economic priorities. As an example, RITMARE focus is set on an experiment on the South Adriatic Pit convective area and its dynamic interactions with the adjacent Bari Canyon cascading site. (Central Mediterranean Sea). Additional effort is paid to support innovation for sensors (e.g. ship-borne LIDAR, stereo-optic directional wave detection, X-band radar innovative products), operational employment of gliders (e.g. Wave Glider) and new class of operational models. The integration can be obtained at different level: the is expected to be achieved at ICT level by defining standard interfaces (NedCDF, SOS) and catalogs in order to facilitate the discovery, viewing and downloading services of data and products. The implementation of a distributed platform-oriented RT repositories adopt a number of THREDDS web servers that act as endpoints for the RITMARE portal. The final aim is to decouple the platforms from the observations, moving from a set of observation to a suite of Essential Ocean Variables by

  15. Improved candidate generation and coverage analysis methods for design optimization of symmetric multi-satellite constellations

    Science.gov (United States)

    Matossian, Mark G.

    1997-01-01

    Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."

  16. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis

    2014-01-01

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  17. Distributed leadership in health care teams: Constellation role distribution and leadership practices.

    Science.gov (United States)

    Chreim, Samia; MacNaughton, Kate

    2016-01-01

    Recent literature has been critical of research that adopts a narrow focus on single leaders and on leadership attributes and has called for attention to leadership that is distributed among individuals and to practices in which leaders engage. We conducted a study of health care teams where we attended to role distribution among leadership constellation members and to loose or tight coupling practices between leaders and the remainder of the team. This focus provides insights into how leadership can be practiced and structured to enhance team functioning. A qualitative, multicase study of four teams was conducted. Data collection involved 44 interviews with almost all the members of the teams and 18 team meeting observations. Thematic analysis was conducted by the two authors. Leadership constellations can give rise to leadership role overlaps and gaps that may create ambiguity within teams, ambiguity is diminished if the leaders can agree on which leader assumes ultimate authority in an area, the presence of more leaders does not necessarily entail more comprehensive fulfillment of team needs, and teams' needs for tight or loose leadership practices are influenced by contextual factors that we elaborate. (a) It is important to recognize areas of overlap and gaps in leadership roles and to provide clarity about role boundaries to avoid ambiguity. Role mapping exercises and open discussions should be considered. (b) Attempting to spread formal leadership responsibilities informally among individuals is not always a workable strategy for addressing team needs. (c) Organizations need to examine critically the allocation of resources to leadership activities.

  18. SCHeMA web-based observation data information system

    Science.gov (United States)

    Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Confalonieri, Fabio; Massa, Francesco; Povero, Paolo; Tercier-Waeber, Marie-Louise

    2016-04-01

    It is well recognized that the need of sharing ocean data among non-specialized users is constantly increasing. Initiatives that are built upon international standards will contribute to simplify data processing and dissemination, improve user-accessibility also through web browsers, facilitate the sharing of information across the integrated network of ocean observing systems; and ultimately provide a better understanding of the ocean functioning. The SCHeMA (Integrated in Situ Chemical MApping probe) Project is developing an open and modular sensing solution for autonomous in situ high resolution mapping of a wide range of anthropogenic and natural chemical compounds coupled to master bio-physicochemical parameters (www.schema-ocean.eu). The SCHeMA web system is designed to ensure user-friendly data discovery, access and download as well as interoperability with other projects through a dedicated interface that implements the Global Earth Observation System of Systems - Common Infrastructure (GCI) recommendations and the international Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards. This approach will insure data accessibility in compliance with major European Directives and recommendations. Being modular, the system allows the plug-and-play of commercially available probes as well as new sensor probess under development within the project. The access to the network of monitoring probes is provided via a web-based system interface that, being implemented as a SOS (Sensor Observation Service), is providing standard interoperability and access tosensor observations systems through O&M standard - as well as sensor descriptions - encoded in Sensor Model Language (SensorML). The use of common vocabularies in all metadatabases and data formats, to describe data in an already harmonized and common standard is a prerequisite towards consistency and interoperability. Therefore, the SCHeMA SOS has adopted the SeaVox common vocabularies populated by

  19. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2017-12-01

    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  20. Enhancement of observability and protection of smart power system

    Science.gov (United States)

    Siddique, Abdul Hasib

    It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.

  1. Trade-Space Analysis Tool for Constellations (TAT-C)

    Science.gov (United States)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of

  2. Verifying Embedded Systems using Component-based Runtime Observers

    DEFF Research Database (Denmark)

    Guan, Wei; Marian, Nicolae; Angelov, Christo K.

    against formally specified properties. This paper presents a component-based design method for runtime observers, which are configured from instances of prefabricated reusable components---Predicate Evaluator (PE) and Temporal Evaluator (TE). The PE computes atomic propositions for the TE; the latter...... is a reconfigurable component processing a data structure, representing the state transition diagram of a non-deterministic state machine, i.e. a Buchi automaton derived from a system property specified in Linear Temporal Logic (LTL). Observer components have been implemented using design models and design patterns...

  3. Observability of linear control systems on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Hacibekiroglu, A.K.

    1995-01-01

    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  4. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    Science.gov (United States)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  5. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  6. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    Science.gov (United States)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  7. Analysis of dual polarization images of precipitating clouds collected by the COSMO SkyMed constellation

    Science.gov (United States)

    Baldini, Luca; Roberto, Nicoletta; Gorgucci, Eugenio; Fritz, Jason; Chandrasekar, V.

    2014-07-01

    Currently, several satellite missions are employing X-band synthetic aperture radars (SAR) with polarimetric capabilities. In images collected over land by X-band SAR, precipitation results mainly in evident attenuation of the surface returns. Effects of precipitation in polarimetric SAR images and how to exploit them for precipitation studies are emerging topics of interest. This paper investigates polarimetric signatures of precipitation in images collected by the X-band SARs of the Italian Space Agency COSMO SkyMed constellation using the HH-VV alternate polarimetric mode. Analyzed images were collected in 2010 when the constellation was composed of three satellites and operated in the “tandem like” interferometric configuration, which allowed acquisition of the same scene with the same viewing geometry and a minimum decorrelation time of one day. Observations collected in Piedmont (Italy) and Tampa Bay (Florida, US) have been analyzed along with coincident observations collected by operational weather radars, used to reconstruct the component of SAR returns due to precipitation at horizontal and vertical polarization states. Different techniques are used depending on the different characteristics of terrestrial radars. SAR observations reconstructed from terrestrial measurements are in fairly good agreement with actual SAR observations. Results confirm that the attenuation signature in SAR images collected over land is particularly pronounced in the presence of precipitation cells and can be related to the radar reflectivity integrated along the same path. The difference between copolar HH and VV power measurements reveals a differential attenuation due to anisotropy of precipitation, whose range is limited when the SAR incidence angle is low. A specific feature observed in the CosmoSkyMed alternate polarization implementation is the presence of the scalloping effect, a periodic effect along the azimuth direction that cannot always be removed by standard de

  8. LBT observations of the HR8799 planetary system

    Science.gov (United States)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  9. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  10. Mission studies on constellation of LEO satellites with remote-sensing and communication payloads

    Science.gov (United States)

    Chen, Chia-Ray; Hwang, Feng-Tai; Hsueh, Chuang-Wei

    2017-09-01

    Revisiting time and global coverage are two major requirements for most of the remote sensing satellites. Constellation of satellites can get the benefit of short revisit time and global coverage. Typically, remote sensing satellites prefer to choose Sun Synchronous Orbit (SSO) because of fixed revisiting time and Sun beta angle. The system design and mission operation will be simple and straightforward. However, if we focus on providing remote sensing and store-and-forward communication services for low latitude countries, Sun Synchronous Orbit will not be the best choice because we need more satellites to cover the communication service gap in low latitude region. Sometimes the design drivers for remote sensing payloads are conflicted with the communication payloads. For example, lower orbit altitude is better for remote sensing payload performance, but the communication service zone will be smaller and we need more satellites to provide all time communication service. The current studies focus on how to provide remote sensing and communication services for low latitude countries. A cost effective approach for the mission, i.e. constellation of microsatellites, will be evaluated in this paper.

  11. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  12. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  13. Nanosatellites constellation as an IoT communication platform for near equatorial countries

    Science.gov (United States)

    Narayanasamy, A.; Ahmad, Y. A.; Othman, M.

    2017-11-01

    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented.

  14. Economic Value of an Advanced Climate Observing System

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  15. An operational, multistate, earth observation data management system

    Science.gov (United States)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.

    1977-01-01

    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  16. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    International Nuclear Information System (INIS)

    Branicki, M.; Majda, A.J.

    2013-01-01

    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  17. Observation on scintigram of bone tumors by color data system

    International Nuclear Information System (INIS)

    Minami, Kyuman

    1982-01-01

    The uptake of RI on bone scintigram was converted with a color data system to a color pattern of 12 colors. The color patterns of bone tumors were analysed in comparison them with those in contralateral part of body. The author observed on color patterns of bone scintigrams in 70 cases of bone tumors, of which 28 cases were malignant, 32 benign and 10 giant cell tumors. Differences of color pattern were found relatively low in tumors of the pelvis, whereas they were high in tumors of the limbs and shoulder. In malignant tumors, differences of the color patterns were marked and wide in range. Applying the color data system to bone scintigram, bone tumors could be objectively observed and the method was very helpful for diagnosis of bone tumors. (author)

  18. Linear system identification via backward-time observer models

    Science.gov (United States)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  19. CORONAGRAPHIC OBSERVATIONS OF FOMALHAUT AT SOLAR SYSTEM SCALES

    International Nuclear Information System (INIS)

    Kenworthy, Matthew A.; Meshkat, Tiffany; Quanz, Sascha P.; Meyer, Michael R.; Girard, Julien H.; Kasper, Markus

    2013-01-01

    We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrowband observations at 4.05 μm obtained with the Apodizing Phase Plate coronagraph on the VLT/NaCo. Our observations place a model-dependent upper mass limit of 12-20 M jup from 4 to 10 AU, covering the semimajor axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semimajor axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.

  20. Development of the AuScope Australian Earth Observing System

    Science.gov (United States)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  1. IEOOS: the Spanish Institute of Oceanography Observing System

    Science.gov (United States)

    Tel, E.; Balbin, R.; Cabanas, J. M.; Garcia, M. J.; Garcia-Martinez, M. C.; Gonzalez-Pola, C.; Lavin, A.; Lopez-Jurado, J. L.; Rodriguez, C.; Ruiz-Villarreal, M.; Sanchez-Leal, R. F.; Vargas-Yanez, M.; Velez-Belchi, P.

    2015-10-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO). Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS) includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  2. Gulf of Mexico Coastal Ocean Observing System: The Gulf Component of the U.S. Integrated Ocean Observing System

    Science.gov (United States)

    Bernard, L. J.; Moersdorf, P. F.

    2005-05-01

    The United States is developing an Integrated Ocean Observing System (IOOS) as the U.S. component of the international Global Ocean Observing System (GOOS). IOOS consists of: (1) a coastal observing system for the U.S. EEZ, estuaries, and Great Lakes; and (2) a contribution to the global component of GOOS focused on climate and maritime services. The coastal component will consist of: (1) a National Backbone of observations and products from our coastal ocean supported by federal agencies; and (2) contributions of Regional Coastal Ocean Observing Systems (RCOOS). The Gulf of Mexico Coastal Ocean Observing System (GCOOS) is one of eleven RCOOS. This paper describes how GCOOS is progressing as a system of systems to carry out data collection, analysis, product generation, dissemination of information, and data archival. These elements are provided by federal, state, and local government agencies, academic institutions, non-government organization, and the private sector. This end-to-end system supports the seven societal goals of the IOOS, as provided by the U.S. Commission on Ocean Policy: detect and forecast oceanic components of climate variability, facilitate safe and efficient marine operations, ensure national security, manage marine resources, preserve and restore healthy marine ecosystems, mitigate natural hazards, and ensure public health. The initial building blocks for GCOOS include continuing in situ observations, satellite products, models, and other information supported by federal and state government, private industry, and academia. GCOOS has compiled an inventory of such activities, together with descriptions, costs, sources of support, and possible out-year budgets. These activities provide information that will have broader use as they are integrated and enhanced. GCOOS has begun that process by several approaches. First, GCOOS has established a web site (www.gcoos.org) which is a portal to such activities and contains pertinent information

  3. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  4. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  5. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    Science.gov (United States)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  6. Parameter identification of chaos system based on unknown parameter observer

    International Nuclear Information System (INIS)

    Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin

    2008-01-01

    Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach

  7. Systems constellations : A better way to identify branding opportunities?

    NARCIS (Netherlands)

    Jurg, W.; Bloemer, J.; Doorewaard, H.; Peelen, E.

    2008-01-01

    Building strong brands has become one of the main marketing priorities for brand-supportive companies. The leading positivist paradigm in marketing may not be, however, the most-effective perspective in identifying branding opportunities. This paper offers an alternative phenomenological point of

  8. Nonlinear observer designs for fuel cell power systems

    Science.gov (United States)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  9. Generalized BICM-T transceivers: Constellation and multiplexer design

    KAUST Repository

    Malik, Muhammad Talha

    2013-09-01

    Recently, it has been shown that the performance of bit-interleaved coded modulation (BICM) using convolutional codes in nonfading channels can be significantly improved if the coded bits are not interleaved at all. This particular BICM design is referred to as BICM trivial (BICM-T) and is shown to be asymptotically as good as Ungerboeck\\'s one dimensional (1D) trellis coded modulation (TCM). This BICM-T design and analysis considered a simple case of rate 1/2 channel encoder with equally spaced 16-ary quadrature amplitude modulation (QAM) constellation where the code rate matches with the modulation order as required in TCM transmission. In this paper, we consider and analyze a new BICM-T design that uses a non equally spaced signal constellation in conjunction with a bit level multiplexer. With this design and analysis, one can not only exploit the full benefit of BICM-T design by jointly optimizing different transceiver\\'s modules but also enjoys the same design flexibility as the traditional BICM to independently choose the code rate and the modulation order. The presented numerical results for 64-ary QAM with rate 1/3 code shows that the considered design can offer gains up to 2.5 dB over the traditional optimal BICM design for a target bit error rate (BER) of 10-6. © 2013 IEEE.

  10. Research on constellation refueling based on formation flying

    Science.gov (United States)

    Bo, Xu; Feng, Quansheng

    2011-06-01

    A new scheme for refueling satellite constellation is proposed in this paper. Compared with the traditional research, where the satellite refueling is implemented through spacecraft rendezvous and docking, the new pattern studied here is based on formation flying, and it is more feasible, safer and more reliable. On the grounds of the proposed pattern, two refueling strategies are studied. The first is called single supplier refueling (SSR) based on formation flying. In this scenario, one fuel-sufficient satellite called a supplier, departs from its parking orbit, and after a series of orbit maneuvers, arrives at the target constellation that consists of multiple fuel-deficient satellites called workers. It then transfers equal fuel to each worker within the prescribed mission time. The second strategy is called double suppliers refueling (DSR) based on formation flying. This time two suppliers take charge of refueling half of the workers respectively in the same way as SSR. Using a genetic algorithm, the orbit of a supplier with a minimum consumption of fuel can be obtained once the mission time is fixed. Simulation results indicate that DSR is superior to SSR and that this dominance will be more distinct as the number of workers increases and the mission time decreases.

  11. Constellation and Mapping Optimization of APSK Modulations used in DVB-S2

    Directory of Open Access Journals (Sweden)

    L. Jordanova

    2014-10-01

    Full Text Available This article represents the algorithms of APSK constellation and mapping optimization. The dependencies of the symbol error probability Ps on the parameters of the 16APSK and 32APSK constellations are examined and several options that satisfy the requirements to the minimum value of Ps are selected. Mapping optimization is carried out for the selected APSK constellations. BER characteristics of the satellite DVB-S2 channels are represented when using optimized and standard 16APSK and 32APSK constellations and a comparative analysis of the results achieved is made.

  12. Constellation Map: Downstream visualization and interpretation of gene set enrichment results [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yan Tan

    2015-06-01

    Full Text Available Summary: Gene set enrichment analysis (GSEA approaches are widely used to identify coordinately regulated genes associated with phenotypes of interest. Here, we present Constellation Map, a tool to visualize and interpret the results when enrichment analyses yield a long list of significantly enriched gene sets. Constellation Map identifies commonalities that explain the enrichment of multiple top-scoring gene sets and maps the relationships between them. Constellation Map can help investigators take full advantage of GSEA and facilitates the biological interpretation of enrichment results. Availability: Constellation Map is freely available as a GenePattern module at http://www.genepattern.org.

  13. New Directions in the NOAO Observing Proposal System

    Science.gov (United States)

    Gasson, David; Bell, Dave

    For the past eight years NOAO has been refining its on-line observing proposal system. Virtually all related processes are now handled electronically. Members of the astronomical community can submit proposals through email, web form, or via the Gemini Phase I Tool. NOAO staff can use the system to do administrative tasks, scheduling, and compilation of various statistics. In addition, all information relevant to the TAC process is made available on-line, including the proposals themselves (in HTML, PDF and PostScript) and technical comments. Grades and TAC comments are entered and edited through web forms, and can be sorted and filtered according to specified criteria. Current developments include a move away from proprietary solutions, toward open standards such as SQL (in the form of the MySQL relational database system), Perl, PHP and XML.

  14. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  15. The Role and Quality of Software Safety in the NASA Constellation Program

    Science.gov (United States)

    Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.

    2010-01-01

    In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.

  16. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.

    2005-12-01

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  17. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    Science.gov (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  18. Securing OFDM over Wireless Time-Varying Channels Using Subcarrier Overloading with Joint Signal Constellations

    Directory of Open Access Journals (Sweden)

    Gill R. Tsouri

    2009-01-01

    Full Text Available A method of overloading subcarriers by multiple transmitters to secure OFDM in wireless time-varying channels is proposed and analyzed. The method is based on reverse piloting, superposition modulation, and joint decoding. It makes use of channel randomness, reciprocity, and fast decorrelation in space to secure OFDM with low overheads on encryption, decryption, and key distribution. These properties make it a good alternative to traditional software-based information security algorithms in systems where the costs associated with such algorithms are an implementation obstacle. A necessary and sufficient condition for achieving information theoretic security in accordance with channel and system parameters is derived. Security by complexity is assessed for cases where the condition for information theoretic security is not satisfied. In addition, practical means for implementing the method are derived including generating robust joint constellations, decoding data with low complexity, and mitigating the effects of imperfections due to mobility, power control errors, and synchronization errors.

  19. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  20. Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China

    Directory of Open Access Journals (Sweden)

    Jinhu Bian

    2015-12-01

    Full Text Available Time series remote sensing products with both fine spatial and dense temporal resolutions are urgently needed for many earth system studies. The development of small satellite constellations with identical sensors affords novel opportunities to provide such kind of earth observations. In this paper, a new dense time series 30-m image product was proposed respectively based on an 8-day, 16-day and monthly composition. The products were composited by the Charge Coupled Device (CCD images from the 2-day revisit small satellite constellation for environmental monitoring and disaster mitigation of China (HJ-1A/B. Taking the Zoige plateau in China as a case area where it is covered by highly heterogeneous vegetation landscapes, a detailed methodology was introduced on how to use 183 scenes of CCD images in 2010 to create composite products. The quality of the HJ CCD composites was evaluated by inter-comparison with the monthly 30-m global Web-Enabled Landsat Data (WELD, 16-day 500-m MODIS NDVI, and 8-day 500-m MODIS surface reflectance products. Results showed that the radiometric consistency between HJ and WELD composited Top Of Atmosphere (TOA reflectance was in good agreement except for May, June, July and August when more clouds and invalid data gaps appeared in WELD. Visual assessment and temporal profile analysis also revealed that HJ possessed better visual effects and temporal coherence than that of WELD. The comparison between HJ and MODIS products indicated that HJ composites were radiometrically consistent with MODIS products over areas consisting of large patches of homogeneous surface types, but can better reflect the detailed spatial differences in regions with heterogeneous landscapes. This paper highlights the potential of compositing HJ-1A/B CCD images, allowing for providing a cloud free, time-space consistent, 30-m spatial resolution, and dense in time series image product. Meanwhile, the proposed products could also be treated as a

  1. GAP: yet another image processing system for solar observations.

    Science.gov (United States)

    Keller, C. U.

    GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.

  2. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: shilaire@ssl.berkeley.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  3. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  4. Upper wind observing systems used for meteorological operations

    Directory of Open Access Journals (Sweden)

    J. Nash

    Full Text Available Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.

  5. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  6. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    Science.gov (United States)

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide

    2009-01-01

    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  7. A Non-science Major Undergraduate Seminar on the NASA Earth Observing System (EOS): A Student Perspective

    Science.gov (United States)

    Weatherford, V. L.; Redemann, J.

    2003-12-01

    Titled "Observing Climate Change From Space-what tools do we have?", this non-science major freshman seminar at UCLA is the culmination of a year-long interdisciplinary program sponsored by the Institute of the Environment and the College Honors programs at the University. Focusing on the anthropogenic and natural causes of climate change, students study climate forcings and learn about satellite and other technological means of monitoring climate and weather. NASA's Terra satellite is highlighted as one of the most recent and comprehensive monitoring systems put into space and the role of future NASA platforms in the "A-train"-constellation of satellites is discussed. Course material is typically presented in a Power-Point presentation by the instructor, with assigned supplementary reading to stimulate class discussion. In addition to preparing lectures for class presentation, students work on a final term paper and oral presentation which constitutes the majority of their grade. Field trips to the San Gabriel mountains to take atmospheric measurements with handheld sunphotometers and to JPL, Pasadena (CA) to listen to a NASA scientist discuss the MISR instrument aboard the Terra satellite help bring a real-world perspective to the science learned in the classroom. In this paper, we will describe the objectives and structure of this class and present measurement results taken during the field trip to the San Gabriel Mountains. In this context we will discuss the potential relevance of hands-on experience to meeting class objectives and give a student perspective of the overall class experience.

  8. Observation of bifurcation phenomena in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1995-01-01

    When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system

  9. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    Science.gov (United States)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  10. Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN

    Science.gov (United States)

    Bodine, D. J.; Rasmussen, K. L.

    2015-12-01

    Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.

  11. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    Science.gov (United States)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  12. Optimization of constellation jettisoning regards to short term collision risks

    Science.gov (United States)

    Handschuh, D.-DA.-A.; Bourgeois, E.

    2018-04-01

    The space debris problematic is directly linked to the in-orbit collision risk between artificial satellites. With the increase of the space constellation projects, a multiplication of multi-payload launches should occur. In the specific cases where many satellites are injected into orbit with the same launcher upper stage, all these objects will be placed on similar orbits, very close one from each other, at a specific moment where their control capabilities will be very limited. Under this hypothesis, it is up to the launcher operator to ensure that the simultaneous in-orbit injection is safe enough to guarantee the non-collision risk between all the objects under a ballistic hypothesis eventually considering appropriate uncertainties. The purpose of the present study is to find optimized safe separation conditions to limit the in-orbit collision risk following the injection of many objects on very close orbits in a short-delay mission.

  13. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  14. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  15. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Science.gov (United States)

    2013-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...

  16. Tabitha's One Teacher Rural School: Insights into the Arts through the Use of a Story Constellation

    Science.gov (United States)

    Garvis, Susanne

    2011-01-01

    This paper presents a story constellation about a beginning teacher (who is also the principal) located in a one-teacher school in an isolated community in Queensland, Australia. The constellation documents the teacher's self-efficacy for teaching the arts (music, dance, drama, visual arts and media). Tabitha, the participant, shares insights…

  17. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  18. Interstellar Explorer Observations of the Solar System's Debris Disks

    Science.gov (United States)

    Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.

    2017-12-01

    Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking

  19. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    Science.gov (United States)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  20. Observation of electromagnetically induced Talbot effect in an atomic system

    Science.gov (United States)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  1. Submillimeter and millimeter observations of solar system objects

    International Nuclear Information System (INIS)

    Muhleman, D.O.

    1988-01-01

    Planetary atmospheres and satellite surfaces are observed with the three element array at Caltech's Owens Valley Radio Observatory, Caltech's submillimeter telescope on Mauna Kea and at the 12-meter telescope at Kitt Peak. Researchers are primarily interested in spectroscopy of the atmospheres of Venus, Mars and Titan and the continuum structure of Saturn Rings, Galilean satellites, Neptune and Uranus. During the last year researchers completed a supersynthesis of the Saturn system at 2.8 mm with spatial resolution of 3 arc sec. They just completed a 4-confuguration synthesis of Venus in the CO absorption line. They hope to recover the wind patterns in the altitude range from 60 to 100 km where winds have never been measured. Two important questions are being investigated: (1) how high in the Venus atmosphere do 4-day winds extend, and (2) can we produce experiment proof (or disproof) of the subsolar-to-anti-solar flow (Dickenson winds) predicted by general circulation models

  2. Measuring progress of the global sea level observing system

    Science.gov (United States)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  3. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  4. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  5. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Science.gov (United States)

    P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner

    2014-01-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...

  6. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    Science.gov (United States)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  7. Data Analysis of GPM Constellation Satellites-IMERG and ERA-Interim precipitation products over West of Iran

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2016-04-01

    Precipitation is a critical component of the Earth's hydrological cycle. The primary requirement in precipitation measurement is to know where and how much precipitation is falling at any given time. Especially in data sparse regions with insufficient radar coverage, satellite information can provide a spatial and temporal context. Nonetheless, evaluation of satellite precipitation is essential prior to operational use. This is why many previous studies are devoted to the validation of satellite estimation. Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards. In situ observations over mountainous areas are mostly limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. One of the newest and blended methods that use multi-satellites and multi-sensors has been developed for estimating global precipitation. The considered data set known as Integrated Multi-satellitE Retrievals (IMERG) for GPM (Global Precipitation Measurement) is routinely produced by the GPM constellation satellites. Moreover, recent efforts have been put into the improvement of the precipitation products derived from reanalysis systems, which has led to significant progress. One of the best and a worldwide used model is developed by the European Centre for Medium Range Weather Forecasts (ECMWF). They have produced global reanalysis daily precipitation, known as ERA-Interim. This study has evaluated one year of precipitation data from the GPM-IMERG and ERA-Interim reanalysis daily time series over West of Iran. IMERG and ERA-Interim yield underestimate the observed values while IMERG underestimated slightly and performed better when precipitation is greater than 10mm. Furthermore, with respect to evaluation of probability of detection (POD), threat score (TS), false alarm ratio (FAR) and probability

  8. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    Science.gov (United States)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  9. 77 FR 11168 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station...

    Science.gov (United States)

    2012-02-24

    ... and NPF-69] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear..., LLC (Exelon Ventures), and Constellation Energy Nuclear Group, LLC (CENG), acting on behalf of itself... Nuclear Advisory Committee of Constellation Energy Nuclear Group, LLC, shall prepare an Annual Report...

  10. 77 FR 11169 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power...

    Science.gov (United States)

    2012-02-24

    ... Constellation Energy Nuclear Group, LLC (CENG), acting on behalf of itself, and the licensee, requested that the... Constellation Energy Nuclear Group, LLC, shall prepare an Annual Report regarding the status of foreign... or part, of Constellation Energy Nuclear Group, LLC. The Report shall be submitted to the NRC within...

  11. A Spatial Data Infrastructure for the Global Mercury Observation System

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available The Global Mercury Observation System (GMOS Project includes a specific Work Package aimed at developing tools (i.e. databases, catalogs, services to collect GMOS datasets, harvest mercury databases, and offer services like search, view, and download spatial datasets from the GMOS portal (www.gmos.eu. The system will be developed under the framework of the Infrastructure for Spatial Information in the European Community (INSPIRE Directive and the Directive 2003/4/EC on public access to environmental information, which both aim to make relevant, harmonized, high-quality geographic information available to support the formulation, implementation, monitoring, and evaluation of policies and activities that have a direct or indirect impact on the environment. Three databases have been proposed (on emissions, field data and model results, and each will be equipped with state-of-the-art, open-source software to allow for the highest performance possible. Web-based user-interfaces and prototype applications will be developed to demonstrate the potential of blending different datasets from different servers for environmental assessment studies. Several services (i.e. catalog browsers, WMS and WCS services, web GIS services will be developed to facilitate data integration, data re-use, and data exchange within and beyond the GMOS project. Different types of measurement and model datasets provided by project partners and other sources will be integrated into PostgreSQL-PostGIS, harmonized by creating INSPIRE-compliant metadata and made available to a larger community of stakeholders, policy makers, scientists, and NGOs (as well as to other public and private institutions, as dictated by the Directive 2003/4/EC. Since interoperability is a central concept for the Global Earth Observation System of Systems (GEOSS, the Global Monitoring for Environmental and Security (GMES and the INSPIRE Directive, guidelines developed in these three frameworks will be

  12. Calculation of electromagnetic observables in few-body systems

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-10-01

    An introduction to the calculation of electromagnetic observables in few-body systems is given by studying two examples in the trinucleon system: (1) the elastic electron scattering charge form factor in configuration space and momentum space and (2) the two-body photodisintegration of 3 H leading to a neutron-deuteron final state in a separable potential formalism. In the discussion of charge form factor calculations, a number of related topics are touched upon: the relation of structure in Psi to the properties of simple NN forces, the Faddeev and Schroedinger solution to the harmonic oscillator problem, the Rosenbluth formula for electron scattering from a spin-1/2 nuclear target (e.g., the proton or 3 H), and the charge density operator. Formulae for 3 He and 3 H charge form factors in a central force approximation are given in configuration and momentum space. The physics of these form factors is discussed in light of results from realistic nucleon-nucleon potential model calculations, including the effects of two-pion-exchange three-body force models. Topics covered are the rms charge densities, and the Coulomb energy of 3 He. In the discussion of the 3 H photodisintegration, the Siegert form of the electric dipole operator (in the long wave length limit) is derived as are the separable potential equations which describe the off-shell transition amplitudes which connect nucleon-plus-corrected-pair states. Expressions for the Born amplitudes required to complete the two-body photodisintegration amplitude calculation are given. Numerical results for a model central force problem are discussed and compared with an approximate calculation. Comparisons with 3 H(γ,n)d and 3 He(γ,p)d data are made, and the significant features of the exact theoretical calculation are outlined. 61 refs., 26 figs

  13. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  14. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.

    1997-01-01

    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  15. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.

    1995-01-01

    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  16. Big Data in the Earth Observing System Data and Information System

    Science.gov (United States)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark

    2016-01-01

    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  17. From value chain to value constellation: designing interactive strategy.

    Science.gov (United States)

    Normann, R; Ramírez, R

    1993-01-01

    In today's fast-changing competitive environment, strategy is no longer a matter of positioning a fixed set of activities along that old industrial model, the value chain. Successful companies increasingly do not just add value, they reinvent it. The key strategic task is to reconfigure roles and relationships among a constellation of actors--suppliers, partners, customers--in order to mobilize the creation of value by new combinations of players. What is so different about this new logic of value? It breaks down the distinction between products and services and combines them into activity-based "offerings" from which customers can create value for themselves. But as potential offerings grow more complex, so do the relationships necessary to create them. As a result, a company's strategic task becomes the ongoing reconfiguration and integration of its competencies and customers. The authors provide three illustrations of these new rules of strategy. IKEA has blossomed into the world's largest retailer of home furnishings by redefining the relationships and organizational practices of the furniture business. Danish pharmacies and their national association have used the opportunity of health care reform to reconfigure their relationships with customers, doctors, hospitals, drug manufacturers, and with Danish and international health organizations to enlarge their role, competencies, and profits. French public-service concessionaires have mastered the art of conducting a creative dialogue between their customers--local governments in France and around the world--and a perpetually expanding set of infrastructure competencies.

  18. Optimal Earth's reentry disposal of the Galileo constellation

    Science.gov (United States)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  19. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  20. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    Science.gov (United States)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  1. Semantics-enabled knowledge management for global Earth observation system of systems

    Science.gov (United States)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.

    2007-10-01

    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  2. Observing the observers - uncovering the role of values in research assessments of organic food systems

    DEFF Research Database (Denmark)

    Thorsøe, Martin Hermansen; Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    Assessing the overall effects of organic food systems is important, but also a challenge because organic food systems cannot be fully assessed from one single research perspective. The aim of our research was to determine the role of values in assessments of organic food systems as a basis...... for discussing the implications of combining multiple perspectives in overall sustainability assessments of the food system. We explored how values were embedded in five research perspectives: (1) food science, (2) discourse analysis, (3) phenomenology, (4) neoclassical welfare economics, and (5) actor......-network theory. Value has various meanings according to different scientific perspectives. A strategy for including and balancing different forms of knowledge in overall assessments of the effects of food systems is needed. Based on the analysis, we recommend four courses of action: (1) elucidate values...

  3. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    Science.gov (United States)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  4. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    Science.gov (United States)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  5. The Demonstrator for the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [www.epos.cineca.it

  6. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  7. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  8. The Action Observation System when Observing Hand Actions in Autism and Typical Development.

    Science.gov (United States)

    Pokorny, Jennifer J; Hatt, Naomi V; Colombi, Costanza; Vivanti, Giacomo; Rogers, Sally J; Rivera, Susan M

    2015-06-01

    Social impairments in individuals with autism spectrum disorders (ASD) may be in part due to difficulty perceiving and recognizing the actions of others. Evidence from imitation studies, which involves both observation and execution of an action, suggests differences, in individuals with ASD, between the ability to imitate goal-directed actions involving objects (transitive actions) and the ability to imitate actions that do not involve objects (intransitive actions). In the present study, we examined whether there were differences in how ASD adolescents encoded transitive and intransitive actions compared to typically developing (TD) adolescents, by having participants view videos of a hand reaching across a screen toward an object or to where an object would be while functional magnetic resonance images were collected. Analyses focused on areas within the action observation network (AON), which is activated during the observation of actions performed by others. We hypothesized that the AON would differentiate transitive from intransitive actions only in the ASD group. However, results revealed that object presence modulated activity in the right inferior frontal gyrus and supramarginal gyrus of the TD group, a differentiation that was not seen in the ASD group. Furthermore, there were no significant group differences between the TD and ASD groups in any of the conditions. This suggests that there is not a global deficit of the AON in individuals with ASD while observing transitive and intransitive actions. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Coordinated Regional Benefit Studies of Coastal Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Luger, Michael; Wieand, Ken; Pulsipher, Allan; Pendleton, Linwood; Wellman, Katherine; Pelsoci, Tom

    2003-01-01

    .... The authors will first produce regional "inventories" of ocean observation user sectors, including information about the physical and economic scale of their activities, how products from improved...

  10. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions

    Science.gov (United States)

    Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.

    2016-12-01

    Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.

  11. Conducting Classroom Observations : Stallings 'Classroom Snapshot' Observation System for an Electronic Tablet

    OpenAIRE

    World Bank Group

    2017-01-01

    The “Stallings Classroom Snapshot” instrument, technically called the “Stanford Research Institute Classroom Observation System”, was developed by Professor Jane Stallings for research on the efficiency and quality of basic education teachers in the United States in the 1970s. (Stallings, 1977; Stallings and Mohlman, 1988). The Stallings instrument generates robust quantitative data on the interaction of teachers and students in the classroom, with a high degree of inter-rater rel...

  12. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    Science.gov (United States)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  13. Typology of person-environment fit constellations: a platform addressing accessibility problems in the built environment for people with functional limitations.

    Science.gov (United States)

    Slaug, Björn; Schilling, Oliver; Iwarsson, Susanne; Carlsson, Gunilla

    2015-09-02

    Making the built environment accessible for all regardless of functional capacity is an important goal for public health efforts. Considerable impediments to achieving this goal suggest the need for valid measurements of acccessibility and for greater attention to the complexity of person-environment fit issues. To address these needs, this study aimed to provide a methodological platform, useful for further research and instrument development within accessibility research. This was accomplished by the construction of a typology of problematic person-environment fit constellations, utilizing an existing methodology developed to assess and analyze accessibility problems in the built environment. By means of qualitative review and statistical methods we classified the person-environment fit components covered by an existing application which targets housing accessibility: the Housing Enabler (HE) instrument. The International Classification of Functioning, Disability and Health (ICF) was used as a conceptual framework. Qualitative classification principles were based on conceptual similarities and for quantitative analysis of similarities, Principal Component Analysis was carried out. We present a typology of problematic person-environment fit constellations classified along three dimensions: 1) accessibility problem range and severity 2) aspects of functioning 3) environmental context. As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised. The main contribution of this study is the proposed typology of person-environment fit constellations. The typology provides a methodological platform for the identification and quantification of problematic person-environment fit constellations. Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities. The typology also highlights how relations between aspects of functioning

  14. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  15. Intelligent Architecture for Enhanced Observability for Active Distribution System

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2017-01-01

    There is a rapid increase of renewable energy resources (RE) and demand response resources (DRR) in the distribution networks. This is challenging for the reliable and stable operation of the grid. So, to ensure secure, optimized and economical operation in such active distribution grids they need...... for active distribution network which satisfies the need for higher observability reach with less field observation. Improved state estimation with composite load forecasting model is aimed for enhanced observability. This paper also summarizes the application of intelligent architecture in the operation...

  16. Constellation Program Lessons Learned. Volume 2; Detailed Lessons Learned

    Science.gov (United States)

    Rhatigan, Jennifer; Neubek, Deborah J.; Thomas, L. Dale

    2011-01-01

    These lessons learned are part of a suite of hardware, software, test results, designs, knowledge base, and documentation that comprises the legacy of the Constellation Program. The context, summary information, and lessons learned are presented in a factual format, as known and described at the time. While our opinions might be discernable in the context, we have avoided all but factually sustainable statements. Statements should not be viewed as being either positive or negative; their value lies in what we did and what we learned that is worthy of passing on. The lessons include both "dos" and "don ts." In many cases, one person s "do" can be viewed as another person s "don t"; therefore, we have attempted to capture both perspectives when applicable and useful. While Volume I summarizes the views of those who managed the program, this Volume II encompasses the views at the working level, describing how the program challenges manifested in day-to-day activities. Here we see themes that were perhaps hinted at, but not completely addressed, in Volume I: unintended consequences of policies that worked well at higher levels but lacked proper implementation at the working level; long-term effects of the "generation gap" in human space flight development, the need to demonstrate early successes at the expense of thorough planning, and the consequences of problems and challenges not yet addressed because other problems and challenges were more immediate or manifest. Not all lessons learned have the benefit of being operationally vetted, since the program was cancelled shortly after Preliminary Design Review. We avoid making statements about operational consequences (with the exception of testing and test flights that did occur), but we do attempt to provide insight into how operational thinking influenced design and testing. The lessons have been formatted with a description, along with supporting information, a succinct statement of the lesson learned, and

  17. Image quality validation of Sentinel 2 Level-1 products: performance status at the beginning of the constellation routine phase

    Science.gov (United States)

    Francesconi, Benjamin; Neveu-VanMalle, Marion; Espesset, Aude; Alhammoud, Bahjat; Bouzinac, Catherine; Clerc, Sébastien; Gascon, Ferran

    2017-09-01

    Sentinel-2 is an Earth Observation mission developed by the European Space Agency (ESA) in the frame of the Copernicus program of the European Commission. The mission is based on a constellation of 2-satellites: Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017. It offers an unprecedented combination of systematic global coverage of land and coastal areas, a high revisit of five days at the equator and 2 days at mid-latitudes under the same viewing conditions, high spatial resolution, and a wide field of view for multispectral observations from 13 bands in the visible, near infrared and short wave infrared range of the electromagnetic spectrum. The mission performances are routinely and closely monitored by the S2 Mission Performance Centre (MPC), including a consortium of Expert Support Laboratories (ESL). This publication focuses on the Sentinel-2 Level-1 product quality validation activities performed by the MPC. It presents an up-to-date status of the Level-1 mission performances at the beginning of the constellation routine phase. Level-1 performance validations routinely performed cover Level-1 Radiometric Validation (Equalisation Validation, Absolute Radiometry Vicarious Validation, Absolute Radiometry Cross-Mission Validation, Multi-temporal Relative Radiometry Vicarious Validation and SNR Validation), and Level-1 Geometric Validation (Geolocation Uncertainty Validation, Multi-spectral Registration Uncertainty Validation and Multi-temporal Registration Uncertainty Validation). Overall, the Sentinel-2 mission is proving very successful in terms of product quality thereby fulfilling the promises of the Copernicus program.

  18. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  19. Multi-Planetary Systems: Observations and Models of Dynamical Interactions

    Science.gov (United States)

    Lissauer, Jack J.

    2018-01-01

    More than 600 multi-planet systems are known. The vast majority of these systems have been discovered by NASA's Kepler spacecraft, but dozens were found using the Doppler technique, the first multi-exoplanet system was identified through pulsar timing, and the most massive system has been found using imaging. More than one-third of the 4000+ planet candidates found by NASA's Kepler spacecraft are associated with target stars that have more than one planet candidate, and the large number of such Kepler "multis" tells us that flat multiplanet systems like our Solar System are common. Virtually all of Kepler candidate multis are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed multi-exoplanet systems will also be discussed.HR 8799's four massive planets orbit tens of AU from their host star and travel on nearly circular orbits. PSR B1257+12 has three much smaller planets orbiting close to a neutron star. Both represent extremes and show that planet formation is a robust process that produces a diversity of outcomes. Although both exomoons and Trojan (triangle Lagrange point) planets have been searched for, neither has yet been found.

  20. Partial Linearization of Mechanical Systems with Application to Observer Design

    NARCIS (Netherlands)

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  1. Observation-Driven Configuration of Complex Software Systems

    Science.gov (United States)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  2. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  3. Observing the Anthropocene from Space

    Science.gov (United States)

    Dittus, Hansjörg

    2016-07-01

    Influence of mankind on Earth's climate is evident. The growing population using the resources available, especially by burning goal, oil and gas, changes the composition of the Earth's atmosphere with the result of a continuously increasing temperature. Effects are not limited to the regional scale but are evident on the whole planet, meanwhile named Anthropocene. According to this global influence, it's necessary to also extend monitoring to the entire planet. Space-based observation systems are not limited by any artificial borders and are in principle able, to cover the whole Earth. In principle, two different ways of observation can be selected: Either a dedicated spacecraft will be send into low earth orbit (LEO) or existing platforms are used. Advantages of satellites are the more or less freely selectable orbit (with orbits covering also the polar regions) and the possible adaption of spacecraft platform for the dedicated instrument. On the other hand platforms like the ISS space station enable continuous long term coverage with different instruments. The drawback of an only limited coverage based on the orbit inclination is made up by the possibility to service systems on the station. Furthermore different generations of sensors can be run in parallel and therefore cross calibrated if needed. This paper reviews the currently available sensors types and discusses potential future needs. Included in this discussion is the international space station as an already available platform for earth observation. Furthermore, discussion should also take into account, that an increasing number of constellations with dozens or even thousand satellites are planned. Are these constellations also an option for an increased temporal and spatial monitoring of the Earth?

  4. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    Science.gov (United States)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2017-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  5. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  6. Controllers with Minimal Observation Power (Application to Timed Systems)

    DEFF Research Database (Denmark)

    Bulychev, Petr; Cassez, Franck; David, Alexandre

    2012-01-01

    We consider the problem of controller synthesis under imper- fect information in a setting where there is a set of available observable predicates equipped with a cost function. The problem that we address is the computation of a subset of predicates sufficient for control and whose cost is minimal...

  7. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  8. Tuberculoid leprosy masquerading as systemic lupus erythematosus: an interesting observation.

    Science.gov (United States)

    Zawar, Vijay; Kumavat, Shrikant; Pawar, Manoj; Desai, Dipti

    2017-09-01

    Leprosy is a chronic granulomatous infectious multisystem disease that may present with protean manifestations. It mimics many systemic and dermatological disorders. Here we report a case in which an elderly female presented with malar rash, intermittent fever, and arthralgia. Her diagnosis was significantly delayed due to a close clinical resemblance to systemic lupus erythematosus. It is important to be aware of such manifestations of leprosy and improve awareness of it in clinicians to avoid misdiagnosis and delay in treatment.

  9. Parts of the Whole: Observing the State of the System

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2010-01-01

    Full Text Available This column draws on the approach of statistician J. Edwards Deming to analyze sources and consequences of variation in an education system. Educational systems are not immune from the effects of poor statistical control, which makes it difficult for teachers to teach effectively and for managers such as principals to improve on school performance. It is also argued that the need for statistical control in these areas is in tension, if not outright conflict, with our goals for educating students.

  10. Mid- and long-term effects of family constellation seminars in a general population sample: 8- and 12-month follow-up.

    Science.gov (United States)

    Hunger, Christina; Weinhold, Jan; Bornhäuser, Annette; Link, Leoni; Schweitzer, Jochen

    2015-06-01

    In a previous randomized controlled trial (RCT), short-term efficacy of family constellation seminars (FCSs) in a general population sample was demonstrated. In this article, we examined mid- and long-term stability of these effects. Participants were 104 adults (M = 47 years; SD = 9; 84% female) who were part of the intervention group in the original RCT (3-day FCS; 64 active participants and 40 observing participants). FCSs were carried out according to manuals. It was predicted that FCSs would improve psychological functioning (Outcome Questionnaire OQ-45.2) at 8- and 12-month follow-up. Additionally, we assessed the effects of FCSs on psychological distress, motivational incongruence, individuals' experience in their personal social systems, and overall goal attainment. Participants yielded significant improvement in psychological functioning (d = 0.41 at 8-month follow-up, p = .000; d = 0.40 at 12-month follow-up, p = .000). Results were confirmed for psychological distress, motivational incongruence, the participants' experience in their personal social systems, and overall goal attainment. No adverse events were reported. This study provides first evidence for the mid- and long-term efficacy of FCSs in a nonclinical population. The implications of the findings are discussed. © 2014 Family Process Institute.

  11. New generation lidar systems for eye safe full time observations

    Science.gov (United States)

    Spinhirne, James D.

    1995-01-01

    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  12. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  13. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  14. Radiated EMC& EMI Management During Design Qualification and Test Phases on LEO Satellites Constellation

    Science.gov (United States)

    Blondeaux, H.; Terral, M.; Gutierrez-Galvan, R.; Baud, C.

    2016-05-01

    The aim of the proposed paper is to present the global radiated EMC/EMI approach applied by Thales Alenia Space in the frame of a telecommunication Low Earth Orbit (LEO) satellites constellation program. The paper will present this approach in term of analyses, of specific characterisation and of sub-system and satellite tests since first design reviews up-to satellite qualification tests on Prototype Flight Model (PFM) and to production tests on reduced FMs. The global aim is : 1 - to reduce risk and cost (units EMC delta qualification, EMC tests at satellite level for the 81 Space Vehicles (SV) through appropriated EMC analyses (in term of methodologies and contours) provided in the frame of design reviews.2 - to early anticipate potential critical case to reduce the impact in term of engineering/qualification/test extra cost and of schedule.3 - to secure/assure the payload and SV design/layout.4 - to define and optimize the EMC/EMI test campaigns to be performed on Prototype Flight Model (PFM) for complete qualification and on some FMs for industrial qualification/validation.The last part of the paper is dedicated to system Bite Error Rate (BER) functional test performed on PFM SV to demonstrate the final compatibility between the three on-board payloads and to the Internal EMC tests performed on PFM and some FMs to demonstrate the SV panel RF shielding efficiency before and after environmental tests and the Thales Alenia Space (TAS) and Orbital AKT (OATK) workmanships reproducibility.

  15. Observation and control system of the thermohydraulic assays laboratory

    International Nuclear Information System (INIS)

    Santome, D.; Hualde, R.

    1990-01-01

    The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author) [es

  16. ℋ- adaptive observer design and parameter identification for a class of nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima; Voos, Holger; Laleg-Kirati, Taous-Meriem; Darouach, Mohamed

    2014-01-01

    In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown

  17. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng

    2013-01-01

    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  18. Relaxation dynamics of local observables in integrable systems

    NARCIS (Netherlands)

    De Nardis, J.; Piroli, L.; Caux, J.-S.

    2015-01-01

    We show, using the quench action approach (Caux and Essler 2013 Phys. Rev. Lett. 110 257203), that the whole post-quench time evolution of an integrable system in the thermodynamic limit can be computed with a minimal set of data which are encoded in what we denote the generalized single-particle

  19. Distributed Fuzzy and Stochastic Observers for Nonlinear Systems

    NARCIS (Netherlands)

    Lendek, Z.

    2009-01-01

    Many problems in decision making, control, and monitoring require that all variables of interest, usually states and parameters of the system, are known at all times. However, in practical situations, not all variables are measurable or they are not measured due to technical or economical reasons.

  20. Observation of Subdiffusion in a Disordered Interacting System

    International Nuclear Information System (INIS)

    Lucioni, E.; Deissler, B.; Tanzi, L.; Roati, G.; Zaccanti, M.; Inguscio, M.; Modugno, G.; Modugno, M.; Larcher, M.; Dalfovo, F.

    2011-01-01

    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.

  1. Taming Big Data Variety in the Earth Observing System Data and Information System

    Science.gov (United States)

    Lynnes, Christopher; Walter, Jeff

    2015-01-01

    Although the volume of the remote sensing data managed by the Earth Observing System Data and Information System is formidable, an oft-overlooked challenge is the variety of data. The diversity in satellite instruments, science disciplines and user communities drives cost as much or more as the data volume. Several strategies are used to tame this variety: data allocation to distinct centers of expertise; a common metadata repository for discovery, data format standards and conventions; and services that further abstract the variations in data.

  2. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  3. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Climate Science Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, CJ. Y.

    2012-01-01

    The "global warming hiatus" since the 1998 El Nino, highlighted by Meehl et al., and the resulting "missing energy" problem highlighted by Trenberth et al., has opened the door to a more fundamental view of climate change than mere surface air temperature. That new view is based on two variables which are strongly correlated: the rate of change of ocean heat content d(OHC)/dt; and Earth Radiation Imbalance (ERI) at the top of the atmosphere, whose guesstimated range is 0.4 to 0.9 Watts per square meters (this imbalance being mainly due to increasing CO2). The Argo float array is making better and better measurements of OHC. But existing satellite systems cannot measure ERI to even one significant digit. So, climate model predictions of ERI are used in place of real measurements of it, and the satellite data are tuned to the climate model predictions. Some oceanographers say "just depend on Argo for understanding the global warming hiatus and the missing energy", but we don't think this is a good idea because d(OHC)/dt and ERI have different time scales and are never perfectly correlated. We think the ERB community needs to step up to measuring ERI correctly, just as oceanographers have deployed Argo to measure OHC correctly. This talk will overview a proposed constellation of 66 Earth radiation budget instruments, hosted on Iridium satellites, that will actually be able to measure ERI to at least one significant digit, thus enabling a crucial test of climate models. This constellation will also be able to provide ERI at two-hourly time scales and 500-km spatial scales without extrapolations from uncalibrated narrowband geostationary instruments, using the highly successful methods of GRACE to obtain spatial resolution. This high time resolution would make ERI a synoptic variable like temperature, and allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes and even brief excursions of Total Solar Irradiance. Time permitting, we

  4. Open Source Dataturbine (OSDT) Android Sensorpod in Environmental Observing Systems

    Science.gov (United States)

    Fountain, T. R.; Shin, P.; Tilak, S.; Trinh, T.; Smith, J.; Kram, S.

    2014-12-01

    The OSDT Android SensorPod is a custom-designed mobile computing platform for assembling wireless sensor networks for environmental monitoring applications. Funded by an award from the Gordon and Betty Moore Foundation, the OSDT SensorPod represents a significant technological advance in the application of mobile and cloud computing technologies to near-real-time applications in environmental science, natural resources management, and disaster response and recovery. It provides a modular architecture based on open standards and open-source software that allows system developers to align their projects with industry best practices and technology trends, while avoiding commercial vendor lock-in to expensive proprietary software and hardware systems. The integration of mobile and cloud-computing infrastructure represents a disruptive technology in the field of environmental science, since basic assumptions about technology requirements are now open to revision, e.g., the roles of special purpose data loggers and dedicated site infrastructure. The OSDT Android SensorPod was designed with these considerations in mind, and the resulting system exhibits the following characteristics - it is flexible, efficient and robust. The system was developed and tested in the three science applications: 1) a fresh water limnology deployment in Wisconsin, 2) a near coastal marine science deployment at the UCSD Scripps Pier, and 3) a terrestrial ecological deployment in the mountains of Taiwan. As part of a public education and outreach effort, a Facebook page with daily ocean pH measurements from the UCSD Scripps pier was developed. Wireless sensor networks and the virtualization of data and network services is the future of environmental science infrastructure. The OSDT Android SensorPod was designed and developed to harness these new technology developments for environmental monitoring applications.

  5. Ezilla Cloud Service with Cassandra Database for Sensor Observation System

    OpenAIRE

    Kuo-Yang Cheng; Yi-Lun Pan; Chang-Hsing Wu; His-En Yu; Hui-Shan Chen; Weicheng Huang

    2012-01-01

    The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and sp...

  6. Automated anaesthesia record systems, observations on future trends of development.

    Science.gov (United States)

    Heinrichs, W

    1995-02-01

    The introduction of electronic anaesthesia documentation systems was attempted as early as in 1979, although their efficient application has become reality only in the past few years. Today, documentation technology is offered by most of the monitor manufacturers and new systems are being developed by various working groups. The advantages of the electronic protocol are apparent: Continuous high quality documentation, comparability of data due to the availability of a anaesthesia data bank, reduction of the workload of the anaesthesia staff and availability of new additional information. Disadvantages of the electronic protocol have also been discussed. Typically, by going through the process of entering data on the course of the anaesthetic procedure on the protocol sheet, the information is mentally absorbed and evaluated by the anaesthetist. This mental processing of information may, however, be missing when the data are recorded fully automatically--without active involvement on the part of the anaesthetist. It seems that electronic anaesthesia protocols will be required in the near future. The advantages of accurate documentation and quality control in the presence of careful planning will outweight cost considerations. However, at this time, almost none of the commercially available systems have matured to a point where their purchase can be recommended without reservation. There is still a lack of standards for the subsequent exchange of data and a solution to a number of ergonomic problems still remains to be found.

  7. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  8. Establishment and Discontinuance Criteria for Automated Weather Observing Systems (AWOS).

    Science.gov (United States)

    1983-05-01

    supplement the probable cause(s).* Referring back to Figure 20, it is observed that all weat-her cause citations combined from 1975 through 1979 accounted...direction 70 p-rcynt of all arrivals. For the other 30 percent of all arrivals, it i7 r;s-;Lind that the Unicorn is not operating and that no other... vc P. 1W4 ui W Z L C 0e 14 ..t w 0 .- Z) LWWE W>-C" z .. JIL OC I.- -- =Z)- z " -- A tl 0 L- W < uo- z = - e a * w Z0)WI.>Z . - N m =) m " =r P- a3

  9. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association

    Science.gov (United States)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.

    2009-05-01

    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  10. Observations on algal populations in an experimental maturation pond system

    CSIR Research Space (South Africa)

    Shillinglaw, SN

    1977-01-01

    Full Text Available ?) of influent (HTE) and secondary pond. The arrows indicate the beginning of the noled algal concentration declines. 190 Water SA Vol. 3 No. 4 October 1977 intermittent presence of some factor which suppresses algal growth and/or removes algal cells from... the system at a very rapid rate. Another possibility is that an algal growth suppres sor is almost continuously present and only when the suppres sing factor is intermittently ahsent, do the algal concentrations exhihit a peak. Based on the results...

  11. Transitions Towards Operational Space-Based Ocean Observations: From Single Research Missions into Series and Constellations

    Science.gov (United States)

    2011-02-16

    have formed the basis of sea ice concentration monitoring over last decades (see Breivik ct al. [20]). As for SST it is importance to secure the...J., Harrison D.E. and Stammer, D.. Eds., ESA Publication WPP- 306, 2010. 12 Gulev, S. Josey. S., Bourassa, M., Breivik , L.-A., Cronin M., Fairall...Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, 2010. 20 Breivik , L.-A.. Carrieres, T., Eastwood, S., Fleming, A., Girard-Ardhuin, F

  12. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  13. Blind Source Separation Algorithms Using Hyperbolic and Givens Rotations for High-Order QAM Constellations

    KAUST Repository

    Shah, Syed Awais Wahab

    2017-11-24

    This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.

  14. Cross Calibration of the GPS Constellation CXD Proton Data With GOES EPS

    Science.gov (United States)

    Carver, Matthew R.; Sullivan, John P.; Morley, Steven K.; Rodriguez, Juan V.

    2018-03-01

    Accurate proton flux measurements of the near-Earth environment are essential to the understanding of many phenomena which have a direct impact on our lives. Currently, there is only a small set of satellites capable of performing these measurements which makes certain studies and analyses difficult. This paper details the capabilities of the Combined X-ray Dosimeter (CXD), flown on 21 satellites of the Global Positioning System constellation, as it relates to proton measurements. We present a cross calibration of the CXD with the Energetic Particle Sensor (EPS) onboard the Geostationary Operational Environmental Satellite operated by the National Oceanic and Atmospheric Administration. By utilizing Solar Energetic Particle Events when both sets of satellites were operational we have orders of magnitude in flux and energy to compare against. Robust statistical analyses show that the CXD and Geostationary Operational Environmental Satellite flux calculations are similar and that for proton energies >30 MeV the CXD fluxes are on average within 20% of EPS. Although the CXD has a response to protons as low as 6 MeV, the sensitivity at energies below 20 MeV is reduced and so flux comparisons of these are generally worse. Integral flux values >10 MeV are typically within 40% of EPS. These calibrated CXD data sets will give researchers capabilities to study solar proton access to the inner magnetosphere down to L 4 near the equatorial plane at high temporal cadence.

  15. Blind Source Separation Algorithms Using Hyperbolic and Givens Rotations for High-Order QAM Constellations

    KAUST Repository

    Shah, Syed Awais Wahab; Abed-Meraim, Karim; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.

  16. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    International Nuclear Information System (INIS)

    Ciais, P.; Peregon, A.; Chevallier, F.; Bopp, L.; Breon, F.M.; Broquet, G.; Luyssaert, S.; Moulin, C.; Paris, J.D.; Poulter, B.; Rivier, L.; Wang, R.

    2014-01-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policy makers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO 2 and CH 4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher

  17. An Observed Voting System Based On Biometric Technique

    Directory of Open Access Journals (Sweden)

    B. Devikiruba

    2015-08-01

    Full Text Available ABSTRACT This article describes a computational framework which can run almost on every computer connected to an IP based network to study biometric techniques. This paper discusses with a system protecting confidential information puts strong security demands on the identification. Biometry provides us with a user-friendly method for this identification and is becoming a competitor for current identification mechanisms. The experimentation section focuses on biometric verification specifically based on fingerprints. This article should be read as a warning to those thinking of using methods of identification without first examine the technical opportunities for compromising mechanisms and the associated legal consequences. The development is based on the java language that easily improves software packages that is useful to test new control techniques.

  18. Observing the stars. Love in the age of systems

    Directory of Open Access Journals (Sweden)

    Kjetil Ansgar Jakobsen

    2010-11-01

    Full Text Available A number of scholars have demonstrated how the cultural industry involves people in a participatory culture in which users actively construct personal identities. However, the link between a public of mass-mediated entertainment and the private sphere of intimacy and personal identity is a paradox. A consistent theory to clarify that paradox is lacking in the cultural studies literature. I suggest that social systems theory in the Luhmannian tradition may explain in economical terms why the continuous performance and intensification of the paradox of mass-mediated intimacy is a major trait of contemporary culture. Nevertheless, the article does not address normative issues. It is neither an apology for the culture industry, nor a condemnation. The aim is simply to bring one of the most powerful tools of analysis in social theory today to bear on an aspect of modern society which is as important as it is baffling.

  19. Mt Pamola, the Electromagnetic Field, EMF, Thunderbird, Mothman and Environmental Monitoring Signals Via the Southern Constellation Phoenix As Detectable In Potato Cave, Acton, MA.

    Science.gov (United States)

    Pecora, Andrea S.; Pawa Matagamon, Sagamo

    2004-03-01

    Just below the peak of Mt Pamola in ME, at the juncture with the Knife Edge, downwardly arcing segments of Earths EMF, are manifested by a faint lotus-blossom-blue, neon-like glow at 3 pm some sunny afternoons. Similarly hued glows, and horizontal but variable-arced segmented trajectories, are somewhat periodically detectable under certain conditions in chambers at Acton, MA. These phenomena curiously have the filled-in profile that precisely matches the outline of the southern constellation Phoenix, which is never visible above the nighttime horizon locally. The stick-figure representation of the constellation Canis Major can also be detected in a chamber at Americas Stonehenge, two hours before it has arisen, at certain times. The sequence of phenomena visible at Acton correctly correlates with eclipses and other alignments of our solar system. Phoenix, a.k.a. Thunderbird and Mothman, is detectable elsewhere in MA.

  20. Mutual event observations of solar system objects by SRC on Mars Express. Analysis and release of observations

    Science.gov (United States)

    Ziese, R.; Willner, K.

    2018-06-01

    Context. Both Martian moons, Phobos and Deimos, have been observed during several imaging campaigns by the Super Resolution Channel (SRC) on the Mars Express probe. Several tens of images are obtained during mutual event observations - when the Martian moons are both observed or together with another solar system body. These observations provide new opportunities to determine the bodies' positions in their orbits. Aims: A method was sought to automate the observation of the positions of the imaged bodies. Within one image sequence a similarly accurate localization of the objects in all images should be possible. Methods: Shape models of Phobos and Deimos are applied to simulate the appearance of the bodies in the images. Matching the illuminated simulation against the observation provides a reliable determination of the bodies' location within the image. To enhance the matching confidence several corrections need to be applied to the simulation to closely reconstruct the observation. Results: A list of 884 relative positions between the different objects is provided through the Centre de Données astronomiques de Strasbourg (CDS). Tables A.1-A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A15

  1. Systemic lupus erythematosus observations of travel burden: A qualitative inquiry.

    Science.gov (United States)

    Williams, Edith M; Ortiz, Kasim; Flournoy-Floyd, Minnjuan; Bruner, Larisa; Kamen, Diane

    2015-09-01

    Explorations of travel impediments among patients suffering from rheumatic diseases have been very limited. Research has consistently indicated a shortage of rheumatologists, resulting in patients potentially having to travel long distances for care. The purpose of our study was to explore how systemic lupus erythematosus (SLE) patients experience travel issues differentially by race and socio-economic status. We conducted semi-structured interviews and a brief demographic survey with 10 patients diagnosed with SLE. Interview transcripts were coded and analyzed using NVivo Analysis Software to facilitate the reporting of recurrent themes and supporting quotations, and an initial codebook was independently developed by two researchers on the study team and then verified together. Patients described three major areas of concern with respect to travel burden in accessing their rheumatologists: reliance on caregivers; meeting financial priorities; and pain and physical limitations. Our data suggest general traveling challenges interfering with medical appointment compliance for several participants and the importance of socio-economic issues when considering travel issues. This study highlights an important area with implications for adherence to medical appointments and participation in research among patients with SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  2. Rebuilding Afghanistan’s Higher Educational System: Observations from Kabul

    Directory of Open Access Journals (Sweden)

    MICHAELH. ROMANOWSKI

    2007-03-01

    Full Text Available This paper describes the crucial issues and challenges facing Afghanistan’s universities as they begin the demanding task of rebuilding and restructuring their university system after two decades of war and civil unrest. The setting for this qualitative study is a four-day professional development conference for Afghan university presidents and academic deans sponsored and funded by the United Nations Educational, Scientific and Cultural Organization and the Afghanistan Ministry of Higher Education. Cooperative Studies (an NGO, not-for-profit educational organization located in Kansas City provided a team of academics to Kabul, Afghanistan, to offer professional development workshops. Using the Grounded Theory Methodology as a theoretical framework for this research, data was derived from interactive sessions, questionnaires, informal dialogue, small group sessions and question and answer sessions; the perspectives of the 39 Afghan academic leaders are presented as they describe the problems facing university administrators in their country today. Findings identify these challenges and center on 1 the lack of autonomy; 2 the need for qualified faculty; 3 concerns regarding students’ access and preparation; and 4 concerns about funding and budget issues. Based on these findings, policy suggestions and recommendations are provided.

  3. Observation of CP violation in the B(0) meson system.

    Science.gov (United States)

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Zisman, M S; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Laplace, S; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de La Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel De Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Berger, J P; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Dorser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Hryn'ova, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langennegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Seeman, J T; Serbo, V V; Snyder, S R; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wienands, U; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; DiGirolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricci, G; Lanceri, L; Pompili, A; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Zobernig, H; Kordich, T M; Neal, H

    2001-08-27

    We present an updated measurement of time-dependent CP-violating asymmetries in neutral B decays with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. This result uses an additional sample of Upsilon(4S) decays collected in 2001, bringing the data available to 32 x 10(6) BB macro pairs. We select events in which one neutral B meson is fully reconstructed in a final state containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2 beta, is derived from the decay time distributions in such events. The result sin2 beta = 0.59+/-0.14(stat)+/-0.05(syst) establishes CP violation in the B(0) meson system. We also determine absolute value of lambda = 0.93+/-0.09(stat)+/-0.03(syst), consistent with no direct CP violation.

  4. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  5. Asteroids in the Inner Solar System - Observable Properties

    Science.gov (United States)

    Tabachnik, S. A.; Evans, N. W.

    2000-12-01

    This paper presents synthetic observations of long-lived, co-orbiting asteroids of Mercury, Venus, the Earth and Mars. Our sample is constructed by taking the limiting semimajor axes, differential longitudes and inclinations for long-lived stability provided by simulations. The intervals are randomly populated with values to create initial conditions. These orbits are re-simulated to check that they are stable and then re-sampled every 2.5 years for 1 million years. The Mercurian sample contains only horseshoe orbits, the Martian sample only tadpoles. For both Venus and the Earth, the greatest concentration of objects on the sky occurs close to the classical Lagrange points at heliocentric ecliptic longitudes of 60o and 300o. The distributions are broad especially if horseshoes are present in the sample. The full-width half maximum (FWHM) in heliocentric longitude for Venus is 325o and for the Earth is 328o. The mean and most common velocity of these co-orbiting satellites coincides with the mean motion of the parent planet, but again the spread is wide with a FWHM for Venus of 27.8" hr-1 and for the Earth of 21.0" hr-1. For Mars, the greatest concentration on the sky occurs at heliocentric ecliptic latitudes of +/- 12o. The peak of the velocity distribution occurs at 65" hr-1, significantly less than the Martian mean motion, while its FWHM is 32.3" hr-1. The case of Mercury is the hardest of all, as the greatest concentrations occur at heliocentric longitudes of 16.0o and 348.5o and so are different from the classical values. The fluctuating eccentricity of Mercury means that these objects can have velocities exceeding 1000" hr-1, although the most common velocity is 459" hr-1, which is much less than the Mercurian mean motion. A variety of search strategies are discussed, including wide-field CCD imaging, space satellites such as The Global Astrometry Interferometer for Astrophysics (GAIA), ground-based surveys like The Sloan Digital Sky Survey (SDSS), as well as

  6. Asteroids in the inner Solar system - II. Observable properties

    Science.gov (United States)

    Evans, N. W.; Tabachnik, S. A.

    2000-11-01

    This paper presents synthetic observations of long-lived coorbiting asteroids of Mercury, Venus, the Earth and Mars. Our sample is constructed by taking the limiting semimajor axes, differential longitudes and inclinations for long-lived stability provided by simulations. The intervals are randomly populated with values to create initial conditions. These orbits are re-simulated to check that they are stable and then re-sampled every 2.5yr for 1Myr. The Mercurian sample only contains horseshoe orbits, whereas the Martian sample only contains tadpoles. For both Venus and the Earth, the greatest concentration of objects on the sky occurs close to the classical Lagrange points at heliocentric ecliptic longitudes of 60° and 300°. The distributions are broad especially if horseshoes are present in the sample. The FWHM in heliocentric longitude for Venus is 325° and for the Earth is 328°. The mean and most common velocity of these coorbiting satellites coincides with the mean motion of the parent planet, but again the spread is wide with an FWHM of 27.8 and 21.0arcsech-1 for Venus and the Earth, respectively. For Mars, the greatest concentration on the sky occurs at heliocentric ecliptic latitudes of +/-12°. The peak of the velocity distribution occurs at 65arcsech-1, significantly less than the Martian mean motion, while its FWHM is 32.3arcsech-1. The case of Mercury is the hardest of all, as the greatest concentrations occur at heliocentric longitudes of 16.0° and 348.5° and so are different from the classical values. The fluctuating eccentricity of Mercury means that these objects can have velocities exceeding 1000arcsech-1 although the most common velocity is 459arcsech-1, which is much less than the Mercurian mean motion. A variety of search strategies are discussed, including wide-field CCD imaging, space satellites such as the Global Astrometry Interferometer for Astrophysics (GAIA), ground-based surveys like the Sloan Digital Sky Survey (SDSS), as well as

  7. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    Science.gov (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  8. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS)

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico

    2014-05-01

    The Group on Earth Observation (GEO) is a voluntary partnership of governments and international organizations launched in response to calls for action by the 2002 World Summit on Sustainable Development and by the G8 (Group of Eight) leading industrialized countries. These high-level meetings recognized that international collaboration is essential for exploiting the growing potential of Earth observations to support decision making in an increasingly complex and environmentally stressed world. To this aim is constructing the Global Earth Observation System of Systems (GEOSS) on the basis of a 10-Year Implementation Plan for the period 2005 to 2015 when it will become operational. As a large-scale integrated system handling large datasets as those provided by Earth Observation, GEOSS needs to face several challenges related to big data handling and big data infrastructures management. Referring to the traditional multiple Vs characteristics of Big Data (volume, variety, velocity, veracity and visualization) it is evident how most of them can be found in data handled by GEOSS. In particular, concerning Volume, Earth Observation already generates a large amount of data which can be estimated in the range of Petabytes (1015 bytes), with Exabytes (1018) already targeted. Moreover, the challenge is related not only to the data size, but also to the large amount of datasets (not necessarily having a big size) that systems need to manage. Variety is the other main challenge since datasets coming from different sensors, processed for different use-cases are published with highly heterogeneous metadata and data models, through different service interfaces. Innovative multidisciplinary applications need to access and use those datasets in a harmonized way. Moreover Earth Observation data are growing in size and variety at an exceptionally fast rate and new technologies and applications, including crowdsourcing, will even increase data volume and variety in the next future

  9. Multiscale Observation System for Sea Ice Drift and Deformation

    Science.gov (United States)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  10. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  11. A data delivery system for IMOS, the Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Roberts, K.; Ward, B. J.

    2010-09-01

    The Integrated Marine Observing System (IMOS, www.imos.org.au), an AUD 150 m 7-year project (2007-2013), is a distributed set of equipment and data-information services which, among many applications, collectively contribute to meeting the needs of marine climate research in Australia. The observing system provides data in the open oceans around Australia out to a few thousand kilometres as well as the coastal oceans through 11 facilities which effectively observe and measure the 4-dimensional ocean variability, and the physical and biological response of coastal and shelf seas around Australia. Through a national science rationale IMOS is organized as five regional nodes (Western Australia - WAIMOS, South Australian - SAIMOS, Tasmania - TASIMOS, New SouthWales - NSWIMOS and Queensland - QIMOS) surrounded by an oceanic node (Blue Water and Climate). Operationally IMOS is organized as 11 facilities (Argo Australia, Ships of Opportunity, Southern Ocean Automated Time Series Observations, Australian National Facility for Ocean Gliders, Autonomous Underwater Vehicle Facility, Australian National Mooring Network, Australian Coastal Ocean Radar Network, Australian Acoustic Tagging and Monitoring System, Facility for Automated Intelligent Monitoring of Marine Systems, eMarine Information Infrastructure and Satellite Remote Sensing) delivering data. IMOS data is freely available to the public. The data, a combination of near real-time and delayed mode, are made available to researchers through the electronic Marine Information Infrastructure (eMII). eMII utilises the Australian Academic Research Network (AARNET) to support a distributed database on OPeNDAP/THREDDS servers hosted by regional computing centres. IMOS instruments are described through the OGC Specification SensorML and where-ever possible data is in CF compliant netCDF format. Metadata, conforming to standard ISO 19115, is automatically harvested from the netCDF files and the metadata records catalogued in the

  12. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  13. Physics concept on the constellation type fissile fuels and its application to the prospective Th-232U Reactor

    International Nuclear Information System (INIS)

    Zhang, Jiahua

    1994-01-01

    In contrast with the conventional nuclear reactor which usually fuelled with on single fissile nuclide, a constellation type fissile fuels reactor consists of a parent nuclide such as 232 Th or 238 U and its whole family of neutron generated daughter nuclides. All of them are regarded as fissile fuels but of quite different fission ability. The concentration of each daughter nuclide is determined by its saturate concentration ratio with the parent nuclide. In such fuel system, the whole fuel consumed by neutron reaction almost completely results in fission products. In this article, some properties of such fuel system, determination of the saturate concentration of each daughter nuclide and applicability to Th- 233 U fueled reactor will be discussed. 3 refs., 1 tab., 2 figs

  14. NANOOS, the Northwest Association of Networked Ocean Observing Systems: a regional Integrated Ocean Observing System (IOOS) for the Pacific Northwest US

    Science.gov (United States)

    Newton, J.; Martin, D.; Kosro, M.

    2012-12-01

    NANOOS is the Northwest Association of Networked Ocean Observing Systems, the Pacific Northwest Regional Association of the United States Integrated Ocean Observing System (US IOOS). User driven since its inception in 2003, this regional observing system is responding to a variety of scientific and societal needs across its coastal ocean, estuaries, and shorelines. Regional priorities have been solicited and re-affirmed through active engagement with users and stakeholders. NANOOS membership is composed of an even mix of academic, governmental, industry, and non-profit organizations, who appoint representatives to the NANOOS Governing Council who confirm the priority applications of the observing system. NANOOS regional priorities are: Maritime Operations, Regional Fisheries, Ecosystem Assessment, Coastal Hazards, and Climate. NANOOS' regional coastal ocean observing system is implemented by seven partners (three universities, three state agencies, and one industry). Together, these partners conduct the observations, modeling, data management and communication, analysis products, education and outreach activities of NANOOS. Observations, designed to span coastal ocean, shorelines, and estuaries, include physical, chemical, biological and geological measurements. To date, modeling has been more limited in scope, but has provided the system with increased coverage for some parameters. The data management and communication system for NANOOS, led by the NANOOS Visualization System (NVS) is the cornerstone of the user interaction with NANOOS. NVS gives users access to observational data, both real time and archived, as well as modeling output. Given the diversity of user needs, measurements, and the complexity of the coastal environment, the challenge for the system is large. NANOOS' successes take advantage of technological advances, including real-time data transmission, profiling buoys, gliders, HF radars, and modeling. The most profound challenges NANOOS faces stem

  15. APM for a Constellation Intersatellite Link - EM Qualification and Lessons Learned

    Science.gov (United States)

    Hartel, Frank; Kozilek, Horst

    2016-01-01

    For an Intersatellite Link (ISL) of a future constellation program, a study phase was initiated by ESA to design a mechanism for Radio Frequency communication. Airbus DS Friedrichshafen (ADSF) proposed a design based on the Antenna Pointing Mechanism (APM) family with modifications that met the stated needs of the constellation. A qualification program was started beginning in September 2015 to verify the launch and thermal loads and the equipment performance (Radio Frequency, Pointing, Microvibration and Magnetic Moment). Technical challenges identified with the Engineering Model will be discussed within this paper.

  16. Factorization properties of the optimal signaling distribution of multi-dimensional QAM constellations

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren; Larsen, Knud J.

    2014-01-01

    In this work we study the properties of the optimal Proba- bility Mass Function (PMF) of a discrete input to a general Multiple Input Multiple Output (MIMO) channel. We prove that when the input constellation is constructed as a Cartesian product of 1-dimensional constellations, the optimal PMF...... factorizes into the product of the marginal 1D PMFs. This confirms the conjecture made in [1], which allows for optimizing the input PMF efficiently when the rank of the MIMO channel grows. The proof is built upon the iterative Blahut-Arimoto algorithm. We show that if the initial PMF is factorized, the PMF...

  17. Approximating the constellation constrained capacity of the MIMO channel with discrete input

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren; Larsen, Knud J.

    2015-01-01

    In this paper the capacity of a Multiple Input Multiple Output (MIMO) channel is considered, subject to average power constraint, for multi-dimensional discrete input, in the case when no channel state information is available at the transmitter. We prove that when the constellation size grows, t...... for the equivalent orthogonal channel, obtained by the singular value decomposition. Furthermore, lower bounds on the constrained capacity are derived for the cases of square and tall MIMO matrix, by optimizing the constellation for the equivalent channel, obtained by QR decomposition....

  18. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    Science.gov (United States)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  19. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2011-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  20. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2010-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  1. Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview

    Science.gov (United States)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.

  2. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  3. A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros

    2016-01-01

    More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites...... the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time...... with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time....

  4. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    Science.gov (United States)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  5. Observational Astrology.

    Science.gov (United States)

    Mayer, Ben

    1987-01-01

    Discusses the use of astrological signs as a vehicle for getting students interested in astronomy. Describes the construction and use of simple stellaphane starframes that can be used to locate astrological constellations. Provides instructions for photographing constellations with a 35 millimeter camera. (TW)

  6. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    Science.gov (United States)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  7. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  8. Assessing GPS Constellation Resiliency in an Urban Canyon Environment

    Science.gov (United States)

    2015-03-26

    ABMS ) is used to model complex adaptive systems (CAS) potentially made up of many different types of agents. North & Macal [25] state that, “Agent-based...modeling and simulation ( ABMS ) is founded on the notion that the whole of many systems or organizations is greater than the simple sum of its...satellite systems is challenging the capabilities provided by space assets. More specifically, the global positioning system (GPS) satellite

  9. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    Science.gov (United States)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  10. Observing Participating Observation—A Re-description Based on Systems Theory

    Directory of Open Access Journals (Sweden)

    Tina Bering Keiding

    2010-09-01

    Full Text Available Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming a participant and, as such, co-producer of the observed phenomenon. There is no such thing as a neutral or objective description. As observation deals with differences and process meaning, all descriptions are re-constructions and interpretations of the observed. Hence, the idea of neutral descriptions as well as the idea of the naïve observer becomes a void. Not recognizing and observing oneself as observer and co-producer of empirical data simply leaves the process of observation as the major unobserved absorber of contingency in data production based on participating observation. URN: urn:nbn:de:0114-fqs1003119

  11. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  12. Vision of the Global Earth Observation System of Systems: a European Perspective

    Science.gov (United States)

    Ollier, G.; Craglia, M.; Nativi, S.

    2013-12-01

    The possibility of involving citizens in measuring and providing data is becoming a reality through the concept of "Citizen Observatories". This takes advantage of everybody's capacity to use mobile phone/tablet/laptop to monitor the environment and by trying to find cheap solutions to strengthen the in-situ network of observatories needed for a Global Earth Observation System. Further to the Citizen Observatories approach, the development of cheap sensors based on disposable technologies, nanotech and the piggy-back approach could also be applied to several Societal Challenges and contribute to the GEOSS. The involvement of citizens in the domain of Earth Observation implies dealing with many diverse communities that need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomesnow possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to extend the data resources available from a few hundred to over 28 million The vison which is discussed here is that with a more active participation of the Citizens one could imagine a world with instant information flow about the state and future evolution of the environment available, similar to what has been achieved in weather forecasting but covering fields such as climate, agriculture, water etc. and covering larger forecast time spans from months to years. Failure on crops for instance could be forecasted and measures to mitigate potential upcoming problems could be put in place well in advance. Obviously, the societal and economic benefits would be manifold and large

  13. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  14. Ocean Response to Tropical Storms as Observed by a Moored Ocean Observing System in the Deep Gulf of Mexico

    Science.gov (United States)

    Oropeza, F.; Jaramillo, S.; Fan, S.

    2013-05-01

    As part of the support activities for a deepwater development in the Gulf of Mexico, a moored ocean observing system (OOS) was deployed in a water depth of approximately 2500m, 300km south of the Louisiana Coast. From June 2007 to May 2009, the system comprised seven single point Aanderaa Recording Current Meters (RCM), deployed at 450m, 700m, 1,100m, 1,500m, 2,000m, 2,400m and 2,490m below surface, and an RDI 75kHz Longranger Acoustic Doppler Current Profiler (ADCP), deployed between 249 and 373m below surface in upward-looking mode. Since May 2009, the OOS was upgraded to a Wavescan Buoy based moored system including meteorological sensors for: atmospheric pressure, air temperature, wind speed and direction; directional waves sensor; a Doppler Current Sensor (DCS) at 1.5 m depth for surface currents; and two downward-looking ADCP's covering the upper 1,000m of the water column. This OOS has been operating without interruptions from 2007 to the present and has registered data associated with nine tropical storms, including the direct passage of Hurricane Ike, in September of 2008, and loop current events with speeds of up to 4 knots. It has provided one of the most comprehensive set of velocity observations in the Gulf of Mexico, especially, the near surface currents, during pre-storm conditions, response, and ocean relaxation following hurricanes/tropical storms. Based on these observations the upper ocean responses to the energy input from tropical storms are characterized in terms of the associated mixing processes and momentum balances.

  15. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  16. 78 FR 30295 - Constellation Energy Commoditiesgroup, Inc., ENI USA Gas Marketing LLC, Sequent Energy Canada...

    Science.gov (United States)

    2013-05-22

    ..., 13-37-NG, 13-24-NG, 13-28-LNG, and 13-32-LNG] Constellation Energy Commoditiesgroup, Inc., ENI USA... natural gas from/to Canada. Group, Inc. 3247 03/05/13 12-161-LNG...... ENI USA Gas Order granting blanket...

  17. The interhemispheric and F region dynamo currents revisited with the Swarm constellation

    DEFF Research Database (Denmark)

    Luehr, Hermann; Kervalishvili, Guram; Michaelis, Ingo

    2015-01-01

    Based on magnetic field data sampled by the Swarm satellite constellation it is possible for the first time to determine uniquely F region currents at low latitudes. Initial results are presented from the first 200days of formation flight (17 April to 5 November 2014). Detailed results have been...

  18. The Orion Constellation as an Installation: An Innovative Three-Dimensional Teaching and Learning Environment

    Science.gov (United States)

    Brown, Daniel

    2013-01-01

    Visualizing the three-dimensional distribution of stars within a constellation is highly challenging for both students and educators, but when carried out in an interactive collaborative way, it can create an ideal environment to explore common misconceptions about size and scale within astronomy. We present how the common tabletop activities…

  19. Radiation properties of moving constellations of (nano) satellites: A complexity study

    NARCIS (Netherlands)

    Bruinsma, Wessel P.; Hes, Robin P.; Bosma, Sjoerd; Lager, Ioan E.; Bentum, Marinus Jan

    2016-01-01

    The (computational) complexity involved by beamforming in moving constellations of (nano) satellites is investigated by means of illustrative numerical experiments. While the number of radiators in such three-dimensional (3D) array antennas is not large, evaluating their radiation patterns entails

  20. BER analysis for MPAM signal constellations in the presence of fading and ADC quantization noise

    NARCIS (Netherlands)

    Rizvi, U.H.; Janssen, G.J.M.; Weber, J.H.

    2009-01-01

    In this letter, closed-form expressions for the bit error rate of M-ary pulse amplitude modulated signal constellations as a function of the analog-to-digital converter word length, the signal-to-noise ratio and the fading distribution, are derived. These results allow for a rapid and accurate

  1. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  2. A walk through the heavens a guide to stars and constellations and their legends

    CERN Document Server

    Heifetz, Milton D

    2004-01-01

    A Walk through the Heavens is a beautiful and easy-to-use guide to the constellations of the northern hemisphere. Written for the complete beginner, this practical guide introduces the patterns of the starry skies in a memorable way. No equipment is needed, apart from normal sight and clear skies.

  3. Supporting nurse mentor development: An exploration of developmental constellations in nursing mentorship practice.

    Science.gov (United States)

    MacLaren, Julie-Ann

    2018-01-01

    Supervised practice as a mentor is currently an integral component of nurse mentor education. However, workplace education literature tends to focus on dyadic mentor-student relationships rather than developmental relationships between colleagues. This paper explores the supportive relationships of nurses undertaking a mentorship qualification, using the novel technique of constellation development to determine the nature of workplace support for this group. Semi-structured interviews were conducted with three recently qualified nurse mentors. All participants developed a mentorship constellation identifying colleagues significant to their own learning in practice. These significant others were also interviewed alongside practice education, and nurse education leads. Constellations were analysed in relation to network size, breadth, strength of relationships, and attributes of individuals. Findings suggest that dyadic forms of supervisory mentorship may not offer the range of skills and attributes that developing mentors require. Redundancy of mentorship attributes within the constellation (overlapping attributes between members) may counteract problems caused when one mentor attempts to fulfil all mentorship roles. Wider nursing teams are well placed to provide the support and supervision required by mentors in training. Where wider and stronger networks were not available to mentorship students, mentorship learning was at risk. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Value-Based Business-IT Alignment in Networked Constellations of Enterprises

    NARCIS (Netherlands)

    Gordijn, Jaap; van Eck, Pascal; Cox, K.; Dubois, E.; Pigneur, Y.; Bleistein, S.J.; Verner, J.; Davis, A.M.; Wieringa, Roelf J.

    Business-ICT alignment is the problem of matching ICTservices with the requirements of the business. In businesses of any significant size, business-ICT alignment is a hard problem, which is currently not solved completely. With the advent of networked constellations of enterprises, the problem gets

  5. Theory of Mind in Children with and without Autism Spectrum Disorder: Associations with the Sibling Constellation

    Science.gov (United States)

    Matthews, Nicole L.; Goldberg, Wendy A.

    2018-01-01

    The two prior studies that have examined associations between the sibling constellation and theory of mind in autism spectrum disorder yielded discrepant findings. Thus, efforts to better understand the sibling-theory of mind link in autism spectrum disorder are necessary. This study examined a sample of prekindergarten- and kindergarten-aged…

  6. Nonlinear Observer Design of the Generalized Rössler Hyperchaotic Systems via DIL Methodology

    Directory of Open Access Journals (Sweden)

    Yeong-Jeu Sun

    2012-01-01

    Full Text Available The generalized Rössler hyperchaotic systems are presented, and the state observation problem of such systems is investigated. Based on the differential inequality with Lyapunov methodology (DIL methodology, a nonlinear observer design for the generalized Rössler hyperchaotic systems is developed to guarantee the global exponential stability of the resulting error system. Meanwhile, the guaranteed exponential decay rate can be accurately estimated. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of proposed approach.

  7. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  8. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS) - inter-observer and intra-observer reproducibility of a compartment-based scoring system

    International Nuclear Information System (INIS)

    Kornaat, Peter R.; Ceulemans, Ruth Y.T.; Kroon, Herman M.; Bloem, Johan L.; Riyazi, Naghmeh; Kloppenburg, Margreet; Carter, Wayne O.; Woodworth, Thasia G.

    2005-01-01

    To develop a scoring system for quantifying osteoarthritic changes of the knee as identified by magnetic resonance (MR) imaging, and to determine its inter- and intra-observer reproducibility, in order to monitor medical therapy in research studies. Two independent observers evaluated 25 consecutive MR examinations of the knee in patients with previously defined clinical symptoms and radiological signs of osteoarthritis. We acquired on a 1.5 T system: coronal and sagittal proton density- and T2-weighted dual spin echo (SE) images, sagittal three-dimensional T1-weighted gradient echo (GE) images with fat suppression, and axial dual turbo SE images with fat suppression. Images were scored for the presence of cartilaginous lesions, osteophytes, subchondral cysts, bone marrow edema, and for meniscal abnormalities. Presence and size of effusion, synovitis and Baker's cyst were recorded. All parameters were ranked on a previously defined, semiquantitative scale, reflecting increasing severity of findings. Kappa, weighted kappa and intraclass correlation coefficient (ICC) were used to determine inter- and intra-observer variability. Inter-observer reproducibility was good (ICC value 0.77). Inter- and intra-observer reproducibility for individual parameters was good to very good (inter-observer ICC value 0.63-0.91; intra-observer ICC value 0.76-0.96). The presented comprehensive MR scoring system for osteoarthritic changes of the knee has a good to very good inter-observer and intra-observer reproducibility. Thus the score form with its definitions can be used for standardized assessment of osteoarthritic changes to monitor medical therapy in research studies. (orig.)

  9. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning , navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX)

  10. Wallops' Low Elevation Link Analysis for the Constellation Launch/Ascent Links

    Science.gov (United States)

    Cheung, Kar-Ming; Ho, Christian; Kantak, Anil; Lee, Charles; Tye, Robert; Richards, Edger; Sham, Catherine; Schlesinger, Adam; Barritt, Brian

    2011-01-01

    Prior to the redirection of the Constellation Program, the Wallops 11.3-meter ground station was tasked to support the Orion's Dissimilar Voice (DV) link and the Ares's Development Flight Instrument (DFI) link. Detailed analysis of the launch trajectories indicates that during the launch and ascent operation, the critical events of Orion-Ares main engine cut off (MECO) and Separation occur at low elevation angle. We worked with engineers from both Wallops Flight Facility (WFF) and Johnson Space Center (JSC) to perform an intensive measurement and link analysis campaign on the DV and DFI links. The main results were as follows: (1) The DV links have more than 3 dB margin at MECO and Separation. (2) The DFI links have 0 dB margin at Separation during certain weather condition in summer season. (3) Tropospheric scintillation loss is the major impairment at low elevation angle. (4) The current scintillation models in the Recommendation ITU-R P.618 (Propagation data and prediction methods required for the design of Earth-space telecommunication systems), which are based on limited experimental and theoretical work, exhibit idiosyncratic behaviors. We developed an improved model based on the measurements of recent Shuttle mission launch and ascent links and the ITU propagation data. (5) Due to the attitude uncertainty of the Orion-Ares stack, the high dynamics of the launch and ascent trajectory, and the irregularity of the Orion and Ares antenna patterns, we employed new link analysis approach to model the spacecraft antenna gain. In this paper we discuss the details of the aforementioned results.

  11. The COSMO-SkyMed Constellation Monitors the Costa Concordia Wreck

    Directory of Open Access Journals (Sweden)

    Federico Raspini

    2014-05-01

    Full Text Available On 13 January 2012, the Italian vessel, Costa Concordia, wrecked offshore Giglio Island, along the coast of Tuscany (Italy. The ship partially sunk, lying on the starboard side on a 22° steep rocky seabed, making the stability conditions of the ship critically in danger of sliding, shifting and settling. The tilted position of the ship created also pernicious conditions for the divers involved in the search and rescue operations. It became immediately clear that a continuous monitoring of the position and movements of the ship was of paramount importance to guarantee the security of the people working around and within the wreck. Starting from January 19, the Italian constellation of synthetic aperture radar (SAR satellites, COSMO-SkyMed (CSK, was tasked to acquire high resolution images of the wreck. Thanks to CSK’s short response and revisiting time and its capability to acquire high resolution images in Spotlight mode, satellite data were integrated within the real time, ground-based monitoring system implemented to provide the civil protection authorities with a regular update on the ship stability. Exploitation of both the phase (satellite radar interferometry, InSAR and amplitude (speckle tracking information from CSK images, taken along the acquisition orbit, Enhanced Spotlight (ES-29, revealed a general movement of the translation of the vessel, consistent with sliding toward the east of the hull on the seabed. A total displacement, with respect to the coastline, of 1666 mm and 345 mm of the bow and stern, respectively, was recorded, over the time period of 19 January–23 March 2012.

  12. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1993-01-01

    A software system for a star imager for on-line satellite attitude determination is described. The system works with a single standard commercial CCD-camera with a high aperture lens and an onboard star catalogue. It is capable of both an initial course attitude determination without any prior kn...

  13. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1992-01-01

    A software system for a star imager for online satellite attitude determination is described. The system works with a single standard commercial CCD camera with a high aperture lens and an onboard star catalog. It is capable of both an initial coarse attitude determination without any prior knowl...

  14. Development and Testing of the Observational System for Recording Physical Activity in Children: Elementary School

    Science.gov (United States)

    McIver, Kerry L.; Brown, William H.; Pfeiffer, Karin A.; Dowda, Marsha; Pate, Russell R.

    2016-01-01

    Purpose: This study describes the development and pilot testing of the Observational System for Recording Physical Activity-Elementary School (OSRAC-E) Version. Method: This system was developed to observe and document the levels and types of physical activity and physical and social contexts of physical activity in elementary school students…

  15. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.

    1996-01-01

    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  16. Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-01-01

    Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

  17. A Semi-Automatic, Remote-Controlled Video Observation System for Transient Luminous Events

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2003-01-01

    In support for global ELF/VLF observations, HF measurements in France, and conjugate photometry/VLF observations in South Africa, we developed and operated a semi-automatic, remotely controlled video system for the observation of middle-atmospheric transient luminous events (TLEs). Installed...

  18. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    Science.gov (United States)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  19. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  20. Analyzing the capability of a radio telescope in a bistatic space debris observation system

    International Nuclear Information System (INIS)

    Zhao Zhe; Zhao You; Gao Peng-Qi

    2013-01-01

    A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China

  1. The relative importance of mass and wind data in the FGGE observing system

    Science.gov (United States)

    Kalnay, E.; Jusem, J. C.; Pfaendtner, J.

    1986-01-01

    The use of mass and wind data in numerical weather prediction is examined. The applicability of the mass and wind data on the skill of numerical weather prediction is evaluated by real data assimilation experiments using the the NASA/Goddard Laboratory for Atmospheres analysis/forecast system of Baker (1983) and Kalnay et al. (1983). It is observed that the wind observations are important for small scales and in the tropics and that the wind observations are more accurate than mass observations.

  2. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  3. Constellation's Command, Control, Communications and Information (C3I) Architecture

    Science.gov (United States)

    Breidenthal, Julian C.

    2007-01-01

    Operations concepts are highly effective for: 1) Developing consensus; 2) Discovering stakeholder needs, goals, objectives; 3) Defining behavior of system components (especially emergent behaviors). An interoperability standard can provide an excellent lever to define the capabilities needed for system evolution. Two categories of architectures are needed in a program of this size are: 1) Generic - Needed for planning, design and construction standards; 2) Specific - Needed for detailed requirement allocations, interface specs. A wide variety of architectural views are needed to address stakeholder concerns, including: 1) Physical; 2) Information (structure, flow, evolution); 3) Processes (design, manufacturing, operations); 4) Performance; 5) Risk.

  4. The contribution of the Volcano Observations Work Package to the implementation of the European Plate Observing System

    Science.gov (United States)

    Puglisi, Giuseppe

    2016-04-01

    The overall aim of the implementation phase of European Plate Observing System (EPOS) is to make the integrated platform operational in order to guarantee seamless access to the data provided by the European Solid Earth communities. The Volcano Observations Work Package (WP11) contributes to this objective by implementing a Thematic Core Service (TCS) which is planned to give access to the data and services provided by the European Volcano Observatories (VO) and some Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.). Both types are considered as national research infrastructures (RI) which the TCS will integrate. Currently, monitoring networks on European volcanoes consist of thousands of stations or sites where volcanological parameters are continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), as well as various prototypal monitoring systems (e.g. Doppler radars, ground based SAR). Across Europe several laboratories provide sample characterization (rocks, gases, isotopes, etc.), quasi-continuous analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing facilities. All these RIs provide high-quality information (observations) on the current status of European volcanoes and the geodynamic background of the surrounding areas. The implementation of the Volcano Observations TCS will address technical as well as managerial issues, both considering the current heterogeneous state-of-the-art of the volcanological research infrastructures in Europe. Indeed, the current arrangement of individual VO and VRI is considered too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort in the framework of the EPOS

  5. The "Volcano Observations" Thematic Core Service of the European Plate Observing System (EPOS): status of the implementation.

    Science.gov (United States)

    Puglisi, Giuseppe

    2017-04-01

    The European volcanological community contributes to implementation of European Plate Observing System (EPOS) by making operational an integrated platform to guarantee a seamless access to the data provided by the European Solid Earth communities. To achieve this objective, the Volcano Observations Work Package (WP11) will implement a Thematic Core Services (TCS) which is planned to give access to the data and services provided by the European Volcano Observatories (VO) and some Volcanological Research Institutions (VRI; as university departments, laboratories, etc.); both types are considered as national research infrastructures (RI) over which to build the TCS. Currently, the networks on European volcanoes consist of thousands of stations or sites where volcanological parameters are continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), as well as various prototypal monitoring systems (e.g. Doppler radars, ground based SAR). In Europe also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), and almost continuous analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres. All these RIs provide high-quality information (observations) on the current status of European volcanoes and the geodynamic background of the surrounding areas. The implementation of the Volcano Observations TCS is addressing technical and management issues, both considering the current heterogeneous state of the art of the volcanological research infrastructures in Europe. Indeed, the frame of the VO and VRI is now too fragmented to be considered as a unique distributed infrastructure, thus the main effort planned in the frame of the EPOS-IP is focused to create services aimed at

  6. Assessment of Two Types of Observations (SATWND and GPSRO) for the Operational Global 4DVAR System

    Science.gov (United States)

    Leng, H.

    2017-12-01

    The performance of a data assimilation system is significantly dependent on the quality and quantity of observations assimilated. In these years, more and more satellite observations have been applied in many operational assimilation systems. In this paper, the assessment of satellite-derived winds (SATWND) and GPS radio occultation (GPSRO) bending angles has been performed using a range of diagnostics. The main positive impacts are made when satellite-derived cloud data (GOES cloud data and MODIS cloud data) is assimilated, but benefit is hardly obtained from GPSRO data in the Operational Global 4DVAR System. In a full system configuration, the assimilation of satellite-derived observations is globally beneficial on the analysis, and the benefit can be well propagated into the forecast. The assimilation of the GPSRO observations has a slightly positive impact in the Tropics, but is neutral in the Northern Hemisphere and in the Southern Hemisphere. To assess the synergies of satellite-derived observations with other types of observation, experiments assimilating satellite-derived data and AMSU-A and AMSU-B observations were run. The results show that the analysis increments structure is not modified when AMSU-A and AMSU-B observations are also assimilated. This suggests that the impact of satellite-derived observations is not limited by the large impact of satellite radiance observations.

  7. Disaggregated Imaging Spacecraft Constellation Optimization with a Genetic Algorithm

    Science.gov (United States)

    2014-03-27

    Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree...distinct mod- ules which, once ‘assembled’ on orbit, deliver the capability of the original monolithic system [5].” Jerry Sellers includes a comic in

  8. Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems

    International Nuclear Information System (INIS)

    Hyun, Chang-Ho; Kim, Jae-Hun; Kim, Euntai; Park, Mignon

    2006-01-01

    This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi-Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer

  9. ℋ∞ Adaptive observer for nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima

    2016-06-23

    In this paper, an adaptive observer is proposed for the joint estimation of states and parameters of a fractional nonlinear system with external perturbations. The convergence of the proposed observer is derived in terms of linear matrix inequalities (LMIs) by using an indirect Lyapunov method.The proposed ℋ∞ adaptive observer is also robust against Lipschitz additive nonlinear uncertainty. The performance of the observer is illustrated through some examples including the chaotic Lorenz and Lü\\'s systems. © 2016 John Wiley & Sons, Ltd.

  10. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima

    2018-02-13

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  11. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2018-01-01

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  12. ℋ- adaptive observer design and parameter identification for a class of nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima

    2014-12-01

    In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown parameters are also adapted to their values. Sufficient conditions for the stability of the adaptive observer error dynamics are derived in terms of linear matrix inequalities. Simulation results for chaotic Lorenz systems with unknown parameters in the presence of external perturbations are given to illustrate the effectiveness of our proposed approach. © 2014 IEEE.

  13. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  14. Operating a wide-area remote observing system for the W. M. Keck Observatory

    Science.gov (United States)

    Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.

    2008-07-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.

  15. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    Science.gov (United States)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  16. Observer based on sliding mode variable structure for synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Yin Xunhe; Shan Xiuming; Ren Yong

    2003-01-01

    In the paper an approach, based on the state observer of sliding mode variable structure, is used for synchronizing chaotic systems. It does not require either the computation of the Lyapunov exponents, or the initial conditions belonging to the same basin of attraction as the existed approaches based on the state observer for synchronizing chaotic systems. The approach is more robust against noise and parameter mismatch than the existed approaches based on the state observer for synchronizing chaotic systems, because the former uses variable structure control, which is strong robust with respect to noise and parameter mismatch in the error dynamics, the later uses an appropriate choice of the feedback gain. Two well-known chaotic systems, a chaotic Roessler system and a hyperchaotic Roessler system are considered as illustrative examples to demonstrate the effectiveness of the used approach by numerical simulations

  17. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Science.gov (United States)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  18. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  19. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  20. Graphical User Interface for an Observing Control System for the UK Infrared Telescope

    Science.gov (United States)

    Tan, M.; Bridger, A.; Wright, G. S.; Adamson, A. J.; Currie, M. J.; Economou, F.

    A Graphical user interface for the observing control system of UK Infrared Telescope has been developed as a part of the ORAC (Observatory Reduction and Acquisition Control) Project. We analyzed and designed the system using the Unified Modelling Language (UML) with the CASE tool Rational Rose 98. The system has been implemented in a modular way with Java packages using Swing and RMI. This system is component-based with pluggability. Object orientation concepts and UML notations have been applied throughout the development.