WorldWideScience

Sample records for constant glucose concentration

  1. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  2. Determination of Glucose Concentration in Yeast Culture Medium

    Science.gov (United States)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  3. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    “Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation...... EEG signals to predict upcoming hypoglycemic situations in real-time by employing artificial neural networks. The results of a 30-day long clinical study with the implanted device and the developed algorithm are presented. The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...

  4. The Handling of Constant Volumes of Various Concentrations of ...

    African Journals Online (AJOL)

    The Handling of Constant Volumes of Various Concentrations of Seawater by the Jackass Penguin Spheniscus Demersus. T Erasmus. Abstract. This paper reports on the effects of varying the concentration of sea water dosed at a rate of 10% of body mass on the handling of fluid and solutes by jackass penguins ...

  5. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    -day workshop on the design, use and evaluation of prediction methods for blood glucose concentration was held at the Johannes Kepler University Linz, Austria. One intention of the workshop was to bring together experts working in various fields on the same topic, in order to shed light from different angles...... discussions which allowed to receive direct feedback from the point of view of different disciplines. This book is based on the contributions of that workshop and is intended to convey an overview of the different aspects involved in the prediction. The individual chapters are based on the presentations given...... in the process of writing this book: All authors for their individual contributions, all reviewers of the book chapters, Daniela Hummer for the entire organization of the workshop, Boris Tasevski for helping with the typesetting, Florian Reiterer for his help editing the book, as well as Oliver Jackson and Karin...

  6. Salivary glucose concentration and excretion in normal and diabetic subjects.

    Science.gov (United States)

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  7. Glucose consumption and rate constants for sup 18 F-fluorodeoxyglucose in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao [Kyoto Univ. (Japan). Faculty of Medicine

    1990-06-01

    To investigate the value of direct measurement of the rate constants by performing {sup 18}F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author).

  8. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  9. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    Science.gov (United States)

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-12-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  10. Simultaneous measurement of glucose blood–brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS

    Science.gov (United States)

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-01-01

    Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049

  11. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  12. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    Science.gov (United States)

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  13. Fasting blood glucose and haemoglobin concentrations of healthy ...

    African Journals Online (AJOL)

    Menstruation is associated with loss of blood monthly in women of reproductive age. In some women this physiological phenomenon is also associated with some complaints such as menstrual pain, vomiting, and tiredness. We investigated the fasting blood glucose concentration and hemoglobin concentration before and ...

  14. Effect of varying concentrations of orally ingested glucose on platelet ...

    African Journals Online (AJOL)

    The physiologic basis of bleeding is a function of normal platelets and coagulation factors. This study is aimed at ascertaining the effect of varying concentrations of orally ingested glucose on platelet count and hemoglobin concentration during menstruation. Forty menstruating students between the ages of 18 and 25 from ...

  15. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  16. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  17. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.

    Science.gov (United States)

    Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan

    2017-08-08

    Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

  18. Lowering Plasma Glucose Concentration by Inhibiting Renal Sodium-Glucose Co-Transport

    Science.gov (United States)

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2017-01-01

    Maintaining normoglycaemia not only reduces the risk of diabetic microvascular complications but also corrects the metabolic abnormalities that contribute to the development and progression of hyperglycaemia (i.e. insulin resistance and beta-cell dysfunction). Progressive beta-cell failure, in addition to the multiple side effects associated with many current antihyperglycaemic agents (e.g., hypoglycaemia and weight gain) presents major obstacle to the achievement of the recommended goal of glycaemic control in patients with diabetes mellitus (DM). Thus, novel effective therapies are needed for optimal glucose control in subjects with DM. Recently, specific inhibitors of renal sodium glucose cotransporter 2 (SGLT2) have been developed to produce glucosuria and lower the plasma glucose concentration. Because of their unique mechanism of action (which is independent of the secretion and action of insulin), these agents are effective in lowering the plasma glucose concentration in all stages of DM and can be combined with all other antidiabetic agents. In this review, we summarize the available data concerning the mechanism of action, efficacy and safety of this novel class of antidiabetic agent. PMID:24690096

  19. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  20. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men

    DEFF Research Database (Denmark)

    Wachters-Hagedoorn, Renate E; Priebe, Marion G; Heimweg, Janneke A J

    2006-01-01

    and slowly available glucose. In a crossover study, glucose, insulin, GLP-1, and GIP concentrations were monitored for 6 h after consumption of glucose, uncooked cornstarch (UCCS) or corn pasta in 7 healthy men. All test meals were naturally labeled with 13C. Using a primed, continuous D-[6,6-2H2]glucose...... in the early postprandial phase (15-90 min) occurred after consumption of glucose. There was a strong positive within-subject correlation between RaEx and GIP concentrations (r = 0.73, P meals. Rapidly and slowly digestible carbohydrates differ considerably in their ability to stimulate...

  1. Detection of saliva-range glucose concentrations using organic thin-film transistors

    International Nuclear Information System (INIS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  2. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  3. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    Science.gov (United States)

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  4. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    OpenAIRE

    Tsonyo Slavov; Olympia Roeva

    2011-01-01

    This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP) control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For...

  5. Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Wang, Hui; Tang, Zongxun; Wang, Xiaofang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Department of Chemisty, Northwest University, Xi' an 710069 (China); Bai, Jinbo [Lab. MSS/MAT, CNRS UMR 8579, Ecole Centrale Paris, 92295 Chatenay Malabry (France)

    2008-12-15

    A series of batch experiments were conducted to investigate the effects of pH and glucose concentrations on biological hydrogen production by using the natural sludge obtained from the bed of a local river as inoculant. Batch experiments numbered series I and II were designed at an initial and constant pH of 5.0-7.0 with 1.0 increment and four different glucose concentrations (5.0, 7.5, 10 and 20 g glucose/L). The results showed that the optimal condition for anaerobic fermentative hydrogen production is 7.5 g glucose/L and constant pH 6.0 with a maximum H{sub 2} production rate of 0.22 mol H{sub 2} mol{sup -1} glucose h{sup -1}, a cumulative H{sub 2} yield of 1.83 mol H{sub 2} mol{sup -1} glucose and a H{sub 2} percentage of 63 in biogas. (author)

  6. Effects of elevated glucose concentration on cultured bovine retinal endothelial (BRE) cells

    International Nuclear Information System (INIS)

    Capetandes, A.; Gerritsen, M.E.

    1986-01-01

    Salient clinical features of diabetic retinopathy include capillary microaneurysm and neovascularization, which progress with the severity of the disease. It has been suggested that exposure of the retinal vascular cells to high glucose concentrations may play a causative role in the retinopathy. In the present study, the effects of variant media glucose concentrations on BRE cell growth were determined. Normal growth curves were obtained with glucose concentrations of 100, 450 and 600 mg%, but the replication rate was decreased with 600 mg%. To determine if elevated glucose concentrations also altered DNA synthesis, BRE cells cultivated with 100 and 600 mg% glucose demonstrated increased thymidine uptake and total DNA content compared to the 100 mg% group. Furthermore, vacuolation and increased cell diameter occurred in BRE cells cultivated 600 mg% compared to 100 mg% glucose. In conclusion, increases in media glucose concentrations result in a decreased cellular replication rate, increased DNA synthesis and increased cell diameter during the log phase of growth

  7. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  8. Effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats

    Directory of Open Access Journals (Sweden)

    P. Abreu

    Full Text Available The aim of this research was to investigate the effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats. We hypothesized that plasma glucose might be decreased in the exercised group during heavy (more intense exercise. Twenty-four 10-week-old male Wistar rats were randomly assigned to sedentary and exercised groups. The prescription of endurance exercise training intensity was determined as 60% of the maximum intensity reached at the incremental speed test. The animals were trained by running on a motorized treadmill, five days/week for a total period of 67 weeks. Plasma glucose during the constant speed test in the exercised group at 20 m/min was reduced at the 14th, 21st and 28th min compared to the sedentary group, as well at 25 m/min at the 21st and 28th min. Plasma glucose during the incremental speed test was decreased in the exercised group at the moment of exhaustion (48th min compared to the sedentary group (27th min. Endurance training positively modulates the mitochondrial activity and capacity of substrate oxidation in muscle and liver. Thus, in contrast to other studies on high load of exercise, the effects of endurance training on the decrease of plasma glucose during constant and incremental speed tests was significantly higher in exercised than in sedentary rats and associated with improved muscle and hepatic oxidative capacity, constituting an important non-pharmacological intervention tool for the prevention of insulin resistance, including type 2 diabetes mellitus.

  9. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  10. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  11. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    The objective of this work was to study the effect of fructose and glucose content on the rheological behavior of syrups. Initially, high fructose syrup from the fructans present in leaves, bases and head of Agave tequilana Weber blue was obtained. Then, its contents of moisture, ash, fructose, glucose and direct and total ...

  12. Influences of saccharides types and initial glucose concentration on ...

    African Journals Online (AJOL)

    Tests on agar slants and in agitated shake flasks using glucose, sucrose and lactose media exhibited that the cellulose producer, Gluconacetobacterxylinus DSM 46604 resembled good growth on glucose and produced cellulose. However, there was negligible growth on sucrose and lactose media. Further experiments ...

  13. Extended Near-Infrared Optoacoustic Spectrometry for Sensing Physiological Concentrations of Glucose

    Directory of Open Access Journals (Sweden)

    Ara Ghazaryan

    2018-03-01

    Full Text Available Glucose sensing is pursued extensively in biomedical research and clinical practice for assessment of the carbohydrate and fat metabolism as well as in the context of an array of disorders, including diabetes, morbid obesity, and cancer. Currently used methods for real-time glucose measurements are invasive and require access to body fluids, with novel tools and methods for non-invasive sensing of the glucose levels highly desired. In this study, we introduce a near-infrared (NIR optoacoustic spectrometer for sensing physiological concentrations of glucose within aqueous media and describe the glucose spectra within 850–1,900 nm and various concentration ranges. We apply the ratiometric and dictionary learning methods with a training set of data and validate their utility for glucose concentration measurements with optoacoustics in the probe dataset. We demonstrate the superior signal-to-noise ratio (factor of ~3.9 achieved with dictionary learning over the ratiometric approach across the wide glucose concentration range. Our data show a linear relationship between the optoacoustic signal intensity and physiological glucose concentration, in line with the results of optical spectroscopy. Thus, the feasibility of detecting physiological glucose concentrations using NIR optoacoustic spectroscopy is demonstrated, enabling the sensing glucose with ±10 mg/dl precision.

  14. Concentration of Rutin Model Solutions from Their Mixtures with Glucose Using Ultrafiltration

    Directory of Open Access Journals (Sweden)

    Zaid S. Saleh

    2010-02-01

    Full Text Available Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables–transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate–on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4–5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30ºC, with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3–4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1–0.5 g/L. The enrichment of rutin was significant in the glucose concentration range 0.35–0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate and glucose (in the permeate, the

  15. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  16. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... C.P. 38010. Celaya, Guanajuato, México. ... In quality control, knowledge of the rheological behavior of a fluid is ... intermediary products during manufacturing and of course, of ... fructose and 45%, glucose (Arancia, Mexico).

  17. Neurobehavioural evaluation and kinetics of inhalation of constant or fluctuating toluene concentrations in human volunteers

    NARCIS (Netherlands)

    Lammers, J.H.C.M.; Meuling, W.J.A.; Muijser, H.; Freidig, A.P.; Bessems, J.G.M.

    2005-01-01

    The health risks of inhalation exposure to volatile organic solvents may not only depend on the total external dose, but also on the pattern of exposure. It has been suggested that exposure to regularly occurring peak concentrations may have a stronger impact on the brain than constant exposure at

  18. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    Science.gov (United States)

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high

  19. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    International Nuclear Information System (INIS)

    Rana, M.A.; Siddiqui, A.M.; Qamar, Rashid

    2009-01-01

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties

  20. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Rana, M.A. [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)], E-mail: mafzalrana@yahoo.com; Siddiqui, A.M. [Department of Mathematics, Pennsylvania State University, York Campus, York, PA 17403 (United States); Qamar, Rashid [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2009-01-15

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties.

  1. Threshold concentration of glucose for bacterial growth in soil

    NARCIS (Netherlands)

    Reischke, Stephanie; Kumar, Manoj G.K.; Baath, Erland

    The activity of heterotrophic soil microorganisms is usually limited by the availability and quality of carbon (C). Adding organic substances will thus trigger a microbial response. We studied the response in bacterial growth and respiration after the addition of low amounts of glucose. First we

  2. Impact of buccal glucose spray, liquid sugars and dextrose tablets on the evolution of plasma glucose concentration in healthy persons.

    Science.gov (United States)

    Chlup, Rudolf; Zapletalova, Jana; Peterson, Karolina; Poljakova, Iveta; Lenhartova, Eva; Tancred, Adam; Perera, Russel; Smital, Jan

    2009-09-01

    The purpose of this prospective controlled trial was to assess the efficacy of three commercially available glucose products, (1) buccal glucose spray, (2) liquid sugars, and (3) dextrose tablet, on the evolution of plasma glucose concentration (PG). Sixteen healthy volunteers aged 21.8 +/- 0.78 y (mean +/- SE), BMI 23.5 +/- 0.84 kg/m(2), tested their PG over the course of 3 sets of 4 sessions (S) each: S(0)-control fasting, S(1)-buccal administration of 10 glucose spray-doses (0.84 g of glucose) without swallowing; S(2-) consumption of 1 sachet (13 ml) of liquid sugar (ca. 5.2 g glucose, 5.2 g fructose, 5.2 g sucrose); S(3-) consumption of one dextrose tablet (6 g). PG was tested in finger-prick capillary blood using a personal glucometer Linus at the start, and at 5, 10, 15, 20 and 30 min. The means of 3 respective sessions for each of the 16 subjects were analyzed. The Wilcoxon signed rank test revealed no significant differences between changes in the mean PG at the start vs. 5-minute interval either in control, or any intervention sessions. Analysis of regression coefficients after 30 min compared to the control session, demonstrated an increase in PG with the sachet of liquid sugars (0.068 mmol/l/min, p = 0.001) which was greater than a single dextrose tablet (0.052 mmol/l/min, p = 0.002), but no significant PG increase was found after buccal glucose spray. Liquid sugars or dextrose tablets, but not the buccal glucose spray, are effective means to increase PG within 10 minutes after ingestion.

  3. Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant.

    Science.gov (United States)

    Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N

    2015-03-03

    Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.

  4. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    Science.gov (United States)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  5. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations

    Science.gov (United States)

    Chen, Brian H.; Hivert, Marie-France; Peters, Marjolein J.; Pilling, Luke C.; Hogan, John D.; Pham, Lisa M.; Harries, Lorna W.; Fox, Caroline S.; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G.; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D.; Munson, Peter J.; Rybin, Denis V.; Singleton, Andrew B.; Uitterlinden, André G.; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B.J.; Ferrucci, Luigi; Florez, Jose C.; Dupuis, Josée

    2016-01-01

    Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes–imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. PMID:27625022

  6. Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology.

    Directory of Open Access Journals (Sweden)

    Feng Feng

    Full Text Available Surface plasmon resonance (SPR has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.

  7. Biodegradation testing of chemicals with high Henry’s constants – separating mass and effective concentration reveals higher rate constants

    DEFF Research Database (Denmark)

    Birch, Heidi; Andersen, Henrik Rasmus; Comber, Mike

    Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relative to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Water phase biodegradation rate constants, kwater, were up to 72 times higher than test system...

  8. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  9. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  10. Salivary glucose concentration exhibits threshold kinetics in normal-weight, overweight, and obese children

    Directory of Open Access Journals (Sweden)

    Hartman ML

    2014-12-01

    Full Text Available Mor-Li Hartman,1 J Max Goodson,1 Roula Barake,2 Osama Alsmadi,3 Sabiha Al-Mutawa,4 Jitendra Ariga,4 Pramod Soparkar,1 Jawad Behbehani,5 Kazem Behbehani,6 Francine Welty7 1Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA; 2Department of Nutrition, The Dasman Diabetes Institute, Dasman, Kuwait; 3Genome Center, The Dasman Diabetes Institute, Dasman, Kuwait; 4Ministry of Health, Kuwait City, Kuwait; 5Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait; 6The Dasman Diabetes Institute, Dasman, Kuwait; 7Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA Background: Metabolic syndrome in childhood predicts the development of cardiovascular disease and type 2 diabetes (T2D in adulthood. Testing for features of metabolic syndrome, such as fasting plasma glucose concentration, requires blood sampling which can be difficult in children. Here we evaluated salivary glucose concentration as a surrogate measurement for plasma glucose concentration in 11-year-old US children. Methods: Children from Portland, Maine, and Cambridge, Massachusetts, with a mean age of 10.6±0.2 years provided 6-hour fasting samples of both blood and whole saliva. Salivary glucose levels were measured with a high-sensitivity assay (sensitivity =0.002 mg/dL. Plasma glucose levels were determined by a commercial clinical laboratory. Blood pressure, salivary flow rate, height, and weight were also measured. Results: Of the 65 children enrolled, there were two underweight children (3.1%, 30 normal-weight children (46.2%, 12 overweight children (18.4%, and 21 obese children (32.3%. The mean overall glucose concentrations were 0.11±0.02 mg/dL in saliva and 86.3±0.8 mg/dL in plasma, and these did not differ significantly by body–weight groups. By regression analysis, the plasma concentration equaled 13.5 times the saliva concentration, with a threshold level of 84.8 mg/dL. Salivary glucose values less than threshold plasma

  11. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  12. Correlation between the Plasma Insulin and Glucose Concentration in Normal Korean Adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Kyu; Sung, Ho Kyung; Kim, Jin Eui [Radiological Research Institute, Seoul (Korea, Republic of)

    1971-09-15

    The correlation between the plasma insulin, and glucose concentration was studied in healthy Korean adults consisting of 20 males and 22 females of 16 to 38 years of age. The blood samples of above subjects were obtained through cubital vein at arbitrary times during their usual working hours. Plasma insulin was assayed by means of double antibody system of radioimmunoassay technics, and blood glucose was determined by means of Van Slyke-Folch method. Results were as follows : 1. There were no differences in the blood sugar levels in relation to the plasma insulin concentration either by sex or age. 2. In the case, when the plasma insulin concentration was within 50 mmuU/ml, the correlation between the insulin, and glucose concentration existed, the ratio of which was expressed as; Plasma glucose concentration (mg/dl)=91.9 + 0.08 X Insulin concentration r=0.62. 3. Insulinogenic index was 12.4%, which was somewhat higher than other reports. 4. It is suggested that the correlation between plasma insulin and glucose concentration could be determined at arbitrary times instead of fasting times.

  13. Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations.

    Science.gov (United States)

    Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P

    2011-08-01

    To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study

    OpenAIRE

    ?uhadar, Serap; K?seo?lu, Mehmet; ?inpolat, Yasemin; Bu?dayc?, G?ler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Abstract Introduction: Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Materials and methods: Base...

  15. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    Science.gov (United States)

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (Pblood glucose was significantly higher with cinnamon consumption (Pglucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  16. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    Science.gov (United States)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  17. Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Denshchikov, M T; Shashilova, V P

    1964-01-01

    Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.

  18. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  19. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    International Nuclear Information System (INIS)

    Zeng, F. W.; Lane, M. W.; Gates, S. M.

    2014-01-01

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G TH , were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species

  20. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication.

    Science.gov (United States)

    Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard

    2011-09-01

    High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.

  1. Effect of radioactive isotope 32P upon alpha amylase activity and glucose concentration in chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Emanovic, D.; Simpraga, M.; Nejedli, S.; Stojevic, Z.

    1996-01-01

    An attempt has been made to investigate whether alpha amylase activity and glucose concentration in blood plasma can serve as the help in establishing on early diagnosis of organic or functional damage caused by ionizing radiation in chickens. Fifty day old hybrid chickens of heavy 'Jata' breeds of both sexes, were treated by 32 P administered intramusculary as sodium orthophosphate in a single dose of 333 MBq per kilogram of body weight. Blood samples was taken from the wing vein on day 1, 3, 5, 7 and 10 after administration of 32 P. Alpha amylase activity and glucose concentration were determined spectrophotometrically using kits produced by 'Radonja', Sisak. Alpha amylase activity was decreased and glucose concentration was increased during investigated period. Yet, the further investigations are needed to find out whether these two parameters can be used for early diagnosis of injury in chicken organism by ionizing radiation. (author)

  2. The salivary microbiome is altered in the presence of a high salivary glucose concentration.

    Directory of Open Access Journals (Sweden)

    J Max Goodson

    Full Text Available Type II diabetes (T2D has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects.We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175 and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537.HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83% of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64% were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness.HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia.

  3. An In-Line Photonic Biosensor for Monitoring of Glucose Concentrations

    Directory of Open Access Journals (Sweden)

    Ala'aldeen Al-Halhouli

    2014-08-01

    Full Text Available This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 µL/h based on internal co-immobilization of glucose oxidase (GOX and horseradish peroxidase (HRP on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG methods were tested. Experiments showed successful results when using the covalent binding (PEG method, where glucose concentrations up to 5 mM with a coefficient of determination (R2 of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis.

  4. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    Science.gov (United States)

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  5. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  6. The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients.

    Science.gov (United States)

    Lu, Yinghui; Gribok, Andrei V; Ward, W Kenneth; Reifman, Jaques

    2010-08-01

    We investigated the relative importance and predictive power of different frequency bands of subcutaneous glucose signals for the short-term (0-50 min) forecasting of glucose concentrations in type 1 diabetic patients with data-driven autoregressive (AR) models. The study data consisted of minute-by-minute glucose signals collected from nine deidentified patients over a five-day period using continuous glucose monitoring devices. AR models were developed using single and pairwise combinations of frequency bands of the glucose signal and compared with a reference model including all bands. The results suggest that: for open-loop applications, there is no need to explicitly represent exogenous inputs, such as meals and insulin intake, in AR models; models based on a single-frequency band, with periods between 60-120 min and 150-500 min, yield good predictive power (error bands produce predictions that are indistinguishable from those of the reference model as long as the 60-120 min period band is included; and AR models can be developed on signals of short length (approximately 300 min), i.e., ignoring long circadian rhythms, without any detriment in prediction accuracy. Together, these findings provide insights into efficient development of more effective and parsimonious data-driven models for short-term prediction of glucose concentrations in diabetic patients.

  7. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    Directory of Open Access Journals (Sweden)

    Tsonyo Slavov

    2011-07-01

    Full Text Available This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For the aim an extended Kalman filter (EKF is designed. To achieve good closed-loop system performance genetic algorithm (GA based optimal controller tuning procedure is applied. A standard binary encoding GA is applied. The GA parameters and operators are specified for the considered here problem. As a result the optimal PID controller settings are obtained. The simulation experiments of the control systems based on SP with EKF and without EKF are performed. The results show that the control system based on SP with EKF has a better performance than the one without EKF. For a short time the controller sets the control variable and maintains it at the desired set point during the cultivation process. As a result, a high biomass concentration of 48.3 g·l-1 is obtained at the end of the process.

  8. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism.

    Directory of Open Access Journals (Sweden)

    Reiner Jumpertz

    Full Text Available Rodent experiments have emphasized a role of central fatty acid (FA species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT followed by measurements of 24 hour (24EE and sleep energy expenditure (SLEEP as well as respiratory quotient (RQ in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16:1, C18:1 and very-long-chain saturated (C24:0, C26:0 FAs.Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.

  9. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    Science.gov (United States)

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Effect of abomasal glucose infusion on plasma concentrations of gut peptides in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Relling, A E; Reynolds, C K

    2010-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic plasma concentrations of gut peptides. The experimental design was a randomi...

  11. Myo-inositol, glucose and zinc concentrations determined in the preconceptional period, during and after pregnancy.

    NARCIS (Netherlands)

    Groenen, P.M.; Roes, E.M.; Peer, P.G.M.; Merkus, H.M.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2006-01-01

    OBJECTIVE: To determine the blood concentrations of myo-inositol, glucose and zinc before, during and after normal pregnancy. STUDY DESIGN: Preconceptionally, at 6, 10, 20, 30 and 37 weeks amenorrhea, and 6 weeks after delivery, blood samples of 18 nulliparae and 19 multiparae were obtained and

  12. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study

    OpenAIRE

    Lei, Hongxia; Gruetter, Rolf

    2006-01-01

    While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 4...

  13. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations.

    Science.gov (United States)

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Crossover study. Applied research study. Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg(-1)·min(-1)). Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0-15, 15-30, and 30-45 minutes; second half: 45-60, 60-75, and 75-90 minutes) and 10 minutes into the halftime break. Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise (time-of-sample effect: P interaction effect: P = .49). Ingestion of a 6% CHO-electrolyte beverage before and during soccer match

  14. What Happens to Blood Glucose Concentrations After Oral Treatment for Neonatal Hypoglycemia?

    Science.gov (United States)

    Harris, Deborah L; Gamble, Greg D; Weston, Philip J; Harding, Jane E

    2017-11-01

    To determine the change in blood glucose concentration after oral treatment of infants with hypoglycemia in the first 48 hours after birth. We analyzed data from 227 infants with hypoglycemia (blood glucose dextrose or placebo gel plus feeding with formula, expressed breast milk, or breast feeding. The overall mean increase in blood glucose concentration was 11.7 mg/dL (95% CI 10.4-12.8). The increase was greater after buccal dextrose gel than after placebo gel (+3.0 mg/dL; 95% CI 0.7-5.3; P = .01) and greater after infant formula than after other feedings (+3.8 mg/dL; 95% CI 0.8-6.7; P = .01). The increase in blood glucose concentration was not affected by breast feeding (+2.0 mg/dL; 95% CI -0.3 to 44.2; P = .09) or expressed breast milk (-1.4 mg/dL; 95% CI -3.7 to 0.9; P = .25). However, breast feeding was associated with reduced requirement for repeat gel treatment (OR = 0.52; 95% CI 0.28-0.94; P = .03). Treatment of infants with hypoglycemia with dextrose gel or formula is associated with increased blood glucose concentration and breast feeding with reduced need for further treatment. Dextrose gel and breast feeding should be considered for first-line oral treatment of infants with hypoglycemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Raised concentrations of lipid peroxidation products (LPO in pregnant women with impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Krzysztof C. Lewandowski

    2014-06-01

    Full Text Available introduction. Lipid peroxidation (LPO results from oxidative damage to membrane lipids. Whereas LPO rises in normal pregnancy, the effect of gestational diabetes mellitus (GDM on this process has not been clearly defined. materials and method. Fasting blood concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA, as LPO index, TNFa soluble receptors (sTNF-R1 and sTNF-R2, and soluble adhesion molecules (sICAM-1, sVCAM-1, were measured in 51 women at 28 weeks of gestation. The women were divided according to the results of 50.0 g glucose challenge test (GCT and 75.0 g oral glucose tolerance test (OGTT: Controls (n=20, normal responses to both GCT and OGTT; Intermediate Group (IG (n=15, abnormal GCT but normal OGTT; GDM group (n=16, abnormal both GCT and OGTT. results. Glucose concentrations in women diagnosed with GDM were within the range of impaired glucose tolerance. There were no significant differences in concentrations of either TNF a soluble receptors R1 and R2, or sICAM-1 or sVCAM-1. LPO concentrations [MDA+4-HDA (nmol/mg protein] were significantly higher in women with GDM than in the other two groups [64.1±24.3 (mean±SD, 39.3±23.1, 47.0±18.1, for GDM, IG and Controls, respectively; p<0.05]. In multivariate analysis, the only significant independent correlation was between LPO level and glucose at 120 minutes of OGTT (rs=0.42; p=0.009. conclusions. Oxidative damage to membrane lipids is increased in GDM and might result directly from hyperglycaemia. Physiological significance of this phenomenon remains to be elucidated.

  16. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    Science.gov (United States)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  17. [A comparison of post-surgical plasma glucose levels in patients on fluids with different glucose concentrations].

    Science.gov (United States)

    Martínez Carapeto, Isabel; López Castilla, José Domingo; Fresneda Gutiérrez, Reyes

    2017-11-11

    To compare plasma glucose levels and incidence of hyperglycaemia in the post-operative period after general surgery using fluids with different glucose. A randomised, open-label, non-blind, clinical trial was conducted on patients admitted to Paediatric Intensive Care Unit after elective surgery. The inclusion criteria were from 6 months to 14 years of age, with a weight greater than 6kg, onset glucose level >60mg/dL, and a signed informed consent, with no oral intake and maintenance intravenous fluid therapy using fluids with 3.3% or 5% glucose. Plasma glucose levels were measured before surgery, on admission, and 8, 24, and 48h, with the mean glucose levels and incidence of hyperglycaemia (glucose level >150mg/dL) in both groups being compared. A total of 60 patients received glucose/saline 1/3 (51mEq/L sodium and 33g/L glucose), and 70 glucose/saline 5/0.9% (154mEq/L sodium and 50g/L glucose). Mean glucose levels were higher in the group receiving glucose 5%, with no statistical difference. There was no significant difference in the incidence of hyperglycaemia; 8h: 26% in the 3.3% group vs. 21.3% in the 5% group (P=.63); 24h: 20% vs. 22.7% (P=.8); and 48h: 19% vs. 23.1% (P=.78). The use of fluids with 3.3% glucose in the post-operative period of general surgery maintains mean glucose levels in a similar range to that of patients receiving fluids with 5% glucose, with no difference in the incidence of hyperglycaemia. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  18. Comparative study of the concentration of salivary and blood glucose in type 2 diabetic patients.

    Science.gov (United States)

    Vasconcelos, Ana Carolina U; Soares, Maria Sueli M; Almeida, Paulo C; Soares, Teresa C

    2010-06-01

    The objective of the present study was to comparatively evaluate the concentrations of blood and salivary glucose as well as salivary flow and xerostomia in type 2 diabetic and non-diabetic patients. The mean salivary glucose level in diabetic patients was 14.03 +/-16.76 mg/dl and 6.35 +/- 6.02 mg/dl (P = 0.036) in the control group. The mean capillary blood glucose level in diabetic patients was 213 +/- 88 mg/dl, while that in non-diabetic patients was 99 +/- 14 mg/dl (P = 0.000). The mean value for resting salivary flow was 0.21 +/- 0.16 ml/min in diabetic patients and 0.33 +/- 0.20 ml/min in the control group (P = 0.002). The stimulated salivary flow was lower in the group of diabetic patients, with a mean of 0.63 +/- 0.43 ml/min, whereas the control group showed a mean of 1.20 +/- 0.70 ml/min (P = 0.000). Of the diabetic patients, 45% exhibited hyposalivation, in contrast to 2.5% of the non-diabetic patients (P = 0.000). Xerostomia was reported in 12.5% of diabetic patients and 5% of non-diabetic patients (P = 0.23). We can conclude that salivary glucose concentration was significantly higher in the experimental group and that there was no correlation between salivary and blood glucose concentrations in diabetic patients. The total salivary flow was significantly reduced in diabetic patients and there was no significant difference as to the presence of xerostomia in both groups.

  19. Determination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks

    Directory of Open Access Journals (Sweden)

    Vajravelu Ashok

    2013-03-01

    Full Text Available Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system.Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM. The system was designed using a helium neon laser source of 632.8 nm wavelength with 5mW power, photo detectors and digital storage oscilloscope. The laser beam was directed through a single optical fiber to the index finger and the scattered beams were collected by the photo detectors placed circumferentially to the transmitting fiber. The received signals were filtered using band pass filter and finally sent to a digital storage oscilloscope. These signals were then decomposed into approximation and detail coefficients using modified Haar Wavelet Transform. Back propagation neural and radial basis functions were employed for the prediction of blood glucose concentration.Results: The data of 450 patients were randomly used for training, 225 for testing and the rest for validation. The data showed that outputs from radial basis function were nearer to the clinical value. Significant variations could be seen from signals obtained from patients with DM and those without DM.Conclusion: The proposed non-invasive optical glucose monitoring system is able to predict the glucose concentration by proving that there is a definite variation in hematological distribution between patients with DM and those without DM.

  20. The Influence of Variation in Time and HCl Concentration to the Glucose Produced from Kepok Banana

    Science.gov (United States)

    Widodo M, Rohman; Noviyanto, Denny; RM, Faisal

    2016-01-01

    Kepok banana (Musa paradisiaca) is a plant that has many advantagesfrom its fruit, stems, leaves, flowers and cob. However, we just tend to take benefit from the fruit. We grow and harvest the fruit without taking advantages from other parts. So they would be a waste or detrimental to animal nest if not used. The idea to take the benefit from the banana crop yields, especially cob is rarely explored. This study is an introduction to the use of banana weevil especially from the glucose it contains. This study uses current methods of hydrolysis using HCl as a catalyst with the concentration variation of 0.4 N, 0.6 N and 0.8 N and hydrolysis times variation of 20 minutes, 25 minutes and 30 minutes. The stages in the hydrolysis include preparation of materials, the process of hydrolysis and analysis of test results using Fehling and titrate with standard glucose solution. HCl is used as a catalyst because it is cheaper than the enzyme that has the same function. NaOH 60% is used for neutralizing the pH of the filtrate result of hydrolysis. From the results of analysis, known thatthe biggest yield of glucose is at concentration 0.8 N and at 30 minutes reaction, it contains 6.25 gram glucose / 20 gram dry sampel, and the convertion is 27.22% at 20 gram dry sampel.

  1. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition.

    Science.gov (United States)

    Kanaley, Jill A; Heden, Timothy D; Liu, Ying; Fairchild, Timothy J

    2014-11-14

    A frequent eating pattern may alter glycaemic control and augment postprandial insulin concentrations in some individuals due to the truncation of the previous postprandial period by a subsequent meal. The present study examined glucose, insulin, C-peptide and glucose-dependent insulinotropic peptide (GIP) responses in obese individuals when meals were ingested in a high-frequency pattern (every 2 h, 6M) or in a low-frequency pattern (every 4 h, 3M) over 12 h. It also examined these postprandial responses to high-frequency, high-protein meals (6MHP). In total, thirteen obese subjects completed three 12 h study days during which they consumed 6276 kJ (1500 kcal): (1) 3M - 15 % protein and 65 % carbohydrate; (2) 6M - 15 % protein and 65 % carbohydrate; (3) 6MHP - 45 % protein and 35 % carbohydrate. Blood samples were collected every 10 min and analysed for glucose, insulin, C-peptide and GIP. Insulin total AUC (tAUC) and peak insulin concentrations (Pmeal frequency or composition. In obese subjects, ingestion of meals in a low-frequency pattern does not alter glucose tAUC, but increases postprandial insulin responses. The substitution of carbohydrates with protein in a frequent meal pattern results in tighter glycaemic control and reduced postprandial insulin responses.

  2. Effect of feeding glucose, fructose, and inulin on blood glucose and insulin concentrations in normal ponies and those predisposed to laminitis.

    Science.gov (United States)

    Borer, K E; Bailey, S R; Menzies-Gow, N J; Harris, P A; Elliott, J

    2012-09-01

    Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg·d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to

  3. Evaluation of the agreement among three handheld blood glucose meters and a laboratory blood analyzer for measurement of blood glucose concentration in Hispaniolan Amazon parrots (Amazona ventralis).

    Science.gov (United States)

    Acierno, Mark J; Mitchell, Mark A; Schuster, Patricia J; Freeman, Diana; Sanchez-Migallon Guzman, David; Tully, Thomas N

    2009-02-01

    To determine the degree of agreement between 3 commercially available point-of-care blood glucose meters and a laboratory analyzer for measurement of blood glucose concentrations in Hispaniolan Amazon parrots (Amazona ventralis). 20 healthy adult Hispaniolan Amazon parrots. A 26-gauge needle and 3-mL syringe were used to obtain a blood sample (approx 0.5 mL) from a jugular vein of each parrot. Small volumes of blood (0.6 to 1.5 microL) were used to operate each of the blood glucose meters, and the remainder was placed into lithium heparin microtubes and centrifuged. Plasma was harvested and frozen at -30 degrees C. Within 5 days after collection, plasma samples were thawed and plasma glucose concentrations were measured by means of the laboratory analyzer. Agreement between pairs of blood glucose meters and between each blood glucose meter and the laboratory analyzer was evaluated by means of the Bland-Altman method, and limits of agreement (LOA) were calculated. None of the results of the 3 blood glucose meters agreed with results of the laboratory analyzer. Each point-of-care blood glucose meter underestimated the blood glucose concentration, and the degree of negative bias was not consistent (meter A bias, -94.9 mg/dL [LOA, -148.0 to -41.7 mg/dL]; meter B bias, -52 mg/dL [LOA, -107.5 to 3.5 mg/dL]; and meter C bias, -78.9 mg/dL [LOA, -137.2 to -20.6 mg/dL]). On the basis of these results, use of handheld blood glucose meters in the diagnosis or treatment of Hispaniolan Amazon parrots and other psittacines cannot be recommended.

  4. Pre-analytical variation in glucose concentration due to atmospheric temperature and clot in blood specimens

    International Nuclear Information System (INIS)

    Butt, T.; Masud, K.; Khan, J.A.; Bhatti, M.S.

    2016-01-01

    Objective: To determine the effect of temperature and contact of clot with serum on laboratory results of glucose concentration in blood. Study Design: Quasi-experimental study. Place and Duration of Study: December 2014 to August 2015 at the laboratory of Shoaib Hospital, Fateh Jang, Attock Pakistan. Material and Methods: Samples were collected for estimation of blood glucose (Random) concentration from patients reporting to the hospital. Blood specimens (n=94) of such volunteers were analyzed for glucose level. Each sample was put up in five tubes. When the blood clotted the serum from tube-1 was analyzed for glucose level within 30 minutes. In tube-2 and tube-3 serum was kept for 24 hours at room temperature and refrigerator temperature respectively before glucose estimation. In tube-4 and tube-5 serum was not separated from clot and kept at room temperature and refrigerator temperature respectively before glucose estimation. The value of tube 1 was taken as reference value for comparison with other parts of the specimen. The equipment used for blood glucose level estimation was semi auto chemistry analyzer (Rayto, China). The kit used for analysis was Glucose - Liquizyme (Germany). Results: The difference between the mean reference value (tube-1) and refrigerated serum without clot (tube-3) was 4.63 mg/100 ml while that of unrefrigerated portion (tube-2) had a difference of 10.68 mg/100 ml. The mean of unrefrigerated (tube-4) and refrigerated (tube-5) portions of serum kept with the clot had difference of 42.05 mg/100 ml and 25.84 mg/100 ml respectively. The fall in the blood glucose level in all (n=94) the samples in the tube number 3 (serum separated and kept at refrigerated temperature) was 4.63 mg/100 ml +- 3.68 (Mean +- SD) and it ranged from 0 to 20 mg/100 ml whereas fall was maximum in the tube number 4 (serum with clotted blood and kept at room temperature) was 42.04 mg/100 ml +- 10.61 (Mean +- SD) and it ranged from 13 to 82 mg/100 ml. The sample in

  5. AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

    Directory of Open Access Journals (Sweden)

    Kazuki Tajima

    Full Text Available The precise role of AMP-activated protein kinase (AMPK, a target of metformin, in pancreatic β cells remains controversial, even though metformin was recently shown to enhance the expression of incretin receptors (GLP-1 and GIP receptors in pancreatic β cells. In this study, we investigated the effect of AMPK in the regulation of incretin receptors expression in pancreatic islets. The phosphorylation of AMPK in the mouse islets was decreased by increasing glucose concentrations. We showed the expression of incretin receptors in bell-shaped response to glucose. Expression of the incretin receptors in the isolated islets showed higher levels under a medium glucose concentration (11.1 mM than that under a low glucose concentration (2.8 mM, but was suppressed under a high glucose concentration (22.2 mM. Both treatment with an AMPK inhibitor and DN-AMPK expression produced a significant increase of the incretin receptors expression under a low glucose concentration. By contrast, in hyperglycemic db/db islets, the enhancing effect of the AMPK inhibitor on the expression of incretin receptors was diminished under a low glucose concentration. Taken together, AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

  6. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease

    DEFF Research Database (Denmark)

    Sarwar, N; Gao, P; Seshasai, S R Kondapally

    2010-01-01

    BACKGROUND: Uncertainties persist about the magnitude of associations of diabetes mellitus and fasting glucose concentration with risk of coronary heart disease and major stroke subtypes. We aimed to quantify these associations for a wide range of circumstances. METHODS: We undertook a meta-analysis...... of individual records of diabetes, fasting blood glucose concentration, and other risk factors in people without initial vascular disease from studies in the Emerging Risk Factors Collaboration. We combined within-study regressions that were adjusted for age, sex, smoking, systolic blood pressure, and body......-mass index to calculate hazard ratios (HRs) for vascular disease. FINDINGS: Analyses included data for 698 782 people (52 765 non-fatal or fatal vascular outcomes; 8.49 million person-years at risk) from 102 prospective studies. Adjusted HRs with diabetes were: 2.00 (95% CI 1.83-2.19) for coronary heart...

  7. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation

    OpenAIRE

    Frank, N.; Hermida, P.; Sanchez?Londo?o, A.; Singh, R.; Gradil, C.M.; Uricchio, C.K.

    2017-01-01

    Background Octreotide is a somatostatin analog that suppresses insulin secretion. Hypothesis We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Animals Twelve horses, N = 5, ID = 7. Methods Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1....

  8. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS.

    Science.gov (United States)

    Yildiz, Bulent O; Bozdag, Gurkan; Otegen, Umit; Harmanci, Ayla; Boynukalin, Kubra; Vural, Zehra; Kirazli, Serafettin; Yarali, Hakan

    2010-01-01

    Since insulin resistance is accepted to be a common feature of polycystic ovary syndrome (PCOS), the exact molecular mechanism(s) involved in glucose and lipid metabolism have been under investigation in the syndrome. Recently, two novel adipokines, namely visfatin and retinol-binding protein 4 (RBP4), have been suggested to play a role in insulin resistance and diabetes. This study sought to determine whether plasma concentrations of visfatin and RBP4 are altered in PCOS by comparing a total of 27 lean, normal glucose-tolerant PCOS patients with 19 age- and body mass index-matched healthy controls. The mean plasma visfatin concentrations were higher in PCOS patients than those in healthy subjects (37.9+/-18.2 versus 19.8+/-17.5, PPCOS (r=0.52, Plean, glucose-tolerant women with PCOS have increased circulating visfatin and unaltered RBP4 concentrations compared with healthy lean women. In order to clarify overlapping effects and their potential contribution to the pathophysiology of PCOS, further studies are needed. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    Science.gov (United States)

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  10. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    Science.gov (United States)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  11. Correlation between glucose concentrations in serum, plasma, and whole blood measured by a point-of-care glucometer and serum glucose concentration measured by an automated biochemical analyzer for canine and feline blood samples.

    Science.gov (United States)

    Tauk, Barbara S; Drobatz, Kenneth J; Wallace, Koranda A; Hess, Rebecka S

    2015-06-15

    To investigate the correlation between glucose concentrations in serum, plasma, and whole blood measured by a point-of-care glucometer (POCG) and serum glucose concentration measured by a biochemical analyzer. Prospective clinical study. 96 blood samples from 80 dogs and 90 blood samples from 65 cats. Serum, plasma, and whole blood were obtained from each blood sample. The glucose concentrations in serum, plasma, and whole blood measured by a POCG were compared with the serum glucose concentration measured by a biochemical analyzer by use of the Lin concordance correlation coefficient (ρc) and Bland-Altman plots. For both canine and feline samples, glucose concentrations in serum and plasma measured by the POCG were more strongly correlated with the serum glucose concentration measured by the biochemical analyzer (ρc, 0.98 for both canine serum and plasma; ρc, 0.99 for both feline serum and plasma) than was that in whole blood (ρc, 0.62 for canine samples; ρc, 0.90 for feline samples). The mean difference between the glucose concentrations determined by the biochemical analyzer and the POCG in serum, plasma, and whole blood was 0.4, 0.3, and 31 mg/dL, respectively, for canine samples and 7, 6, and 32 mg/dL, respectively, for feline samples. Results indicated that use of a POCG to measure glucose concentrations in serum or plasma may increase the accuracy and reliability of diagnostic and treatment decisions associated with glucose homeostasis disorders in dogs and cats.

  12. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2015-11-01

    Full Text Available Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA, a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.

  13. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  14. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev

    2016-06-01

    We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  15. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Directory of Open Access Journals (Sweden)

    Sriskandarajah Nadarajah

    2004-09-01

    Full Text Available Abstract Background Elevated non-esterified fatty acids (NEFA concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL, 105 and 135 days gestational age (dGA, term 147+/- 3 days. Methods The plasma concentrations of insulin, growth hormone (GH and ovine placental lactogen (oPL were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones

  16. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  17. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  18. CONCENTRATION DEPENDENCE OF STERN LAYER CAPACITANCES AND SURFACE EQUILIBRIUM CONSTANTS IN SILICA-BASED NANOFLUIDIC CHANNELS

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; Frey, J.; Bruus, Henrik

    2010-01-01

    Fundamental understanding of the unique physics at the solid-liquid interface in nanofluidic channels is essential for the advancement of basic scientific knowledge and the development of novel applications for pharmaceuticals, environmental health and safety, energy harvesting and biometrics [1......]. The current models used to describe surface phenomena in nanofluidics can differ by orders of magnitude from experimentally measured values [2]. To mitigate the discrepancies, we hypothesize that the Stern-layer capacitance Cs and the surface equilibrium constants pKa, vary with the composition of the solid...

  19. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus

    NARCIS (Netherlands)

    Fülesdi, B.; Limburg, M.; Bereczki, D.; Molnár, C.; Michels, R. P.; Leányvári, Z.; Csiba, L.

    1999-01-01

    Blood glucose and insulin concentrations have been reported to influence cerebral hemodynamics. We studied the relationship between actual blood glucose and insulin concentrations and resting cerebral blood flow velocity in the middle cerebral artery and cerebrovascular reserve capacity after

  20. Plasma glucose, cholesterol, triglyceride, and glycerol concentrations in the postmature rabbit.

    Science.gov (United States)

    Harlow, A C; Roux, J F; Shapiro, M I

    1980-02-15

    Plasma cholesterol, triglycerides, glycerol, and glucose concentrations were measured in term and postmature rabbits. The data show that the term and postmature mothers have significantly higher glycemia than their fetuses. However, triglyceride and cholesterol concentrations are lower in the postmature mother than in her fetus. Postmature fetuses are characterized by very high plasma triglyceride and cholesterol concentrations. The results demonstrate that postmaturity is accompanied by maternal and fetal lipid metabolic changes related to a decrease in the transfer of maternal fatty acids through the placenta and to a diminution in fetal liver glucose utilization. The postmature fetus is then in a relative state of fasting and must rely on its own supply of fuel (glycogen and lipids) to provide cells for growth and survival. The maternal metabolic changes can possibly be explained by a decreased utilization of maternal substrates by the fetus, the placenta becoming insufficient. The close interrelationship of fetal and maternal lipid metabolism with the activity of the placenta suggests that an accurate knowledge of the metabolic changes taking place in the fetus during alteration of the maternal environment is indispensable to the understanding of the short- and long-term effects of maternal disease on the fetus.

  1. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    Science.gov (United States)

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P oxygen levels significantly increased viability (P oxygen levels significantly reduced ATP production (P oxygen was significant in regards to cell viability (P oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Indomethacin stimulates basal glucose production in humans without changes in concentrations of glucoregulatory hormones

    NARCIS (Netherlands)

    Corssmit, E. P.; Romijn, J. A.; Endert, E.; Sauerwein, H. P.

    1993-01-01

    1. To investigate whether indomethacin affects basal glucose production, we measured hepatic glucose production in six healthy postabsorptive subjects on two occasions: once after administration of indomethacin (150 mg orally) and once after administration of placebo. 2. Glucose production was

  3. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies

    DEFF Research Database (Denmark)

    Sarwar, N; Gao, P; Seshasai, S R Kondapally

    2010-01-01

    Uncertainties persist about the magnitude of associations of diabetes mellitus and fasting glucose concentration with risk of coronary heart disease and major stroke subtypes. We aimed to quantify these associations for a wide range of circumstances....

  4. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    Science.gov (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  5. Comparison of glucose concentration and glucose absorption from the GI-tract in pigs in whole blood and in plasma

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Jørgensen, Henry; Larsen, Torben

    2010-01-01

    using a biosensitive electrode (Exp. 1) or a standard colourimetric method (Exp. 2). In general, glucose measured in whole blood was 7-11% lower than in plasma at low glucose levels (3.5-5 mM), whereas the methods agreed well at high glucose levels (10-14 mM). Evaluation of the regression lines between......The present investigation was undertaken to compare glucose absorption from the gastro-intestinal tract quantified in either whole blood or plasma using the arterio-venous differences and portal blood flow measurements. Pigs were surgically modified with catheters in the portal vein...... three different diets with similar contents of starch (470-506 g/kg DM). The diets in both studies differed regarding amount and solubility of fibre. Blood samples were collected repeatedly 0-10 h after morning feeding. Glucose was measured in whole blood using a glucometer (Accu-Chek®) and in plasma...

  6. COMPARISON OF WHOLE BLOOD AND PLASMA GLUCOSE CONCENTRATIONS IN GREEN TURTLES ( CHELONIA MYDAS) DETERMINED USING A GLUCOMETER AND A DRY CHEMISTRY ANALYZER.

    Science.gov (United States)

    Perrault, Justin R; Bresette, Michael J; Mott, Cody R; Stacy, Nicole I

    2018-01-01

    :  We compared glucose concentrations in whole blood and plasma from green turtles ( Chelonia mydas) using a glucometer with plasma glucose analyzed by dry chemistry analyzer. Whole blood glucose (glucometer) and plasma glucose (dry chemistry) had the best agreement ( r s =0.85) and a small negative bias (-0.08 mmol/L).

  7. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  8. Remarkably constant PAH concentrations in Swiss soils over the last 30 years.

    Science.gov (United States)

    Gubler, Andreas; Wächter, Daniel; Blum, Franziska; Bucheli, Thomas D

    2015-10-01

    Although polycyclic aromatic hydrocarbons (PAH) are of concern due to their carcinogenic, mutagenic, and teratogenic properties and their ubiquitous occurrence in environmental compartments, only few studies assessed the temporal evolutions of PAH contents of soils over extended time periods. The Swiss Soil Monitoring Network NABO runs long-term monitoring sites resampled every five years since the 1980s. In the present study, soil (0-20 cm) samples collected from 1985 through 2013 at 25 selected monitoring sites were analysed for the 16 priority PAH according to the U.S. EPA and five PAH marker substances. We observed divergent trends for light PAH, such as naphthalene and phenanthrene, compared with heavy PAH, such as benzo[a]pyrene and benzo[ghi]perylene. Whereas the former showed decreasing concentrations since the late 1980s, no significant trends were found for the latter. Furthermore, the analyses showed that naphthalene contents decreased most strongly at rural sites featuring low population densities, while phenanthrene contents generally decreased most strongly at semi-rural sites. The deviating evolutions of light and heavy PAH were mainly attributed to their differing physico-chemical properties. Temporal evolutions in soils contradict emission inventory data suggesting PAH emissions to decline since the 1980s.

  9. Effect of ionising radiation and sal of cadmium on the changes of concentrations glucose and cholesterol in serum of chickens

    International Nuclear Information System (INIS)

    Kafka, I.; Danova, D.; Kalenicova, Z.; Striskova, K.

    2008-01-01

    The present study investigated changes of concentrations glucose and cholesterol in the serum of broiler chickens exposed to single of whole-body dose of 3 Gy gamma rays and concentration of cadmium 6 mg · kg -1 live weight. Samples of our experiment was analyse on the 7, 14 and 21 day after irradiation. (authors)

  10. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...... a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization....

  11. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  12. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  13. In-vitro performance of the Enlite Sensor in various glucose concentrations during hypobaric and hyperbaric conditions.

    Science.gov (United States)

    Adolfsson, Peter; Ornhagen, Hans; Eriksson, Bengt M; Gautham, Raghavendhar; Jendle, Johan

    2012-11-01

    There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R(2)) of 0.98 was found. During the hypobaric test, significant differences (p hyperbaric test, no differences were found. The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. © 2012 Diabetes Technology Society.

  14. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate.

    Directory of Open Access Journals (Sweden)

    Anatoli Y Kabakov

    Full Text Available Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS. Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM and high (300-1200 μM glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might

  15. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  16. The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood

    International Nuclear Information System (INIS)

    Shen, Y C; Davies, A G; Linfield, E H; Elsey, T S; Taday, P F; Arnone, D D

    2003-01-01

    Fourier-transform infrared transmission spectroscopy has been used for the determination of glucose concentration in whole blood samples from 28 patients. A 4-vector partial least-squares calibration model, using the spectral range 950-1200 cm -1 , yielded a standard-error-of-prediction of 0.59 mM for an independent test set. For blood samples from a single patient, we found that the glucose concentration was proportional to the difference between the values of the second derivative spectrum at 1082 cm -1 and 1093 cm -1 . This indicates that spectroscopy at these two specific wavenumbers alone could be used to determine the glucose concentration in blood plasma samples from a single patient, with a prediction error of 0.95 mM

  17. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    Science.gov (United States)

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  18. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    Science.gov (United States)

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of intravenous glucose infusion and nutritional balance on serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows.

    Science.gov (United States)

    Vieira, F V R; Lopes, C N; Cappellozza, B I; Scarpa, A B; Cooke, R F; Vasconcelos, J L M

    2010-07-01

    The objective of this study was to evaluate serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows according to nutritional balance and glucose infusion. Ten nonlactating, ovariectomized Gir x Holstein cows were stratified by body weight (BW) and body condition score (BCS) on d -28 of the study, and randomly assigned to 1) negative nutrient balance (NB) or 2) positive nutrient balance (PB). From d -28 to d 0, cows were allocated according to nutritional treatment (5 cows/treatment) into 2 low-quality pastures with reduced forage availability. However, PB cows individually received, on average, 3 kg/cow per day (as-fed) of a concentrate during the study. All cows had an intravaginal progesterone releasing device inserted on d -14, which remained in cows until the end of the study. Cow BW and BCS were assessed again on d 0. On d 0, cows within nutritional treatment were randomly assigned to receive, in a crossover design containing 2 periods of 24h each, 1) intravenous glucose infusion (GLU; 0.5 g of glucose/kg of BW, as a 5% glucose solution administered, on average, at 32 mL/min over a 3-h period), or 2) intravenous saline infusion (SAL; 0.9% solution infused on average at 32 mL/min over a 3-h period). Prior to the beginning of each period, all cows were fasted for 12h. Blood samples were collected, relative to the beginning of the infusion, at -12 and -11.5h (beginning of fasting), and at -0.5, 0, 0.5, 1, 2, 3, 4, 5, and 6h. Following the last blood collection of period 1, cows received (PB) or not (NB) concentrate and were returned to their respective pastures. Changes in BCS and BW were greater in NB cows compared with PB cows (-0.60 and -0.25+/-0.090 for BCS, respectively; -22.4 and 1.2+/-6.58 kg for BW, respectively). Cows receiving GLUC had greater glucose concentrations from 0.5 to 3h relative to infusion compared with SAL cows. Insulin concentrations were greater in PB cows assigned to GLUC compared

  20. Short communication: Associations between blood glucose concentration, onset of hyperketonemia, and milk production in early lactation dairy cows.

    Science.gov (United States)

    Ruoff, J; Borchardt, S; Heuwieser, W

    2017-07-01

    The objectives of this study were to describe the associations between hypoglycemia and the onset of hyperketonemia (HYK) within the first 6 wk of lactation, to evaluate the effects of body condition score at calving on glucose concentration, and to study the effects of hypoglycemia on milk production. A total of 621 dairy cows from 6 commercial dairy farms in Germany were enrolled between 1 and 4 d in milk (DIM). Cows were tested twice weekly using an electronic handheld meter for glucose and β-hydroxybutyrate (BHB), respectively, for a period of 42 d. Hypoglycemia was defined as glucose concentration ≤2.2 mmol/L. Hyperketonemia was defined as a BHB concentration ≥1.2 mmol/L. The onset of HYK was described as early onset (first HYK event within the first 2 wk postpartum) and late onset (first HYK event in wk 3 to 6 postpartum). The effect of ketosis status on blood glucose within 42 DIM was evaluated using a generalized linear mixed model. No effect was observed of HYK on glucose concentration in primiparous cows. Multiparous cows with early-onset HYK had a lower glucose concentration (-0.21 mmol/L) compared with nonketotic cows. Overall, primiparous cows had a lower prevalence and incidence of hypoglycemia than multiparous cows. Hypoglycemia in multiparous cows was associated with higher first test-day milk production and 100 DIM milk production. In conclusion, hypoglycemia mainly occurred in multiparous cows with early-onset HYK, whereas primiparous cows were at a lower risk for hypoglycemia. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effective closed form mathematical approach to determine kinetic constants of NR vulcanized with sulphur and accelerators at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Hanel, Thomas; Donetti, Raffaella [Pirelli Tyre, Via Alberto e Piero Pirelli 25, 20126 Milan (Italy); Milani, Federico [CHEMCO Consultant, Via J.F. Kennedy 2, 45030 Occhiobello (Italy)

    2015-03-10

    The basic reaction scheme due to Han and co-workers for NR vulcanized with sulphur is adopted and modified taking into account the single contributions of the different accelerators, focusing in particular on some experimental data ad hoc obtained at Pirelli’s laboratories, where NR was vulcanized at different temperatures (from 150 to 180 °C) and concentrations of sulphur, using TBBS and DPG in the mixture as co-agents. Typically, the chain reactions are initiated by the formation of macro-compounds that are responsible of the formation of the unmatured crosslinked polymer. This first reaction depends on the reciprocal concentrations of all components and their chemical nature. In presence of two accelerators, it was considered that the reactions between each single accelerator and the NR raw material occur in parallel, making the reasonable assumption that there are no mutual reactions between the two accelerators. From the kinetic scheme adopted, a closed form solution was found for the crosslink density, with the only limitation that the induction period is excluded from computations. Even kinetic constants are evaluated in closed form, avoiding a numerically demanding least-squares best fitting on rheometer experimental data. Two series of experiments available, relying into rheometer curves at different temperatures and different concentrations of sulphur and accelerator, are utilized to evaluate the fitting capabilities of the mathematical model. Very good agreement between numerical output and experimental data is experienced in all cases analysed.

  2. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia.

    Science.gov (United States)

    Pichler, M; Damberger, A; Schwendenwein, I; Gasteiner, J; Drillich, M; Iwersen, M

    2014-03-01

    Metabolic disorders, especially hyperketonemia, are very common in dairy sheep. The whole-blood concentrations of β-hydroxybutyrate (BHBA) and glucose can be determined by commercially available electronic hand-held devices, which are used in human medicine and for the detection of ketosis in dairy cows. The aim of this study was to evaluate the suitability of the hand-held device Precision Xceed (PX; Abbott Diabetes Care Inc., Abbott Park, IL) to detect hyperketonemia in ewes. An additional objective of this study was to evaluate the agreement between samples obtained by minimal invasive venipuncture of an ear vein and measurements of whole-blood samples from the jugular vein (vena jugularis, v. jug.). Blood samples taken from the v. jug. were collected from 358 ewes on 4 different farms. These samples and a blood drop obtained from an ear vein were analyzed simultaneously on farm with the PX. For method comparison, the samples obtained from the v. jug. were also analyzed by standard methods, which served as the gold standard at the Central Laboratory of the University of Veterinary Medicine Vienna, Austria. The correlation coefficients between the serum BHBA concentration and the concentrations measured with the hand-held meter in the whole blood from an ear vein and the v. jug. were 0.94 and 0.96, respectively. The correlation coefficients of plasma and whole-blood glucose concentration were 0.68 for the v. jug. and 0.47 for the ear vein. The mean glucose concentration was significantly lower in animals classified as hyperketonemic (BHBA ≥ 1.6 mmol/L) compared with healthy ewes. Whole-blood concentrations of BHBA and glucose measured with the PX from v. jug. showed a constant negative bias of 0.15 mmol/L and 8.4 mg/dL, respectively. Hence, a receiver operating characteristic analysis was performed to determine thresholds for the PX to detect hyperketonemia in ewes. This resulted in thresholds for moderate ketosis of BHBA concentrations of 0.7 mmol/L in blood

  3. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    Science.gov (United States)

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  4. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study.

    Science.gov (United States)

    Ben-Yosef, D; Yovel, I; Schwartz, T; Azem, F; Lessing, J B; Amit, A

    2001-11-01

    To assess the comparative efficacy of IVF medium (MediCult, with 5.2 mM glucose) and a glucose/phosphate-free medium, P1 (Irvine Scientific), and to investigate the influence of increasing the serum supplementation (synthetic serum substitute; SSS; Irvine Scientific) to P1 on embryo development and implantation. Patients were randomly assigned to IVF medium (Group 1, cycles n = 172) or P1 supplemented with 10% SSS (Group 2, cycles n = 229) according to the medium scheduled for use on the day of oocyte retrieval. Another 555 IVF consequent cycles (Group 3) were performed using increased SSS concentrations (20%) in P1 medium. In this large series of IVF cycles, we herein demonstrate that significantly higher pregnancy and implantation rates were found when embryos were cultured in glucose/phosphate-free medium P1 supplemented with 20% SSS compared to supplementation with the lower SSS concentration and with IVF medium.

  5. Effects of fasting on plasma catecholamine, corticosterone and glucose concentrations under basal and stress conditions in individual rats

    NARCIS (Netherlands)

    de Boer, S.F.; Koopmans, S.J.; Slangen, J L; Van der Gugten, J

    Plasma noradrenaline (NA), adrenaline (A), corticosterone (CS) and glucose concentrations were determined in blood sampled via a cardiac catheter from freely moving male rats under ad lib fed and 24 hr food deprived conditions using a repeated measures within-subject design. Resting plasma NA and

  6. Measuring Blood Glucose Concentrations in Photometric Glucometers Requiring Very Small Sample Volumes.

    Science.gov (United States)

    Demitri, Nevine; Zoubir, Abdelhak M

    2017-01-01

    Glucometers present an important self-monitoring tool for diabetes patients and, therefore, must exhibit high accuracy as well as good usability features. Based on an invasive photometric measurement principle that drastically reduces the volume of the blood sample needed from the patient, we present a framework that is capable of dealing with small blood samples, while maintaining the required accuracy. The framework consists of two major parts: 1) image segmentation; and 2) convergence detection. Step 1 is based on iterative mode-seeking methods to estimate the intensity value of the region of interest. We present several variations of these methods and give theoretical proofs of their convergence. Our approach is able to deal with changes in the number and position of clusters without any prior knowledge. Furthermore, we propose a method based on sparse approximation to decrease the computational load, while maintaining accuracy. Step 2 is achieved by employing temporal tracking and prediction, herewith decreasing the measurement time, and, thus, improving usability. Our framework is tested on several real datasets with different characteristics. We show that we are able to estimate the underlying glucose concentration from much smaller blood samples than is currently state of the art with sufficient accuracy according to the most recent ISO standards and reduce measurement time significantly compared to state-of-the-art methods.

  7. Assessment of circulating betatrophin concentrations in lean glucose-tolerant women with polycystic ovary syndrome.

    Science.gov (United States)

    Erol, Onur; Özel, Mustafa Kemal; Ellidağ, Hamit Yaşar; Toptaş, Tayfun; Derbent, Aysel Uysal; Yılmaz, Necat

    2017-07-01

    The aims of the current study were to investigate the betatrophin levels in lean glucose-tolerant women with polycystic ovary syndrome (PCOS), and to explore the relationships between these levels and antropometric, hormonal and metabolic parameters. The study population consisted of 50 lean (body mass index [BMI] production and improved glucose tolerance. Few studies have investigated the association between PCOS and betatrophin. However, in contrast to our study, the authors included overweight/obese patients and glucose tolerance was not evaluated before recruitment. What the results of this study add: Our results showed that serum betatrophin levels were significantly higher in lean glucose-tolerant PCOS women than in age- and BMI-matched healthy controls. What are the implications of these findings for clinical practice and/or further research: Elevated betatrophin levels in PCOS women, in the absence of obesity and glucose intolerance, may reflect a compensatory mechanism in order to counteract metabolic syndrome-related risk factors.

  8. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    Science.gov (United States)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy

  9. Solute concentration at a well in non-Gaussian aquifers under constant and time-varying pumping schedule

    Science.gov (United States)

    Libera, Arianna; de Barros, Felipe P. J.; Riva, Monica; Guadagnini, Alberto

    2017-10-01

    Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cp estimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cp displays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cp displays a bimodal shape for all types of pumping

  10. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    Science.gov (United States)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  11. High Glucose Concentration Promotes Vancomycin-Enhanced Biofilm Formation of Vancomycin-Non-Susceptible Staphylococcus aureus in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Chi-Yu Hsu

    Full Text Available We previously demonstrated that vancomycin treatment increased acquisition of eDNA and enhanced biofilm formation of drug-resistant Staphylococcus aureus through a cidA-mediated autolysis mechanism. Recently we found that such enhancement became more significant under a higher glucose concentration in vitro. We propose that besides improper antibiotic treatment, increased glucose concentration environment in diabetic animals may further enhance biofilm formation of drug-resistant S. aureus. To address this question, the diabetic mouse model infected by vancomycin-resistant S. aureus (VRSA was used under vancomycin treatment. The capacity to form biofilms was evaluated through a catheter-associated biofilm assay. A 10- and 1000-fold increase in biofilm-bound bacterial colony forming units was observed in samples from diabetic mice without and with vancomycin treatment, respectively, compared to healthy mice. By contrast, in the absence of glucose vancomycin reduced propensity to form biofilms in vitro through the increased production of proteases and DNases from VRSA. Our study highlights the potentially important role of increased glucose concentration in enhancing biofilm formation in vancomycin-treated diabetic mice infected by drug-resistant S. aureus.

  12. Dietary patterns predict changes in two-hour post-oral glucose tolerance test plasma glucose concentrations in middle-aged adults.

    Science.gov (United States)

    Lau, Cathrine; Toft, Ulla; Tetens, Inge; Carstensen, Bendix; Jørgensen, Torben; Pedersen, Oluf; Borch-Johnsen, Knut

    2009-03-01

    We examined whether the adherence to major dietary patterns at baseline of 5824 nondiabetic Danes (30-60 y) enrolled in the nonpharmacological Inter99 intervention predicted changes in fasting plasma glucose (FPG) and postchallenge 2-h plasma glucose (2h-PG) concentrations during a 5 y period and whether a potential association was dependent on baseline glucose tolerance status. Through principal component analysis, a score for a traditional dietary pattern (characterized by higher intakes of high-fat sandwich spreads, red meat, potatoes, butter and lard, low-fat fish, sandwich meat, and sauces) and a score for a modern dietary pattern (characterized by higher intakes of vegetables, fruit, vegetable oil/vinegar dressing, poultry, pasta, rice, and cereals) were estimated for each person at baseline. Random effect models adjusting for relevant confounders were used to estimate changes in repetitive measures of FPG and 2h-PG. A higher modern score (of 1 SD) predicted an annual decrease in 2h-PG of 0.015 mmol/L (P dressing, poultry, pasta, rice, and cereals.

  13. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-01-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments...... of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose...

  14. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Serum progranulin concentrations are not responsive during oral lipid tolerance test and oral glucose tolerance test.

    Science.gov (United States)

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2015-07-01

    The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  17. Peri and Postparturient Concentrations of Lipid Lipoprotein Insulin and Glucose in Normal Dairy Cows

    OpenAIRE

    BAŞOĞLU, Abdullah; SEVİNÇ, Mutlu; OK, Mahmut

    1998-01-01

    In order to provide uniqe insight into the metabolic disturbences seen after calving cholesterol, triglycerid, high density lipoprotein, low density lipoprotein, very low density lipoprotein, glucose and insulin levels in serum were studied before calving (group I), in aerly (group II) and late (group III) lactation in 24 normal cows. Serum lipoproteins were separeted into various density classes by repeated ultracentrifugation. The results indicate that there was a rise in glucose, trygl...

  18. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.

    Science.gov (United States)

    Kitanovic, Ana; Walther, Thomas; Loret, Marie Odile; Holzwarth, Jinda; Kitanovic, Igor; Bonowski, Felix; Van Bui, Ngoc; Francois, Jean Marie; Wölfl, Stefan

    2009-06-01

    Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.

  19. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central

  20. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  1. Effect of detomidine or romifidine constant rate infusion on plasma lactate concentration and inhalant requirements during isoflurane anaesthesia in horses.

    Science.gov (United States)

    Niimura Del Barrio, M C; Bennett, Rachel C; Hughes, J M Lynne

    2017-05-01

    Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery. Prospective, randomised, blinded, clinical trial. A total of 24 adult healthy horses. All horses were administered intramuscular acepromazine (0.02 mg kg -1 ) and either intravenous detomidine (0.02 mg kg -1 ) (group D), romifidine (0.08 mg kg -1 ) (group R) or xylazine (1.0 mg kg -1 ) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg -1 hour -1 ) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg -1 hour -1 ) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe'Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia-start surgery); Surgery 1 (start surgery-30 minutes later); and Surgery 2 (end Surgery 1-end anaesthesia). A linear mixed model was used to analyse the data. A value of pdetomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  2. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  3. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  4. Intraperitoneal lactate/pyruvate ratio and the level of glucose and glycerol concentration differ between patients surgically treated for upper and lower perforations of the gastrointestinal tract

    DEFF Research Database (Denmark)

    Sabroe, Jonas E; Axelsen, Anne R; Ellebæk, Mark B

    2017-01-01

    collected every 4th hour for up to 7 postoperative days. Samples were analysed for concentrations of glucose, lactate, pyruvate and glycerol. RESULTS: Microdialysis results showed that patients with upper gastrointestinal tract lesions had significantly higher levels of postoperative intraperitoneal glucose...... and glycerol concentrations, as well as lower lactate/pyruvate ratios and lactate/glucose ratios. In the group with perforation of the lower gastrointestinal tract, those patients with a complicated course showed lower levels of postoperative intraperitoneal glucose concentration and glycerol concentration...... and higher lactate/pyruvate ratios and lactate/glucose ratios than those patients with an uncomplicated course. CONCLUSION: Patients with upper and lower gastrointestinal tract lesions showed differences in postoperative biomarker levels. A difference was also seen between patients with complicated...

  5. Glycated haemoglobin may in future be reported as estimated mean blood glucose concentration--secondary publication

    DEFF Research Database (Denmark)

    Borg, R.; Nerup, J.; Nathan, D.M.

    2009-01-01

    Glycated haemoglobin (HbA 1c ) is widely used to determine levels of chronic glycaemia, to judge the adequacy of diabetes treatment and to adjust therapy. HbA 1c results are expressed as the percentage of HbA that is glycated. Day-to-day management is guided by self-monitoring of capillary glucose...

  6. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    Science.gov (United States)

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic

  7. The influence of sodium propionate on blood glucose, insulin and cortisol concentrations in calves of different ages

    Directory of Open Access Journals (Sweden)

    Biljana Radojičić

    2016-01-01

    Full Text Available The process of gluconeogenesis in ruminants is under the direct influence of insulin and glucocorticoid hormones. The goal of this study was to determine the effects of added Na-propionate on the neuroendocrine regulation of blood glucose in calves at three specific physiological periods: on exclusive milk nutrition; on mixed milk and forage nutrition; and with established ruminant digestion. The influence of Na-propionate on blood glucose, insulin and cortisol concentrations was examined in the same 20 female Holstein calves at different stages of forestomach development (15 days, 2 months, and 4 months of age of calves. Group 1 of calves (n = 10 received Na-propionate intravenously; group 2 (n = 10 received Na-propionate mixed in milk. Blood sampling was performed 1 and 3 h after Na-propionate administration. After i.v. administration of Na-propionate, a significant increase (P < 0.05 in blood glucose concentration was observed 1 h after administration only in calves aged 2 and 4 months; blood insulin concentration was significantly higher (P < 0.01 1 and 3 h after i.v. administration in 2-month-old calves; and cortisol concentration increased (P < 0.01 1 h after administration in each selected calf in all testing periods. Orally administered Na-propionate led to a significant increase (P < 0.01 of insulin concentration 1 and 3 h after administration in 15-day-old calves, and 3 h after administration in 2-month-old calves. Based on these results it could be assumed that i.v. and p.o. administration of Na-propionate affects the neuroendocrine regulation of glycaemia in calves of different age.

  8. Concomitant Intake of Quercetin with a Grain-Based Diet Acutely Lowers Postprandial Plasma Glucose and Lipid Concentrations in Pigs

    Directory of Open Access Journals (Sweden)

    Silvia Wein

    2014-01-01

    Full Text Available Treatment goals of diabetes mellitus type 2 (DMT2 include glycemic control and reduction of nonglycemic risk factors, for example, dyslipidemia. Quercetin, a plant-derived polyphenol, often discussed for possible antidiabetic effects, was investigated for acute postprandial glucose- and lipid-lowering effects in healthy growing pigs. Male pigs (n = 16, body weight = BW 25–30 kg were fed flavonoid-poor grain-based meals without (GBM or with quercetin (GBMQ. In a first experiment, postprandial plasma concentrations of glucose, nonesterified fatty acids (NEFA, and triacylglycerols were analyzed in 8 pigs receiving 500 g of either GBM or GBMQ (10 mg/kg BW in a cross-over design. Blood samples were collected before, and up to 5 h every 30 min, as well as 6 and 8 h after the feeding. In the second experiment, 2 h after ingestions of 1000 g of either GBM or GBMQ (50 mg/kg BW animals were sacrificed; gastric content was collected and analyzed for dry matter content. Quercetin ingestion reduced postprandial glucose, NEFA, and TG concentration, but two hours after ingestion of the meal no effect on gastric emptying was observed. Our results point to inhibitory effects of quercetin on nutrient absorption, which appear not to be attributable to delayed gastric emptying.

  9. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    International Nuclear Information System (INIS)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E.

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ([Na+]i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for [Na+]i. Five rat RBC specimens had [Na+]i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing [6,6-2H2]glucose and examined by 2H-NMR. No significant differences in [Na+]i or glucose utilization were found in RBCs from control or septic rats. There were no differences in [Na+]i in the two groups of patients. The [Na+]i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the [Na+]i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism

  10. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations

    OpenAIRE

    Fraser, D. A.; Hessvik, N. P.; Nikolić, N.; Aas, V.; Hanssen, K. F.; Bøhn, S. K.; Thoresen, G. H.; Rustan, A. C.

    2011-01-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measu...

  11. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    Science.gov (United States)

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  12. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.

    Science.gov (United States)

    Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2014-05-01

    Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  13. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing.

    Science.gov (United States)

    Harnsoongnoen, Supakorn; Wanthong, Anuwat

    2017-10-01

    Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Serum proatrial natriuretic peptide concentrations during oral glucose-induced acute hyperinsulinemia in lean and obese men

    DEFF Research Database (Denmark)

    Asferg, Camilla L; Nielsen, Søren J; Andersen, Ulrik B

    2018-01-01

    Atrial natriuretic peptide (ANP) is primarily seen as a hormone involved in salt and water homeostasis and blood pressure regulation. Evidence supports a link between metabolism and ANP. Circulating ANP concentrations are low in obese individuals with insulin resistance and hyperinsulinemia....... The dynamic relationship between insulin and ANP has been sparsely studied. We therefore measured circulating concentrations of midregional proatrial natriuretic peptide (MR-proANP), a stable marker of ANP secretion, and insulin in lean and obese men during an oral glucose challenge. One hundred and three...... obese men (body mass index (BMI) ≥30.0 kg/m2) were compared with 27 lean men (BMI = 20.0-24.9 kg/m2). During a 75 g oral glucose challenge, circulating concentrations of MR-proANP and insulin were measured at baseline and every half hour for 2 h. Fasting MR-proANP concentrations were lower in the obese...

  15. Glucose intolerance and the amount of visceral adipose tissue contribute to an increase in circulating triglyceride concentrations in Caucasian obese females.

    Science.gov (United States)

    Berings, Margot; Wehlou, Charline; Verrijken, An; Deschepper, Ellen; Mertens, Ilse; Kaufman, Jean-Marc; Van Gaal, Luc F; Ouwens, D Margriet; Ruige, Johannes B

    2012-01-01

    Lipotoxicity is a risk factor for developing obesity-related metabolic complications, including non-alcoholic fatty liver disease, type 2 diabetes (DM2), cardiovascular disease and stroke. Yet, the mechanisms underlying the development of lipotoxicity itself remain poorly understood. Here, we investigated whether glucose intolerance aggravates lipotoxicity by evaluating the association between triglyceride (TG) concentrations and glucose tolerance status in a cross-sectional study on obese Caucasian women at risk for DM2. 913 obese females unknown to have diabetes were recruited (mean age: 41.2 ± SD 12.3; median BMI: 36.2, IQR 32.9-40.2). Visceral (VAT) and subcutaneous abdominal adipose tissue volumes were quantified with computed tomography. Glucose, insulin, and triglyceride concentrations were determined in fasting state and following a 75 gram oral glucose tolerance test. Based on fasting and 2 h post-load glucose levels, 27% of the women had impaired glucose tolerance (IGT), and 8% had newly diagnosed DM2. Fasting TG concentrations were similar between the IGT- and DM2-groups, and increased as compared to women with normal glucose tolerance (NGT). Even when adjusting for age, hip circumference and VAT, fasting TG concentrations remained elevated as compared to NGT. Mixed modelling analysis of post-load responses showed that TG concentrations declined more slowly in the DM2-group as compared to IGT and NGT. However, when adjusting for VAT the difference in decline between the glucose tolerance groups disappeared. Glucose intolerance associates with elevated fasting TG concentrations in obese Caucasian women. We propose that glucose intolerance and increased VAT reduce lipid disposal mechanisms and may accelerate lipotoxicity.

  16. Glucose intolerance and the amount of visceral adipose tissue contribute to an increase in circulating triglyceride concentrations in Caucasian obese females.

    Directory of Open Access Journals (Sweden)

    Margot Berings

    Full Text Available CONTEXT: Lipotoxicity is a risk factor for developing obesity-related metabolic complications, including non-alcoholic fatty liver disease, type 2 diabetes (DM2, cardiovascular disease and stroke. Yet, the mechanisms underlying the development of lipotoxicity itself remain poorly understood. Here, we investigated whether glucose intolerance aggravates lipotoxicity by evaluating the association between triglyceride (TG concentrations and glucose tolerance status in a cross-sectional study on obese Caucasian women at risk for DM2. METHODS: 913 obese females unknown to have diabetes were recruited (mean age: 41.2 ± SD 12.3; median BMI: 36.2, IQR 32.9-40.2. Visceral (VAT and subcutaneous abdominal adipose tissue volumes were quantified with computed tomography. Glucose, insulin, and triglyceride concentrations were determined in fasting state and following a 75 gram oral glucose tolerance test. RESULTS: Based on fasting and 2 h post-load glucose levels, 27% of the women had impaired glucose tolerance (IGT, and 8% had newly diagnosed DM2. Fasting TG concentrations were similar between the IGT- and DM2-groups, and increased as compared to women with normal glucose tolerance (NGT. Even when adjusting for age, hip circumference and VAT, fasting TG concentrations remained elevated as compared to NGT. Mixed modelling analysis of post-load responses showed that TG concentrations declined more slowly in the DM2-group as compared to IGT and NGT. However, when adjusting for VAT the difference in decline between the glucose tolerance groups disappeared. CONCLUSIONS: Glucose intolerance associates with elevated fasting TG concentrations in obese Caucasian women. We propose that glucose intolerance and increased VAT reduce lipid disposal mechanisms and may accelerate lipotoxicity.

  17. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects

    DEFF Research Database (Denmark)

    Hlebowicz, Joanna; Hlebowicz, Anna; Lindstedt, Sandra

    2009-01-01

    glucose, plasma concentrations of insulin and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)], the ghrelin response, and satiety in healthy subjects. DESIGN: GER was measured by using real-time ultrasonography after ingestion of rice pudding...... with and without 1 or 3 g cinnamon. Fifteen healthy subjects were assessed in a crossover trial. RESULTS: The addition of 1 or 3 g cinnamon had no significant effect on GER, satiety, glucose, GIP, or the ghrelin response. The insulin response at 60 min and the area under the curve (AUC) at 120 min were...... cinnamon (P = 0.0082 and P = 0.0138, respectively, after Bonferroni correction). CONCLUSIONS: Ingestion of 3 g cinnamon reduced postprandial serum insulin and increased GLP-1 concentrations without significantly affecting blood glucose, GIP, the ghrelin concentration, satiety, or GER in healthy subjects...

  18. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  19. Neuroscience of glucose homeostasis

    NARCIS (Netherlands)

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose

  20. Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters.

    Science.gov (United States)

    Brede, Swantje; Sputh, Annika; Hartmann, Ann-Christin; Hallschmid, Manfred; Lehnert, Hendrik; Klement, Johanna

    2017-10-01

    The abundance of highly palatable food items in our environment represents a possible cause of overconsumption. Neuroimaging studies in humans have demonstrated that watching pictures of food increases activation in brain areas involved in homeostatic and hedonic food cue processing. Nevertheless, the impact of food cues on actual food intake and metabolic parameters has not been systematically investigated. We tested the hypothesis that watching high-calorie food cues increases food intake and modifies anticipatory blood parameters in lean and especially in obese men. In 20 normal-weight and 20 obese healthy fasted men, we assessed the effects of watching pictures of high-calorie food items versus neutral contents on food intake measured during a standardized test buffet and subsequent snacking as well as on glucose homeostasis and endocrine parameters. Compared to neutral pictures, viewing food pictures reduced postprandial blood glucose concentrations in lean (p = 0.016) and obese (p = 0.044) subjects, without any differences in insulin or C-peptide concentrations (all p > 0.4). Viewing food pictures did not affect total calorie intake during the buffet (all p > 0.5) and snack consumption (all p > 0.4). Concentrations of ghrelin, adrenocorticotropic hormone (ACTH), cortisol, and glucagon also remained unaffected (all p > 0.08). These data indicate that preprandial processing of food cues curbs postprandial blood glucose excursions, without immediately affecting eating behavior in normal-weight and obese men. Findings indicate that exposure to food cues does not acutely trigger calorie overconsumption but rather improves the glucoregulatory response to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression.

    Science.gov (United States)

    Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L

    2016-01-06

    Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. © 2016 Authors.

  2. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting.

    Science.gov (United States)

    Klaff, Leslie J; Brazg, Ronald; Hughes, Kristen; Tideman, Ann M; Schachner, Holly C; Stenger, Patricia; Pardo, Scott; Dunne, Nancy; Parkes, Joan Lee

    2015-01-01

    This study evaluated the accuracy of Contour(®) Next (CN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ) compared with five blood glucose monitoring systems (BGMSs) across a wide range of clinically occurring blood glucose levels. Subjects (n=146) were ≥ 18 years and had type 1 or type 2 diabetes. Subjects' glucose levels were safely lowered or raised to provide a wide range of glucose values. Capillary blood samples were tested on six BGMSs and a YSI glucose analyzer (YSI Life Sciences, Inc., Yellow Springs, OH) as the reference. Extreme glucose values were achieved by glucose modification of the blood sample. System accuracy was assessed by mean absolute difference (MAD) and mean absolute relative difference (MARD) across several glucose ranges, with glucose range (Abbott Diabetes Care, Inc., Alameda, CA), 2.77 mg/dL; OneTouch(®) Ultra(®) 2 (LifeScan, Inc., Milpitas, CA), 10.20 mg/dL; OneTouch(®) Verio(®) Pro (LifeScan, Inc.), 4.53 mg/dL; and Truetrack(®) (Nipro Diagnostics, Inc., Fort Lauderdale, FL), 11.08 mg/dL. The lowest MAD in the low glucose range, from CN, was statistically significantly lower than those of the other BGMSs with the exception of the FSL. CN also had a statistically significantly lower MARD than all other BGMSs in the low glucose range. In the overall glucose range (21-496 mg/dL), CN yielded the lowest MAD and MARD values, which were statistically significantly lower in comparison with the other BGMSs. When compared with other BGMSs, CN demonstrated the lowest mean deviation from the reference value (by MAD and MARD) across multiple glucose ranges.

  3. Glucose kinetics in infants of diabetic mothers

    International Nuclear Information System (INIS)

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-01-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-[U-13C] glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia

  4. Hierarchical clustering of Alzheimer and 'normal' brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2001-01-01

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element concentrations in the frontal lobe were determined for twenty six Alzheimer (15 male, 11 female) and twenty six 'normal' (8 male, 18 female) brain tissue samples. In the parietal lobe ten Alzheimer (2 male, 8 female) and ten 'normal' (8 male, 2 female) samples were taken along with ten Alzheimer (4 male, 6 female) and ten 'normal' (6 male, 4 female) from the occipital lobe. For the frontal lobe trace element concentrations were determined using proton induced X-ray emission (PIXE) analysis while in parietal and occipital regions instrumental neutron activation analysis (INAA) was used. Additionally eighteen Alzheimer (9 male, 9 female) and eighteen age matched 'normal' (8 male, 10 female) living subjects were examined using positron emission tomography (PET) in order to determine regional cerebral metabolic rates of glucose (rCMRGlu). The rCMRGlu of 36 regions of the brain was investigated including frontal, occipital and parietal lobes as in the trace element study. Hierarchical cluster analysis was applied to the trace element and glucose metabolism data to discover which variables in the resulting dendrograms displayed the most significant separation between Alzheimer and 'normal' subjects. (author)

  5. Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

    International Nuclear Information System (INIS)

    Shan, C.; Javandel, I.

    1996-05-01

    Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method

  6. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Xue Sun

    Full Text Available Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D. Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion.We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1 were genotyped and serum biochemical parameters related to uric acid and T2D were determined.SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008. In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009. SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029. SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043. In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively. SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively.Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.

  7. Trichosanthes cucumerina extracts enhance glucose uptake and regulate adiponectin and leptin concentrations in 3T3-L1 adipocytes model

    Directory of Open Access Journals (Sweden)

    Sassi, A.,

    2017-10-01

    Full Text Available Trichosanthes cucumerina (Cucurbitaceae commonly known as Snake gourd or Labu Ular is considered the largest genre in the Cucurbitaceae family and is mainly found in the southeast areas of Asia. It has been used in Ayurvedic medicine as a treatment for certain diseases such as Diabetes mellitus, but these acclaims lack scientific-based evidence. In this study, water and ethanol extracts of three parts of Trichosanthes cucumerina namely; whole vegetable, peels, and seeds, were assessed for toxicity through a cell viability assay using 3T3-L1 pre-adipocytes model which revealed a maximum toleration concentration of 0.063 mg/mL. The extracts were further tested on adipocytes’ differentiation and positively showed a stimulation of lipid droplets formation during adipogenesis and significantly (p<0.001 increased glycerol release levels (75.34±3.69 μg/ml during adipolysis. The extracts also significantly (p<0.001 promoted the uptake of glucose into the cells (2636.22±91.33 Bq in an action similar to that of insulin. Similar results were observed during ELISA assay with a significant increase (p<0.001 in adiponectin concentrations (3593.1±225.25 ng/mL and a decrease in leptin concentrations (23870±5066.07 pg/mL. The present study results indicate a beneficial effect of Trichosanthes cucumerina extracts on adipogenesis, adipolysis and glucose uptake, in addition to a regulation of adiponectin and leptin concentrations in 3T3-L1 adipocytes which can be of clinical importance in energy regulation which is a key factor in treating diabetes, obesity, and metabolic syndrome.

  8. Comparison of a Point-of-Care Glucometer and a Laboratory Autoanalyzer for Measurement of Blood Glucose Concentrations in Domestic Pigeons ( Columba livia domestica).

    Science.gov (United States)

    Mohsenzadeh, Mahdieh Sadat; Zaeemi, Mahdieh; Razmyar, Jamshid; Azizzadeh, Mohammad

    2015-09-01

    Biochemical analysis is necessary for diagnosis and monitoring of diseases in birds; however, the small volume of blood that can be safely obtained from small avian species often limits laboratory diagnostic testing. Consequently, a suitable methodology requiring only a small volume of blood must be used. This study was designed to compare blood glucose concentrations in domestic pigeons ( Columba livia domestica) as measured by a commercial, handheld, human glucometer and a standard autoanalyzer. During the first phase of the study, whole blood samples obtained from 30 domestic pigeons were used to measure the blood glucose concentration with a glucometer, the packed cell volume (PCV), and the total erythrocyte count (nRBC). Plasma separated from the each sample was then used to obtain the plasma glucose concentration with the autoanalyzer. During the second phase of the study, 30 pigeons were assigned to 2 equal groups (n = 15). Hypoglycemia or hyperglycemia was induced in each group by intravenous injection of insulin or glucose, respectively. Blood was collected and processed, and glucose concentrations, PCV, and nRBC were measured as previously described. Linear-regression models demonstrated a significant relationship between results measured by the glucometer and autoanalyzer results from normoglycemic (correlation coefficient [R] = 0.43, P = .02), hypoglycemic (R = 0.95; P < .001), and hyperglycemic (R = 0.81; P < .001) birds. The results of this study suggest that we can predict the real blood-glucose concentration of pigeons by using results obtained by a glucometer.

  9. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol.

    Science.gov (United States)

    Abbasi, Fahim; Reaven, Gerald M

    2011-12-01

    The objective was to compare relationships between insulin-mediated glucose uptake and surrogate estimates of insulin action, particularly those using fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations. Insulin-mediated glucose uptake was quantified by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test in 455 nondiabetic subjects. Fasting TG, HDL-C, glucose, and insulin concentrations were measured; and calculations were made of the following: (1) plasma concentration ratio of TG/HDL-C, (2) TG × fasting glucose (TyG index), (3) homeostasis model assessment of insulin resistance, and (4) insulin area under the curve (insulin-AUC) during a glucose tolerance test. Insulin-AUC correlated most closely with SSPG (r ∼ 0.75, P index, homeostasis model assessment of insulin resistance, and fasting TG and insulin (r ∼ 0.60, P index correlated with SSPG concentration to a similar degree, and the relationships were comparable to estimates using fasting insulin. The strongest relationship was between SSPG and insulin-AUC. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Relationship between postprandial changes in cardiac left ventricular function, glucose and insulin concentrations, gastric emptying, and satiety in healthy subjects

    Directory of Open Access Journals (Sweden)

    Björgell Ola

    2011-03-01

    Full Text Available Abstract Background The digestion of food is known to alter the hemodynamics of the body significantly. The purpose of this study was to study the postprandial changes in stroke volume (SV, cardiac output (CO and left ventricular (LV longitudinal systolic and diastolic functions measured with tissue Doppler imaging, in relation to gastric emptying rate (GER, satiety, and glucose and insulin concentrations in healthy subjects. Methods Twenty-three healthy subjects were included in this study. The fasting and postprandial changes at 30 min and 110 min in CO, heart rate (HR and blood pressure were measured. Moreover, tissue Doppler imaging systolic (S', early (E' and late (A' mitral annular diastolic velocities were measured in the septal (s and lateral (l walls. Glucose and insulin concentrations, and satiety were measured before and 15, 30, 45, 60, 90, and 120 min after the start of the meal. The GER was calculated as the percentage change in the antral cross-sectional area 15-90 min after ingestion of the meal. Results This study show that both CO, systolic longitudinal ventricular velocity of the septum (S's and lateral wall (S'l, the early diastolic longitudinal ventricular velocity of the lateral wall (E'l, the late diastolic longitudinal ventricular velocity of the septum (A's and lateral wall (A'l increase significantly, and were concomitant with increased satiety, antral area, glucose and insulin levels. The CO, HR and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting. The satiety was correlated to HR and diastolic blood pressure. The insulin level was correlated to HR. Conclusions This study shows that postprandial CO, HR, SV and LV longitudinal systolic and diastolic functions increase concomitantly with increased satiety, antral area, and glucose and insulin levels. Therefore, patients should not eat prior to, or during, cardiac evaluation as the effects of a meal may

  11. Prediction of clearance, volume of distribution and half-life by allometric scaling and by use of plasma concentrations predicted from pharmacokinetic constants: a comparative study.

    Science.gov (United States)

    Mahmood, I

    1999-08-01

    Pharmacokinetic parameters (clearance, CL, volume of distribution in the central compartment, VdC, and elimination half-life, t1/2beta) predicted by an empirical allometric approach have been compared with parameters predicted from plasma concentrations calculated by use of the pharmacokinetic constants A, B, alpha and beta, where A and B are the intercepts on the Y axis of the plot of plasma concentration against time and alpha and beta are the rate constants, both pairs of constants being for the distribution and elimination phases, respectively. The pharmacokinetic parameters of cefpiramide, actisomide, troglitazone, procaterol, moxalactam and ciprofloxacin were scaled from animal data obtained from the literature. Three methods were used to generate plots for the prediction of clearance in man: dependence of clearance on body weight (simple allometric equation); dependence of the product of clearance and maximum life-span potential (MLP) on body weight; and dependence of the product of clearance and brain weight on body weight. Plasma concentrations of the drugs were predicted in man by use of A, B, alpha and beta obtained from animal data. The predicted plasma concentrations were then used to calculate CL, VdC and t1/2beta. The pharmacokinetic parameters predicted by use of both approaches were compared with measured values. The results indicate that simple allometry did not predict clearance satisfactorily for actisomide, troglitazone, procaterol and ciprofloxacin. Use of MLP or the product of clearance and brain weight improved the prediction of clearance for these four drugs. Except for troglitazone, VdC and t1/2beta predicted for man by use of the allometric approach were comparable with measured values for the drugs studied. CL, VdC and t1/2beta predicted by use of pharmacokinetic constants were comparable with values predicted by simple allometry. Thus, if simple allometry failed to predict clearance of a drug, so did the pharmacokinetic constant

  12. The effect of single low-dose dexamethasone on blood glucose concentrations in the perioperative period: a randomized, placebo-controlled investigation in gynecologic surgical patients.

    Science.gov (United States)

    Murphy, Glenn S; Szokol, Joseph W; Avram, Michael J; Greenberg, Steven B; Shear, Torin; Vender, Jeffery S; Gray, Jayla; Landry, Elizabeth

    2014-06-01

    The effect of single low-dose dexamethasone therapy on perioperative blood glucose concentrations has not been well characterized. In this investigation, we examined the effect of 2 commonly used doses of dexamethasone (4 and 8 mg at induction of anesthesia) on blood glucose concentrations during the first 24 hours after administration. Two hundred women patients were randomized to 1 of 6 groups: Early-control (saline); Early-4 mg (4 mg dexamethasone); Early-8 mg (8 mg dexamethasone); Late-control (saline); Late-4 mg (4 mg dexamethasone); and Late-8 mg (8 mg dexamethasone). Blood glucose concentrations were measured at baseline and 1, 2, 3, and 4 hours after administration in the early groups and at baseline and 8 and 24 hours after administration in the late groups. The incidence of hyperglycemic events (the number of patients with at least 1 blood glucose concentration >180 mg/dL) was determined. Blood glucose concentrations increased significantly over time in all control and dexamethasone groups (from median baselines of 94 to 102 mg/dL to maximum medians ranging from 141 to 161.5 mg/dL, all P < 0.001). Blood glucose concentrations did not differ significantly between the groups receiving dexamethasone (either 4 or 8 mg) and those receiving saline at any measurement time. The incidence of hyperglycemic events did not differ in any of the early (21%-28%, P = 0.807) or late (13%-24%, P = 0.552) groups. Because blood glucose concentrations during the first 24 hours after administration of single low-dose dexamethasone did not differ from those observed after saline administrations, these results suggest clinicians need not avoid using dexamethasone for nausea and vomiting prophylaxis out of concerns related to hyperglycemia.

  13. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride.

    Science.gov (United States)

    Zhang, Lei; Chen, Chao; Zhou, Nan; Fu, Yuming; Cheng, Xingbo

    2017-11-03

    Asprosin has been identified as a novel hormone enriched in white adipose tissue and is pathologically increased in insulin-resistant mice and humans. However, information regarding the role of asprosin in type 2 diabetes mellitus (T2DM) remains unavailable. Via conducting a hospital-based study, we purposed to ascertain the potential relationship between circulating asprosin concentrations and T2DM. The study recruited 84 adults with T2DM and 86 controls with normal glucose tolerance. They matched in age, body mass index (BMI), and sex. Serum asprosin concentrations were measured via ELISA method. Compared to the controls, serum asprosin concentrations were significantly increased in the T2DM adults (Pglucose and triglyceride were independently associated with serum asprosin in T2DM. Asprosin concentrations are increased in adults with T2DM. The results suggest that asprosin might serve as a risk factor associated with the pathogenesis of T2DM, but not an ideal biomarker for predicting T2DM. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos

    2017-01-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc...

  15. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    Science.gov (United States)

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  16. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum

    DEFF Research Database (Denmark)

    Knudsen, Sine H; Karstoft, Kristian; Pedersen, Bente K

    2014-01-01

    We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty-four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age......: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m(2), P > 0.05) underwent a 180-min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6-(2)H2]glucose and ingestion of [U-(13)C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials......OGTT, and Rd (all P value in NGT subjects when compared to IGT and T2D subjects. Accordingly, following exercise, the plasma glucose concentration during the OGTT was increased in NGT subjects (P

  17. Postprandial glucose and not triglyceride concentrations are associated with carotid intima media thickness in women with normal glucose metabolism: the Hoorn prandial study.

    Science.gov (United States)

    Alssema, M; Schindhelm, R K; Dekker, J M; Diamant, M; Kostense, P J; Teerlink, T; Scheffer, P G; Nijpels, G; Heine, R J

    2008-02-01

    The present study aimed to compare the associations of postprandial glucose (ppGL) and postprandial triglycerides (ppTG) with carotid intima media thickness (cIMT) in women with normal glucose metabolism (NGM) and type 2 diabetes (DM2). Post-menopausal women (76 with NGM, 78 with DM2), received two consecutive fat-rich and two consecutive carbohydrate-rich meals on separate occasions. Blood samples were taken before and 1, 2, 4, 6 and 8h following breakfast; lunch was given at t=4. Ultrasound imaging of the carotid artery was performed to measure cIMT. In women with NGM, an increase of 1.0 mmol/l glucose following the fat-rich meals was associated with a 50 microm cIMT increase (p=0.04), and following the carbohydrate meals, an increase of 1.8 mmol/l glucose was associated with a 50 microm larger cIMT (p=0.08). These associations were not explained by classical cardiovascular risk factors. However, no association between ppGL and cIMT was found in women with DM2 and ppTG were not associated with cIMT. The association between ppGL and cIMT in normoglycaemic women suggests that ppGL in the normal range is a marker or a risk factor for atherosclerosis. Postprandial glucose levels might be a better indicator of risk than post-OGTT glucose levels or triglyceride levels.

  18. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices

    OpenAIRE

    Mair, B.; Drillich, M.; Klein-J?bstl, D.; Kanz, P.; Borchardt, S.; Meyer, L.; Schwendenwein, I.; Iwersen, M.

    2016-01-01

    Background Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood samp...

  19. Impact of high glucose concentration on aspirin-induced acetylation of human serum albumin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2014-06-01

    Full Text Available Aspirin (ASA plays a key role in protecting high risk cardiovascular patients from ischaemic events. The modifications underlying its effects are the results of the trans-acetylation that occurs between ASA and the amino groups made up of lysine and N-terminal residues. ASA's effects have also been demonstrated on several plasma proteins, including human serum albumin (HSA. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair ASA's acetylation process. Using immunoblotting and mass spectrometry, this study characterized the degree of HSA acetylation mediated by ASA in vitro, as well as the impact of high glucose concentrations. Glycation's influence on HSA acetylation might impair the latter's biological functions, leading to a potential failure of ASA to prevent cardiovascular complications in diabetes.

  20. Blood gas sample spiking with total parenteral nutrition, lipid emulsion, and concentrated dextrose solutions as a model for predicting sample contamination based on glucose result.

    Science.gov (United States)

    Jara-Aguirre, Jose C; Smeets, Steven W; Wockenfus, Amy M; Karon, Brad S

    2018-05-01

    Evaluate the effects of blood gas sample contamination with total parenteral nutrition (TPN)/lipid emulsion and dextrose 50% (D50) solutions on blood gas and electrolyte measurement; and determine whether glucose concentration can predict blood gas sample contamination with TPN/lipid emulsion or D50. Residual lithium heparin arterial blood gas samples were spiked with TPN/lipid emulsion (0 to 15%) and D50 solutions (0 to 2.5%). Blood gas (pH, pCO2, pO2), electrolytes (Na+, K+ ionized calcium) and hemoglobin were measured with a Radiometer ABL90. Glucose concentration was measured in separated plasma by Roche Cobas c501. Chart review of neonatal blood gas results with glucose >300 mg/dL (>16.65 mmol/L) over a seven month period was performed to determine whether repeat (within 4 h) blood gas results suggested pre-analytical errors in blood gas results. Results were used to determine whether a glucose threshold could predict contamination resulting in blood gas and electrolyte results with greater than laboratory-defined allowable error. Samples spiked with 5% or more TPN/lipid emulsion solution or 1% D50 showed glucose concentration >500 mg/dL (>27.75 mmol/L) and produced blood gas (pH, pO 2 , pCO 2 ) results with greater than laboratory-defined allowable error. TPN/lipid emulsion, but not D50, produced greater than allowable error in electrolyte (Na + ,K + ,Ca ++ ,Hb) results at these concentrations. Based on chart review of 144 neonatal blood gas results with glucose >250 mg/dL received over seven months, four of ten neonatal intensive care unit (NICU) patients with glucose results >500 mg/dL and repeat blood gas results within 4 h had results highly suggestive of pre-analytical error. Only 3 of 36 NICU patients with glucose results 300-500 mg/dL and repeat blood gas results within 4 h had clear pre-analytical errors in blood gas results. Glucose concentration can be used as an indicator of significant blood sample contamination with either TPN

  1. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    Science.gov (United States)

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.

  2. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus.

    Science.gov (United States)

    Whitehead, N; White, H

    2013-04-01

    Compounds other than macronutrients have been shown to influence blood glucose concentrations and insulin sensitivity in people with diabetes, with caffeine being one such substance. The present study systematically reviewed the evidence of the effects of caffeine on blood glucose concentrations and/or insulin sensitivity in people with diabetes. Four databases, including MEDLINE and EMBASE, were searched up to 1 February 2012. Randomised controlled trials (RCTs) investigating the effects of caffeine on blood glucose and/or insulin sensitivity in humans, diagnosed with type I, type II or gestational diabetes mellitus (GDM), were included. Quality assessment and data extraction were conducted and agreed by both authors. Of 253 articles retrieved, nine trials (134 participants) were identified. Trials in people with type II diabetes demonstrated that the ingestion of caffeine (approximately 200-500 mg) significantly increased blood glucose concentrations by 16-28% of the area under the curve (AUC) and insulin concentrations by 19-48% of the AUC when taken prior to a glucose load, at the same time as decreasing insulin sensitivity by 14-37%. In type I diabetes, trials indicated enhanced recognition and a reduced duration of hypoglycaemic episodes following ingestion of 400-500 mg caffeine, without altering glycated haemoglobin. In GDM, a single trial demonstrated that approximately 200 mg of caffeine induced a decrease in insulin sensitivity by 18% and a subsequent increase in blood glucose concentrations by 19% of the AUC. Evidence indicates a negative effect of caffeine intake on blood glucose control in individuals with type II diabetes, as replicated in a single trial in GDM. Larger-scale RCTs of longer duration are needed to determine the effects of timing and dose. Early indications of a reduced duration and an improved awareness of hypoglycaemia in type I diabetes require further confirmation. © 2013 The Authors Journal of Human Nutrition and Dietetics

  3. Effects of constant rate infusions of dexmedetomidine or MK-467 on the minimum alveolar concentration of sevoflurane in dogs.

    Science.gov (United States)

    Hector, Rachel C; Rezende, Marlis L; Mama, Khursheed R; Steffey, Eugene P; Knych, Heather K; Hess, Ann M; Honkavaara, Juhana M; Raekallio, Marja R; Vainio, Outi M

    2017-07-01

    To determine the effects of low and high dose infusions of dexmedetomidine and a peripheral α 2 -adrenoceptor antagonist, MK-467, on sevoflurane minimum alveolar concentration (MAC) in dogs. Crossover experimental study. Six healthy, adult Beagle dogs weighing 12.6±0.9 kg (mean±standard deviation). Dogs were anesthetized with sevoflurane in oxygen. After a 60-minute instrumentation and equilibration period, the MAC of sevoflurane was determined in triplicate using the tail clamp technique. PaCO 2 and temperature were maintained at 40±5 mmHg (5.3±0.7 kPa) and 38±0.5 ºC, respectively. After baseline MAC determination, dogs were administered two incremental loading and infusion doses of either dexmedetomidine (1.5 μg kg -1 then 1.5 μg kg -1  hour -1 and 4.5 μg kg -1 then 4.5 μg kg -1  hour -1 ) or MK-467 (90 μg kg -1 then 90 μg kg -1  hour -1 and 180 μg kg -1 then 180 μg kg -1  hour -1 ); loading doses were administered over 10 minutes. MAC was redetermined in duplicate starting 30 minutes after the start of drug administration at each dose. End-tidal sevoflurane concentrations were corrected for calibration and adjusted to sea level. A repeated-measures analysis was performed and comparisons between doses were conducted using Tukey's method. Statistical significance was considered at pbenefits of the addition of a peripheral α 2 -adrenergic antagonist to inhalation anesthesia in dogs. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  4. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Science.gov (United States)

    Everman, Sarah; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2015-01-01

    Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P BCAA in either of the experiments (P > 0.05). Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  5. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  6. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Science.gov (United States)

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  7. Role of liver nerves and adrenal medulla in glucose turnover of running rats

    DEFF Research Database (Denmark)

    Sonne, B; Mikines, K J; Richter, Erik

    1985-01-01

    Sympathetic control of glucose turnover was studied in rats running 35 min at 21 m X min-1 on the level. The rats were surgically liver denervated, adrenodemedullated, or sham operated. Glucose turnover was measured by primed constant infusion of [3-3H]glucose. At rest, the three groups had...... identical turnover rates and concentrations of glucose in plasma. During running, glucose production always rose rapidly to steady levels. The increase was not influenced by liver denervation but was halved by adrenodemedullation. Similarly, hepatic glycogen depletion was identical in denervated and control...... rats but reduced after adrenodemedullation. Early in exercise, glucose uptake rose identically in all groups and, in adrenodemedullated rats, matched glucose production. Accordingly, plasma glucose concentration increased in liver-denervated and control rats but was constant in adrenodemedullated rats...

  8. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows.

    Science.gov (United States)

    Curtis, Richelle V; Kim, Julie J M; Doelman, John; Cant, John P

    2018-05-01

    The objectives of this study were to investigate the effects of branched-chain AA (BCAA) supplementation when glucose is infused postruminally into lactating dairy cows consuming a diet low in crude protein (CP) and to test the hypothesis that low BCAA concentrations are responsible for the poor stimulation of milk protein yield by glucose. Twelve early-lactation Holstein cows were randomly assigned to 15% and 12% CP diets in a switchback design of 6-wk periods. Cows consuming the 12% CP diet received 96-h continuous jugular infusions of saline and 1 kg/d of glucose with 0, 75, or 150 g/d of BCAA in a Latin square sequence of treatments. Compared with saline, glucose infusion did not affect dry matter intake but increased milk yield by 2.2 kg/d and milk protein and lactose yields by 63 and 151 g/d, respectively. Mammary plasma flow increased 36% during glucose infusion compared with saline infusion, possibly because of a 31% decrease in total acetate plus β-hydroxybutyrate concentrations. Circulating concentrations of total essential AA and BCAA decreased 19 and 31%, respectively, during infusion of glucose, yet net mammary uptakes of AA remained unchanged compared with saline infusion. The addition of 75 and 150 g/d of BCAA to glucose infusions increased arterial concentrations of BCAA to 106 and 149%, respectively, of the concentrations in saline-infused cows, but caused a decrease in concentrations of non-branched-chain essential AA in plasma, as well as their mammary uptakes and milk protein yields. Plasma urea concentration was not affected by BCAA infusion, indicating no change in catabolism of AA. The lack of mammary and catabolic effects leads us to suggest that BCAA exerted their effects on plasma concentrations of the other essential AA by stimulating utilization in skeletal muscle for protein accretion. Results indicate that the glucose effect on milk protein yield was not limited by low BCAA concentrations, and that a stimulation of extra-mammary use

  9. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of concentrated arabinoxylan and β-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome

    DEFF Research Database (Denmark)

    Hartvigsen, M L; Gregersen, S; Lærke, H N

    2014-01-01

    BACKGROUND/OBJECTIVES: Several studies emphasise that arabinoxylan and β-glucan have more beneficial effects on glucose metabolism than low-dietary fibre (DF) meals. Less attention has been paid to the effects of concentrated DF compared with whole grain. We compared the effects of DF and whole...... grain on glucose, hormone responses and appetite in subjects with the metabolic syndrome (MetS). SUBJECTS/METHODS: Fifteen subjects with MetS participated in this acute, randomised, cross-over intervention study. The test breads provided 50 g of digestible carbohydrate: wheat bread with concentrated...

  11. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  12. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  13. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-01

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser 79 and Raptor at Ser 792 , was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α 1 and α 2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  14. Cytotoxicity of β-D-glucose/sucrose-coated silver nanoparticles depends on cell type, nanoparticles concentration and time of incubation

    Science.gov (United States)

    Vergallo, Cristian; Panzarini, Elisa; Carata, Elisabetta; Ahmadi, Meysam; Mariano, Stefania; Tenuzzo, Bernardetta Anna; Dini, Luciana

    2016-06-01

    The use of silver NanoParticles (AgNPs) in several consumer commercialized products, like food contact materials, medical devices and cosmetics has increased significantly, owing to their antibacterial and antifungal properties. Even though the NPs are widely diffused, due to the great variety in size, coating or shape, controversial data on their possible detrimental health effects still exist. Herein, by performing an easy and fast green method synthesis, we used β-D-glucose/sucrose to stabilize AgNPs and avoid the release of cytotoxic soluble silver ions Ag+ in the culture medium. The cytotoxic effects of these β-D-Glucose/Sucrose-Coated AgNPs (AgNPs-GS) was assessed on two cell culture models, which are human liver HepG2 and human Peripheral Blood Lymphocytes (PBLs) cells. AgNPs-GS, as determined by Transmission Electron Microscopy (TEM) analyses, had an average diameter of 30±5 nm, a spherical shape and were well-dispersed in the freshly-prepared solution. In addition, they were found spectrophotometrically stable throughout the experiment. Cytotoxicity, determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, was evaluated by using two AgNPs-GS amounts, indicated as highest (10×103 of NPs/cell) and lowest (2×103 NPs/cell) concentration for 6, 12 and 24 h. The highest concentration of AgNPs-GS was significantly cytotoxic for both HepG2 and PBLs cells at all times, when compared with the negative control; conversely, the lowest amount of AgNPs-GS was toxic only for HepG2 cells. A significant increase of Reactive Oxygen Species (ROS) levels, determined by Nitro Blue Tetrazolium (NBT) reduction assay, was observed only in PBLs after treatment with NPs, by reaching maximum levels after the incubation with the lowest amount of NPs for 24 h. Significant morphological changes, depending on NPs/cell amount, characteristic of cell toxicity, like shape, cytoplasm, and nucleus alterations, were observed in lymphocytes and Hep

  15. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  16. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, D.P.; Ferm, V.H.

    1986-08-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump.

  17. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    International Nuclear Information System (INIS)

    Hanlon, D.P.; Ferm, V.H.

    1986-01-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump

  18. PENGARUH DIET KACANG MERAH TERHADAP KADAR GULA DARAH TIKUS DIABETIK INDUKSI ALLOXAN [Effect of Red Bean Diet on Blood Glucose Concentration of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Y. Marsono 1

    2003-04-01

    Full Text Available Hypoglycemic response of red bean were evaluated in alloxan-induced diabetic rats. The objective of this research was to evaluate the effect of red bean (Vigna umbellata diet compare with soy bean diet on blood glucose concentration in alloxan-induced diabetic rats.Thirty male Sprague-Dawley (SD rats (250-300 g were diabetic induced by alloxan injection (80 mg/kg of body weight by intra muscular injection. They were divided into three groups of ten rats. They were fed (1 Standard diet (STD, (2 Red bean diet (KM, and (3 Soy bean diet (KD for 28 days. Concentration of serum glucose were determined before injection (0 day,after injection (day 17th and every sweek during diet intervention (day 24,31,38 and 45thIt was found that alloxan injection increased serum glucose concentration of STD, KM, and KD rats. After 28 days intervention, red bean decreased the serum glucose concentration from 217, 87 mg/dL to 57,70 mg/dL (69 % in KM groups and from 218,94 mg/dL to 76,82 mg/dL (65 % in KD groups, but standard diet (STD were decreased less than both of KM and KD diet.

  19. On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis.

    Science.gov (United States)

    Dremel, B A; Li, S Y; Schmid, R D

    1992-01-01

    A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).

  20. Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: an experimental and computational approach

    DEFF Research Database (Denmark)

    Kummer, Ursula; Zobeley, Jürgen; Brasen, Jens Christian

    2007-01-01

    of NO and superoxide formation were observed. However, these changes were not observed for sorbitol, a nonmetabolizable carbohydrate. Glucose transport appears to be important in this process as phloretin interferes with the glucose-specific receptor-independent activation of neutrophils. However, LY83583...

  1. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  2. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    Science.gov (United States)

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations

    DEFF Research Database (Denmark)

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N

    2015-01-01

    Context: Bile acids and fibroblast growth factor 19 (FGF19) have been suggested as key mediators of the improvements in glucose metabolism after Roux-en-Y gastric bypass (RYGB). Objective: To describe fasting and postprandial state total bile acid (TBA) and FGF19 concentrations before and after...... (T2D) patients and 12 normal glucose tolerant (NGT) subjects participated in the study. Intervention: A 4-hour liquid meal test was performed before and 1 week, 3 months, and 1 year after RYGB. Main Outcome Measures: We measured fasting and postprandial TBA and FGF19 concentrations. Results: Fasting...... TBA concentrations decreased in NGT subjects (P TBA was decreased in NGT subjects 1 week after RYGB (before surgery, 567...

  4. Evaluation of an Electrochemical Point-of-Care Meter for Measuring Glucose Concentration in Blood from Periparturient Dairy Cattle.

    Science.gov (United States)

    Megahed, A A; Hiew, M W H; Townsend, J R; Messick, J B; Constable, P D

    2015-01-01

    The Precision Xtra(®) meter is a promising low cost electrochemical point-of-care unit for measuring blood glucose concentration ([gluc]) in cattle blood. The meter uses an algorithm that assumes the intra-erythrocyte [gluc] equals the plasma [gluc] on a molal basis, and that the hematocrit is similar in humans and cattle. The primary objective was to determine the accuracy of the meter for measuring plasma [gluc] in dairy cattle. Secondary objectives were to characterize the influence of hematocrit and sample temperature on the measured value for [gluc]. A total of 106 periparturient Holstein-Friesian cattle. Blood and plasma samples (1,109) were obtained and Deming regression and Bland-Altman plots were used to determine the accuracy of the meter against the reference method (plasma hexokinase assay). Multivariable regression and linear regression were used to determine the effect of hematocrit and sample temperature on the plasma [gluc] measured by the meter. Intra-erythrocyte [gluc] was 18% of plasma [gluc] on a molar basis. Sample temperature had a significant linear effect on plasma [gluc] as measured by the meter for 3/5 plasma samples when measured [gluc] > 160 mg/dL. The meter utilizes an algorithm that is optimized for human blood and is inaccurate when applied to bovine blood. Until a cattle-specific algorithm is developed, we recommend using plasma as the analyte instead of blood and calculating plasma [gluc] using the equation: [gluc] = 0.66 × [gluc]p-meter + 15, where [gluc]p-meter is the value reported by the meter. If blood is measured, then we recommend using the equation: [gluc] = 0.90 × [gluc]b-meter + 15. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Directory of Open Access Journals (Sweden)

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  6. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  7. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1

    Directory of Open Access Journals (Sweden)

    Yuening Chu

    2017-09-01

    Full Text Available Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD using a glucose-based dialysate. Mesothelial cells (MCs take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1 and interleukin 8 (IL-8. The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1 is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction.Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury.Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA. Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined.Results: The major findings of these analyses were: (1 MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2 HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3 HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.

  8. Are serum adiponectin concentrations in a population sample of 64-year-old Caucasian women with varying glucose tolerance associated with ultrasound-assessed atherosclerosis?

    Science.gov (United States)

    Behre, C J; Brohall, G; Hulthe, J; Wikstrand, J; Fagerberg, B

    2006-09-01

    To examine whether serum adiponectin concentrations were associated with subclinical atherosclerosis assessed as intima media thickness (IMT) in the carotid arteries in Caucasian women with varying degrees of glucose tolerance. From a population-based cohort of 64-year-old Swedish women, 533 subjects with type 2 diabetes (DM2, n=177), impaired glucose tolerance (IGT; n=178) or normal glucose tolerance (NGT, n=178) were recruited. Anthropometrics, usual cardiovascular risk factors were examined and ultrasound examination of the carotid arteries was performed. Women with low adiponectin concentrations were characterized by thick IMT, higher prevalence of DM2, history of previous myocardial infarction, angina pectoris, anti-hypertensive treatment and high body mass index (BMI), waist circumference, plasma insulin, serum triglycerides, fasting glucose, HbA1c, and low serum HDL cholesterol levels. Carotid IMT correlated with HbA1c (r=0.24, PDM2 (r=0.16, P<0.001), systolic blood pressure (r=0.16, P<0.001), blood glucose (r=0.16, P<0.001), triglycerides (r=0.15, P<0.001), and reversely to adiponectin (r=-0.11, P=0.01), HDL cholesterol (r=-0.13, P=0.004), and alcohol intake (r=-0.087, P<0.05). A more detailed analysis of underlying associations was difficult due to a high co-linearity between these variable. Low serum adiponectin concentrations were associated with increased carotid artery IMT, and several risk factors for cardiovascular diseases, mainly those constituting the metabolic syndrome.

  9. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Yuren Wang

    2018-01-01

    Full Text Available Background. Adipokines are reported to participate in many common pathologic processes of glucose dysregulation, such as insulin resistance, β-cell dysfunction, and chronic inflammation. Objective. To detect the concentrations of plasma asprosin in subjects with impaired glucose regulation (IGR and newly diagnosed type 2 diabetes (nT2DM and its relationship to parameters of glucose and lipid metabolism, insulin resistance, and pancreatic β-cell function. Methods. 143 eligible participants were included and were divided into three groups including normal glucose regulation (NGR, n=52, IGR (n=40, and nT2DM group (n=51. The intravenous glucose tolerance test (IVGTT and clinical and biochemical parameters were measured in all participants. Results. Plasma asprosin levels were higher in IGR (82.40 ± 91.06 ng/mL, P<0.001 and nT2DM (73.25 ± 91.69 ng/mL, P<0.001 groups compared with those in the NGR (16.22 ± 9.27 ng/mL group, especially in IGR subjects. Correlation analysis showed that plasma asprosin levels were positively correlated with waist circumference (Wc, fasting plasma glucose (FPG, postchallenge plasma glucose (2hPG, HbA1c, triglyceride (TG, and homeostasis model assessment for insulin resistance (HOMA-IR and negatively correlated with homeostasis model assessment for β-cell function (HOMA-β, area under the curve of the first-phase (0–10 min insulin secretion (AUC, acute insulin response (AIR, and glucose disposition index (GDI (all P<0.05. Multiple logistical regression analyses revealed that plasma asprosin concentrations were significantly correlated with IGR and nT2DM after controlling for age, sex, BMI, and WHR. Conclusions. Circulating asprosin might be a predictor of early diagnosis in DM and might be a potential therapeutic target for prediabetes and T2DM.

  10. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  11. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  12. Copeptin, a surrogate marker for arginine vasopressin secretion, is associated with higher glucose and insulin concentrations but not higher blood pressure in obese men

    DEFF Research Database (Denmark)

    Asferg, C L; Andersen, Ulrik Bjørn; Linneberg, A

    2014-01-01

    distribution. METHODS: In 103 obese men (mean age ± standard deviation: 49.4 ± 10.2 years) and 27 normal weight control men (mean age: 51.5 ± 8.4 years), taking no medication, we measured 24-h ambulatory blood pressure, fasting blood concentrations of copeptin, lipids, glucose and insulin, and determined body...... blood pressure (r = 0.11, P = 0.29), 24-h diastolic blood pressure (r = 0.11, P = 0.28), BMI (r = 0.09, P = 0.37), total body fatness percentage (r = 0.10, P = 0.33), android fat mass percentage (r = 0.04, P = 0.66) or serum triglyceride concentrations (r = 0.04; P = 0.68). In contrast, plasma copeptin......, and is associated with abnormalities in glucose and insulin metabolism, but not with higher blood pressure or an android fat distribution in obese men....

  13. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)

  14. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    2000-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  15. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1998-01-01

    This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)

  16. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  17. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [3H]-2-, [3H]-3-, and [14C]-6-glucose

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    Studies with tritiated isotopes of glucose have demonstrated that hyperglycemia per se stimulates glucose utilization and suppresses glucose production in humans. These conclusions rely on the assumption that tritiated glucose provides an accurate measure of glucose turnover. However, if in the presence of hyperglycemia the isotope either loses its label during futile cycling or retains its label during cycling through glycogen, then this assumption is not valid. To examine this question, glucose utilization and glucose production rates were measured in nine normal subjects with a simultaneous infusion of [ 3 H]-2-glucose, an isotope that may undergo futile cycling but does not cycle through glycogen; [ 14 C]-6-glucose, an isotope that may cycle through glycogen but does not futile cycle; and [ 3 H]-3-glucose, an isotope that can both undergo futile cycling and cycle through glycogen. In the postabsorptive state at plasma glucose concentration of 95 mg X dl-1, glucose turnover determined with [ 14 C]-6-glucose (2.3 +/- 0.1 mg X kg-1 X min-1) was greater than that determined with [3 3 H]glucose (2.1 +/- 0.1 mg X kg-1 X min-1, P = 0.002) and slightly less than that determined with [ 3 H]-2-glucose (2.7 +/- 0.2 mg X kg-1 X min-1, P = 0.08). Plasma glucose was then raised from 95 to 135 to 175 mg X dl-1 while insulin secretion was inhibited, and circulating insulin, glucagon, and growth hormone concentrations were maintained constant by infusion of these hormones and somatostatin. Glucose production and utilization rates determined with [ 14 C]-6-glucose continued to be less than those determined with [ 3 H]-2-glucose and greater than those seen with [ 3 H]-3-glucose

  18. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    Science.gov (United States)

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX

  19. Insulin hypersecretion together with high luteinizing hormone concentration augments androgen secretion in oral glucose tolerance test in women with polycystic ovarian disease.

    Science.gov (United States)

    Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K

    1993-08-01

    Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.

  20. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.

    Science.gov (United States)

    Elsherif, Mohamed; Hassan, Mohammed Umair; Yetisen, Ali K; Butt, Haider

    2018-05-17

    Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM -1 , and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.

  1. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [18F] fluorodeoxyglucose. A parallel study with elemental concentrations

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.; Stedman, J.D.

    2000-01-01

    Alzheimer's disease (AD) is a debilitating form of dementia which leads to impaired memory, thinking and behavior. Elemental concentrations between 'normal' and AD subjects as well as the hemispherical differences within the brain were examined. Tissue samples from both hemispheres of the frontal lobe in both AD and normal subjects were examined for their trace element concentrations using PIXE and RBS analyses. Elemental concentrations were seen to differ between AD and normal brain tissue samples. While in the normal group concentrations were found to be significantly higher in the right hemisphere than in the left the converse was tru in AD. A change in elemental concentrations may indicate possible alterations in the function of the blood brain barrier. This was examined by determining regional cerebral metabolic rates of glucose (rCMRGlu) using the in vivo technique of positron emission tomography (PET). Again variations between both hemispheres and between AD and normal were found. (author)

  2. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  3. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  4. Radiolysis of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG) and the role of ethanol and radioactive concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Mark S. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States)], E-mail: jacobson.mark17@mayo.edu; Dankwart, Heather R. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Mahoney, Douglas W. [Division of Biostatistics, Mayo Clinic, Rochester, MN (United States)

    2009-06-15

    Radiolysis is the process by which radioactively labeled compounds degrade. Many positron emission tomography (PET) radiopharmaceuticals produced with high radioactive concentrations and specific activities exhibit low radiochemical purity because of radiolysis. Little data exist that describe the radiolytic decomposition of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG). The objective of our study was to profile the degradation of [{sup 18}F]FDG at various radioactive concentrations by measuring radiochemical purity at different time intervals and to study the effects of ethanol, a well-known reductant stabilizer of [{sup 18}F]FDG preparations.

  5. Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows.

    Science.gov (United States)

    Vernay, M C M B; Wellnitz, O; Kreipe, L; van Dorland, H A; Bruckmaier, R M

    2012-05-01

    The metabolic load during periods of high milk production in dairy cows causes a variety of changes of metabolite blood concentrations including dramatically decreased glucose levels. These changes supposedly impair the immune system. The goal of this study was, therefore, to evaluate adaptations of the cow's immune system in response to an intramammary lipopolysaccharide (LPS) stimulation during a 3-d modification of plasma glucose and insulin induced by different clamp infusions. Seventeen midlactating dairy cows received a hypoglycemic hyperinsulinemic clamp induced by insulin infusion (HypoG; n=5), a euglycemic hyperinsulinemic clamp induced by insulin and glucose infusion (EuG; n=6), or infusion of saline solution (NaCl; n=6) for 56 h. At 48 h of infusion, 2 udder quarters were challenged with 200 μg of Escherichia coli LPS. At 48 h of infusion (immediately before LPS challenge), tumor necrosis factor α, lactoferrin, and serum amyloid A (SAA) mRNA abundance was increased in HypoG and Il-1β mRNA abundance was decreased in EuG. After LPS challenge, plasma glucose concentration did not decrease, although plasma insulin increased simultaneously in all groups either due to enhanced endogenous release (NaCl) or due to increased insulin infusion rate (HypoG; EuG). Plasma cortisol, rectal temperatures, and milk somatic cell count of challenged quarters increased, whereas plasma nonesterified fatty acid concentrations were similarly decreased across treatments. In mammary biopsies, increased mRNA expression of tumor necrosis factor α, IL-1β, IL-8, and IL-10, and SAA were observed in LPS-treated quarters of all groups, with a more pronounced increase in IL-1β, IL-10, and SAA expression in EuG. Nuclear factor-κB mRNA expression was upregulated in NaCl and EuG but not in HypoG in response to LPS. Lactoferrin, toll-like receptor 4, and cyclooxygenase-2 mRNA expression was increased in LPS-treated quarters of EuG only, and 5-lipoxygenase mRNA expression was decreased

  6. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    Science.gov (United States)

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  7. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization

    International Nuclear Information System (INIS)

    Blomqvist, G.; Widen, L.; Hellstrand, E.; Gutniak, M.; Grill, V.

    1991-01-01

    The effect of steady-state moderate hypoglycaemia on human brain homeostasis has been studied with positron emission tomography using D-glucose 11 C(ul) as tracer. To rule out any effects of insulin, the plasma insulin concentration was maintained at the same level under normo- and hypoglycaemic conditions. Reduction of blood glucose by 55% increased the glucose clearance through the blood-brain barrier by 50% and reduced brain glucose consumption by 40%. Blood flow was not affected. The results are consistent with facilitated transport of glucose from blood to brain in humans. The maximal transport rate of glucose from blood to brain was found to be 62±19 (mean±SEM) μmol hg -1 min -1 , and the half-saturation constant was found to be 4.1±3.2 mM. (orig.)

  8. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  9. Aspirin-mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2015-09-01

    Full Text Available Glycation represents the first stage in the development of diabetic complications. Aspirin was shown to prevent sugars reacting with proteins, but the exact mechanism of this interaction was not well defined. We performed a quantitative analysis to calculate the levels of acetylation and glycation of haemoglobin, among others red blood cell (RBC proteins, using a label free approach. After glucose incubation, increases in the acetylation levels were seen for several haemoglobin subunits, while a parallel decrease of their glycation levels was observed after aspirin incubation. These results suggest that, a mutual influence between these two modifications, occur at protein level.

  10. Effect of Acarbose, Sitagliptin and combination therapy on blood glucose, insulin, and incretin hormone concentrations in experimentally induced postprandial hyperglycemia of healthy cats.

    Science.gov (United States)

    Mori, Akihiro; Ueda, Kaori; Lee, Peter; Oda, Hitomi; Ishioka, Katsumi; Arai, Toshiro; Sako, Toshinori

    2016-06-01

    Acarbose (AC) and Sitagliptin (STGP) are oral hypoglycemic agents currently used either alone or in conjunction with human diabetic (Type 2) patients. AC has been used with diabetic cats, but not STGP thus far. Therefore, the objective of this study was to determine the potential use of AC or STGP alone and in combination for diabetic cats, by observing their effect on short-term post-prandial serum glucose, insulin, and incretin hormone (active glucagon-like peptide-1 (GLP-1) and total glucose dependent insulinotropic polypeptide (GIP)) concentrations in five healthy cats, following ingestion of a meal with maltose. All treatments tended (pglucose area under the curve (AUC), with an accompanying significant reduction (pAUC as compared to no treatment. Meanwhile, a significant increase (pAUC was observed with STGP (100% higher) and combined treatment (130% greater), as compared to either AC or no treatment. Lastly, a significant reduction (pAUC was observed with STGP (21% reduction) and combined treatment (7% reduction) as compared to control. Overall, AC, STGP, or combined treatment can significantly induce positive post-prandial changes to insulin and incretin hormone levels of healthy cats. Increasing active GLP-1 and reducing postprandial hyperglycemia appear to be the principal mechanisms of combined treatment. Considering the different, but complementary mechanisms of action by which AC and STGP induce lower glucose and insulin levels, combination therapy with both these agents offers great potential for treating diabetic cats in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Six and 12 Weeks of Caloric Restriction Increases β Cell Function and Lowers Fasting and Postprandial Glucose Concentrations in People with Type 2 Diabetes123

    Science.gov (United States)

    Sathananthan, Matheni; Shah, Meera; Edens, Kim L; Grothe, Karen B; Piccinini, Francesca; Farrugia, Luca P; Micheletto, Francesco; Man, Chiara Dalla; Cobelli, Claudio; Rizza, Robert A; Camilleri, Michael; Vella, Adrian

    2015-01-01

    Background: Caloric restriction alone has been shown to improve insulin action and fasting glucose metabolism; however, the mechanism by which this occurs remains uncertain. Objective: We sought to quantify the effect of caloric restriction on β cell function and glucose metabolism in people with type 2 diabetes. Methods: Nine subjects (2 men, 7 women) with type 2 diabetes [BMI (in kg/m2): 40.6 ± 1.4; age: 58 ± 3 y; glycated hemoglobin: 6.9% ± 0.2%] were studied using a triple-tracer mixed meal after withdrawal of oral diabetes therapy. The oral minimal model was used to measure β cell function. Caloric restriction limited subjects to a pureed diet (restriction. Results: Fasting glucose concentrations decreased significantly from baseline after 6 wk of caloric restriction with no further reduction after a further 6 wk of caloric restriction (9.8 ± 1.3, 5.9 ± 0.2, and 6.2 ± 0.3 mmol/L at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.01) because of decreased fasting endogenous glucose production (EGP: 20.4 ± 1.1, 16.2 ± 0.8, and 17.4 ± 1.1 μmol · kg−1 · min−1 at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.03). These changes were accompanied by an improvement in β cell function measured by the disposition index (189 ± 51, 436 ± 68, and 449 ± 67 10−14 dL · kg−1 · min−2 · pmol−1 at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.01). Conclusions: Six weeks of caloric restriction lowers fasting glucose and EGP with accompanying improvements in β cell function in people with type 2 diabetes. An additional 6 wk of caloric restriction maintained the improvement in glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01094054. PMID:26246321

  12. Effect of Intravenous Small-Volume Hypertonic Sodium Bicarbonate, Sodium Chloride, and Glucose Solutions in Decreasing Plasma Potassium Concentration in Hyperkalemic Neonatal Calves with Diarrhea.

    Science.gov (United States)

    Trefz, F M; Constable, P D; Lorenz, I

    2017-05-01

    Hyperkalemia is a frequently observed electrolyte imbalance in dehydrated neonatal diarrheic calves that can result in skeletal muscle weakness and life-threatening cardiac conduction abnormalities and arrhythmias. Intravenous administration of a small-volume hypertonic NaHCO 3 solution is clinically more effective in decreasing the plasma potassium concentration (cK) in hyperkalemic diarrheic calves than hypertonic NaCl or glucose solutions. Twenty-two neonatal diarrheic calves with cK >5.8 mmol/L. Prospective randomized clinical trial. Calves randomly received either 8.4% NaHCO 3 (6.4 mL/kg BW; n = 7), 7.5% NaCl (5 mL/kg BW; n = 8), or 46.2% glucose (5 mL/kg BW; n = 7) IV over 5 minutes and were subsequently allowed to suckle 2 L of an electrolyte solution. Infusions with NaHCO 3 and NaCl provided an identical sodium load of 6.4 mmol/kg BW. Hypertonic NaHCO 3 infusions produced an immediate and sustained decrease in plasma cK. Hypertonic glucose infusions resulted in marked hyperglycemia and hyperinsulinemia, but cK remained unchanged for 20 minutes. Between 30 and 120 minutes after initiation of treatment, the most marked decrements in cK from baseline occurred in group NaHCO 3 , which were significantly (P < .05) larger during this period of time than in calves in group NaCl, but not group glucose. After 120 minutes, the mean decrease in cK from baseline was -26 ± 10%, -9 ± 8%, and -22 ± 6% in groups NaHCO 3 , NaCl, and glucose, respectively. Small-volume hypertonic NaHCO 3 infusions appear to have clinical advantages for the rapid resuscitation of hyperkalemic diarrheic calves, compared to hypertonic NaCl or glucose solutions. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. EFSA Panel on Dietetic Products, Nutrition and Allerg ies (NDA) ; Guidance on the scientific requirements for health claims related to appetite ratings, weight management, and blood glucose concentrations

    DEFF Research Database (Denmark)

    Tetens, Inge

    The European Food Safety Authority (EFSA) asked the Panel on Dietetic Products, Nutrition and Allergies (NDA) to draft guidance on scientific requirements for health claims related to appetite ratings, weight management, and blood glucose concentrations. This guidance has been drawn from scientific...... and studies/outcome measures which are acceptable. Rather, it presents examples drawn from evaluations already carried out in order to illustrate the approach of the Panel, as well as some examples which are currently under consideration within ongoing evaluations. A draft of this guidance document, endorsed...

  14. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration

    Science.gov (United States)

    Karnchanasorn, Rudruidee; Huang, Jean; Feng, Wei; Chuang, Lee-Ming

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  15. Comparable Dietary Patterns Describe Dietary Behavior across Ethnic Groups in the Netherlands, but Different Elements in the Diet Are Associated with Glycated Hemoglobin and Fasting Glucose Concentrations.

    Science.gov (United States)

    Dekker, Louise H; van Dam, Rob M; Snijder, Marieke B; Peters, Ron J G; Dekker, Jacqueline M; de Vries, Jeanne H M; de Boer, Evelien J; Schulze, Matthias B; Stronks, Karien; Nicolaou, Mary

    2015-08-01

    Ethnic minority populations in Western societies suffer from a disproportionate burden of type 2 diabetes (T2D). Insight into the role of dietary patterns in T2D may assist public health nutrition efforts in addressing these health disparities. We explored the association between dietary patterns and biomarkers of T2D in 5 ethnic groups living in Amsterdam, Netherlands. A total of 3776 men and women aged 18-70 y of Dutch, South Asian Surinamese, African-Surinamese, Turkish, and Moroccan origin from the HELIUS (HEalthy LIfe in an Urban Setting) study were included. Diet was assessed by using a food-frequency questionnaire, and dietary patterns were derived separately per ethnic group. First, food group-based dietary patterns were derived by using principal components analysis and the association with glycated hemoglobin (HbA1c) and plasma fasting glucose was assessed by using multivariable linear regression. Second, biomarker-driven dietary patterns based on HbA1c and fasting glucose concentrations were derived by applying reduced rank regression. Two comparable food group-based dietary patterns were identified in each ethnic group: a "meat and snack" pattern and a "vegetable" pattern. The meat-and-snack pattern derived within the Dutch origin population was significantly associated with HbA1c (β = 0.09; 95% CI: 0.00, 0.19) and fasting glucose (β = 0.18; 95% CI: 0.09, 0.26) concentrations. A biomarker-derived pattern characterized by red and processed meat was observed among Dutch-origin participants; however, among ethnic minority groups, this pattern was characterized by other foods including ethnicity-specific foods (e.g., roti, couscous). Although similar food group dietary patterns were derived within 5 ethnic groups, the association of the meat-and-snack pattern with fasting glucose concentrations differed by ethnicity. Taken together with the finding of ethnic differences in biomarker-driven dietary patterns, our results imply that addressing T2D risk in

  16. Myocardial scintigraphy with 16 /sup 123/I hexadecene 9 oique acid: influence of plasma concentrations of fatty acids and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Comet, M.; Pilichowski, P.; Wolf, J.E.; Busquet, G.; Dubois, F.; Mathieu, J.P.; Pernin, C.; Riche, F. (C.H.R.U. de Grenoble (France)); Vidal, M. (U.S.M.G., 38 - Grenoble (France))

    1983-01-01

    After I.V. injection of /sup 123/I hexadecene-9 oic acid to dogs, the decreasing part of the myocardial activity curve is fitted with an exponential which period is calculated. Then the procedure is repeated after I.V. injection of heparin alone (6 dogs), of heparin during an intralipid perfusion (6 dogs) and lastly during a perfusion of a solution of glucose, insulin and potassium (7 dogs). In the two last protocols only, the period of the curve is significantly increased. The increase of the period means perhaps an increase of the intracellular accumulation of fatty acids. Patients must be in the same nutritional state to allow comparison between periods and a measure of the plasma level of NEFA is necessary before each injection of the labelled fatty acid.

  17. Myocardial scintigraphy with 16 123I hexadecene 9 oique acid: influence of plasma concentrations of fatty acids and glucose

    International Nuclear Information System (INIS)

    Comet, M.; Pilichowski, P.; Wolf, J.E.; Busquet, G.; Dubois, F.; Mathieu, J.P.; Pernin, C.; Riche, F.; Vidal, M.

    1983-01-01

    After I.V. injection of 123 I hexadecene-9 oic acid to dogs, the decreasing part of the myocardial activity curve is fitted with an exponential which period is calculated. Then the procedure is repeated after I.V. injection of heparin alone (6 dogs), of heparin during an intralipid perfusion (6 dogs) and lastly during a perfusion of a solution of glucose, insulin and potassium (7 dogs). In the two last protocols only, the period of the curve is significantly increased. The increase of the period means perhaps an increase of the intracellular accumulation of fatty acids. Patients must be in the same nutritional state to allow comparison between periods and a measure of the plasma level of NEFA is necessary before each injection of the labelled fatty acid [fr

  18. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    Science.gov (United States)

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  19. Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: in vivo regulation of cartonectin by glucose.

    Directory of Open Access Journals (Sweden)

    Bo Ban

    Full Text Available OBJECTIVES: Cartonectin is a novel adipokine of the C1q complement/TNF-related protein (CTRP superfamily, with glucose lowering effects, anti-inflammatory and cardio-protective properties. We sought to investigate circulating cartonectin concentrations in subjects with type 2 diabetes mellitus (T2DM as well as age and BMI matched control subjects. We also examined the effects of a 2 hour 75 g oral glucose tolerance test (OGTT on serum cartonectin concentrations in T2DM subjects. DESIGN: Cross-sectional study [newly diagnosed (first discovery, not on any treatments T2DM (n = 47 and control (n = 63 subjects]. Serum cartonectin was measured by ELISA. RESULTS: Serum cartonectin concentrations were significantly lower in patients with T2DM compared to controls (P0.05. There were no significant correlations in T2DM subjects (n = 47. In control subjects (n = 63, serum cartonectin was significantly negatively correlated with CRP, and significantly positively correlated with insulin, HOMA-IR and leptin. However, when subjected to multiple regression analysis, none of these variables were predictive of serum cartonectin (P>0.05. Finally, serum cartonectin concentrations were significantly lower in T2DM subjects after a 2 hour 75 g OGTT (P<0.01. CONCLUSIONS: Cartonectin may serve as a novel biomarker for the prediction and early diagnosis of T2DM patients. Furthermore, cartonectin and/or pharmacological agents that increase circulating cartonectin levels can represent a new therapeutic field in the treatment of T2DM patients. Further research is needed to clarify these points.

  20. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    Science.gov (United States)

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  1. One-hour and two-hour postload plasma glucose concentrations are comparable predictors of type 2 diabetes mellitus in Southwestern Native Americans.

    Science.gov (United States)

    Paddock, Ethan; Hohenadel, Maximilian G; Piaggi, Paolo; Vijayakumar, Pavithra; Hanson, Robert L; Knowler, William C; Krakoff, Jonathan; Chang, Douglas C

    2017-09-01

    Elevated 2-h plasma glucose concentration (2 h-PG) during a 75 g OGTT predict the development of type 2 diabetes mellitus. However, 1-h plasma glucose concentration (1 h-PG) is associated with insulin secretion and may be a better predictor of type 2 diabetes. We aimed to investigate the association between 1 h-PG and 2 h-PG using gold standard methods for measuring insulin secretion and action. We also compared 1 h-PG and 2 h-PG as predictors of type 2 diabetes mellitus. This analysis included adult volunteers without diabetes, predominantly Native Americans of Southwestern heritage, who were involved in a longitudinal epidemiological study from 1965 to 2007, with a baseline OGTT that included measurement of 1 h-PG. Group 1 (n = 716) underwent an IVGTT and hyperinsulinaemic-euglycaemic clamp for measurement of acute insulin response (AIR) and insulin-stimulated glucose disposal (M), respectively. Some members of Group 1 (n = 490 of 716) and members of a second, larger, group (Group 2; n = 1946) were followed-up to assess the development of type 2 diabetes (median 9.0 and 12.8 years follow-up, respectively). Compared with 2 h-PG (r = -0.281), 1 h-PG (r = -0.384) was more closely associated with AIR, whereas, compared with 1 h-PG (r = -0.340), 2 h-PG (r = -0.408) was more closely associated with M. Measures of 1 h-PG and 2 h-PG had similar abilities to predict type 2 diabetes, which did not change when both were included in the model. A 1 h-PG cut-off of 9.3 mmol/l provided similar levels of sensitivity and specificity as a 2 h-PG cut-off of 7.8 mmol/l; the latter is used to define impaired glucose tolerance, a recognised predictor of type 2 diabetes mellitus. The 1 h-PG was associated with important physiological predictors of type 2 diabetes and was as effective as 2 h-PG for predicting type 2 diabetes mellitus. The 1 h-PG is, therefore, an alternative method of identifying individuals with an elevated risk of type 2 diabetes

  2. Simultaneous measurement of glucose transport and utilization in the human brain

    Science.gov (United States)

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  3. Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA.

    Science.gov (United States)

    Torres, Felipe Vasconcelos; Hansen, Fernanda; Locks-Coelho, Lucas Doridio

    2013-08-01

    Glutamate concentration at the synaptic level must be kept low in order to prevent excitotoxicity. Astrocytes play a key role in brain energetics, and also astrocytic glutamate transporters are responsible for the vast majority of glutamate uptake in CNS. Experiments with primary astrocytic cultures suggest that increased influx of glutamate cotransported with sodium at astrocytes favors its flux to the tricarboxylic acid cycle instead of the glutamate-glutamine cycle. Although metabolic coupling can be considered an emergent field of research with important recent discoveries, some basic aspects of glutamate metabolism still have not been characterized in brain tissue. Therefore, the aim of this study was to investigate whether the presence of extracellular glutamate is able to modulate the use of glutamate and glucose as energetic substrates. For this purpose, isolated hippocampi of mice were incubated with radiolabeled substrates, and CO2 radioactivity and extracellular lactate were measured. Our results point to a diminished oxidation of glucose with increasing extracellular glutamate concentration, glutamate presumably being the fuel, and might suggest that oxidation of glutamate could buffer excitotoxic conditions by high glutamate concentrations. In addition, these findings were reversed when glutamate uptake by astrocytes was impaired by the presence of (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA). Taken together, our findings argue against the lactate shuttle theory, because glutamate did not cause any detectable increase in extracellular lactate content (or, presumably, in glycolysis), because the glutamate is being used as fuel instead of going to glutamine and back to neurons. Copyright © 2013 Wiley Periodicals, Inc.

  4. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet

    Directory of Open Access Journals (Sweden)

    Donato Jose

    2011-09-01

    Full Text Available Abstract Background Studies suggest that leucine supplementation (LS has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD in rats. Methods Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10 or HFD (n = 37. After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF, LS, ET, and LS+ET (n = 7-8 rats per group. After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α were analyzed. Results At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019. In addition, ET was more effective than LS in reducing adiposity (P = 0.019, serum insulin (P = 0.022 and TNF-α (P = 0.044. Conversely, LS increased serum adiponectin (P = 0.021 levels and reduced serum total cholesterol concentration (P = 0.042. Conclusions The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.

  5. INFLUENCE OF pH, TEMPERATURE AND DISSOLVED OXYGEN CONCENTRATION ON THE PRODUCTION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE AND INVERTASE BY Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    J. Abrahão-Neto

    1997-03-01

    Full Text Available The effect of pH (from 4.0 to 5.0, temperature (T (from 30 oC to 40 oC and dissolved oxygen concentration (DO (from 0.2 to 6.0 mg O2/L on glucose 6-phosphate dehydrogenase (G6PDH (EC 1.1.1.49 and Invertase (EC 3.2.1.26 formation by S. cerevisiae were studied. The best culture conditions for G6PDH and Invertase formation were: 2.55 L culture medium (yeast extract, 3.0 g/L; 5peptone, 5.0 g/L; glucose, 2.0 g/L; sucrose, 15.0 g/L; Na2HPO4.12 H2O, 2.4 g/L; (NH42SO4, 5.1 g/L and MgSO4. 7H2O, 0.075 g/L; 0.45 L inoculum (0.70 g dry cell/L; pH = 4.5; T = 35 oC and DO = 4.0 mg/L. G6PDH was highly sensitive to pH, T and DO variation. The increase in G6PDH production was about three times when the DO ranged from 0.2 to 4.0 mg O2/L. Moreover, by shifting pH from 5.0 to 4.5 and temperature from 30 oC to 35 oC, G6PDH formation increased by 57% and 70%, respectively. Invertase activity (IA of whole cells decreased at least 50% at extremes values of DO (2.0 and 6.0 mg O2/L and pH (4.0 and 5.0. Furthermore, IA oscillated during the fermentation due to the glucose repression/derepression mechanism

  6. The concentration of glucose, insuline, thyroxine (T4), triiodthyronine (T3) and gastrine in the maternal blood, in the umbilical cord blood of their outcomes in the neonatal blood samples

    International Nuclear Information System (INIS)

    Osuch-Jaczewska, R.; Tomala, J.; Adamska, S.; Bielecka, W.; Mikulska, M.; Kalacinska, M.; Sieron, G.

    1978-01-01

    In the blood samples collected from the mothers, from the umbilical cord of their outcomes and from these neonates after 24 hours of life following estimations were performed collaterally: The concentration of insulin in 50 mothers and their fetuses and in 34 neonates, concentration of thyroxine (T 4 ) in 70 mothers and their fetuses and in 32 neonates, triiodothyronine binding coefficient (WWT 3 ) in 60 mothers and their fetuses and neonates, concentration of gastrine in 23 mothers and their fetuses and in 5 neonates. Besides that the concentration of glucose in total blood was established in 300 mothers - their fetuses and neonates. The insuline, WWT 3 and gastrine were estimated by radioimmune techniques and T 4 by radiocompetitive technique. The glucose concentration - with the aid of o-toluidine method. Basing on the results, the paper suggests that the fetus and the newborn represent independent unit in the aspect of regulation of the glucose concentration, secretion of insuline, T 3 , T 4 and gastrine, notwithstanding the possibility of transplacental passage of these hormones exists the correlation coefficients between the maternal and fetal blood concentrations of insuline, T 4 and WWT 3 were significant. The cord-blood glucose concentration exhibits a marked correlation with the maternal glicemia. Physiologic, asymptomatic hyperinsulinemia and hyperthyreosis and an increase of gastrine concentration demonstrate the presence, in the fetal and neonatal organisms, of certain compensatory-regulating mechanisms stimulating and inhibiting with feed-back properties, which guarantee the environmental homeostasis. (author)

  7. Comparison of three commercially available prescription diet regimens on short-term post-prandial serum glucose and insulin concentrations in healthy cats.

    Science.gov (United States)

    Mori, A; Sako, T; Lee, P; Nishimaki, Y; Fukuta, H; Mizutani, H; Honjo, T; Arai, T

    2009-10-01

    Dietary therapy is an important treatment component for diabetes mellitus (DM). In this study, the impact of three different commercially available diet regiments (1 general use and 2 aimed for treating obesity and DM) on short-term post-prandial serum glucose and insulin concentrations of five healthy cats to better understand what impact each of these diets may have for diabetic cats. The diet regiments used in this study were as follows: C/D dry (General Use- Low protein, High fat, High carbohydrate, and Low fiber), M/D dry (DM- High protein, High fat, Low carbohydrate, and High Fiber), and W/D dry (DM- Low Protein, Low Fat, High Carbohydrate, and High Fiber). No significant difference in post-prandial serum glucose levels were observed with the C/D (84.6 +/- 1.5 mg/dl) and W/D (83.8 +/- 1.4 mg/dl) dry diets when compared to pre-prandial fasting levels (83.9 +/- 1.4 mg/dl). However, a significant reduction was observed with the M/D diet (78.9 +/- 0.8 mg/dl) which had 50-60% less carbohydrates than either C/D or W/D diet. Unlike what was observed with post-prandial glucose levels, an interesting pattern emerged with post-prandial insulin levels, which were increasing with W/D, C/D, and M/D diets in that order (1.1 +/- 0.2, 1.7 +/- 0.2, and 2.3 +/- 0.2 ng/ml respectively). Most surprising, though, was the fact that the W/D diet did not seem to stimulate insulin secretion as compared to pre-prandial levels (1.1 +/- 0.1 ng/ml) in healthy cats. Interestingly, the W/D diet had high levels of carbohydrate and low levels of protein. Coincidentally, the only diet (M/D) which had a significant reduction in post-prandial glucose also showed the highest increase in post-prandial insulin in healthy cats. Therefore, dietary amounts of carbohydrate, fat, protein and fiber can all have an individual impact on post-prandial glycemia and subsequent insulin requirement levels. Just as concepts regarding dietary management of people with DM are evolving, investigators are

  8. Glucose turnover during insulin-induced hypoglycemia in liver-denervated rats

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1985-01-01

    The role of hepatic autonomic nerves in glucose production during hypoglycemia was studied. Selective, surgical denervation of the liver was performed in rats, which reduced hepatic norepinephrine concentrations by 96%. Hypoglycemia was induced by 250 mU of insulin intra-arterially in anesthetized...... as well as in chronically catheterized, awake rats. Half of the anesthetized denervated or sham-operated rats had previously been adrenodemedullated. Glucose turnover was measured by primed, constant intravenous infusion of [3-3H]glucose. Before as well as during hypoglycemia the arterial glucose...

  9. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard

    DEFF Research Database (Denmark)

    Hansen, Susan; Dahl, Ronald; Hoffmann, Hans Jürgen

    2008-01-01

    at a high rate has a median of 163 microl (IQR 156-170) with TruCount tubes. Leukocyte concentrations of 26 healthy volunteers were measured twice on up to four occasions with a Bürker-Türk chamber, by single platform technology (SPT) with TruCount tubes and on the same data set using CVA. Total leukocyte...... concentrations determined by CVA correlated better with measurements in a Bürker-Türk (BT) chamber than with SPT. Concentrations determined with CVA were 1.86% higher than with BT whereas SPT data were 5.35% higher than BT (p...LeukoGating can be established using microscopy as a reference, and is comparable to BT chamber and SPT determination. Leukocyte concentrations can be measured with CVA on flow cytometers in research and clinical settings....

  10. Prevalence of subclinical ketosis in dairy cattle in the Southwestern Iran and detection of cutoff point for NEFA and glucose concentrations for diagnosis of subclinical ketosis.

    Science.gov (United States)

    Asl, Ardavan Nowroozi; Nazifi, Saeed; Ghasrodashti, Abbas Rowshan; Olyaee, Ahad

    2011-06-01

    Subclinical ketosis (SCK) is simply a condition marked by increased levels of circulating ketone bodies without the presence of the clinical signs of ketosis. Subclinical ketosis can cause economic losses through decreased milk production and association with preparturient diseases. Limited information is available regarding the prevalence of SCK in dairy herds in Southwestern Iran. The objectives of this study were (i) determination of the cutoff point of nonesterified fatty acids (NEFAs) and glucose concentrations for diagnosis of SCK using receiver operating characteristic (ROC) analysis, and (ii) determination of prevalence of subclinical ketosis in apparently healthy dairy cattle in Southwestern Iran. From October to December 2009, a total of 100 clinically healthy multiparous Holstein cows (3-8 years old) were randomly selected from 16 dairy herds around Kazerun, Fars Province, Iran. The cows had two-six lactations, with body weight ranging from 500 to 650 kg. Blood samples for each cow were taken at 2, 4 and 6 weeks post parturition and 3-4h after the morning feeding. The optimal cutoff point was set, by the ROC method, to >0.26 mmol/L for NEFA, and ketosis in all of the 2, 4 and 6 weeks postpartum. The results suggest that, a cut-off point of 0.26 mmol/L for NEFA concentrations can be used during early lactation for diagnosis of subclinical ketosis and making management decisions for prevention and treatment. Glucose cannot be a good criterion for diagnosis of SCK and it does not appear to be useful for monitoring subclinical ketosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

    Science.gov (United States)

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd– strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd– mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth. PMID:24004455

  12. Second trimester amniotic fluid glucose, uric acid, phosphate, potassium, and sodium concentrations in relation to maternal pre-pregnancy BMI and birth weight centiles.

    Science.gov (United States)

    Fotiou, Maria; Michaelidou, Alexandra Maria; Athanasiadis, Apostolos P; Menexes, Georgios; Symeonidou, Maria; Koulourida, Vasiliki; Ganidou, Maria; Theodoridis, Theodoros D; Tarlatzis, Basil C

    2015-05-01

    To study the evolution profile of amniotic fluid (AF) glucose, uric acid, phosphate, potassium, and sodium, in the second trimester of pregnancy, and explore the possible relations between the concentration of these components and maternal, as well as neonatal characteristics. AF of 52 pregnant women was analyzed using an automatic multichannel analyzer. Maternal age, pre-pregnancy Body Mass Index (BMI), inter-pregnancy intervals, and smoking status were derived from questionnaires. Information on pregnancy and delivery was collected from medical records. Uric acid increased (r = 0.423, p pregnancy (r = -0.590, p pregnancy BMI was significantly correlated with AF uric acid concentration (r = 0.460, p sodium (r = 0.254, p = 0.070) levels. Multiple linear regression indicated that mid-trimester AF uric acid and phosphate levels were significantly related to birth weight centiles (R(2)( )= 0.345, p pregnancy BMI is significantly correlated with AF uric acid concentration, and (c) in appropriate for gestational age infants, AF phosphate and uric acid levels may serve as potential biomarkers of birth weight centiles. Further studies on AF composition may help to unravel the biochemical pathways underlying fetal development and could offer insight on the potential impact of maternal nutritional management on fetal growth regulation.

  13. Alterations in glucose kinetics induced by pentobarbital anesthesia

    International Nuclear Information System (INIS)

    Lang, C.H.; Bagby, G.J.; Spitzer, J.J.

    1986-01-01

    Pentobarbital is a common anesthetic agent used in animal research that is known to alter sympathetic function and may also affect carbohydrate metabolism. The in vivo effects of iv pentobarbital on glucose homeostasis were studied in chronically catheterized fasted rats. Whole body glucose kinetics, assessed by the constant iv infusion of [6- 3 H]- and [U- 14 C]-glucose, were determined in all rats in the conscious state. Thereafter, glucose metabolism was followed over the next 4 hr in 3 subgroups of rats; conscious, anesthetized with body temperature maintained, and anesthetized with body temperature not maintained. Hypothermia (a 5 0 C decrease) developed spontaneously in anesthetized rats kept at ambient temperature (22 0 C). No differences were seen in MABP and heart rate between conscious and normothermic anesthetized rats; however, hypothermic anesthetized rats showed a decrease in MABP (20%) and heart rate (35%). Likewise, plasma glucose and lactate concentrations, the rate of glucose appearance (Ra), recycling and metabolic clearance (MCR) did not differ between conscious and normothermic anesthetized animals. In contrast, hypothermic anesthetized rats showed a 50% reduction in plasma lactate, a 40% drop in glucose Ra, and a 30-40% decrease in glucose recycling and MCR. Thus, pentobarbital does not appear to alter in vivo glucose kinetics, compared to unanesthetized controls, provided that body temperature is maintained

  14. Local cerebral glucose utilization during status epilepticus in newborn primates

    International Nuclear Information System (INIS)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-01-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-[ 14 C]-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined

  15. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Science.gov (United States)

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  16. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: A meta-analysis of 50,345 Caucasians

    NARCIS (Netherlands)

    A.M. Fretts (Amanda M.); J.L. Follis (Jack ); J.A. Nettleton (Jennifer ); R.N. Lemaitre (Rozenn ); J.S. Ngwa; M.K. Wojczynski (Mary ); I.-P. Kalafati (Ioanna-Panagiota); T.V. Varga (Tibor V.); A.C. Frazier-Wood (Alexis C.); D.K. Houston (Denise); J. Lahti (Jari); U. Ericson (Ulrika); E.H. van den Hooven (Edith); V. Mikkilä (Vera); J.C. Kiefte-de Jong (Jessica); D. Mozaffarian (Dariush); K.M. Rice (Kenneth); F. Renström (Frida); K.E. North (Kari); N.M. McKeown (Nicola ); M.F. Feitosa (Mary Furlan); S. Kanoni (Stavroula); C.E. Smith (Caren); M. Garcia (Melissa); A.-M. Tiainen (Anna-Maija); E. Sonestedt (Emily); A. Manichaikul (Ani); F.J.A. van Rooij (Frank); M. Dimitriou (Maria); O. Raitakari (Olli); J.S. Pankow (James); L. Djoussé (Luc); M.A. Province (Mike); F.B. Hu (Frank); C.-Q. Lai (Chao-Qiang); M.F. Keller (Margaux); M.-M. Perälä (Mia-Maria); J.I. Rotter (Jerome I.); A. Hofman (Albert); M.J. Graff (Maud J.L.); M. Kähönen (Mika); K. Mukamal (Kenneth); I. Johansson (Ingegerd); J.M. Ordovas (Jose); Y. Liu (YongMei); S. Männistö (Satu); A.G. Uitterlinden (André); P. Deloukas (Panagiotis); I. Seppälä (Ilkka); B.M. Psaty (Bruce); L.A. Cupples (Adrienne); I.B. Borecki (Ingrid); P.W. Franks (Paul W.); D.K. Arnett (Donna); M.A. Nalls (Michael); K. Hagen (Knut); M. Orho-Melander (Marju); O.H. Franco (Oscar); T. Lehtimäki (Terho); G.V. Dedoussis (George); J.B. Meigs (James); D.S. Siscovick (David)

    2015-01-01

    textabstractBackground: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the

  17. Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation

    Science.gov (United States)

    Sobieski, Courtney; Shu, Hong-Jin

    2018-01-01

    Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations. PMID:29617444

  18. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82 Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  19. Concentration of glucose, insuline, thyroxine (T/sub 4/), triiodthyronine (T/sub 3/) and gastrine in the maternal blood, in the umbilical cord blood of their outcomes in the neonatal blood samples

    Energy Technology Data Exchange (ETDEWEB)

    Osuch-Jaczewska, R; Tomala, J; Adamska, S; Bielecka, W; Mikulska, M; Kalacinska, M; Sieron, G [Slaska Akademia Medyczna, Katowice (Poland)

    1978-01-01

    In the blood samples collected from the mothers, from the umbilical cord of their outcomes and from these neonates after 24 hours of life the following estimations were performed collaterally: The concentration of insulin in 50 mothers and their fetuses and in 34 neonates, concentration of thyroxine (T/sub 4/) in 70 mothers and their fetuses and in 32 neonates, triiodothyronine binding coefficient (WWT/sub 3/) in 60 mothers and their fetuses and neonates, concentration of gastrine in 23 mothers and their fetuses and in 5 neonates. Besides that the concentration of glucose in total blood was established in 300 mothers - their fetuses and neonates. The insuline, WWT/sub 3/ and gastrine were estimated by radioimmune techniques and T/sub 4/ by radiocompetitive technique. The glucose concentration - with the aid of o-toluidine method. Basing on the results, the paper suggests that the fetus and the newborn represent independent unit in the aspect of regulation of the glucose concentration, secretion of insuline, T/sub 3/, T/sub 4/ and gastrine, notwithstanding the possibility of transplacental passage of these hormones exists the correlation coefficients between the maternal and fetal blood concentrations of insuline, T/sub 4/ and WWT/sub 3/ were significant. The cord-blood glucose concentration exhibits a marked correlation with the maternal glicemia. Physiologic, asymptomatic hyperinsulinemia and hyperthyreosis and an increase of gastrine concentration demonstrate the presence, in the fetal and neonatal organisms, of certain compensatory-regulating mechanisms stimulating and inhibiting with feed-back properties, which guarantee the environmental homeostasis.

  20. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations

    DEFF Research Database (Denmark)

    Nauck, M A; Bartels, E; Orskov, C

    1993-01-01

    . The combination of GIP and GLP-1 led to B-cell responses that were significantly higher than those with either hormone alone (additive mode of cooperation). Plasma GIP concentrations were similar after endogenous secretion (oral glucose) and i.v. infusion, while exogenously administered GLP-1 led to plasma levels...

  1. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  2. Kinetic Behaviour of Glucose 6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Different Tissues of Rainbow Trout (Oncorhynchus mykiss Exposed to Non-Lethal Concentrations of Cadmium

    Directory of Open Access Journals (Sweden)

    Olcay Hisar

    2009-01-01

    Full Text Available The effects of cadmium (Cd on the enzymatic activities of glucose 6-phosphate dehydrogenase (G6PD and 6-phosphogluconate dehydrogenase (6PGD were investigated in the gill, liver and kidney tissues of rainbow trout (Oncorhynchus mykiss. Three test groups of fish were subjected to increasing concentrations (1, 3 and 5 mg/l of cadmium (Cd in vivo, respectively. The G6PD and 6PGD activities in the gill, liver, and kidney tissues of each group of fish were measured on days 1, 3, 5 and 7. G6PD and 6PGD enzyme activities, measured in gill, liver and kidney homogenates, were stimulated by various concentrations (1, 3, and 5 mg/l of cadmium. Although the dose-response pattern of G6PD enzyme activities in liver and kidney tissue was very similar, that in gill was different from both other tissues. The enzyme activity of G6PD enzyme was significantly stimulated after three days (Day 3 in liver and kidney tissues at a dose of 1 mg/l Cd (p p p p p p < 0.05 in liver and kidney tissues at the doses of 3 and 1 mg/l Cd. The stimulation effect of cadmium on the three tissues studied was also calculated; for both of the enzymes (G6PD and 6PGD, the enzyme activity levels were stimulated by approximately 60% and 38% in gills, 68% and 44% in liver, and 67% and 41% in kidneys, respectively, over the base-line enzyme activity of the control groups during the sevenday experimental period. These findings indicate that tissue G6PD and 6PGD enzymes function to protect against cadmium toxicity.

  3. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.

    Science.gov (United States)

    Bossi, E; Kohler, E; Herschkowitz, N

    1989-11-01

    In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.

  4. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults.

    Science.gov (United States)

    Novotny, Janet A; Baer, David J; Khoo, Christina; Gebauer, Sarah K; Charron, Craig S

    2015-06-01

    Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading causes of mortality and morbidity worldwide. The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower cardiometabolic risk. A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26 men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m(2)) completed an 8-wk intervention with LCCJ or a flavor/color/energy-matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively. Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment × baseline interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger treatment effect (1.15 ± 0.04 mmol/L vs. 1.25 ± 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP) was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of 0.522 ± 0.115 ln(mg/L) vs. 0.997 ± 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 ± 0.8 mm Hg for LCCJ vs. 71.6 ± 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group (5.32 ± 0.03 mmol/L) than in the placebo group (5.42 ± 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis model assessment of insulin resistance for participants with high baseline values (P = 0.035). LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684. © 2015

  5. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  6. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  7. STABILITY CONSTANT OF THE TRISGLYCINATO METAL ...

    African Journals Online (AJOL)

    DR. AMINU

    overall stability constants of the complexes were found to be similar. Keywords: Glycinato, titration ... +. −. = 1 where Ka = dissociation constant of the amino acid. [ ]+. H = concentration of the .... Synthesis and techniques in inorganic chemistry.

  8. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  9. High Glucose Concentration Stimulates NHE-1 Activity in Distal Nephron Cells: the Role of the Mek/Erk1/2/p90RSK and p38MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Juliana Martins da Costa-Pessoa

    2014-02-01

    Full Text Available Aims: In models of diabetes, distal nephron cells contribute to glucose uptake and oxidation. How these cells contribute to the use of glucose for the regulation of H+ extrusion remains unknown. We used Madin-Darby Canine Kidney (MDCK cells to investigate the effect of acute or chronic high glucose concentration on the abundance and activity of the Na+/H+ exchanger (NHE-1. Methods: Using RT-PCR, we also evaluated the mRNA expression for sodium glucose co-transporters SGLT1 and SGLT2. Protein abundance was analyzed using immunoblotting, and intracellular pH (pHi recovery was evaluated using microscopy in conjunction with the fluorescent probe BCECF/AM. The Na+-dependent pHi recovery rate was monitored with HOE-694 (50 µM and/or S3226 (10 µM, specific NHE-1 and NHE-3 inhibitors. Results: MDCK cells did not express the mRNA for SGLT1 or SGLT2 but did express the GLUT2, NHE-1 and NHE-3 proteins. Under control conditions, we observed a greater contribution of NHE-1 to pHi recovery relative to the other H+ transporters. Acute high glucose treatment increased the HOE-694-sensitive pHi recovery rate and p-Erk1/2 and p90RSK abundance. These parameters were reduced by PD-98059, a Mek inhibitor (1 µM. Chronic high glucose treatment also increased the HOE-694-sensitive pHi recovery rate and p-p38MAPK abundance. Both parameters were reduced by SB-203580, a p38MAPK inhibitor (10 µM. Conclusion: These results suggested that extracellular high glucose stimulated NHE-1 acutely and chronically through Mek/Erk1/2/p90RSK and p38MAPK pathways, respectively.

  10. Acute effect of a fight of Mixed Martial Arts (MMA on the serum concentrations of testosterone, cortisol, creatine kinase, lactate, and glucose

    Directory of Open Access Journals (Sweden)

    Rodrigo Poderoso de Souza

    2017-06-01

    Full Text Available The aim of this study was to analyse the serum concentrations of testosterone (T, cortisol (C, lactate (LAC, creatine kinase (CK and glucose (GLU on mixed martial arts (MMA athletes, before and after a fight. We divided 20 MMA athletes into two groups of 10 fighters each, according to the result of a fight, and were then evaluated four times: 24 hours before (-24h, one hour before (-1h, immediately after (0h and 24 hours after the fight (+24h. It was observed: a significant decrease in T and T/C between moment -24h and 0h and a subsequent increase between the moment 0h and +24h and a reverse behaviour in variables C, LAC and GLU (p<0.0001; a decrease in CK between moment -24h and -1h and an increase between moment -1h and +24h (p<0.0001; and differences between winners and losers T levels, in moments -24h, -1h, 0h and +24h (p = 0.009 e p < 0.001, p = 0.005 e p = 0,001, T and C, respectively, in T/C in the moments -24h and 0h (p=0.006 and p=0.001, respectively and in GLU levels (p<0.0001 in the moment 0h. Therefore, it seems that an MMA fight leads to metabolic stress and muscle damage, regardless of the result of the fight. The coaches have now more biochemical and hormonal references and indicators in response to an MMA fight.

  11. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study

    OpenAIRE

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and...

  12. The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes.

    Science.gov (United States)

    Tanis, Ross M; Piroli, Gerardo G; Day, Stani D; Frizzell, Norma

    2015-01-01

    While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ~1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Alterations in glucose kinetics induced by pentobarbital anesthesia

    International Nuclear Information System (INIS)

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J.

    1987-01-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia

  14. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    Science.gov (United States)

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  15. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  16. Changes of glucose utilization by erythrocytes, lactic acid concentration in the serum and blood cells, and haematocrit value during one hour rest after maximal effort in individuals differing in physical efficiency.

    Science.gov (United States)

    Tomasik, M

    1982-01-01

    Glucose utilization by the erythrocytes, lactic acid concentration in the blood and erythrocytes, and haematocrit value were determined before exercise and during one hour rest following maximal exercise in 97 individuals of either sex differing in physical efficiency. In the investigations reported by the author individuals with strikingly high physical fitness performed maximal work one-third greater than that performed by individuals with medium fitness. The serum concentration of lactic acid was in all individuals above the resting value still after 60 minutes of rest. On the other hand, this concentration returned to the normal level in the erythrocytes but only in individuals with strikingly high efficiency. Glucose utilization by the erythrocytes during the restitution period was highest immediately after the exercise in all studied individuals and showed a tendency for more rapid return to resting values again in individuals with highest efficiency. The investigation of very efficient individuals repeated twice demonstrated greater utilization of glucose by the erythrocytes at the time of greater maximal exercise. This was associated with greater lactic acid concentration in the serum and erythrocytes throughout the whole one-hour rest period. The observed facts suggest an active participation of erythrocytes in the process of adaptation of the organism to exercise.

  17. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    International Nuclear Information System (INIS)

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J.

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol (β-blocker) and phentolamine (α-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection

  18. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study.

    Science.gov (United States)

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.

  19. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    Science.gov (United States)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  20. An extremely sensitive monoboronic acid based fluorescent sensor for glucose

    International Nuclear Information System (INIS)

    Sun Xiangying; Liu Bin; Jiang Yunbao

    2004-01-01

    An extremely sensitive monoboronic acid based fluorescent sensor for glucose was developed. This was carried out by assembling a fluorescent monoboronic acid, 3-aminophenylboronic acid (PBA) indirectly onto gold surface via its electrostatic interaction with cysteine (Cys) that was directly assembled on the gold surface. The formation of self-assembled bilayers (SAB) was confirmed and primarily characterized by cyclic voltammetry and X-ray photoelectron spectra (XPS). The SAB containing PBA was found fluorescent and its fluorescence showed an extremely high sensitivity to the presence of glucose and other monosaccharides such as galactose and fructose with quenching constants at 10 8 M -1 order of magnitude compared to those at 10 2 M -1 in bulk solutions. The quenching constants were found to vary in the order of D-glucose>D-galactose>D-fructose>D-mannose that is different from that in bulk solution which shows the highest binding affinity toward D-fructose and very low sensitivity toward glucose. The reported monoboronic acid based SAB fluorescent sensor showed the highest sensitivity towards glucose with the capacity of detecting saccharides of concentration down to nanomolar level. It was also demonstrated that the fluorescence from PBA/Cys/Au can be easily recovered after each measurement event and therefore also represents a new reusable method for immobilizing reagent in fabricating chemosensors

  1. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  2. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    International Nuclear Information System (INIS)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H 2 O 2 ), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H 2 O 2 inhibit insulin secretion. Menadione, which produces H 2 O 2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H 2 O 2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H 2 O 2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H 2 O 2 and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H 2 O 2 production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis

  3. C-Reactive Protein Concentrations and Level of Physical Activity in Men and Women With Normal and Impaired Glucose Tolerance. A Cross-Sectional Population-Based Study in Sweden.

    Science.gov (United States)

    Hellgren, Margareta I; Larsson, Charlotte A; Daka, Bledar; Petzold, Max; Jansson, Per-Anders; Lindblad, Ulf

    2016-06-01

    We aimed to explore the association between self-reported leisure time physical activity (LTPA) and C-reactive protein (CRP) concentrations in men and women with and without impaired glucose tolerance (IGT). In a cross-sectional study, a random sample (n = 2,816) was examined with an oral glucose tolerance test, CRP and information about LTPA. Those with IGT or normal glucose tolerance (NGT) and CRP value ≤10 mg/L were selected (n = 2,367) for the study. An inverse association between LTPA and CRP concentrations was observed in the population (P men with IGT (P = .023) and in women with NGT. Men with IGT, reporting slight physical activity up to 4 hours a week presented significantly higher CRP concentrations than normoglycemic men (Δ0.6 mg/L, P = .004). However, this difference could not be found in men with IGT reporting more intense physical activity (Δ0.01 mg/L, P = .944). Physical inactivity seems to have greater inflammatory consequences for men (vs. women) with IGT. More importantly, although 4 hours of physical activity per week is more than the usual minimum recommendation, an even greater intensity of LTPA appears to be required to limit subclinical inflammation in men with IGT.

  4. Resist image quality control via acid diffusion constant and/or photodecomposable quencher concentration in the fabrication of 11 nm half-pitch line-and-space patterns using extreme-ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-05-01

    Extreme-ultraviolet (EUV) lithography will be applied to the high-volume production of semiconductor devices with 16 nm half-pitch resolution and is expected to be extended to that of devices with 11 nm half-pitch resolution. With the reduction in the feature sizes, the control of acid diffusion becomes a significant concern. In this study, the dependence of resist image quality on T PEB D acid and photodecomposable quencher concentration was investigated by the Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. Here, T PEB and D acid are the postexposure baking (PEB) time and the acid diffusion constant, respectively. The resist image quality of 11 nm line-and-space patterns is discussed in terms of line edge roughness (LER) and stochastic defect generation. For the minimization of LER, it is necessary to design and control not only the photodecomposable quencher concentration but also T PEB D acid. In this case, D acid should be adjusted to be 0.3–1.5 nm2 s‑1 for a PEB time of 60 s with optimization of the balance among LER and stochastic pinching and bridging. Even if it is difficult to decrease D acid to the range of 0.3–1.5 nm2 s‑1, the image quality can still be controlled via only the photodecomposable quencher concentration, although LER and stochastic pinching and bridging are slightly increased. In this case, accurate control of the photodecomposable quencher concentration and the reduction in the initial standard deviation of the number of protected units are required.

  5. Calculation of the total plasma concentration of nonvolatile weak acids and the effective dissociation constant of nonvolatile buffers in plasma for use in the strong ion approach to acid-base balance in cats.

    Science.gov (United States)

    McCullough, Sheila M; Constable, Peter D

    2003-08-01

    To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. Convenience plasma samples of 5 male and 5 female healthy adult cats. Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.

  6. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  7. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load

    DEFF Research Database (Denmark)

    Bülow, J; Astrup, A; Christensen, N J

    1987-01-01

    Blood flow to the forearm, and the subcutaneous tissue and skin in the forearm were measured by strain gauge plethysmography, 133Xe-elimination and Laser Doppler flowmetry during an oral glucose load (I g glucose kg-1 lean body mass) and during control conditions. The forearm blood flow remained...... constant during both experiments. Glucose induced a two-fold vasodilatation in subcutaneous tissue. In skin, glucose induced a relative vasodilatation and later a relative vasoconstriction compared with control experiments. When estimated from forearm blood flow and subcutaneous and skin blood flows......, muscle blood flow decreased about 20-30% during both experiments. Proximal nervous blockade did not abolish the glucose-induced vasodilatation in subcutaneous tissue. In the glucose experiment, arterial glucose concentration increased to 7.8 +/- 1.17 mmol l-1 30 min after the load was given...

  8. Activation of protein kinase C by elevation of glucose concentration: Proposal for a mechanism in the development of diabetic vascular complications

    International Nuclear Information System (INIS)

    Lee, Tianshing; Saltsman, K.A.; Ohashi, Hiromi; King, G.L.

    1989-01-01

    Hyperglycemia is believed to be the major cause of diabetic vascular complications involving both microvessels and arteries as in the retina, renal glomeruli, and aorta. It is unclear by which mechanism hyperglycemia is altering the metabolism and functions of vascular cells, although changes in nonenzymatic protein glycosylation and increases in cellular sorbitol levels have been postulated to be involved. Previously, the authors have reported that the elevation of extracellular glucose levels with cultured bovine retinal capillary endothelial cells causes an increase in protein kinase C (PKC) activity of the membranous pool with a parallel decrease in the cytosol without alteration of its total activity. Now they demonstrate that the mechanism for the activation of PKC is due to an enhanced de novo synthesis of diacylglycerol as indicated by a 2-fold increase of [ 14 C]diacylglycerol labeling from [ 14 C]glucose. The elevated diacylglycerol de novo synthesis is secondarily due to increased formation of precursors derived from glucose metabolism; this formation is enhanced by hyperglycemia as substantiated by elevated [ 3 H]glucose conversion into water. This effect of hyperglycemia on PKC is also observed in cultured aortic smooth muscle and endothelial cells and the retina and kidney of diabetic rats, but not in the brain. Since PKC in vascular cells has been shown to modulate hormone receptor turnover, neovascularization in vitro, and cell growth, they propose that this mechanism of enhancing the membranous PKC activities by hyperglycemia plays an important role in the development of diabetic vascular complications

  9. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones.

    Science.gov (United States)

    Parmar, Hamendra Singh; Kar, Anand

    2008-06-01

    Peel extracts from Citrus sinensis, Punica granatum, and Musa paradisiaca were investigated for their effects on tissue lipid peroxidation (LPO) and on the concentration of thyroid hormones, insulin, and glucose in male rats. In vitro inhibition of H(2)O(2)-induced LPO in red blood cells of rats by 0.25, 0.50, 1.0, and 2.0 microg/mL C. sinensis, P. granatum, and M. paradisiaca peel extracts was observed in a dose-specific manner. Maximum inhibition was observed at 0.50 microg/mL C. sinensis, 2.0 microg/mL P. granatum, and 1.0 microg/mL M. paradisiaca. In the in vivo investigation, out of four different concentrations of each peel extract, 25, 200, and 100 mg/kg C. sinensis, P. granatum, and M. paradisiaca, respectively, were found to maximally inhibit hepatic LPO. The most effective doses were further evaluated for effects on serum triiodothyronine (T(3)), thyroxine (T(4)), insulin, and glucose concentrations. C. sinensis exhibited antithyroidal, hypoglycemic, and insulin stimulatory activities, in addition to inhibition of LPO, as it significantly decreased the serum T(4) (P paradisiaca strongly inhibited the serum level of thyroid hormones (P < .01 for both T(3) and T(4)) but increased the level of glucose (P < .05). These findings reveal the hitherto unknown potential of the tested peel extracts in the regulation of thyroid function and glucose metabolism. Besides antiperoxidative activity, C. sinensis extract has antithyroidal, hypoglycemic, and insulin stimulatory properties, which suggest its potential to ameliorate both hyperthyroidism and diabetes mellitus.

  10. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  12. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J.

    1987-01-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  13. Kinetic study of hydrolysis of coconut fiber into glucose

    Science.gov (United States)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  14. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    Science.gov (United States)

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( RUP.

  15. Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in the rat

    International Nuclear Information System (INIS)

    Flores, E.A.; Istfan, N.; Pomposelli, J.J.; Blackburn, G.L.; Bistrian, B.R.

    1990-01-01

    We studied the effect of recombinant human interleukin-1 beta (IL-1) and recombinant human tumor necrosis factor alpha/cachectin (TNF) on glucose kinetics in healthy rats by means of a primed constant infusion of D-(6-3H)glucose and D-[U- 14 C]glucose. During the isotope (6-hour) and monokine (4-hour) infusion, plasma levels of glucagon and insulin were determined and correlated with changes in glucose metabolism. The rates of glucose appearance (Ra) and disappearance (Rd) were elevated only with IL-1 and were associated with an increase in glucagon and a concomitant decrease in the ratio of insulin to glucagon. Plasma glucose concentration was increased early after IL-1 administration and coincided with the peak in the Ra. The augmentation of the metabolic clearance rate (MCR) and percent of flux oxidized by IL-1 suggest that this monokine induces the utilization of glucose as a substrate. TNF administration failed to modify the Ra or Rd, percent of flux oxidized, or MCR. TNF-treated rats increased the percent of glucose recycling, but not the total rate of glucose production. The results of this experiment suggest that endogenous macrophage products participate in the diverse alterations of carbohydrate metabolism seen during injury and/or infection

  16. Determinação das constantes cinéticas de degradação do ácido ascórbico em purê de pêssego: efeito da temperatura e concentração Determination of reaction rate constants for ascorbic acid degradation in peach pureé: effect of temperature and concentration

    Directory of Open Access Journals (Sweden)

    Ricardo Peraça Toralles

    2008-03-01

    Full Text Available O ácido ascórbico, vitamina C, é usado extensivamente na indústria de alimentos, não só devido ao seu valor nutricional, mas devido a suas contribuições funcionais na qualidade do produto. Existem muitos estudos sobre a estabilidade cinética do ácido ascórbico em bebidas, mas nenhum estudo foi encontrado sobre as constantes cinéticas de degradação do ácido ascórbico adicionado em purê de pêssego. Neste trabalho, estudou-se a cinética de degradação do ácido ascórbico em purê de pêssego da cultivar Jade, em condições anaeróbicas e na faixa de 70 a 90 °C. As concentrações de purês testadas foram 12, 22 e 32 °Brix. A análise cinética dos dados sugere que a degradação foi significativamente representada pelos modelos cinéticos de zero e primeira ordem. A velocidade de degradação do ácido ascórbico foi dependente da temperatura. A energia de ativação média foi de 45 kJ.mol-1 e independente da concentração de sólidos solúveis.Ascorbic acid (vitamin C is extensively used in the food industry, not only for its nutritional value, but also for its many functional contributions to product quality. There have been many studies on the stability of ascorbic acid in different beverages, but no study was found on the reaction rate constants for ascorbic acid degradation in peach purée. In this work, the degradation of ascorbic acid in Jade peach purée was studied in anaerobic conditions and from 70-90 °C. The peach purée concentrations tested were 12, 22 and 32 °Brix. The kinetic analysis of the data suggests that the degradation was significantly represented by zero and first-order kinetic models. The rate of ascorbic acid degradation in peach purée was temperature dependent. The average activation energy was 45 kJ.mol-1 and independent of the concentration of soluble solids.

  17. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel Bring

    2016-01-01

    was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous...... as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp...... the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during hypoglycaemia. The results from the three studies indicate that GIP has effects on insulin and glucagon responses highly dependent upon...

  18. C-Reactive Protein and Gamma-Glutamyltransferase Concentrations in Relation to the Prevalence of Type 2 Diabetes Diagnosed by Glucose or HbA1c Criteria in Chinese Adults in Qingdao, China

    Directory of Open Access Journals (Sweden)

    J. Ren

    2010-01-01

    Full Text Available Aims. To investigate the association of C-reactive protein (CRP and gamma glutamyltransferase (GGT concentrations with newly diagnosed diabetes defined by either glucose or HbA1c criteria in Chinese adults. Methods. A population-based cross-sectional study was conducted in 2006. Data from 1167 men and 1607 women aged 35–74 years were analyzed. Diabetes was defined according to either glucose or HbA1c criteria alone. Results. Compared with nondiabetes, multivariate-adjusted OR (95%CI was 1.13 (0.90,1.42 in men and 1.21 (1.00,1.45 in women for CRP and 1.42 (1.18,1.72 and 1.57 (1.31,1.87 for GGT, respectively. Neither CRP nor GGT was associated with the presence of diabetes defined by the HbA1c criterion. Conclusions. The effect of elevated CRP on diabetes defined by the glucose criterion was mediated through obesity, but elevated GGT was an independent risk factor for diabetes in this Chinese population. None of the two was, however, associated with the elevated HbA1c concentrations.

  19. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faaizah; Pickup, John C., E-mail: john.pickup@kcl.ac.uk

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  20. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base ligand, Formation constant, DFT calculation ... best values for the formation constants of the proposed equilibrium model by .... to its positive charge distribution and the ligand deformation geometry.

  1. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Meier, Juris J; Gallwitz, Baptist; Salmen, Stefan

    2003-01-01

    in the fasting state and after a solid test meal (containing [(13)C]octanoic acid). Blood was drawn for glucose, insulin, C-peptide, glucagon, and GLP-1 determinations. The gastric emptying rate was calculated from the (13)CO(2) excretion rates in breath samples. Statistics were determined using repeated......The effects of different i.v. doses of glucagon-like peptide 1 (GLP-1) on glucose homeostasis and gastric emptying were compared in patients with type 2 diabetes. Twelve patients with type 2 diabetes received three different infusion rates of GLP-1 (0.4, 0.8, and 1.2 pmol/kg x min) or placebo...... ingestion (P = 0.0031 and 0.0074, respectively). Glucagon secretion was suppressed with GLP-1. Gastric emptying was decelerated by GLP-1 in a dose-dependent fashion (P

  2. Technical note: comparison of 3 methods for analyzing areas under the curve for glucose and nonesterified fatty acids concentrations following epinephrine challenge in dairy cows.

    Science.gov (United States)

    Cardoso, F C; Sears, W; LeBlanc, S J; Drackley, J K

    2011-12-01

    The objective of the study was to compare 3 methods for calculating the area under the curve (AUC) for plasma glucose and nonesterified fatty acids (NEFA) after an intravenous epinephrine (EPI) challenge in dairy cows. Cows were assigned to 1 of 6 dietary niacin treatments in a completely randomized 6 × 6 Latin square with an extra period to measure carryover effects. Periods consisted of a 7-d (d 1 to 7) adaptation period followed by a 7-d (d 8 to 14) measurement period. On d 12, cows received an i.v. infusion of EPI (1.4 μg/kg of BW). Blood was sampled at -45, -30, -20, -10, and -5 min before EPI infusion and 2.5, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min after. The AUC was calculated by incremental area, positive incremental area, and total area using the trapezoidal rule. The 3 methods resulted in different statistical inferences. When comparing the 3 methods for NEFA and glucose response, no significant differences among treatments and no interactions between treatment and AUC method were observed. For glucose and NEFA response, the method was statistically significant. Our results suggest that the positive incremental method and the total area method gave similar results and interpretation but differed from the incremental area method. Furthermore, the 3 methods evaluated can lead to different results and statistical inferences for glucose and NEFA AUC after an EPI challenge. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  4. Rational Design of Glucose-Responsive Insulin Using Pharmacokinetic Modeling.

    Science.gov (United States)

    Bakh, Naveed A; Bisker, Gili; Lee, Michael A; Gong, Xun; Strano, Michael S

    2017-11-01

    A glucose responsive insulin (GRI) is a therapeutic that modulates its potency, concentration, or dosing of insulin in relation to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. Current GRI design lacks a theoretical basis on which to base fundamental design parameters such as glucose reactivity, dissociation constant or potency, and in vivo efficacy. In this work, an approach to mathematically model the relevant parameter space for effective GRIs is induced, and design rules for linking GRI performance to therapeutic benefit are developed. Well-developed pharmacokinetic models of human glucose and insulin metabolism coupled to a kinetic model representation of a freely circulating GRI are used to determine the desired kinetic parameters and dosing for optimal glycemic control. The model examines a subcutaneous dose of GRI with kinetic parameters in an optimal range that results in successful glycemic control within prescribed constraints over a 24 h period. Additionally, it is demonstrated that the modeling approach can find GRI parameters that enable stable glucose levels that persist through a skipped meal. The results provide a framework for exploring the parameter space of GRIs, potentially without extensive, iterative in vivo animal testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Serial alterations in digital hemodynamics and endothelin-1 immunoreactivity, platelet-neutrophil aggregation, and concentrations of nitric oxide, insulin, and glucose in blood obtained from horses following carbohydrate overload.

    Science.gov (United States)

    Eades, Susan C; Stokes, Ashley M; Johnson, Philip J; LeBlanc, Casey J; Ganjam, Venkataseshu K; Buff, Preston R; Moore, Rustin M

    2007-01-01

    To quantify changes in endothelium-derived factors and relate those changes to various aspects of digital hemodynamics during the prodromal stages of carbohydrate overload (CHO)-induced laminitis in horses. 20 adult horses without abnormalities of the digit. Digital and jugular venous blood samples were collected at 1-hour intervals (for assessment of endothelin-1 [ET-1] immunoreactivity and measurement of glucose, insulin, and nitric oxide [NO] concentrations) or 4-hour intervals (CBC and platelet-neutrophil aggregate assessment) for 8 hours or 16 hours after induction of CHO-associated laminitis in horses treated with an ET-1 antagonist. Effects of treatment, collection site, and time and the random effects of horse on each variable were analyzed by use of a repeated-measures model. Where treatment and collection site had no significant effect, data were combined. Compared with baseline values, CHO resulted in changes in several variables, including a significant increase from baseline in digital blood ET-like immunoreactivity at 11 hours; digital blood ET-like immunoreactivity was significantly greater than that in jugular venous blood at 8, 9, 11, and 12 hours. Digital and jugular venous blood concentrations of glucose increased from baseline significantly at 3, 4, and 5 hours; insulin concentration increased significantly at 5 hours; and the number of platelet-neutrophil aggregates increased significantly at 12 hours. In horses, concurrent increases in venous blood ET-1 immunoreactivity, insulin and glucose concentrations, and platelet-neutrophil aggregates support a role of endothelial dysfunction in the pathogenesis of CHO-induced laminitis.

  6. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    Science.gov (United States)

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study.

    Directory of Open Access Journals (Sweden)

    Mark Lown

    Full Text Available High sugar and refined carbohydrate intake is associated with weight gain, increased incidence of diabetes and is linked with increased cardiovascular mortality. Reducing the health impact of poor quality carbohydrate intake is a public health priority. Reducose, a proprietary mulberry leaf extract (ME, may reduce blood glucose responses following dietary carbohydrate intake by reducing absorption of glucose from the gut.A double-blind, randomised, repeat measure, phase 2 crossover design was used to study the glycaemic and insulinaemic response to one reference product and three test products at the Functional Food Centre, Oxford Brooks University, UK. Participants; 37 adults aged 19-59 years with a BMI ≥ 20kg/m2 and ≤ 30kg/m2. The objective was to determine the effect of three doses of mulberry-extract (Reducose versus placebo on blood glucose and insulin responses when co-administered with 50g maltodextrin in normoglycaemic healthy adults. We also report the gastrointestinal tolerability of the mulberry extract.Thirty-seven participants completed the study: The difference in the positive Incremental Area Under the Curve (pIAUC (glucose (mmol / L x h for half, normal and double dose ME compared with placebo was -6.1% (-18.2%, 5.9%; p = 0.316, -14.0% (-26.0%, -2.0%; p = 0.022 and -22.0% (-33.9%, -10.0%; p<0.001 respectively. The difference in the pIAUC (insulin (mIU / L x h for half, normal and double dose ME compared with placebo was -9.7% (-25.8%, 6.3%; p = 0.234, -23.8% (-39.9%, -7.8%; p = 0.004 and -24.7% (-40.8%, -8.6%; p = 0.003 respectively. There were no statistically significant differences between any of the 4 groups in the odds of experiencing one or more gastrointestinal symptoms (nausea, abdominal cramping, distension or flatulence.Mulberry leaf extract significantly reduces total blood glucose rise after ingestion of maltodextrin over 120 minutes. The pattern of effect demonstrates a classical dose response curve with

  8. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture.

    Science.gov (United States)

    Crabbendam, P M; Neijssel, O M; Tempest, D W

    1985-09-01

    The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration, specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74 +/- 0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27 +/- 0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions, leading to changes in the Y glucose and YATP values. In general, glucose-sufficient cultures expressed lower yield values than a corresponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40 g glucose X 1(-1) also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased. Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of

  9. Mediation of glycosylated and partially-deglycosylated glucose oxidase of Aspergillus niger by a ferrocene-derivatised detergent.

    Science.gov (United States)

    Fraser, D M; Zakeeruddin, S M; Grätzel, M

    1992-01-30

    A ferrocene-derivatised detergent, (11-ferrocenylundecyl) trimethylammonium bromide (FTMAB), when oxidised to the corresponding ferricinium ion, was found by electrochemical studies to be an effective electron acceptor for reduced glucose oxidase of Aspergillus niger (EC 1.13.4) and thus acts as a electron-transfer mediator between glucose oxidase and a working electrode held at a potential sufficiently positive to reoxidise reduced FTMAB. An increase in mediating activity was produced when FTMAB was present in concentrations above its critical micelle concentration. An 'enzyme electrode' was formed by adsorption of glucose oxidase and FTMAB surfactant on a graphite rod. The electrode functioned as an amperometric biosensor for glucose in phosphate-buffered saline solution. A mixed micelle of glucose oxidase and FTMAB, probably adsorbed on the electrode surface, appears to be advantageous for the amperometric determination of glucose. Additionally, glucose oxidase was treated with alpha-mannosidase. When this partially-deglycosylated glucose oxidase was incorporated in an enzyme electrode, a 100-fold increase in the second-order rate constant (k) for electron transfer between the enzyme and FTMAB was observed, together with increased current densities, with respect to the equivalent values for FTMAB and commercial glucose oxidase. The use of deglycosylated enzymes in biosensors is suggested.

  10. A low frequency variant within the GWAS locus of MTNR1B affects fasting glucose concentrations: genetic risk is modulated by obesity.

    Science.gov (United States)

    Been, L F; Hatfield, J L; Shankar, A; Aston, C E; Ralhan, S; Wander, G S; Mehra, N K; Singh, J R; Mulvihill, J J; Sanghera, D K

    2012-11-01

    Two common variants (rs1387153, rs10830963) in MTNR1B have been reported to have independent effects on fasting blood glucose (FBG) levels with increased risk to type 2 diabetes (T2D) in recent genome-wide association studies (GWAS). In this investigation, we report the association of these two variants, and an additional variant (rs1374645) within the GWAS locus of MTNR1B with FBG, 2h glucose, insulin resistance (HOMA IR), β-cell function (HOMA B), and T2D in our sample of Asian Sikhs from India. Our cohort comprised 2222 subjects [1201 T2D, 1021 controls]. None of these SNPs was associated with T2D in this cohort. Our data also could not confirm association of rs1387153 and rs10830963 with FBG phenotype. However, upon stratifying data according to body mass index (BMI) (low ≤ 25 kg/m(2) and high > 25 kg/m(2)) in normoglycemic subjects (n = 1021), the rs1374645 revealed a strong association with low FBG levels in low BMI group (β = -0.073, p = 0.002, Bonferroni p = 0.01) compared to the high BMI group (β = 0.015, p = 0.50). We also detected a strong evidence of interaction between rs1374645 and BMI with respect to FBG levels (p = 0.002). Our data provide new information about the significant impact of another MTNR1B variant on FBG levels that appears to be modulated by BMI. Future confirmation on independent datasets and functional studies will be required to define the role of this variant in fasting glucose variation. Published by Elsevier B.V.

  11. Effect of acute variations of insulin and glucose on plasma concentrations of asymmetric dimethylarginine in young people with type 1 diabetes

    OpenAIRE

    Marcovecchio , M. Loredana; Widmer , Barry; Dunger , David B.; Dalton , R. Neil

    2008-01-01

    Abstract Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is considered a major risk factor for cardiovascular disease and progression of renal disease. In the present study we aim to investigate the effect of acute variations in plasma glucose and insulin on plasma ADMA levels in young people with type 1 diabetes (T1D). Fifteen young patients (10 males) with T1D, median age 18.3 (13.2-24.4) years, HbA1c 9% (6.4-13.6), underwent an overnight...

  12. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men.

    Science.gov (United States)

    Pantophlet, Andre J; Wopereis, Suzan; Eelderink, Coby; Vonk, Roel J; Stroeve, Johanna H; Bijlsma, Sabina; van Stee, Leo; Bobeldijk, Ivana; Priebe, Marion G

    2017-02-01

    The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower glucose clearance rate quantified with a dual-isotope technique, which was in accordance with a lower insulin and glucose-dependent insulinotropic polypeptide response. To gain more insight into the acute metabolic consequences of the consumption of products resulting in differential glucose kinetics, postprandial metabolic profiles were determined. In a crossover study, 9 healthy men [mean ± SEM age: 21 ± 0.5 y; mean ± SEM body mass index (kg/m 2 ): 22 ± 0.5] consumed wheat bread (132 g) and fresh pasta (119 g uncooked) enriched with wheat bran (10%) meals. A total of 134 different metabolites in postprandial plasma samples (at -5, 30, 60, 90, 120, and 180 min) were quantified by using a gas chromatography-mass spectrometry-based metabolomics approach (secondary outcomes). Two-factor ANOVA and advanced multivariate statistical analysis (partial least squares) were applied to detect differences between both food products. Forty-two different postprandial metabolite profiles were identified, primarily representing pathways related to protein and energy metabolism, which were on average 8% and 7% lower after the men consumed pasta rather than bread, whereas concentrations of arabinose and xylose were 58% and 53% higher, respectively. Arabinose and xylose are derived from arabinoxylans, which are important components of wheat bran. The higher bioavailability of arabinose and xylose after pasta intake coincided with a lower rate of appearance of glucose and amino acids. We speculate that this higher bioavailability is due to higher degradation of arabinoxylans by small intestinal microbiota, facilitated by the higher viscosity of arabinoxylans after pasta intake than after bread

  13. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains

    Energy Technology Data Exchange (ETDEWEB)

    Viluksela, M.; Pohjanvirta, R.; Tuomisto, J.T.; Tuomisto, J. (National Public Health Inst., Laboratory of Toxicology, Kuopio (Finland)); Unkila, M. (Department of Pharmacology and Toxicology, Univ. of Kuopio (Finland)); Stahl, B.U.; Rozman, K.K. (Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States) Section of Environmental Toxicology, GSF-Institut fuer Toxikologie, Neuherberg (Germany))

    1999-08-01

    Reduced gluconeogenesis due to decreased activity of key gluconeogenic enzymes in liver, together with feed refusal, has been suggested to play an important role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced lethality in rats. This study was carried out to further analyse the toxicological significance of reduced gluconeogenesis by comparing dose-responses and time-courses of effects of TCDD on the activity of phosphoenolpyruvate carboxykinase (PEPCK) in liver, liver glycogen concentration as well as plasma concentrations of glucose and amino acids in both genders of TCDD-sensitive Long-Evans (L-E) rats and TCDD-resistant Han/Wistar (H/W) rats. A dose-dependent decrease in PEPCK activity was observed in H/W rats, but in L-E rats the activity was not decreased. However, TCDD impaired the strong increase in liver PEPCK activity observed in pair-fed controls of the L-E strain. Liver glycogen concentrations were severely decreased in L-E rats and moderately in H/W rats. This effect seems to be secondary to reduced feed intake, since a similar decrease was seen in pair-fed controls. Decreases in plasma glucose concentrations were also more profound in L-E rats than in H/W rats, but pair-fed controls were generally less affected. Circulating concentrations of amino acids were markedly increased in TCDD-treated L-E rats, which is likely to reflect increased mobilization of amino acids and their decreased metabolism in liver. Reduction of liver PEPCK activity cannot account for the sensitivity difference of these two strains of rats in terms of mortality. Nevertheless, the response of both strains of TCDD-treated rats regarding gluconeogenesis is different from that seen in pair-fed controls and suggesting that impairment of this pathway contributes to the development of the wasting syndrome. (orig.) With 7 figs., 2 tabs., 47 refs.

  14. Dietary Fructose and Glucose Differentially Affect Lipid and Glucose Homeostasis1–3

    OpenAIRE

    Schaefer, Ernst J.; Gleason, Joi A.; Dansinger, Michael L.

    2009-01-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at ∼20–25% ...

  15. Photodissociation constant of NO2

    International Nuclear Information System (INIS)

    Nootebos, M.A.; Bange, P.

    1992-01-01

    The velocity of the dissociation of NO 2 into ozone and NO mainly depends on the ultraviolet sunlight quantity, and with that the cloudiness. A correct value for this reaction constant is important for the accurate modelling of O 3 - and NO 2 -concentrations in plumes of electric power plants, in particular in the case of determination of the amount of photochemical summer smog. An advanced signal processing method (deconvolution, correlation) was applied on the measurements. The measurements were carried out from aeroplanes

  16. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management.

    Science.gov (United States)

    Wolpert, Howard A; Atakov-Castillo, Astrid; Smith, Stephanie A; Steil, Garry M

    2013-04-01

    Current guidelines for intensive treatment of type 1 diabetes base the mealtime insulin bolus calculation exclusively on carbohydrate counting. There is strong evidence that free fatty acids impair insulin sensitivity. We hypothesized that patients with type 1 diabetes would require more insulin coverage for higher-fat meals than lower-fat meals with identical carbohydrate content. We used a crossover design comparing two 18-h periods of closed-loop glucose control after high-fat (HF) dinner compared with low-fat (LF) dinner. Each dinner had identical carbohydrate and protein content, but different fat content (60 vs. 10 g). Seven patients with type 1 diabetes (age, 55 ± 12 years; A1C 7.2 ± 0.8%) successfully completed the protocol. HF dinner required more insulin than LF dinner (12.6 ± 1.9 units vs. 9.0 ± 1.3 units; P = 0.01) and, despite the additional insulin, caused more hyperglycemia (area under the curve >120 mg/dL = 16,967 ± 2,778 vs. 8,350 ± 1,907 mg/dL⋅min; P Carbohydrate-to-insulin ratio for HF dinner was significantly lower (9 ± 2 vs. 13 ± 3 g/unit; P = 0.01). There were marked interindividual differences in the effect of dietary fat on insulin requirements (percent increase significantly correlated with daily insulin requirement; R(2) = 0.64; P = 0.03). This evidence that dietary fat increases glucose levels and insulin requirements highlights the limitations of the current carbohydrate-based approach to bolus dose calculation. These findings point to the need for alternative insulin dosing algorithms for higher-fat meals and suggest that dietary fat intake is an important nutritional consideration for glycemic control in individuals with type 1 diabetes.

  17. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  18. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  19. Glucose metabolism of lactobacillus divergens

    International Nuclear Information System (INIS)

    De Bruyn, I.N.

    1987-02-01

    The aim of this study was to compile an optimal growth and selective medium for Lactobacillus divergens and to determine the pathway by which it metabolised glucose. The optimum growth temperature is 25 o C which is lower than that of most other lactobacilli. Citrate stimulates growth up to a concentration of 1% while acetate inhibits the organism at neutral pH, but it stimulates growth at pH 8.5 up to a concentration of 0.8%. MRS medium was therefore modified in order to obtain maximum growth of the organism. The acetate was omitted, sucrose was substituted for glucose and the pH was adjusted to 8.5. Sucrose was used, since a neutral pH is obtained after sterilisation of glucose in alkaline (pH ≥ 7.5) solution due to the degradation of glucose by the Maillard reaction. Various inhibitors and dyes were tested in order to formulate a selective medium. In the present study differently labelled glucose precursors were fermented by L. divergens and the fermentation products isolated by HPLC. The concentrations of acetate and formate were determined by comparison to a standard while the concentration of lactate and glucose was determined by enzymic assay. The radioactivity was determined by liquid scintillation counting and the positional labelling in lactate and acetate by chemical degradation. Fermentation of D-[U- 14 C]-glucose was included to correct for endogenous product dilution

  20. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    Science.gov (United States)

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  1. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.

    Science.gov (United States)

    Berry, Brandon N; Dobrowsky, Terrence M; Timson, Rebecca C; Kshirsagar, Rashmi; Ryll, Thomas; Wiltberger, Kelly

    2016-01-01

    Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed-batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo-first order, non-enzymatic reaction of a reducing sugar with an amino group. Glucose is the highest concentration reducing sugar in the chemically defined media (CDM), thus a strategy controlling glucose in the production bioreactor was developed utilizing Raman spectroscopy for feedback control. Raman regions for glucose were determined by spiking studies in water and CDM. Calibration spectra were collected during 8 bench scale batches designed to capture a wide glucose concentration space. Finally, a PLS model capable of translating Raman spectra to glucose concentration was built using the calibration spectra and spiking study regions. Bolus feeding in mammalian cell culture results in wide glucose concentration ranges. Here we describe the development of process automation enabling glucose setpoint control. Glucose-free nutrient feed was fed daily, however glucose stock solution was fed as needed according to online Raman measurements. Two feedback control conditions were executed where glucose was controlled at constant low concentration or decreased stepwise throughout. Glycation was reduced from ∼9% to 4% using a low target concentration but was not reduced in the stepwise condition as compared to the historical bolus glucose feeding regimen. © 2015 American Institute of Chemical Engineers.

  2. The regulation of cerebral glucose uptake and metabolism in normal and diabetic man

    International Nuclear Information System (INIS)

    Polonsky, K.

    1987-01-01

    The effects of changes in serum insulin and glucose on brain glucose metabolism using PET technology were investigated. Eight normal, right-handed, male subjects were studied on three separate occasions at least one week apart. In each subject a PET scan was performed under three different metabolic circumstances: basal conditions after an overnight fast, euglycemic clamp, and hypoglycemic clamp in which the plasma glucose was maintained at 55 mg/dl. Exogenous insulin was infused at the same rate in the euglycemic and hypoglycemic clamp studies. In the latter study, the concomitant glucose infusion rate was reduced to allow the plasma glucose concentration to fall to the desired level of mild hypoglycemia. During each study, dynamic positron emission tomography was used to characterize cerebral uptake and distribution of the Fluorine-18 2-deoxyglucose radiotracer as a function of time. Analysis of the brain uptake curve and tracer input function provided rate constants for transport and phosphorylation in accord with a 3 compartmental model (Sokoloff, 1979). Dynamic scans were performed on each study occasion allowing individual rate constants to be studied. In addition to the brain uptake curves, plasma glucose, F-18 2DG levels and counterregulatory hormone values were determined from frequent arterialized venous blood samples

  3. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...... of glucose. At maximal insulin concentrations, the enhancing effect of exercise on glucose uptake may involve enhancement of glucose disposal, an effect that is probably less in muscle from diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)......It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise...

  4. The Glucose-Insulin Control System

    DEFF Research Database (Denmark)

    Hallgreen, Christine Erikstrup; Korsgaard, Thomas Vagn; Hansen, RenéNormann N.

    2008-01-01

    This chapter reviews the glucose-insulin control system. First, classic control theory is described briefly and compared with biological control. The following analysis of the control system falls into two parts: a glucose-sensing part and a glucose-controlling part. The complex metabolic pathways...... are divided into smaller pieces and analyzed via several small biosimulation models that describe events in beta cells, liver, muscle and adipose tissue etc. In the glucose-sensing part, the beta cell are shown to have some characteristics of a classic PID controller, but with nonlinear properties...... control, the analysis shows that the system has many more facets than just keeping the glucose concentration within narrow limits. After glucose enters the cell and is phosphorylated to glucose-6-phosphate, the handling of glucose-6-phosphate is critical for glucose regulation. Also, this handling...

  5. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  6. Equilibrium-constant expressions for aqueous plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    2010-01-01

    Equilibrium-constant expressions for Pu disproportionation reactions traditionally contain three or four terms representing the concentrations or fractions of the oxidation states. The expressions can be rewritten so that one of the oxidation states is replaced by a term containing the oxidation number of the plutonium. Experimental estimations of the numerical values of the constants can then be checked in several ways. (author)

  7. Cosmological constants and variations

    International Nuclear Information System (INIS)

    Barrow, John D

    2005-01-01

    We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates

  8. The cosmological constant problem

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs

  9. Glucose metabolism in lactating reindeer

    Energy Technology Data Exchange (ETDEWEB)

    White, R G; Luick, J R

    1976-01-01

    Changes in glucose synthesis during the lactation cycle were estimated in pen-fed and grazing reindeer. The pool size, space, transfer rate, and irreversible loss of glucose were determined using simultaneous injections of (2-/sup 3/H)glucose and primed infusions of (U-/sup 14/C)glucose in reindeer lactating for 1-2, 4-5, 8-9, and 12-16 weeks. Glucose transfer rate and irreversible loss were higher during early to midlactation than at other times of the year; maximum estimates were at 8-9 week postpartum (July), and a decline was noted at 12-16 weeks (August). During the first 1-2 weeks in pen-fed and 4-5 weeks in grazing reindeer, glucose transfer rate and irreversible loss were almost twice the values reported for reindeer at maintenance. No difference in the irreversible loss of glucose was noted between lactating and non-lactating reindeer at 18-20 weeks postpartum (September), and there is evidence that this may occur as early as 12-16 weeks postpartum. No significant trend was noted in the glucose space throughout lactation; however, a significant increase in plasma glucose concentration and pool size was noted when glucose synthesis was highest (8-9 weeks postpartum). Glucose turnover time was consistently faster (78-88 min) in lactating than in non-lactating reindeer (107-140 min). Reindeer used a smaller proportion of plasma glucose-C for lactose synthesis than did other domestic species. This probably results from the low lactose content of reindeer milk and the relatively low rate of milk secretion. (auth)

  10. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  11. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [F-18] fluorodeoxyglucose : A parallel study with elemental concentrations

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Stedman, JD; Leenders, KL

    Alzheimer's disease (AD) isa debilitating form of dementia which leads to impaired memory, thinking and behavior. This work examines elemental concentrations between "normal" and AD subjects as well as the hemispherical differences within the brain. Tissue samples from both hemispheres of the

  12. Untreated diabetes mellitus, but not impaired fasting glucose, is associated with increased left ventricular mass and concentric hypertrophy in an elderly, healthy, Swedish population

    Directory of Open Access Journals (Sweden)

    Manan Pareek

    2015-12-01

    Conclusions: Subjects with untreated DM had higher values of LVMI and a greater prevalence of concentric LVH, but the associations were not independent of other risk factors. NT-proBNP was primarily associated with greater LV size in subjects with IFG or DM.

  13. Yolk concentrations of hormones and glucose and egg weight and egg dimensions in unincubated chicken eggs, in relation to egg sex and hen body weight

    NARCIS (Netherlands)

    Aslam, M. Aamir; Hulst, Marcel; Hoving-Bolink, Rita A. H.; Smits, Mari A.; de Vries, Bonnie; Weites, Ilse; Groothuis, Ton G. G.; Woelders, Henri

    2013-01-01

    Birds can manipulate offspring sex ratio under natural and experimental conditions and maternal hormones have been shown to be involved in this process. Studies also provided evidence for the presence of sex specific concentrations of yolk hormones in avian eggs. These findings led to the suggestion

  14. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rødkaer, Steven V; Færgeman, Nils J.

    2014-01-01

    Pro- and eukaryotic cells are constantly challenged by varying concentrations of nutrients in their environment. Perceiving and adapting to such changes are therefore crucial for cellular viability. Thus, numerous specialized cellular receptors continuously sense and react to the availability...... of nutrients such as glucose and nitrogen. When stimulated, these receptors initiate various cellular signaling pathways, which in concert constitute a complex regulatory network. To ensure a highly specific response, these pathways and networks cross-communicate with each other and are regulated at several...

  15. Colorimetric Glucose Assay Based on Magnetic Particles Having Pseudo-peroxidase Activity and Immobilized Glucose Oxidase.

    Science.gov (United States)

    Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav

    2016-05-01

    Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved.

  16. Change in concentration distribution and equivalent rate constant with flow velocity in a boundary layer around a catalyst of non-uniform surface activity; Kotai shokubai taihyomen no kassei no fukin`itsusei ni motozuku kankyo sonai nodo bunpu oyobi toka hanno sokudo teisu no ryusoku ni yoru henka

    Energy Technology Data Exchange (ETDEWEB)

    Konno, J [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-09-25

    In a flow system for vapor/solid catalytic reactions, there is a concentration distribution along the external catalyst surface, observed in the vicinity of the surface. Change in the reaction rate constant is followed for the case where the concentration distribution varies by flow. A 2-dimensional numerical model in which flow field and property conditions are simplified is used to analyze the change on the assumption that high-activity and low-activity sites are regularly distributed over the external catalyst surface. The transport equations for the reactants are numerically solved for given flow fields. It is found that the concentration distribution shape and equivalent reaction rate constant are almost the same as those in a stationary system at Pecret number of around 10 or lower, the concentration distribution gradually becomes uniform whereas equivalent rate constant increases as flow rate increases at Pecret number in a range from around 10 to 10{sup 6}, and they are almost constant at Pecret number beyond around 10{sup 6}. 3 refs., 11 figs., 1 tab.

  17. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  18. A ``plasmonic cuvette'': dye chemistry coupled to plasmonic interferometry for glucose sensing

    Science.gov (United States)

    Siu, Vince S.; Feng, Jing; Flanigan, Patrick W.; Palmore, G. Tayhas R.; Pacifici, Domenico

    2014-06-01

    A non-invasive method for the detection of glucose is sought by millions of diabetic patients to improve personal management of blood glucose over a lifetime. In this work, the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The sensor, coined a "plasmonic cuvette," is built around a nano-scale groove-slit-groove (GSG) plasmonic interferometer coupled to an Amplex-red/Glucose-oxidase/Glucose (AR/GOx/Glucose) assay. The proposed device is highly sensitive, with a measured intensity change of 1.7×105%/m (i.e., one order of magnitude more sensitive than without assay) and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva (20-240 μm). Real-time glucose monitoring in saliva is achieved by performing a detailed study of the underlying enzyme-driven reactions to determine and tune the effective rate constants in order to reduce the overall assay reaction time to ˜2 min. The results reported suggest that by opportunely choosing the appropriate dye chemistry, a plasmonic cuvette can be turned into a general, real-time sensing scheme for detection of any molecular target, with high sensitivity and selectivity, within extremely low volumes of biological fluid (down to femtoliters). Hereby, we present the results on glucose detection in artificial saliva as a notable and clinically relevant case study.

  19. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  20. Effects of a meal rich in 1,3-diacylglycerol on postprandial cardiovascular risk factors and the glucose-dependent insulinotropic polypeptide in subjects with high fasting triacylglycerol concentrations.

    Science.gov (United States)

    Shoji, Kentaro; Mizuno, Tomohito; Shiiba, Daisuke; Kawagoe, Tadanobu; Mitsui, Yuuki

    2012-03-14

    It was previously reported that compared to triacylglycerol (TAG) oil, diacylglycerol (DAG) oil improves postprandial lipid response. However, the effects of DAG oil on postprandial hyperglycemia and incretin response have not yet been determined. In this study, the effects of DAG oil on both postprandial hyperlipidemia and hyperglycemia and the response to the glucose-dependent insulinotropic polypeptide (GIP) were studied. This randomized, double-blind, crossover study analyzed data for 41 individuals with high fasting triacylglycerol concentrations. The subjects ingested test meals (30.3 g of protein, 18.6 g of fat, and 50.1 g of carbohydrate) containing 10 g of DAG oil (DAG meal) or TAG oil (TAG meal) after fasting for at least 12 h. Blood samples were collected prior to and 0.5, 2, 3, 4, and 6 h after ingestion of the test meal. Postprandial TAG concentrations were significantly lower after the DAG meal compared with the TAG meal. Postprandial TAG, insulin, and GIP concentrations were significantly lower after the DAG meal compared with the TAG meal in 26 subjects with fasting serum TAG levels between 1.36 and 2.83 mmol/L. DAG-oil-based meals, as a replacement for TAG oil, may provide cardiovascular benefits in high-risk individuals by limiting lipid and insulin excursions.

  1. Brain areas and pathways in the regulation of glucose metabolism

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Serlie, Mireille J.; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E.

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes

  2. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  3. On the cosmical constant

    International Nuclear Information System (INIS)

    Chandra, R.

    1977-01-01

    On the grounds of the two correspondence limits, the Newtonian limit and the special theory limit of Einstein field equations, a modification of the cosmical constant has been proposed which gives realistic results in the case of a homogeneous universe. Also, according to this modification an explanation for the negative pressure in the steady-state model of the universe has been given. (author)

  4. Cosmological constant problem

    International Nuclear Information System (INIS)

    Weinberg, S.

    1989-01-01

    Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one

  5. The Yamabe constant

    International Nuclear Information System (INIS)

    O Murchadha, N.

    1991-01-01

    The set of riemannian three-metrics with positive Yamabe constant defines the space of independent data for the gravitational field. The boundary of this set is investigated, and it is shown that metrics close to the boundary satisfy the positive-energy theorem. (Author) 18 refs

  6. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  7. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  8. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  9. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    2017-06-01

    Full Text Available A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systematically investigated. The selective detection of glucose among other monosaccharides, such as fructose, mannose and galactose indicated that the sensing film has excellent selectivity. The prepared sensor was successfully applied for glucose sample detection of glucose concentration in artificial tears. Keywords: Glucose sensor, Glucose oxidase, Fluorescence, Oxygen film, Diabetes

  10. Roles of the Gut in Glucose Homeostasis

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Gribble, Fiona; Horowitz, Michael

    2016-01-01

    The gastrointestinal tract plays a major role in the regulation of postprandial glucose profiles. Gastric emptying is a highly regulated process, which normally ensures a limited and fairly constant delivery of nutrients and glucose to the proximal gut. The subsequent digestion and absorption...... of nutrients are associated with the release of a set of hormones that feeds back to regulate subsequent gastric emptying and regulates the release of insulin, resulting in downregulation of hepatic glucose production and deposition of glucose in insulin-sensitive tissues. These remarkable mechanisms normally...... keep postprandial glucose excursions low, regardless of the load of glucose ingested. When the regulation of emptying is perturbed (e.g., pyloroplasty, gastric sleeve or gastric bypass operation), postprandial glycemia may reach high levels, sometimes followed by profound hypoglycemia. This article...

  11. Impact of Fish Oil Supplementation and Interruption of Fructose Ingestion on Glucose and Lipid Homeostasis of Rats Drinking Different Concentrations of Fructose

    Science.gov (United States)

    Sulis, Paola M.; Motta, Katia; Barbosa, Amanda M.; Besen, Matheus H.; da Silva, Julia S.; Nunes, Everson A.

    2017-01-01

    Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits. PMID:28929113

  12. Production in constant evolution

    International Nuclear Information System (INIS)

    Lozano, T.

    2009-01-01

    The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)

  13. Is the sun constant

    International Nuclear Information System (INIS)

    Blake, J.B.; Dearborn, D.S.P.

    1979-01-01

    Small fluctuations in the solar constant can occur on timescales much shorter than the Kelvin time. Changes in the ability of convection to transmit energy through the superadiabatic and transition regions of the convection zone cause structure adjustments which can occur on a time scale of days. The bulk of the convection zone reacts to maintain hydrostatic equilibrium (though not thermal equilibrium) and causes a luminosity change. While small radius variations will occur, most of the change will be seen in temperature

  14. Stabilized power constant alimentation

    International Nuclear Information System (INIS)

    Roussel, L.

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [fr

  15. Universe of constant

    Science.gov (United States)

    Yongquan, Han

    2016-10-01

    The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan

  16. Connecting Fundamental Constants

    International Nuclear Information System (INIS)

    Di Mario, D.

    2008-01-01

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment

  17. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  18. Immobilization of glucose oxidase on graphene and cobalt phthalocyanine composite and its application for the determination of glucose.

    Science.gov (United States)

    Mani, Veerappan; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Huang, Sheng-Tung; Vasantha, V S

    2014-11-01

    We described a simple and facile chemical reduction strategy for the preparation of graphene (GR)-cobalt phthalocyanine (CoPc) composite and explored it for the enzymatic determination of glucose. CoPc is an active mediator and electrocatalysts for the immobilization of GOx and determination of glucose. However, it is not stable on the electrode surface and also suffers from lack of conductivity. Here, we have employed GR as the suitable support to stabilize CoPc through simple chemical reduction method and the resulting composite has been used for the glucose biosensor application. Scanning electron microscopy, X-ray diffraction and Energy-dispersive X-ray spectroscopy studies confirmed the successful formation of composite. Direct electron transfer of glucose oxidase (GOx) was observed with well defined redox peaks at the formal potential of -0.44 V. The amount of electroactive GOx (Г) and electron transfer rate constant (ks) were calculated to be 3.77×10(-10) mol cm(-2) and 3.57 s(-1), respectively. The fabricated amperometric biosensor detects glucose in wide linear concentration range from 10 μM to 14.8 mM with high sensitivity of 5.0 9μA mM(-1) cm(-2). The sensor offered very low detection limit (LOD) of 1.6 μM. In addition, practical feasibility of the sensor has been explored in screen printing carbon electrode with accurate determination of glucose present in human blood serum and urine samples. Furthermore, the sensor exhibited appreciable stability, repeatability and reproducibility results. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  20. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  1. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    Science.gov (United States)

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  2. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  3. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  4. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  5. Fever is not responsible for the elevated glucose kinetics in sepsis

    International Nuclear Information System (INIS)

    Lang, C.H.; Bagby, G.J.; Blakesley, H.L.; Spitzer, J.J.

    1987-01-01

    Previous studies have suggested that alterations in the classical neuroendocrine system may not be responsible for the increased glucose metabolism observed during hypermetabolic sepsis. The purpose of the present study was to determine whether inhibition of the cyclooxygenase pathway with indomethacin, which prevents the production of arachidonic acid metabolites by this pathway and the sepsis-induced increase in body temperature, would abolish the increases in glucose appearance (Ra), recycling, and hyperlactacidemia. Sepsis was induced in chronically catheterized conscious rats by multiple injections of live Escherichia coli via a subcutaneous catheter. Septic animals received iv injections of indomethacin every 6-8 hr to block the cyclooxygenase pathway. Glucose kinetics were assessed in 24-hr fasted rats using a constant iv infusion of [6- 3 H]- and [U- 14 C] glucose. Treatment with indomethacin prevented the 1-2 0 C increase in body temperature observed in septic animals. Septic rats exhibited an elevated plasma lactate concentration and increased rates of glucose appearance and recycling. The sepsis-induced alterations in these variables were not attenuated by indomethacin. These results suggest that neither elevated body temperature nor the generation of arachidonic acid metabolites of the cyclooxygenase pathway is responsible for increasing glucose production in hypermetabolic septic rats

  6. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Li, Zhenjiang; Sheng, Liying; Xie, Cuicui; Meng, Alan; Zhao, Kun

    2016-01-01

    The authors describe the fabrication of a nanocomposite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles by microwave-assisted synthesis. The composite was further reduced in-situ with hydrazine hydrate and then placed, along with the enzyme glucose oxidase, on a glassy carbon electrode. The synergistic effect of the materials employed in the nanocomposite result in excellent electrocatalytic activity. The Michaelis-Menten constant of the adsorbed GOx is 0.25 mM, implying a remarkable affinity of the GOx for glucose. The amperometric response of the modified GCE is linearly proportional to the concentration of glucose in 0.1 to 12.0 mM concentration range, and the detection limit is 10.6 µM. The biosensor is highly selective, well reproducible and stable. (author)

  7. Glucose and cardiovascular risk

    NARCIS (Netherlands)

    Fuchs, M.; Hoekstra, J. B. L.; Mudde, A. H.

    2002-01-01

    The American Diabetes Association and the World Health Organisation have recently redefined the spectrum of abnormal glucose tolerance. The criteria for diabetes mellitus were sharpened and impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were classified as intermediate stages

  8. Fluorescence properties of 3-amino phenylboronic acid and its interaction with glucose and ZnS:Cu quantum dots.

    Science.gov (United States)

    Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa

    2014-08-14

    Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  10. Glucose metabolism in diabetic blood vessels

    International Nuclear Information System (INIS)

    Brown, B.J.; Crass, M.F. III

    1986-01-01

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U -14 C. Norepinephrine (NE) (10 -6 M) and/or insulin (I) (150 μU/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and 14 CO 2 and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose

  11. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  12. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    Science.gov (United States)

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  13. Toward CMOS image sensor based glucose monitoring.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  14. Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)

    1981-04-01

    The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.

  15. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  16. Yeast hexokinase: substrate-induced association--dissociation reactions in the binding of glucose to hexokinase P-II.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1976-06-15

    A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.

  17. The human Na+-glucose cotransporter is a molecular water pump

    DEFF Research Database (Denmark)

    Meinild, A; Klaerke, D A; Loo, D D

    1998-01-01

    1. The human Na+-glucose cotransporter (hSGLT1) was expressed in Xenopus laevis oocytes. The transport activity, given by the Na+ current, was monitored as a clamp current and the concomitant flux of water followed optically as the change in oocyte volume. 2. When glucose was added to the bathing...... solution there was an abrupt increase in clamp current and an immediate swelling of the oocyte. The transmembrane transport of two Na+ ions and one sugar molecule was coupled, within the protein itself, to the influx of 210 water molecules. 3. This stoichiometry was constant and independent of the external...... parameters: Na+ concentrations, sugar concentrations, transmembrane voltages, temperature and osmotic gradients. 4. The cotransport of water occurred in the presence of adverse osmotic gradients. In accordance with the Gibbs equation, energy was transferred within the protein from the downhill fluxes of Na...

  18. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  19. Glucose production during exercise in humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    1999-01-01

    at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood...... glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique......The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min...

  20. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  1. Association constants of telluronium salts

    International Nuclear Information System (INIS)

    Kovach, N.A.; Rivkin, B.B.; Sadekov, T.D.; Shvajka, O.P.

    1996-01-01

    Association constants in acetonitrile of triphenyl telluronium salts, which are dilute electrolytes, are determined through the conductometry method. Satisfactory correlation dependence of constants of interion association and threshold molar electroconductivity on the Litvinenko-Popov constants for depositing groups is identified. 6 refs

  2. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  3. Quintessence and the cosmological constant

    International Nuclear Information System (INIS)

    Doran, M.; Wetterich, C.

    2003-01-01

    Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant

  4. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring

    Science.gov (United States)

    Tanaka, Y.; Tajima, T.; Seyama, M.

    2018-02-01

    We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.

  5. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  6. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  7. Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration

    Science.gov (United States)

    Bayrakli, Ismail; Erdogan, Yasar Kemal

    2018-06-01

    The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.

  8. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  9. Noninvasive glucose monitoring using saliva nano-biosensor

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available Millions of people worldwide live with diabetes and several millions die from it each year. A noninvasive, painless method of glucose testing would highly improve compliance and glucose control while reducing complications and overall disease management costs. To provide accurate, low cost, and continuous glucose monitoring, we have developed a unique, disposable saliva nano-biosensor. More than eight clinical trials on real-time noninvasive salivary glucose monitoring were carried out on two healthy individuals (a 2–3 h-period for each trial, including both regular food and standard glucose beverage intake with more than 35 saliva samples obtained. Excellent clinical accuracy was revealed as compared to the UV Spectrophotometer. By measuring subjects’ salivary glucose and blood glucose in parallel, we found the two generated profiles share the same fluctuation trend but the correlation between them is individual dependent. There is a time lag between the peak glucose values from blood and from saliva. However, the correlation between the two glucose values at fasting is constant for each person enabling noninvasive diagnosis of diabetes through saliva instead of blood. Furthermore, a good correlation of glucose levels in saliva and in blood before and 2 h after glucose intake was observed. Glucose monitoring before and 2 h after meals is usually prescribed by doctors for diabetic patients. Thus, this disposable biosensor will be an alternative for real-time salivary glucose tracking at any time.

  10. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters.

    Science.gov (United States)

    Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi

    2017-09-01

    Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Glucose absorption in acute peritoneal dialysis.

    Science.gov (United States)

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  12. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  14. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism

    DEFF Research Database (Denmark)

    Calderon, Sofia; Holmstrup, Martin; Westh, Peter

    2009-01-01

    Ectothermic animals inhabiting the subarctic and temperate regions have evolved strategies to deal with periods of continuous frost during winter. The earthworm Dendrobaena octaedra is freeze tolerant and accumulates large concentrations of glucose upon freezing. The present study investigates...... the roles of glucose accumulation for long-term freeze tolerance in worms kept frozen at -2 degrees C for 47 days. During this period, worms were sampled periodically for determination of survival and for measurements of glucose, glycogen, lactate, alanine and succinate. In addition we performed...... increased slightly whereas succinate levels remained constant. However, it is argued that other waste products (particularly propionate) could be the primary end product of a continued anaerobic metabolism. Calorimetric measures of the metabolic rate of frozen worms were in accord with values calculated...

  15. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    Science.gov (United States)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  16. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  17. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  18. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  19. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    DEFF Research Database (Denmark)

    Gejl, Michael; Egefjord, Lærke; Lerche, Susanne

    2012-01-01

    Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...... in the actions of GLUT1 and glucose metabolism: GLP-1 ensures less fluctuation of brain glucose levels in response to alterations in plasma glucose, which may prove to be neuroprotective during hyperglycemia....

  20. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  1. Cross-Validation of a Glucose-Insulin-Glucagon Pharmacodynamics Model for Simulation using Data from Patients with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Ranjan, Ajenthen; Møller, Jan Kloppenborg

    2017-01-01

    three PD model test fits in each of the seven subjects. Thus, we successfully validated the PD model by leave-one-out cross-validation in seven out of eight T1D patients. Conclusions: The PD model accurately simulates glucose excursions based on plasma insulin and glucagon concentrations. The reported...... for concentrations of glucagon, insulin, and glucose. We fitted pharmacokinetic (PK) models to insulin and glucagon data using maximum likelihood and maximum a posteriori estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to glucose data. The PD model included multiplicative effects of insulin...... and glucagon on EGP. Bias and precision of PD model test fits were assessed by mean predictive error (MPE) and mean absolute predictive error (MAPE). Results: Assuming constant variables in a subject across nonoutlier visits and using thresholds of ±15% MPE and 20% MAPE, we accepted at least one and at most...

  2. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose High levels of sugar in the urine Frequent urination Increased thirst Part of managing your ... glucose is above 240 mg/dl, check your urine for ketones. If you have ketones, do not ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... can often lower your blood glucose level by exercising. However, if your blood glucose is above 240 ... ketones. If you have ketones, do not exercise. Exercising when ketones are present may make your blood ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  10. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    Science.gov (United States)

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  11. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  12. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    Science.gov (United States)

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Blood glucose self monitoring].

    Science.gov (United States)

    Wascher, Thomas C; Stechemesser, Lars

    2016-04-01

    Self monitoring of blood glucose contributes to the integrated management of diabetes mellitus. It, thus, should be available for all patients with diabetes mellitus type-1 and type-2. Self monitoring of blood glucose improves patients safety, quality of life and glucose control. The current article represents the recommendations of the Austrian Diabetes Association for the use of blood glucose self monitoring according to current scientific evidence.

  14. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Carbohydrate Counting Make Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type ... Checking Your Blood Glucose A1C and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... how often you should check and what your blood glucose levels should be. Checking your blood and then treating ... I Treat Hyperglycemia? You can often lower your blood glucose level by exercising. However, if your blood glucose is ...

  17. Investigation of the effects of constant darkness and light on blood ...

    African Journals Online (AJOL)

    This study was designed to investigate the effects of constant darkness and light on changes of serum cholesterol, insulin and glucose levels in healthy male rats. In this study, healthy male rats (n = 30) were divided into 3 groups of tens and kept at various light/dark conditions: Control 12:12 light/dark (LD); constant ...

  18. Determination of protonation constants of hydroquinone and stability constants of Th(IV) hydroquinone complex

    International Nuclear Information System (INIS)

    Sawant, R.M.; Ramakumar, K.L.; Sharma, R.S.

    2003-01-01

    Protonation constants of hydroquinone and stability constants of thorium hydroquinone complexes were determined in 1 M NaClO 4 medium at 25 ± 0.5 degC, by varying concentration of thorium, using pH titration technique. Protonation constants of hydroquinone (β 1H = [HQ]/[H][Q] and β 2H = [H 2 Q]/[H] 2 [Q]) were found to be β 1H = 11.404 ± 0.014 and β 2H = 21.402 ± 0.012. The analysis of titration data of thorium-hydroquinone system appears to indicate the formation of species Th(H 2 Q) 3 (OH) and Th(H 2 O) 4 (OH). Equilibrium constants obtained for these species are -log β 13-I = 48.51 ± 0.67 and -log β 14-1 64.86 ± 1.25 respectively which are not reported in the literature. (author)

  19. Spectrophotometric determination of association constant

    DEFF Research Database (Denmark)

    2016-01-01

    Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charge...

  20. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor

    DEFF Research Database (Denmark)

    Murphy, R; Tura, A; Clark, P M

    2008-01-01

    AIMS/HYPOTHESIS: The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic peptide (GIP) are released from intestinal endocrine cells in response to luminal glucose. Glucokinase is present in these cells and has been proposed as a glucose sensor. The physiological...... role of glucokinase can be tested using individuals with heterozygous glucokinase gene (GCK) mutations. If glucokinase is the gut glucose sensor, GLP-1 and GIP secretion during a 75 g OGTT would be lower in GCK mutation carriers compared with controls. METHODS: We compared GLP-1 and GIP concentrations...... measured at five time-points during a 75 g OGTT in 49 participants having GCK mutations with those of 28 familial controls. Mathematical modelling of glucose, insulin and C-peptide was used to estimate basal insulin secretion rate (BSR), total insulin secretion (TIS), beta cell glucose sensitivity...

  1. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  2. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    Science.gov (United States)

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological

  3. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    Science.gov (United States)

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion

  4. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    International Nuclear Information System (INIS)

    Levy, J.C.; Brown, G.; Matthews, D.R.; Turner, R.C.

    1989-01-01

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose [27 mumol.kg ideal body wt (IBW)-1.min-1] glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively)

  5. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men

    NARCIS (Netherlands)

    Pantophlet, Andre J.; Wopereis, Suzan; Eelderink, Coby; Vonk, Roel J.; Stroeve, Johanna H.; Bijlsma, Sabina; van Stee, Leo; Bobeldijk, Ivana; Priebes, Marion G.

    2017-01-01

    Background: The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower

  6. Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ji-Fei; Ren, Nan-Qi; Wang, Ai-Jie; Qiu, Jie; Zhao, Qing-Liang; Feng, Yu-Jie; Liu, Bing-Feng [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    A novel mesophilic hydrogen-producing bacterium was isolated from cow dung compost and designated as Clostridium sp. HR-1 by 16S rRNA gene sequence. The optimum condition for hydrogen production by strain HR-1 was pH of 6.5, temperature of 37 C and yeast extract as nitrogen sources. The strain HR-1 has the ability to utilize kinds of hexose and pentose as carbon sources for growth and H{sub 2} production. Cell growth and hydrogen productivity were investigated for batch fermentation on media containing different ratios of xylose and glucose. Glucose was the preferred substrate in the glucose and xylose mixtures. The high glucose fraction had higher cell biomass production rate. The rate of glucose consumption was higher than xylose consumption, and remained essentially constant independent of xylose content of the mixture. The rate of xylose utilization was decreased with increasing of the glucose fraction. The average H{sub 2} yield and specific H{sub 2} production rates with xylose and glucose are 1.63 mol-H{sub 2}/mol xylose and 11.14-H{sub 2} mmol/h g-cdw, and 2.02 mol-H{sub 2}/mol-glucose and 9.37 mmol-H{sub 2}/h g-cdw, respectively. Using the same initial substrate concentration, the maximum average H{sub 2} yield and specific H{sub 2} production rates with the mixtures of 9 g/l xylose and 3 g/l glucose was 2.01 mol-H{sub 2}/mol-mixed sugar and 12.56 mmol-H{sub 2}/h g-cdw, respectively. During the fermentation, the main soluble microbial products were ethanol and acetate which showed trends with the different ratios of xylose and glucose. (author)

  7. Glucose recovery after intranasal glucagon during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Djurup, R; Hilsted, J

    1994-01-01

    to exceed 3 mmol.l-1 was significantly shorter for i.m. glucagon. The mean plasma glucagon level increased faster after i.m. glucagon than after intranasal glucagon, and the levels remained higher throughout the study period. We conclude that glucose recovery was significantly better after i...... endogenous glucose counterregulation, and glucose turnover was estimated by a 3-[3H]-glucose infusion. When hypoglycaemia was reached, the subjects received either i.m. glucagon of pancreatic extraction (1 mg) or intranasal genetically engineered glucagon (2 mg). The incremental values for plasma glucose...... concentrations 15 min after intranasal and i.m. administration of glucagon differed marginally. However, after 5 min the glucose appearance rate, as well as the incremental values for plasma glucose, were significantly higher for the i.m. glucagon treatment. The mean time taken for incremental plasma glucose...

  8. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    Science.gov (United States)

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  9. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  10. Effects of oral glucose load on endothelial function and on insulin and glucose fluctuations in healthy individuals

    DEFF Research Database (Denmark)

    Major-Pedersen, A; Ihlemann, N; Hermann, T S

    2008-01-01

    to better understand and cope with the postprandial state in insulin resistant individuals. METHODS: We assessed post-oral glucose load endothelial function (flow mediated dilation), plasma insulin, and blood glucose in 9 healthy subjects. RESULTS: The largest increases in delta FMD values (fasting FMD......BACKGROUND/AIMS: Postprandial hyperglycemia, an independent risk factor for cardiovascular disease, is accompanied by endothelial dysfunction. We studied the effect of oral glucose load on insulin and glucose fluctuations, and on postprandial endothelial function in healthy individuals in order...... value subtracted from postprandial FMD value) occurred at 3 hours after both glucose or placebo load, respectively: 4.80 +/- 1.41 (P = .009) and 2.34 +/- 1.47 (P = .15). Glucose and insulin concentrations achieved maximum peaks at one hour post-glucose load. CONCLUSION: Oral glucose load does not induce...

  11. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  12. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-08-17

    This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl.

  13. Competitive interactions between glucose and lactose with BSA: which sugar is better for children?

    Science.gov (United States)

    Zhang, Qiulan; Ni, Yongnian; Kokot, Serge

    2016-04-07

    The interactions of the sugars glucose and lactose with the transport protein bovine serum albumin (BSA) were investigated using fluorescence, FT-IR and circular dichroism (CD) techniques. The results indicated that glucose could be bonded and transported by BSA, mainly involving hydrogen bonds and van der Waals interactions (ΔH = -86.13 kJ mol(-1)). The obtained fluorescence data from the binding of sugar and BSA were processed by the multivariate curve resolution-alternating least squares (MCR-ALS) method, and the extracted concentration profiles showed that the equilibrium constant, rglucose:BSA, was about 7. However, the binding of lactose to BSA did not quench the fluorescence significantly, and this indicated that lactose could not be directly transported by BSA. The binding experiments were further performed using the fluorescence titration method in the presence of calcium and BSA. Calcium was added so that the calcium/BSA reactions could be studied in the presence or absence of glucose, lactose or hydrolysis products. The results showed that hydrolyzed lactose seemed to enhance calcium absorption in bovine animals. It would also appear that for children, lactose provides better nutrition; however, glucose is better for adults.

  14. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    Science.gov (United States)

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  15. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  16. Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies

    International Nuclear Information System (INIS)

    Walum, E.; Peterson, A.

    1982-01-01

    Tritiated 2-deoxy-D-glucose was taken up and phosphorylated by cultured cells of neuronal (NIE 115), glial (138 MG), muscle (L 6) and liver (BRL 123) origin. Upon perfusion the cells slowly released 2-deoxy-D-glucose 6-phosphate. The following values for rate constants, half-lives, and activation energies for the efflux were obtained: NIE 115: 0.0048 min -1 , 143 min, and 72 kJ mol -1 ; 138 MG: 0.0013 min -1 , 547 min, and 85 kJ mol -1 ; L 6: 0.0022 min -1 , 311 min, and 60 kJ mol -1 ; and BRL 123: 0.0013 min -1 , 528 min and 63 kJ mol -1 . When the cultures were perfused with buffer containing Triton X-100 a time- and concentration-dependent increase in the rate of efflux of 2-deoxy-D-glucose 6-phosphate was obtained. It is suggested that 2-deoxy-D-[ 3 H]glucose can be used as a probe in studies of general cell membrane permeability changes

  17. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  18. From the Rydberg constant to the fundamental constants metrology

    International Nuclear Information System (INIS)

    Nez, F.

    2005-06-01

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  19. A sensitive glucose biosensor based on Ag@C core–shell matrix

    International Nuclear Information System (INIS)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-01-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K M app ) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay

  20. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  1. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O

    2003-01-01

    AIMS: In order to perform euglycaemic clamp studies in Type 2 diabetic patients, plasma glucose must be reduced to normal levels. This can be done either (i) acutely during the clamp study using high-dose insulin infusion, or (ii) slowly overnight preceding the clamp study using a low-dose insulin...... infusion. We assessed whether the choice of either of these methods to obtain euglycaemia biases subsequent assessment of glucose metabolism and insulin action. METHODS: We studied seven obese Type 2 diabetic patients twice: once with (+ ON) and once without (- ON) prior overnight insulin infusion. Glucose...... turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...

  2. Learning Read-constant Polynomials of Constant Degree modulo Composites

    DEFF Research Database (Denmark)

    Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt

    2011-01-01

    Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...

  3. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase

    International Nuclear Information System (INIS)

    Mathew, Manjusha; Sandhyarani, N.

    2013-01-01

    Graphical abstract: A combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has successfully been exploited for the realization of a highly sensitive glucose sensor for the first time. -- Highlights: • A multilayered glucose biosensor with enhanced sensitivity was fabricated. • Combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has been exploited for the first time. • Exhibits a lower detection limit of 100 nM with a high sensitivity of 16,840 μA mM −1 cm −2 . • The surface shows a low Michaelis–Menten constant value of 2.4 μM. • Detailed mechanism of sensing was proposed and justified. -- Abstract: A multilayered glucose biosensor with enhanced electron transport was fabricated via the sequential electrodeposition of chitosan gold nanocomposite (CGNC) and nickel hydroxide (Ni(OH) 2 ) on a bare gold electrode and subsequent immobilization of glucose oxidase. A thin film of Ni(OH) 2 deposited on CGNC modified gold electrode serves as an electrochemical redox probe as well as a matrix for the immobilization of glucose oxidase retaining its activity. Electron transport property of CGNC has been exploited to enhance the electron transport between the analyte and electrode. Electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Under optimal conditions the biosensor exhibits a linear range from 1 μM to 100 μM with a limit of detection (lod) down to 100 nM. The sensor shows a low Michaelis-Menten constant value of 2.4 μM indicates the high affinity of enzyme to the analyte points to the retained activity of enzyme after immobilization. The present glucose sensor with the high selectivity, sensitivity and stability is promising for practical clinical applications

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  5. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  6. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  7. Resonator graphene microfluidic antenna (RGMA) for blood glucose detection

    Science.gov (United States)

    Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman

    2017-09-01

    Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.

  8. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  9. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  10. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  11. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores.

    Science.gov (United States)

    De Koster, J; Hostens, M; Van Eetvelde, M; Hermans, K; Moerman, S; Bogaert, H; Depreester, E; Van den Broeck, W; Opsomer, G

    2015-07-01

    The objective of the present research was to determine the insulin response of the glucose and fatty acid metabolism in dry dairy cows with a variable body condition score (BCS). Ten pregnant Holstein Friesian dairy cows (upcoming parity 2 to 5) were selected based on BCS at the beginning of the study (2mo before expected parturition date). During the study, animals were monitored weekly for BCS and backfat thickness and in the last 2wk, blood samples were taken for determination of serum nonesterified fatty acid (NEFA) concentration. Animals underwent a hyperinsulinemic euglycemic clamp test in the third week before the expected parturition date. The hyperinsulinemic euglycemic clamp test consisted of 4 consecutive insulin infusions with increasing insulin doses: 0.1, 0.5, 2, and 5mIU/kg per minute. For each insulin infusion period, a steady state was defined as a period of 30min where no or minor changes of the glucose infusion were necessary to keep the blood glucose concentration constant and near basal levels. During the steady state, the glucose infusion rate [steady state glucose infusion rate (SSGIR) in µmol/kg per minute] and NEFA concentration [steady state NEFA concentration (SSNEFA) in mmol/L] were determined and reflect the insulin response of the glucose and fatty acid metabolism. Dose response curves were created based on the insulin concentrations during the steady state and the SSGIR or SSNEFA. The shape of the dose response curves is determined by the concentration of insulin needed to elicit the half maximal effect (EC50) and the maximal SSGIR or the minimal SSNEFA for the glucose or fatty acid metabolism, respectively. The maximal SSGIR was negatively associated with variables reflecting adiposity of the cows (BCS, backfat thickness, NEFA concentration during the dry period, and absolute weight of the different adipose depots determined after euthanasia and dissection of the different depots), whereas the EC50 of the glucose metabolism was

  12. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    Science.gov (United States)

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  13. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  14. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    Science.gov (United States)

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Glucose cycling is markedly enhanced in pancreatic islets of obese hyperglycemic mice

    International Nuclear Information System (INIS)

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Berggren, P.O.; Loew, H.L.; Landau, B.R.; Efendic, S.

    1990-01-01

    Pancreatic islets from fed 7-month old lean and obese hyperglycemic mice (ob/ob) were incubated with 3H2O and 5.5 mM or 16.7 mM glucose. Incorporation of 3H into the medium glucose was taken as the measure of glucose-6-P hydrolysis to glucose. Glucose utilization was measured from the yield of 3H2O from [5-3H]glucose. Only 3-4% of the glucose phosphorylated was dephosphorylated by the lean mouse islets irrespective of the glucose concentration. In contrast, the ob/ob mouse islets at 5.5 mM glucose dephosphorylated 18% of the glucose phosphorylated and 30% at 16.7 mM. Thus, the islets of hyperglycemic mice demonstrate increased glucose cycling as compared to the islets of normoglycemic lean mice

  16. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1987-01-01

    Tracer methodology has been applied extensively to the estimation of endogenous glucose production (Ra) during euglycemic glucose clamps. The accuracy of this approach has been questioned due to the observation of significantly negative estimates for Ra when insulin levels are high. We performed hyperinsulinemic (300 microU/ml)-euglycemic glucose clamps for 180 min in normal dogs and compared the standard approach, an unlabeled exogenous glucose infusate (cold GINF protocol, n = 12), to a new approach in which a tracer (D-[3- 3 H]glucose) was added to the exogenous glucose used for clamping (hot GINF protocol, n = 10). Plasma glucose, insulin and glucagon concentrations, and glucose infusion rates were similar for the two protocols. Plasma glucose specific activity was 20 +/- 1% of basal (at 120-180 min) in the cold GINF studies, and 44 +/- 3 to 187 +/- 5% of basal in the hot GINF studies. With the one-compartment, fixed pool volume model of Steele, Ra for the cold GINF studies was -2.4 +/- 0.7 mg X min-1 X kg-1 at 25 min and remained significantly negative until 110 min (P less than .05). For the hot GINF studies, Ra was never significantly less than zero (P greater than .05) and was greater than in the cold GINF studies at 20-90 min (P less than .05). There was substantially less between-(78%) and within- (40%) experiment variation for the hot GINF studies compared with the cold GINF studies. An alternate approach (regression method) to the application of the one-compartment model, which allows for a variable and estimable effective distribution volume, yielded Ra estimates that were suppressed 60-100% from basal

  17. Modulation of memory with septal injections of morphine and glucose: effects on extracellular glucose levels in the hippocampus.

    Science.gov (United States)

    McNay, Ewan C; Canal, Clinton E; Sherwin, Robert S; Gold, Paul E

    2006-02-28

    The concentration of glucose in the extracellular fluid (ECF) of the hippocampus decreases substantially during memory testing on a hippocampus-dependent memory task. Administration of exogenous glucose, which enhances task performance, prevents this decrease, suggesting a relationship between hippocampal glucose availability and memory performance. In the present experiment, spontaneous alternation performance and task-related changes in hippocampal ECF glucose were assessed in rats after intraseptal administration of morphine, which impairs memory on a spontaneous alternation task, and after co-administration of intraseptal glucose, which attenuates that impairment. Consistent with previous findings, spontaneous alternation testing resulted in a decrease in hippocampal ECF glucose levels in control rats. However, rats that received intraseptal morphine prior to testing showed memory impairments and an absence of the task-related decrease in hippocampal ECF glucose levels. Intraseptal co-administration of glucose with morphine attenuated the memory impairment, and ECF glucose levels in the hippocampus decreased in a manner comparable to that seen in control rats. These data suggest that fluctuations in hippocampal ECF glucose levels may be a marker of mnemonic processing and support the view that decreases in extracellular glucose during memory testing reflect increased glucose demand during memory processing.

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page ... and-how-tos, . In this section Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood ...

  19. Blood Glucose Determination

    DEFF Research Database (Denmark)

    Lippi, Giuseppe; Nybo, Mads; Cadamuro, Janne

    2018-01-01

    The measurement of fasting plasma glucose may be biased by a time-dependent decrease of glucose in blood tubes, mainly attributable to blood cell metabolism when glycolysis is not rapidly inhibited or blood cells cannot be rapidly separated from plasma. Although glycolysis inhibitors such as sodium...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for ... is checking your blood glucose often. Ask your doctor how often you should ... associated with hyperglycemia. How Do I Treat Hyperglycemia? ...

  1. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  2. Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell

    International Nuclear Information System (INIS)

    Merle, G.; Habrioux, A.; Servat, K.; Rolland, M.; Innocent, C.; Kokoh, K.B.; Tingry, S.

    2009-01-01

    The operational stability of enzymes in a concentric glucose/O 2 biofuel cell has been significantly improved with the synthesis of grafted enzyme electrodes compared to entrapped enzyme electrodes. The concentric device combined glucose electro-oxidation by glucose oxidase at the anode and oxygen electro-reduction by bilirubin oxidase at the cathode. The entrapped enzyme electrodes were prepared from physical immobilization of the enzymes by a polypyrrole polymer onto the electrode surface. The grafted enzyme electrodes were synthesized by grafting the enzymes via alkyl spacer arms to a poly(aminopropylpyrrole) film onto the electrode surface. From spectrophotometric and electrochemical analyses, it was demonstrated that the spacer arms increased the operational stability and enzyme mobility that favoured electron transfer from their active sites to the electrode. The maximum power output of the assembled biofuel cell was 20 μW cm -2 , at 0.20 V with 10 mM glucose in phosphate buffer pH 7.4. The grafted enzyme electrodes presented an unprecedented operational stability as the maximum of power density of the BFC remains constant after intermittent use over a 45-day period. This was a remarkable improvement compared to electrodes with entrapped enzymes, which lost 74% of their initial power density after intermittent use over a 17-day period

  3. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  4. THE CHALLENGE OF PD PATIENTS: GLUCOSE AND GLUCOSE DEGRADATION PRODUCTS IN PD SOLUTION

    Directory of Open Access Journals (Sweden)

    Yong-Lim Kim

    2012-06-01

    Full Text Available The main osmotic agent found in the peritoneal dialysis (PD solution is glucose. It has been of a wide use for great crystalloid osmotic power at a low concentration, simple metabolism, and excellent safety. On the other hand, anywhere between 60 to 80% of the glucose in the PD solution is absorbed - a 100 to 300 mg of daily glucose absorption. Once into the systemic circulation, glucose can be a cause for metabolic complications including obesity. Indeed, the diabetiform change observed in the peritoneal membrane in the long-term PD patients is believed attributable to the high-concentration glucose in the PD solution. The glucose absorbed from peritoneal cavity raises the risk of ‘glucose toxicity’, leading to insulin resistance and beta cell failure. Clinical similarity can be found in postprandial hyperglycemia, which is known to be associated with oxidative stress, endothelial dysfunction, NF-κb, and inflammation, affecting myocardial blood flow. Moreover, it is a proven independent risk factor of coronary artery disease in patients with type 2 diabetes, particularly of female gender. Though speculative yet, glucose toxicity might explain a higher mortality of PD patients after the first year compared with those on hemodialysis (more so in female, advanced-age patients with diabetes. Also included in the picture are glucose degradation products (GDPs generated along the course of heat sterilization or storage of the PD solution. They have been shown to induce apoptosis of peritoneal mesothelial cells, renal tubular epithelial cells, and endothelial cells, while spurring production of TGF-β and VEGF and facilitating epithelial mesenchymal transition. GDPs provide a stronger reactivity than glucose in the formation of AGEs, a known cause for microvascular complications and arteriosclerosis. Unfortunately, clinical studies using a low-GDP PD solution have provided mixed results on the residual renal function, peritonitis, peritoneal

  5. Universal relation between spectroscopic constants

    Indian Academy of Sciences (India)

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  6. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  7. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  8. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    Science.gov (United States)

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The kinetics of glucose production from rice straw by Aspergillus niger

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... The concentration and rate of glucose production was observed to depend on pretreatment of ... cerning reaction rate parameters for rice straw hydrolysis. The generation of such ... The experiment and glucose analysis was ...

  10. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  11. Recent advances in noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    So CF

    2012-06-01

    Full Text Available Chi-Fuk So,1 Kup-Sze Choi,1 Thomas KS Wong,2 Joanne WY Chung2,31Centre for Integrative Digital Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 2Department of Nursing and Health Sciences, Tung Wah College, Hong Kong, 3Department of Health and Physical Education, The Hong Kong Institute of Education, Hong KongAbstract: The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed.Keywords: noninvasive, glucose monitoring, diabetes mellitus, blood glucose measurement

  12. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    Science.gov (United States)

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  14. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test

    DEFF Research Database (Denmark)

    Montelius, Caroline; Szwiec, Katarzyna; Kardas, Marek

    2014-01-01

    BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose...... metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (