X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES
International Nuclear Information System (INIS)
Garcia, J.; Kallman, T. R.
2010-01-01
We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Absolute density measurements in the middle atmosphere
Directory of Open Access Journals (Sweden)
M. Rapp
2001-05-01
Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques
Absolute density measurements in the middle atmosphere
Directory of Open Access Journals (Sweden)
M. Rapp
Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.
Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques
A constant-density Gurney approach to the Cylinder test
Energy Technology Data Exchange (ETDEWEB)
Reaugh, John E.; Souers, P. Clark [Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)
2004-04-01
The previous analysis of the Cylinder test required the treatment of different wall thicknesses and wall materials separately. To fix this, the Gurney analysis is used, but this results in low values for full-wall standard, ideal explosives relative to CHEETAH analyses. A new constant metal-density model is suggested, which takes account of the thinning metal wall as the cylinder expands. With this model, the inner radius of the metal cylinder moves faster than the measured outer radius. Additional small corrections occur in all cylinders because of energy trapped in the copper walls. Also, the half-wall cylinders have a small correction because the relative volumes of the gas products are smaller at a given outside wall displacement. The Fabry-Perot and streak camera measurements are compared. The Fabry method is shown to equate to the constant density model. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Holographic Bound in Quantum Field Energy Density and Cosmological Constant
Castorina, Paolo
2012-01-01
The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, M_p, as naively expected, but M_p/N_U^(1/4) where N_U is the number of ...
Density imaging of volcanos with atmospheric muons
Fehr , F.
2011-01-01
collaboration : TOMUVOL; International audience; Their capability to penetrate large depths of material renders high-energy atmospheric muons a unique probe for geophysical explorations. Provided the topography of the target is known, the measurement of the attenuation of the muon flux permits the cartography of matter density distributions revealing spatial and possibly also temporal variations in extended geological structures. A Collaboration between volcanologists, astroparticle- and part...
Density-dependent coupling constants and charge symmetry breaking
International Nuclear Information System (INIS)
Barreiro, L.A.
2001-01-01
The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly. (author)
Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry
International Nuclear Information System (INIS)
Vandiver, V.J.
1987-01-01
Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities
Effects of Density-Dependent Bag Constant and Strange Star Rotation
Institute of Scientific and Technical Information of China (English)
ZHOU Qiao-Er; GUO Hua
2003-01-01
With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.
Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta
2011-11-01
Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).
Distribution of temperature coefficient density for muons in the atmosphere
Directory of Open Access Journals (Sweden)
Kuzmenko V.S.
2017-12-01
Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.
Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant
You, Chun-Yeol
2012-01-01
We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...
Atmospheric density determination using high-accuracy satellite GPS data
Tingling, R.; Miao, J.; Liu, S.
2017-12-01
Atmospheric drag is the main error source in the orbit determination and prediction of low Earth orbit (LEO) satellites, however, empirical models which are used to account for atmosphere often exhibit density errors around 15 30%. Atmospheric density determination thus become an important topic for atmospheric researchers. Based on the relation between atmospheric drag force and the decay of orbit semi-major axis, we derived atmospheric density along the trajectory of CHAMP with its Rapid Science Orbit (RSO) data. Three primary parameters are calculated, including the ratio of cross sectional area to mass, drag coefficient, and the decay of semi-major axis caused by atmospheric drag. We also analyzed the source of error and made a comparison between GPS-derived and reference density. Result on 2 Dec 2008 shows that the mean error of GPS-derived density can decrease from 29.21% to 9.20% when time span adopted on the process of computation increase from 10min to 50min. Result for the whole December indicates that when the time span meet the condition that the amplitude of the decay of semi-major axis is much greater than its standard deviation, then density precision of 10% can be achieved.
Model test study of evaporation mechanism of sand under constant atmospheric condition
CUI, Yu Jun; DING, Wenqi; SONG, Weikang
2014-01-01
The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...
Mining for elastic constants of intermetallics from the charge density landscape
Energy Technology Data Exchange (ETDEWEB)
Kong, Chang Sun; Broderick, Scott R. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Jones, Travis E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Loyola, Claudia [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Eberhart, Mark E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)
2015-02-01
There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C{sub 11} and C{sub 44} are determined solely from the magnitude of the charge density at its critical points, while C{sub 12} is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.
Nuclear matter studies with density-dependent meson-nucleon coupling constants
International Nuclear Information System (INIS)
Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.
1997-01-01
Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society
Cosmological constant problem and renormalized vacuum energy density in curved background
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801, Ibaraki (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University of Advanced Studies (Sokendai), Tsukuba 305-0801, Ibaraki (Japan)
2017-06-01
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.
Forming a constant density medium close to long gamma-ray burst
Marle, A.J.; Langer, N.; Achterberg, A; Garia-Segura, G.
2006-01-01
Aims. The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to
Proceedings of the workshop: the solar constant and the Earth's atmosphere
International Nuclear Information System (INIS)
Zirin, H.; Moore, R.L.; Walter, J.
1976-01-01
The solar constant has long been a fundamental quantity in astrophysics, but as with many fundamental quantities, interest in its exact value or its variation has not been great over the last decade. This was particularly due to the fact that most models of stars indicated that their luminosity should be quite constant, varying only over nuclear burning times of hundreds of millions of years. Thus, after the pioneering work of Abbott, it has been more a subject of interest for atmospheric scientists who needed to know the exact inputs to the Earth's atmosphere. In recent years however, the celebrated problem of the missing solar neutrinos has brought into question the theories of stellar structure, and the solar constant is again being thought about. Standard solar models predict a lower solar constant in the past, 75% of the present, 4x10 9 years ago and a virtually constant value over short time scales (10 7 years). However, the lack of observed neutrinos predicted by this model suggests that the interior of the Sun is not really understood, which means that solar constant variations cannot be ruled out on the basis of the theory of stellar interiors. Measurement of the planets, the old Smithsonian measurements, and other data suggest that the Sun cannot have varied more than a few percent over the past hundred years, but some of the measurements even suggest small variation of the order of a percent. On the other hand, in the important near ultraviolet region, there is evidence for some variation in the 2700-3100 A region and up to 50% variation below 1600 A, dependent on solar activity. (Auth.)
International Nuclear Information System (INIS)
Slanina, Z.
1987-01-01
Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures
Directory of Open Access Journals (Sweden)
Zhiguo Huang
2017-11-01
Full Text Available Infrared (IR radiometry technology is an important method for characterizing the IR signature of targets, such as aircrafts or rockets. However, the received signal of targets could be reduced by a combination of atmospheric molecule absorption and aerosol scattering. Therefore, atmospheric correction is a requisite step for obtaining the real radiance of targets. Conventionally, the atmospheric transmittance and the air path radiance are calculated by an atmospheric radiative transfer calculation software. In this paper, an improved IR radiometric method based on constant reference correction of atmospheric attenuation is proposed. The basic principle and procedure of this method are introduced, and then the linear model of high-speed calibration in consideration of the integration time is employed and confirmed, which is then applicable in various complex conditions. To eliminate stochastic errors, radiometric experiments were conducted for multiple integration times. Finally, several experiments were performed on a mid-wave IR system with Φ600 mm aperture. The radiometry results indicate that the radiation inversion precision of the novel method is 4.78–4.89%, while the precision of the conventional method is 10.86–13.81%.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Energy Technology Data Exchange (ETDEWEB)
Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.
Precision Orbit Derived Atmospheric Density: Development and Performance
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer
Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F
2012-11-20
Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.
Directory of Open Access Journals (Sweden)
Keisuke Yano
2014-05-01
Full Text Available We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.
INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE
International Nuclear Information System (INIS)
Moore, Marla H.; Hudson, Reggie; Ferrante, Robert F.; James Moore, W.
2010-01-01
Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 μm (∼5000-30 cm -1 ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C 2 N 2 , cyanogen; CH 3 CN, acetonitrile; C 2 H 5 CN, propionitrile; and HC 3 N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.
Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates
International Nuclear Information System (INIS)
Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.
1990-01-01
The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)
Atmospheric turbulence profiling with unknown power spectral density
Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny
2018-04-01
Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.
Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie
2010-01-01
Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.
Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime
International Nuclear Information System (INIS)
Saharian, Aram A.
2004-01-01
Vacuum expectation value of the surface energy-momentum tensor is evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two parallel branes located on (D+1)-dimensional anti-de Sitter bulk. The general case of different Robin coefficients on separate branes is considered. As a regularization procedure the generalized zeta function technique is used, in combination with contour integral representations. The surface energies on the branes are presented in the form of the sums of single brane and second brane-induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem between the gravitational and electroweak mass scales, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations
Explosive He4 burning: I. kinetics of burning at constant temperature and density
International Nuclear Information System (INIS)
Khokhlov, A.M.; Ergma, E.V.
1986-01-01
The kinetics of He 4 burning at a constant temperature T> 10 9 0 K and a density rho> 10 5 g/cm 3 is considered. The regions of formation of iron group elements and lighter nuclides during He 4 burning are indicated in the rho, T plane. The dependence of the mean atomic number of the nuclides formed on the temperature and the density is determined. For the temperature T ≥4.10 9 0 K a ''neutron flash'' is found, which can lead to a change in the isotopic composition of the r- and s-process elements present. The range of rho and T in which the formation of an excess number of the elements beyond the iron peak is found
Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere
Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.
2011-01-01
Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).
Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges
International Nuclear Information System (INIS)
Jasinski, M.; Zakrzewski, Z.; Mizeraczyk, J.
2008-01-01
In this paper, we present results of the spectroscopic measurements of the electron density in a microwave surface wave sustained discharges in Ar and Ne at atmospheric pressure. The discharge in the form of a plasma column was generated inside a quartz tube cooled with a dielectric liquid. The microwave power delivered to the discharge via rectangular waveguide was applied in the range of 200-1500 W. In all investigations presented in this paper, the gas flow rate was relatively low (0.5 l/min), so the plasma column was generated in the form of a single filament, and the lengths of the upstream and downstream plasma columns were almost the same. The electron density in the plasma columns was determined using the method based on the Stark broadening of H β spectral line, including plasma region inside the waveguide which was not investigated earlier
Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds
International Nuclear Information System (INIS)
Saharian, Aram A.
2006-01-01
We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed
Nominal power density analysis of thermoelectric pins with non-constant cross sections
International Nuclear Information System (INIS)
Shi, Yaoguang; Mei, Deqing; Yao, Zhehe; Wang, Yancheng; Liu, Haiyan; Chen, Zichen
2015-01-01
Highlights: • Nominal power density of TEGs with non-constant cross sections pins is analyzed. • An analytical model of nominal power density (NPD) is developed. • Influences of shape parameter on NPD for different geometric pins are investigated. • Effects of dimensionless efficiency and the temperature ratio on NPD are examined. - Abstract: The investigation of the geometric structure of TEG (thermoelectric generator) pins is essential, as their geometry determines the performance of devices. In this study, nominal power density (NPD) is used to find a better geometric structure of thermoelectric pins of TEGs, since a comparison of maximum dimensionless efficiencies for different geometric pins cannot be used to identify the optimum geometry. The influence of shape parameter on NPD for TEG pins in linear, quadratic and exponential cross-sectional functions is studied. The NPD decreases when the shape parameter increases for different geometric pins, while the maximum values of NPD are the same. Then, the effects of dimensionless efficiency and the temperature ratio on the NPD are analyzed. The NPD decreases with the increase in dimensionless efficiency and temperature ratio. Pins with linear variation in cross section have the highest NPD among the three geometries of pins evaluated
Neutron density decay constant in a non-multiplying lattice of finite size
International Nuclear Information System (INIS)
Deniz, V.C.
1965-01-01
This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B 6 term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [fr
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Directory of Open Access Journals (Sweden)
Holger Pfeifer
2011-09-01
Full Text Available We introduce a scheme to obtain the deconvolved density of states (DOS of the tip and sample, from scanning tunneling spectra determined in the constant-current mode (z–V spectroscopy. The scheme is based on the validity of the Wentzel–Kramers–Brillouin (WKB approximation and the trapezoidal approximation of the electron potential within the tunneling barrier. In a numerical treatment of z–V spectroscopy, we first analyze how the position and amplitude of characteristic DOS features change depending on parameters such as the energy position, width, barrier height, and the tip–sample separation. Then it is shown that the deconvolution scheme is capable of recovering the original DOS of tip and sample with an accuracy of better than 97% within the one-dimensional WKB approximation. Application of the deconvolution scheme to experimental data obtained on Nb(110 reveals a convergent behavior, providing separately the DOS of both sample and tip. In detail, however, there are systematic quantitative deviations between the DOS results based on z–V data and those based on I–V data. This points to an inconsistency between the assumed and the actual transmission probability function. Indeed, the experimentally determined differential barrier height still clearly deviates from that derived from the deconvolved DOS. Thus, the present progress in developing a reliable deconvolution scheme shifts the focus towards how to access the actual transmission probability function.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Energy Technology Data Exchange (ETDEWEB)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
International Nuclear Information System (INIS)
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-01-01
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening
International Nuclear Information System (INIS)
Dong Lifang; Ran Junxia; Mao Zhiguo
2005-01-01
We present a method and results for measurement of electron density in atmospheric-pressure dielectric barrier discharge. The electron density of microdischarge in atmospheric pressure argon is measured by using the spectral line profile method. The asymmetrical deconvolution is used to obtain Stark broadening. The results show that the electron density in single filamentary microdischarge at atmospheric pressure argon is 3.05x10 15 cm -3 if the electron temperature is 10,000 K. The result is in good agreement with the simulation. The electron density in dielectric barrier discharge increases with the increase of applied voltage
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Directory of Open Access Journals (Sweden)
C. Wang
2017-06-01
Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.
Water dimers in the atmosphere III: equilibrium constant from a flexible potential.
Scribano, Yohann; Goldman, Nir; Saykally, R J; Leforestier, Claude
2006-04-27
We present new results for the water dimer equilibrium constant K(p)(T) in the range 190-390 K, using a flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to explicit consideration of the monomer vibrations is handled via an adiabatic (6 + 6)d decoupling between intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured by computing all energy levels up to dissociation for total angular momentum values J = 0-5 and using an extrapolation scheme to higher values. The newly calculated values for K(p)(T) are in very good agreement with available experimental data at room temperature. At higher temperatures, an analysis of the convergence of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant. Additional thermodynamical quantities (deltaG, deltaH, deltaS, and C(p)) have also been determined and fit to quadratic expressions a + bT + cT2.
Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures
Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.
2015-12-01
The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.
International Nuclear Information System (INIS)
Gyulikhandanov, E.L.; Kislenkov, V.V.
1978-01-01
The high-temperature method was applied to measuring a relative variation in the electrical resistance of a thin steel foil prepared from the 12KhN3A, 18Kh2N4VA, 20KhGNR, and 20Kh3MVF steels during its carburization and decarburization, and determined was the temperature dependence of the reaction rate of the interaction of the endothermal atmosphere of different compositions with the analloyed γ-Fe. A connection has been established between the reaction rate constant and the thermodynamic activity of carbon in the alloyed austenite at the temperature of about 925 deg C, corresponding to the cementation temperature. This provides the quantitative estimation of the above value for any alloyed steels and with the presence of numerical values of diffusion coefficients; this also enables one to carry out an accurate calculation of the distribution of carbon throughout the depth of a layer when effecting the cementation in the endothermal atmosphere
Molecular Quantum Similarity Measures from Fermi hole Densities: Modeling Hammett Sigma Constants
Czech Academy of Sciences Publication Activity Database
Girónes, X.; Ponec, Robert
2006-01-01
Roč. 46, č. 3 (2006), s. 1388-1393 ISSN 1549-9596 Grant - others:SMCT(ES) SAF2000/0223/C03/01 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecula quantum similarity measures * fermi hole densities * substituent effect Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.423, year: 2006
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Directory of Open Access Journals (Sweden)
Groneberg David A
2011-10-01
Full Text Available Abstract Background Drowning is a constant global problem which claims approximately half a million victims worldwide each year, whereas the number of near-drowning victims is considerably higher. Public health strategies to reduce the burden of death are still limited. While research activities in the subject drowning grow constantly, yet there is no scientometric evaluation of the existing literature at the present time. Methods The current study uses classical bibliometric tools and visualizing techniques such as density equalizing mapping to analyse and evaluate the scientific research in the field of drowning. The interpretation of the achieved results is also implemented in the context of the data collection of the WHO. Results All studies related to drowning and listed in the ISI-Web of Science database since 1900 were identified using the search term "drowning". Implementing bibliometric methods, a constant increase in quantitative markers such as number of publications per state, publication language or collaborations as well as qualitative markers such as citations were observed for research in the field of drowning. The combination with density equalizing mapping exposed different global patterns for research productivity and the total number of drowning deaths and drowning rates respectively. Chart techniques were used to illustrate bi- and multilateral research cooperation. Conclusions The present study provides the first scientometric approach that visualizes research activity on the subject of drowning. It can be assumed that the scientific approach to this topic will achieve even greater dimensions because of its continuing actuality.
2011-01-01
Background Drowning is a constant global problem which claims approximately half a million victims worldwide each year, whereas the number of near-drowning victims is considerably higher. Public health strategies to reduce the burden of death are still limited. While research activities in the subject drowning grow constantly, yet there is no scientometric evaluation of the existing literature at the present time. Methods The current study uses classical bibliometric tools and visualizing techniques such as density equalizing mapping to analyse and evaluate the scientific research in the field of drowning. The interpretation of the achieved results is also implemented in the context of the data collection of the WHO. Results All studies related to drowning and listed in the ISI-Web of Science database since 1900 were identified using the search term "drowning". Implementing bibliometric methods, a constant increase in quantitative markers such as number of publications per state, publication language or collaborations as well as qualitative markers such as citations were observed for research in the field of drowning. The combination with density equalizing mapping exposed different global patterns for research productivity and the total number of drowning deaths and drowning rates respectively. Chart techniques were used to illustrate bi- and multilateral research cooperation. Conclusions The present study provides the first scientometric approach that visualizes research activity on the subject of drowning. It can be assumed that the scientific approach to this topic will achieve even greater dimensions because of its continuing actuality. PMID:21999813
International Nuclear Information System (INIS)
Kim, Yong Seong; Jang, Yun Hee; Cho, Hyun; Hwang, Sun Gu
2010-01-01
The relative stabilities of the tautomers of SeG were calculated. In the aqueous phase, amino-seleno form was the major tautomer of neutral SeG with a minor contribution from the other amino-seleno form. The presence of the selenolic form was negligible from the calculations. The microscopic and macroscopic pKa values in the aqueous phase were calculated from this scheme. The calculated pKa value was in good agreement with the experimental data. These results demonstrated that this method could predict and explain the acid-base properties of SeG and could be used to understand the behavior of the species. A number of analogues of nucleic acid bases have been the target of extensive studies because of their importance in many biological studies. The oxygen of both purine and pyrimidine bases is substituted with sulfur or selenium to produce an important class of analogues. 6-Selenoguanine (SeG) has a significant activity against L5178Y lymphoma cells. However, the detailed mechanism of the antiplastic action is not known yet. Information on the acid dissociation constants and the tautomerism of the molecules is required to provide a molecular level understanding of biological processes. Proton-transfer in the nucleic acid pairs and the presence of the tautomeric equilibrium play an important role in the mispair formation during the DNA replication
Mokhtari, Ali; Harismah, Kun; Mirzaei, Mahmoud
2015-12-01
Density functional theory (DFT) calculations have been performed to detect the stabilities and properties of chitosan-functionalized graphene and graphene-oxide structures (G-Chit and GO-Chit). The model systems with two different sizes of sheets have been optimized and the molecular and atomic properties have been evaluated for them. The results indicated that investigated G-Chit and GO-Chit structures could be considered as stable structures but with different properties. The properties for GO and GO-Chit structures are almost similar; however, they are different from the original G and G-Chit structures. The results also indicated that the properties could be also size-dependent, in which different molecular and atomic properties have been observed for the investigate G sheets.
Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma
International Nuclear Information System (INIS)
Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo
2014-01-01
We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity
Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.
1988-01-01
Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.
Predicting mesh density for adaptive modelling of the global atmosphere.
Weller, Hilary
2009-11-28
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Ivanov, A. N.; Wellenzohn, M.
2016-09-01
We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.
Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2011-11-14
We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics
García de la Vega, J M; Omar, S; San Fabián, J
2017-04-01
Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
REFERENCE ON THERMOPHYSICAL PROPERTIES: DENSITY AND VISCOSITY OF WATER FOR ATMOSPHERIC PRESSURE
Directory of Open Access Journals (Sweden)
Elin Yusibani
2016-09-01
Full Text Available A reference on thermophysical properties, density and viscosity, for water at atmospheric pressure has been developed in MS Excel (as a macros. Patterson’s density equations and Kestin’s viscosity equations have been chosen as a basic equation in the VBA programming as a user-defined function. These results have been compared with REFPROF as a wellknow standart reference
Sun, Cuihong; Xu, Baoen; Zhang, Shaowen
2014-05-22
Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.
DEFF Research Database (Denmark)
Falk, Anne Katrine Vinther; Gryning, Sven-Erik
1997-01-01
In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials...
Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density
International Nuclear Information System (INIS)
Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru
2015-01-01
Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established
Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2015-12-15
Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.
Calibration of the fine-structure constant of graphene by time-dependent density-functional theory
Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.
2017-11-01
One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.
Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites
White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.
2010-01-01
Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Hajar Bahri; Fatemeh Kayanikhoo
2012-01-01
We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field.To this end,we use the MITbag model with a density dependent bag constant.To parameterize the density dependence of the bag constant,we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter.By calculating the equation of state of strange quark matter,we have shown that the pressure of this system increases by increasing both density and magnetic field.Finally,we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
Generation of high-power-density atmospheric pressure plasma with liquid electrodes
International Nuclear Information System (INIS)
Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia
2004-01-01
We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed
Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow
Williams, Owen J. H.
This dissertation examines the effects of density gradients on turbulent boundary layer statistics and structure using Particle Image Velocimetry (PIV). Two distinct cases were examined: the thermally stable atmospheric surface layer characteristic of nocturnal or polar conditions, and the hypersonic bounder layer characteristic of high speed aircraft and reentering spacecraft. Previous experimental studies examining the effects of stability on turbulent boundary layers identified two regimes, weak and strong stability, separated by a critical bulk stratification with a collapse of near-wall turbulence thought to be intrinsic to the strongly stable regime. To examine the characteristics of these two regimes, PIV measurements were obtained in conjunction with the mean temperature profile in a low Reynolds number facility over smooth and rough surfaces. The turbulent stresses were found to scale with the wall shear stress in the weakly stable regime prior relaminarization at a critical stratification. Changes in profile shape were shown to correlate with the local stratification profile, and as a result, the collapse of near-wall turbulence is not intrinsic to the strongly stable regime. The critical bulk stratification was found to be sensitive to surface roughness and potentially Reynolds number, and not constant as previously thought. Further investigations examined turbulent boundary layer structure and changes to the motions that contribute to turbulent production. To study the characteristics of a hypersonic turbulent boundary layer at Mach 8, significant improvements were required to the implementation and error characterization of PIV. Limited resolution or dynamic range effects were minimized and the effects of high shear on cross-correlation routines were examined. Significantly, an examination of particle dynamics, subject to fluid inertia, compressibility and non-continuum effects, revealed that particle frequency responses to turbulence can be up to an
Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki
2016-09-01
The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
International Nuclear Information System (INIS)
Biral, A.R.P.; Chinellato, J.A.; Fauth, A.C.; Kemp, E.; Oliveira, M.A. Leigui de; Manganote, E.J.T.; Nogima, H.; Rigitano, R.C.; Santos, L.G. dos; Silva, E.L.F.; Silva, N. Mengoti; Souza Junior, M.C.; Tamura, E.; Turtelli Junior, A.
1994-01-01
The use of plastic scintillators for particle density measuring and their influence in the characterization of extensive atmospheric showers has been studied.Using a experimental system coupled with a plastic scintillator detector with a 'streamer' tubes module, single muon events were selected through tracks rebuilding. The influence of those distributions in the determination of particle density and extensive atmospheric showers fundamental parameters were also studied. 10 refs., 2 figs
Atmospheric air density analysis with Meteo-40S wind monitoring system
Directory of Open Access Journals (Sweden)
Zahariea Dănuţ
2017-01-01
Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.
Atmospheric pressure, density, temperature and wind variations between 50 and 200 km
Justus, C. G.; Woodrum, A.
1972-01-01
Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.
Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.
2016-12-01
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used
Roe, Byron
2017-06-01
This paper is divided into two parts. In the first part, the material densities passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent density tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the variable density table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean density from the Shen-Ritzwoller tables and with one other fixed density. For the tests made here, the mean density results are quite similar to the results using the variable density vs distance.
Xue, Y.; van der Laak, J.; Smedts, F.; Schoots, C.; Verhofstad, A.; de la Rosette, J.; Schalken, J.
2000-01-01
Knowledge concerning differentiation of neuroendocrine (NE) cells during development of the human prostate is rather fragmentary. Using immunohistochemistry combined with a morphometric method, we investigated the distribution and density of NE cells in the developing human prostate, with special
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
International Nuclear Information System (INIS)
Stahlberg, J.
1985-01-01
A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)
Relationship of changing social atmosphere, lifestyle and bone mineral density in college students
Energy Technology Data Exchange (ETDEWEB)
Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin [Dept. of Radiological Technology, Dongnam Health college, Suwon (Korea, Republic of)
2013-12-15
The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it
Relationship of changing social atmosphere, lifestyle and bone mineral density in college students
International Nuclear Information System (INIS)
Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin
2013-01-01
The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it
Model representation of the ambient electron density distribution in the middle atmosphere
Ramanamurty, Y. V.
1989-01-01
While the Langmuir probe controlled by rocket propagation experiments by the University of Illinois at midlatitude revealed the existence of a permanent D region turning point (DTP), similar measurements over the Thumba equatorial station did not clearly bring out the above daytime feature. Moreover, the calibration constant (ratio of electron density to the current drawn by the Langmuir probe) increased with height (in the 70 to 100 km region) in the case of the midlatitude observations whereas the recent measurements over Thumba showed a decrease up to about 90 km followed by an increase above 90 km. Secondly, there is the problem of reconciling the station oriented observations from the COSPAR family with the ground based radio propagation measurements from the URSI family. Thirdly, new information on Winter in Northern Europe (WINE) and in USSR is available by asking for its incorporation into any global model such as the IRI. The results of investigation of the above aspects are presented.
Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José
2018-02-08
The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.
Groneberg, David A; Schilling, Ute; Scutaru, Cristian; Uibel, Stefanie; Zitnik, Simona; Mueller, Daniel; Klingelhoefer, Doris; Kloft, Beatrix
2011-10-14
Drowning is a constant global problem which claims approximately half a million victims worldwide each year, whereas the number of near-drowning victims is considerably higher. Public health strategies to reduce the burden of death are still limited. While research activities in the subject drowning grow constantly, yet there is no scientometric evaluation of the existing literature at the present time. The current study uses classical bibliometric tools and visualizing techniques such as density equalizing mapping to analyse and evaluate the scientific research in the field of drowning. The interpretation of the achieved results is also implemented in the context of the data collection of the WHO. All studies related to drowning and listed in the ISI-Web of Science database since 1900 were identified using the search term "drowning". Implementing bibliometric methods, a constant increase in quantitative markers such as number of publications per state, publication language or collaborations as well as qualitative markers such as citations were observed for research in the field of drowning. The combination with density equalizing mapping exposed different global patterns for research productivity and the total number of drowning deaths and drowning rates respectively. Chart techniques were used to illustrate bi- and multilateral research cooperation. The present study provides the first scientometric approach that visualizes research activity on the subject of drowning. It can be assumed that the scientific approach to this topic will achieve even greater dimensions because of its continuing actuality.
Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2012-03-08
The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.
Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.
2012-02-01
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from
Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David
2012-01-10
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats
Energy Technology Data Exchange (ETDEWEB)
Deniz, V C [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires
1965-07-01
This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B{sup 6} term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [French] Ce rapport presente une theorie generale, par methode integrale du transport, pour determiner la constante de decroissance de la densite neutronique dans un reseau non-multiplicateur de dimensions finies. La theorie est appliquee pour obtenir l'expression du coefficient de diffusion. Le cas d'un milieu homogene avec absorption en 1/v et de dimensions finies dans toutes les directions est etudie en detail, en admettant une loi de choc isotrope. La constante de decroissance est obtenue jusqu'au terme en B{sup 6}. Les expressions pour le coefficient de diffusion et pour le coefficient de refroidissement par diffusion sont les memes que celles obtenues pour une geometrie 'plaque' par NELKIN qui utilise le developpement en harmoniques spheriques de la transformee de Fourier dans la variable d'espace. De plus, on obtient les
International Nuclear Information System (INIS)
Mu, Tiancheng; Liu, Zhimin; Han, Buxing.; Li, Zhonghao; Zhang, Jianling; Zhang, Xiaogang
2003-01-01
The phase behavior, density, and constant-volume molar heat capacity (C v,m ) of ethane + n-pentane binary mixtures have been measured in the supercritical region and subcritical region at T=309.45 K. In addition, the isothermal compressibility (κ T ) has been calculated using the density data determined. For a mixed fluid with a composition close to the critical composition, C v,m and κ T increase sharply as the pressure approaches the critical point (CP), the dew point (DP), or the bubble point (BP). However, C v,m is not sensitive to pressure in the entire pressure range if the composition of the mixed fluid is far from the critical composition. To tune the properties of the binary mixtures effectively by pressure, both the composition and the pressure should be close to the critical point of the mixture. The intermolecular interactions in the mixture are also discussed on the basis of the experimental results
Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.
1993-01-01
Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.
International Nuclear Information System (INIS)
Ryutova, M.
1990-08-01
Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves
Directory of Open Access Journals (Sweden)
Bahri Prebreza
2018-03-01
Full Text Available In this paper is presented the protection of transmission power lines of the Kosovo Power System from atmospheric discharges, with the use of surge arresters. Atmospheric discharges represent one of the main causes of interruptions for the Kosovo Power System. In addition, the ground flash density for Kosovo is given. The transmission lines with the worst performance regarding atmospheric discharges are discussed in more detail and are presented recommendations about the surge arresters used to protect the system from these overvoltages. The data provided by the localized lightning system in Kosovo enable us to provide a detailed correlation of the reported outages of the Kosovo Power System and corresponding atmospheric discharges. Recommendations for protection in terms of surge arresters are given followed by subsequent dynamic simulations using MATLAB software.
Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S
2015-02-27
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24} cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
International Nuclear Information System (INIS)
Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.
1976-01-01
The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)
International Nuclear Information System (INIS)
Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.
2015-01-01
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states
Energy Technology Data Exchange (ETDEWEB)
Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)
2015-12-28
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.
Qing, Chun; Wu, Xiaoqing; Huang, Honghua; Tian, Qiguo; Zhu, Wenyue; Rao, Ruizhong; Li, Xuebin
2016-09-05
Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice.
Directory of Open Access Journals (Sweden)
S. Metzger
2012-06-01
Full Text Available Water activity is a key factor in aerosol thermodynamics and hygroscopic growth. We introduce a new representation of water activity (a_{w}, which is empirically related to the solute molality (μ_{s} through a single solute specific constant, ν_{i}. Our approach is widely applicable, considers the Kelvin effect and covers ideal solutions at high relative humidity (RH, including cloud condensation nuclei (CCN activation. It also encompasses concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD. The constant ν_{i} can thus be used to parameterize the aerosol hygroscopic growth over a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. In contrast to other a_{w}-representations, our ν_{i} factor corrects the solute molality both linearly and in exponent form x · a^{x}. We present four representations of our basic a_{w}-parameterization at different levels of complexity for different a_{w}-ranges, e.g. up to 0.95, 0.98 or 1. ν_{i} is constant over the selected a_{w}-range, and in its most comprehensive form, the parameterization describes the entire a_{w} range (0–1. In this work we focus on single solute solutions. ν_{i} can be pre-determined with a root-finding method from our water activity representation using an a_{w}−μ_{s} data pair, e.g. at solute saturation using RHD and solubility measurements. Our a_{w} and supersaturation (Köhler-theory results compare well with the thermodynamic reference model E-AIM for the key compounds NaCl and (NH_{4}_{2}SO_{4} relevant for CCN modeling and calibration studies. Envisaged applications include regional and global atmospheric chemistry and
On the Role of Dissolved Gases in the Atmosphere Retention of Low-mass Low-density Planets
Chachan, Yayaati; Stevenson, David J.
2018-02-01
Low-mass low-density planets discovered by Kepler in the super-Earth mass regime typically have large radii for their inferred masses, implying the presence of H2–He atmospheres. These planets are vulnerable to atmospheric mass loss due to heating by the parent star’s XUV flux. Models coupling atmospheric mass loss with thermal evolution predicted a bimodal distribution of planetary radii, which has gained observational support. However, a key component that has been ignored in previous studies is the dissolution of these gases into the molten core of rock and iron that constitute most of their mass. Such planets have high temperatures (>2000 K) and pressures (∼kbars) at the core-envelope boundary, ensuring a molten surface and a subsurface reservoir of hydrogen that can be 5–10 times larger than the atmosphere. This study bridges this gap by coupling the thermal evolution of the planet and the mass loss of the atmosphere with the thermodynamic equilibrium between the dissolved H2 and the atmospheric H2 (Henry’s law). Dissolution in the interior allows a planet to build a larger hydrogen repository during the planet formation stage. We show that the dissolved hydrogen outgasses to buffer atmospheric mass loss. The slow cooling of the planet also leads to outgassing because solubility decreases with decreasing temperature. Dissolution of hydrogen in the interior therefore increases the atmosphere retention ability of super-Earths. The study highlights the importance of including the temperature- and pressure-dependent solubility of gases in magma oceans and coupling outgassing to planetary evolution models.
Ewing, Jacob; Wang, Yuzheng; Arnold, David P.
2018-05-01
This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.
Loerting, Thomas; Liedl, Klaus R.
2000-01-01
The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911–19916; Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000–10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent “activation” energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain. PMID:10922048
DEFF Research Database (Denmark)
Neubert, Torsten; Banks, P.M.
line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... interaction are discussed: First we investigate the limits on the electron beam current that can be emitted from a space. craft without substantial spacecraft charging. This question is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...
Dayananda, Mathes; Zhang, Xiaohang; Butler, Carola; He, Xiaochun
2013-01-01
We report in this letter for the first time the numerical simulations of muon and neutron flux variations at the surface of the earth with varying air densities in the troposphere and stratosphere. The simulated neutron and muon flux variations are in very good agreement with the measured neutron flux variation in Oulu and the muon flux variation in Atlanta. We conclude from this study that the stratosphere air density variation dominates the effects on the muon flux changes while the density...
Jin, Xiaoyan; Qian, Zhaosheng; Lu, Bangmei; Yang, Wenjing; Bi, Shuping
2011-01-01
Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio.
Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet
International Nuclear Information System (INIS)
Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji
2012-01-01
The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)
International Nuclear Information System (INIS)
DePetris-Wery, M.; Wery, S.; Catonne, J.C.
2010-01-01
In this work, hydrogen permeation tests were performed on pure iron membrane in 1 M sodium hydroxide at 298 K, subjected to hydrogen charging under 'quasi-potentiostatic' polarization conditions, i.e. constant cell voltage applied between the cathode (membrane entry side) and the anode (counter electrode), which is a typical situation during metal electrodeposition or cathodic degreasing on steel in metal finishing industry. Two consecutive charging-discharging runs were carried out. Prolonged hydrogen charging under quasi-potentiostatic polarization was investigated and the change of cathodic current density (i in ) chg and electrode potential (E in ) chg as well as permeation current density (i out ) chg were analysed. Three singularities were underlined for each experiment: (i) the curve (i in ) chg = f((E in ) chg ), illustrating the inverse of hydrogen charge resistance R HC -1 evolution which was negative, equal to zero and then became positive; (ii) quasi-periodic instabilities during the R HC -1 zero period, probably induced by atomic reorganizing due to subsurface hydrogen insertion in the input-side; (iii) the same ratio (i out ) chg /(i in ) chg = -6 x 10 -5 . During discharge runs, both sides of the membrane were polarized at the same potential (E in ) dischg = (E out ) dischg = -0.285 V/Hg/HgO/NaOH 1 M and the current densities, (i in ) dischg and (i out ) dischg which corresponded to the desorption rates of hydrogen, were measured. The following correlation (i out ) dischg vs.(i in ) dischg = -6 x 10 -5 was confirmed leading us to introduce the R HC -1 mirror concept to observe the input-side subsurface reorganization by the survey of its potential vs. outside current density during the hydrogen charge. Thus, this R HC -1 mirror concept showed: (i) a non-stop and irreversible progress in the subsurface reorganization during the two permeations; (ii) a probable structural evolution to a stable subsurface structure, the only condition of a real steady
A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering
Mckenzie, Robert L.
1987-01-01
A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.
Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D
2015-10-08
Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.
Sadeghi Googheri, Motahare; Abolhassani, Mohammad Reza; Mirzaei, Mahmoud
2018-05-01
Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]-1 by halogen anions (Cl-, Br- and I- ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F- to I- the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]-1, replacement of hydroxyl by methoxy anion (OMe-) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH-) and amide (NH2-) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr-X bond strength and partial charges of involved atoms were the most effective factors on it.
Solar influence on meteor rates and atmospheric density variations at meteor heights
International Nuclear Information System (INIS)
Ellyett, C.
1977-01-01
A full analysis of radar-determined meteor rates from New Zealand, involving 3,085,574 meteors recorded over a total of 3 1/2 years, and 12,391,976 meteors recorded by the National Research Council of Canada in 8 1/2 years confirms an inverse relationship between meteor rates and solar activity as measured by sunspot numbers. The relationship, significant at the 1% level, appears in the Canadian annual average when the abnormal 1963 increase is removed, in monthly and 1/3-monthly results for the total Canadian period, and in monthly intervals for 1 year of the New Zealand data. This proven relationship of meteor rates with the solar cycle calls for a significant density gradient change over the solar cycle in the 70- to-120-km height range. Although some definite negative results have been reported, no unambiguous positive results are yet available supporting such a density gradient change. It is possible that density variations due to annual, semiannual, diurnal, and latitudinal changes obscure any 11-year density gradient change occurring at these heights. It is uncertain whether the 1963 increase represents density gradient changes in the meteor ablation region regularly brought about 1-2 years before each sunspot minimum or is a special event due to volcanic dust. The following additional facts have emerged from the present analysis. (1) Within a 1-year period the seasonal rate change of astronomical origin overrides any density gradient change in controlling the meteor rates in one of the two hemispheres. (2) The earth's daily rotation alters rates in phase with probable diurnal density gradient changes. (3) An effect due to D region absorption has been observed in the Canadian data
Energy Technology Data Exchange (ETDEWEB)
Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)
2014-05-15
The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.
International Nuclear Information System (INIS)
Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la
2001-01-01
With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen
Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro
2018-06-01
In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.
Directory of Open Access Journals (Sweden)
I. Morino
2010-08-01
Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.
Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.
2018-04-01
The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.
The Role of Neutral Atmospheric Dynamics in Cusp Density - 2nd Campaign
2013-12-30
density enhancement at the CHAMP altitude of 400 km. Then Clemmons et al. (2008) presented observations from Distribution A: Approved for public release...250 km. This appeared to contradict the CHAMP observations, so Clemmons et al. proposed that heating occurred at an altitude above Streak, caused by...temperatures less than 1000 K. The ion temperatures can be related to the speed of the plasma as shown by St Maurice and Hanson (1982) using the assumption
Manning, Robert M.
2015-01-01
A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
2000-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
1998-01-01
This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
Are fundamental constants really constant
International Nuclear Information System (INIS)
Norman, E.B.
1986-01-01
Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed
Directory of Open Access Journals (Sweden)
F Sohbatzadeh
2017-02-01
Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power
Quintessence and the cosmological constant
International Nuclear Information System (INIS)
Doran, M.; Wetterich, C.
2003-01-01
Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant
Directory of Open Access Journals (Sweden)
Pantana Tor-ngern
2016-09-01
Full Text Available Efficient water management in urban landscape is imperative under the projected increases in drought stress under future climate. Because different tree species have different stomatal regulations to prevent water loss under water limitation, comparative study of species-specific responses of water use to changing weather conditions will benefit selective planting of urban trees for sustainable urban greening management. Here, we performed a simple and short-term investigation of water use characteristics of three common street tree species in Bangkok, a major city in Southeast Asia. Species included Pterocarpus indicus (Pi, Swietenia macrophylla (Sm and Lagerstroemia speciosa (Ls. We used self-constructed heat dissipation probes to track water uptake rates, expressed as sap flux density (JS, in stems of potted trees and examined their diurnal variations with changing atmospheric humidity, represented by vapor pressure deficit (D. The results implied that two of the three species: Pi and Sm, may be selected for planting because their Js was less sensitive to changing D compared to Ls. The sap flux density of Ls increased more rapidly with rising D, implying higher sensitivity to drought in Ls, compared to the other two species. Nevertheless, further study on large trees and under longer period of investigation, covering both dry and wet seasons, is required to confirm this finding.
López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio
2011-08-05
A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.
Energy Technology Data Exchange (ETDEWEB)
Deenadayalu, Nirmala [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)], E-mail: NirmalaD@dut.ac.za; Kumar, Satish; Bhujrajh, Pravena [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)
2007-09-15
Excess molar volumes, V{sub m}{sup E} have been evaluated from density measurements over the entire composition range for ternary liquid system of ionic liquid (1-ethyl-3-methyl-imidazolium diethylenglycol monomethylether sulphate {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}]) (1) + methanol (2) + water (3){r_brace} at T = (298.15, 303.15, and 313.15) K. A vibrating tube densimeter was used for these measurements at atmospheric pressure. The V{sub m}{sup E} values were found to be negative at T = (298.15 and 303.15) K. For {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}] (1) + methanol (2) + water (3){r_brace} at T = 313.15 K the V{sub m}{sup E} values become positive at higher mole fraction of ionic liquid and at a corresponding decrease in mole fraction of water. All the experimental data were fitted with the Redlich-Kister equation. The results have also been analysed in term of graph theoretical approach.
Directory of Open Access Journals (Sweden)
A. Aguilar-Rios
2014-07-01
Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.
Es-sebbar, Et-touhami; Gherardi, Nicolas; Massines, Franç oise
2012-01-01
Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser
Energy Technology Data Exchange (ETDEWEB)
Wu Yurong [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Han Shaochang [Department of Applied Physics, Hunan University, Changsha 410082 (China)
2008-10-01
First-principles calculations have been used to study the elastic and electronic properties of ductility rare-earth alloy YM (M=Ag, Cu, Rh) systems. The ductility mechanism for these alloys is studied from microscopic aspect, via electronic density of states (DOS). The Fermi energy lies near a local minimum, and the hybridization is stronger than that of the common NiAl alloy, demonstrating that the ductility of these alloys is much better than that of NiAl alloy. Elastic modulus, namely, shear modulus C'=(C{sub 11}-C{sub 12})/2, bulk modulus B and C{sub 44} are calculated by volume-conserving orthorhombic, hydrostatic pressure and tri-axial shear strain, respectively. Moreover, lattice parameters, antiphase boundary (APB) energies and unstable stacking fault energies of these alloys are also studied. The APB energies are greater than the unstable stacking fault energies for these alloy systems, and this is a characteristic of the ductility rare-earth alloy. The APB energies of YRh are the highest ones in these three YM alloys, which make dislocation dissociation difficult. The DOS and APB energy results show that the ductility of YRh may be worst in these three YM systems.
International Nuclear Information System (INIS)
Wu Yurong; Hu Wangyu; Han Shaochang
2008-01-01
First-principles calculations have been used to study the elastic and electronic properties of ductility rare-earth alloy YM (M=Ag, Cu, Rh) systems. The ductility mechanism for these alloys is studied from microscopic aspect, via electronic density of states (DOS). The Fermi energy lies near a local minimum, and the hybridization is stronger than that of the common NiAl alloy, demonstrating that the ductility of these alloys is much better than that of NiAl alloy. Elastic modulus, namely, shear modulus C'=(C 11 -C 12 )/2, bulk modulus B and C 44 are calculated by volume-conserving orthorhombic, hydrostatic pressure and tri-axial shear strain, respectively. Moreover, lattice parameters, antiphase boundary (APB) energies and unstable stacking fault energies of these alloys are also studied. The APB energies are greater than the unstable stacking fault energies for these alloy systems, and this is a characteristic of the ductility rare-earth alloy. The APB energies of YRh are the highest ones in these three YM alloys, which make dislocation dissociation difficult. The DOS and APB energy results show that the ductility of YRh may be worst in these three YM systems
Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek
2018-03-01
This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.
Es-sebbar, Et-touhami
2012-11-27
Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.
Directory of Open Access Journals (Sweden)
Jason Herb
2011-02-01
Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.
Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.
2003-01-01
The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.
International Nuclear Information System (INIS)
Sang Chaofeng; Sun Jizhong; Wang Dezhen
2010-01-01
A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.
Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen
2010-02-01
A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
International Nuclear Information System (INIS)
Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.
2010-01-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB 6 ) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 μsx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H - ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
International Nuclear Information System (INIS)
Nicolaisen, Flemming M.
2009-01-01
IR absorption spectra, 4200-3100 cm -1 , of water in CCl 4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the 'extra' band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl 4 solution at T=296 K (K c =1.29 mol -1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (K p =0.035 atm -1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH 0 =15.4 kJ mol -1 .
International Nuclear Information System (INIS)
Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.
2011-01-01
Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.
International Nuclear Information System (INIS)
Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.
2013-01-01
Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %
Czech Academy of Sciences Publication Activity Database
Civiš, M.; Ferus, M.; Knížek, A.; Kubelík, P.; Karnas, M.; Španěl, P.; Dryahina, K.; Shestivska, V.; Juha, Libor; Skřehot, P.; Laitl, V.; Civiš, S.
2016-01-01
Roč. 18, č. 39 (2016), s. 27317-27325 ISSN 1463-9076 R&D Projects: GA MŠk LG15013; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : HIGH-POWER LASER * INDUCED DIELECTRIC-BREAKDOWN * EARTHS EARLY ATMOSPHERE Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.123, year: 2016
Czech Academy of Sciences Publication Activity Database
Kohout, Tomáš; Kallonen, A.; Suuronen, J.-P.; Rochette, P.; Hutzler, A.; Gattacceca, J.; Badjukov, D. D.; Skála, Roman; Böhmová, Vlasta; Čuda, J.
2014-01-01
Roč. 49, č. 7 (2014), s. 1157-1170 ISSN 1086-9379 R&D Projects: GA MŠk LH12079 Institutional support: RVO:67985831 Keywords : micrometeorite * tomography * density * porosity * meteoroid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.104, year: 2014
Czech Academy of Sciences Publication Activity Database
Kohout, Tomáš; Kallonen, A.; Suuronen, J.-P.; Rochette, P.; Hutzler, A.; Gattacceca, J.; Badjukov, D. D.; Skála, Roman; Böhmová, Vlasta; Čuda, J.
2014-01-01
Roč. 49, Special issue 1 (2014), A211-A211 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /77./. 08.09.2014-13.09.2014, Casablanca] Institutional support: RVO:67985831 Keywords : micrometeorite * tomography * density * porosity * meteoroid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hou.usra.edu/meetings/metsoc2014/pdf/5162.pdf
Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru
2018-05-01
To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.
Energy Technology Data Exchange (ETDEWEB)
Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)
2016-07-01
An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.
A natural cosmological constant from chameleons
International Nuclear Information System (INIS)
Nastase, Horatiu; Weltman, Amanda
2015-01-01
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
A natural cosmological constant from chameleons
Directory of Open Access Journals (Sweden)
Horatiu Nastase
2015-07-01
Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.
A natural cosmological constant from chameleons
Energy Technology Data Exchange (ETDEWEB)
Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)
2015-07-30
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
International Nuclear Information System (INIS)
Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.
2016-01-01
Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.
Directory of Open Access Journals (Sweden)
R. J. Sica
2007-11-01
Full Text Available The Purple Crow Lidar (PCL is a large power-aperture product monostatic Rayleigh-Raman-Sodium-resonance-fluorescence lidar, which has been in operation at the Delaware Observatory (42.9° N, 81.4° W, 237 m elevation near the campus of The University of Western Ontario since 1992. Kinetic-energy density has been calculated from the Rayleigh-scatter system measurements of density fluctuations at temporal-spatial scales relevant for gravity waves, e.g. soundings at 288 m height resolution and 9 min temporal resolution in the upper stratosphere and mesosphere. The seasonal averages from 10 years of measurements show in all seasons some loss of gravity-wave energy in the upper stratosphere. During the equinox periods and summer the measurements are consistent with gravity waves growing in height with little saturation, in agreement with the classic picture of the variations in the height at which gravity waves break given by Lindzen (1981. The mean values compare favourably to previous measurements when computed as nightly averages, but the high temporal-spatial resolution measurements show considerable day-to-day variability. The variability over a night is often extremely large, with typical RMS fluctuations of 50 to 100% at all heights and seasons common. These measurements imply that using a daily or nightly-averaged gravity-wave energy density in numerical models may be highly unrealistic.
Directory of Open Access Journals (Sweden)
Guilherme de Souza Moura
2008-09-01
Full Text Available Objetivou-se avaliar os efeitos da redução da densidade energética das dietas no desempenho de codornas japonesas em produção mantendo-se constante a relação energia metabolizável (EM:nutrientes. Foram utilizadas 400 codornas japonesas com peso inicial de 155 ± 15,5 g e 76 a 160 dias de idade, distribuídas em delineamento inteiramente casualizado, com cinco tratamentos (densidades energéticas: 2.900, 2.800, 2.700, 2.600 e 2.500 kcal de EM/kg, oito repetições e dez aves por unidade experimental. Observou-se diferença no consumo de ração e na conversão alimentar por massa e por dúzia de ovos relacionada ao nível energético da dieta. Entretanto, as dietas não influenciaram os consumos de EM, proteína bruta, lisina, metionina+cistina e treonina, a produção de ovos, a produção de ovos comercializáveis, o peso e a massa de ovo, a eficiência energética por massa de ovo e por dúzia de ovos, o ganho de peso e a viabilidade das aves. Para codornas japonesas em postura, dietas contendo 2.900 e 2.800 kcal de EM/kg proporcionam melhor conversão alimentar por massa e por dúzia de ovos, respectivamente, quando se mantém a relação EM:nutrientes.The aim of this experiment was to evaluate the effects of energetic density reduction in diets in the performance of Japanese quail, keeping constant the metabolizable energy (ME to nutrients ratio. A total of 400 Japanese quails with 155 g ± 5.5 g and 76 to 160 days old were distributes to a complete randomized experimental design with five energetic density, eight replicates and ten birds per experimental unit. Five energetic density in the diets was evaluated (2,900, 2,800, 2,700, 2,600, and 2,500 kcal ME/kg of diet keeping constant the metabolizable energy to nutrients ratio. The birds were fullfed during all experimental period. It was observed difference for feed intake, feed conversion per egg mass and feed conversion per egg dozen related to energy level in the diet. However
Carloganu, Cristina; Le Ménédeu, Eve
2016-04-01
High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013
Kim, D H; Lee, J M; Yeon, K H; Choi, S C
1998-01-01
A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.
Constant physics and characteristics of fundamental constant
International Nuclear Information System (INIS)
Tarrach, R.
1998-01-01
We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs
International Nuclear Information System (INIS)
Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie
2013-01-01
In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)
Burkhanov, G. S.; Dormidontov, N. A.; Kolchugina, N. B.; Dormidontov, A. G.
2018-04-01
The effect of heat treatments in manufacturing (Sm,Zr)(Co,Cu,Fe)Z-based permanent magnets sintered in a hydrogen atmosphere on their properties has been studied. It was shown that the dynamics of the magnetic hardening of the studied magnets during heat treatments, in whole, corresponds to available concepts of phase transformations in five-component precipitation-hardened SmCo-based alloys. Peculiarities of the studied compositions consist in the fact that the coercive force magnitude of magnets quenched from the isothermal aging temperature is higher by an order of magnitude than those available in the literature. It was noted that, in using the selected manufacturing procedure, the increase in the density of samples does not finish at the sintering stage but continues in the course of solid-solution heat treatment.
Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.
2018-05-01
Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated
Cosmological Hubble constant and nuclear Hubble constant
International Nuclear Information System (INIS)
Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru
2005-01-01
The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed
Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar
2017-10-01
In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.
FORMATION CONSTANTS AND THERMODYNAMIC ...
African Journals Online (AJOL)
KEY WORDS: Metal complexes, Schiff base ligand, Formation constant, DFT calculation ... best values for the formation constants of the proposed equilibrium model by .... to its positive charge distribution and the ligand deformation geometry.
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Hancock, Robert D; Bartolotti, Libero J
2005-10-03
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors
Low power constant fraction discriminator
International Nuclear Information System (INIS)
Krishnan, Shanti; Raut, S.M.; Mukhopadhyay, P.K.
2001-01-01
This paper describes the design of a low power ultrafast constant fraction discriminator, which significantly reduces the power consumption. A conventional fast discriminator consumes about 1250 MW of power whereas this low power version consumes about 440 MW. In a multi detector system, where the number of discriminators is very large, reduction of power is of utmost importance. This low power discriminator is being designed for GRACE (Gamma Ray Atmospheric Cerenkov Experiments) telescope where 1000 channels of discriminators are required. A novel method of decreasing power consumption has been described. (author)
Barclay, R. S.; Wing, S. L.
2013-12-01
The Paleocene-Eocene Thermal Maximum (PETM) was a geologically brief interval of intense global warming 56 million years ago. It is arguably the best geological analog for a worst-case scenario of anthropogenic carbon emissions. The PETM is marked by a ~4-6‰ negative carbon isotope excursion (CIE) and extensive marine carbonate dissolution, which together are powerful evidence for a massive addition of carbon to the oceans and atmosphere. In spite of broad agreement that the PETM reflects a large carbon cycle perturbation, atmospheric concentrations of CO2 (pCO2) during the event are not well constrained. The goal of this study is to produce a high resolution reconstruction of pCO2 using stomatal frequency proxies (both stomatal index and stomatal density) before, during, and after the PETM. These proxies rely upon a genetically controlled mechanism whereby plants decrease the proportion of gas-exchange pores (stomata) in response to increased pCO2. Terrestrial sections in the Bighorn Basin, Wyoming, contain macrofossil plants with cuticle immediately bracketing the PETM, as well as dispersed plant cuticle from within the body of the CIE. These fossils allow for the first stomatal-based reconstruction of pCO2 near the Paleocene-Eocene boundary; we also use them to determine the relative timing of pCO2 change in relation to the CIE that defines the PETM. Preliminary results come from macrofossil specimens of Ginkgo adiantoides, collected from an ~200ka interval prior to the onset of the CIE (~230-30ka before), and just after the 'recovery interval' of the CIE. Stomatal index values decreased by 37% within an ~70ka time interval at least 100ka prior to the onset of the CIE. The decrease in stomatal index is interpreted as a significant increase in pCO2, and has a magnitude equivalent to the entire range of stomatal index adjustment observed in modern Ginkgo biloba during the anthropogenic CO2 rise during the last 150 years. The inferred CO2 increase prior to the
Indian Academy of Sciences (India)
IAS Admin
The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...
Relaxing a large cosmological constant
International Nuclear Information System (INIS)
Bauer, Florian; Sola, Joan; Stefancic, Hrvoje
2009-01-01
The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.
International Nuclear Information System (INIS)
Magne, L; Pasquiers, S; Gadonna, K; Jeanney, P; Blin-Simiand, N; Jorand, F; Postel, C
2009-01-01
The absolute value of the hydroxyl radical was measured in the afterglow of an homogeneous photo-triggered discharge generated in N 2 /O 2 /H 2 O/C 2 H 6 mixtures, using a UV absorption diagnostic synchronized with the discharge current pulse. Measurements show that OH is efficiently produced even in the absence of water vapour in the mixture, and that the radical production is closely linked to the degradation kinetic of the hydrocarbon. Experimental results for dry mixtures, both for OH and for the removal of ethane in the discharge volume, are compared with predictions of a self-consistent 0D discharge and the kinetic model. It appears that the oxidation reaction of the ethane molecule by O( 3 P) atoms plays a minor role. Dissociation of the hydrocarbon through quenching collisions of the nitrogen metastable states are of great importance for a low oxygen concentration value. Also, the oxidation of ethane by O( 1 D) cannot be neglected at high oxygen concentration. The most probable exit channel for N 2 states quenching collisions by ethane is the production of ethene and hydrogen molecules. Afterwards C 2 H 4 should be dissociated to produce H and H 2 . As previously suggested from the study of the OH density time evolution in relative value, the recombination of H and O atoms appears as a main process for the production of OH in transient low temperature plasmas generated in atmospheric gases at high pressure. Another important reaction is the reduction of the HO 2 radical by O, this radical coming from the addition of H on the oxygen molecule. H atoms come from numerous kinetic processes, amongst which is the dissociation of ethene.
Cosmological constants and variations
International Nuclear Information System (INIS)
Barrow, John D
2005-01-01
We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates
The cosmological constant problem
International Nuclear Information System (INIS)
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs
Constant conditional entropy and related hypotheses
International Nuclear Information System (INIS)
Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín
2013-01-01
Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)
Energy Technology Data Exchange (ETDEWEB)
Muto, I. [Nippon Steel Corp., Tokyo (Japan)] Sugimoto, K. [Tohoku Univ., Sendai (Japan)
1998-08-15
Recently, stainless steel is increasing its demand for corrosion resistant building materials. Then, as it is necessary to develop and accelerating testing method capable of accurately estimating weatherability at sea side area, such testing method has no been developed yet because of difficulty to quantify corrosive environment relating to atmospheric corrosion phenomenon. As air temperature and relative humidity in outdoor change in complex, specific temperature and relative humidity cannot be used for their representative values. And, construction of corrosive factors such as sea salt particles, and so on are also much different at each area. However, at coastal area, a dew water dissolving the sea salt particles, so called droplets of chlorides aqueous solution is formed onto material surface. Then, in this study, on a base of drying and humidity absorption behavior and daily change behavior of temperature and humidity in outdoor, modeling of atmospheric corrosion environment was tried. An accelerating testing method according to this modeling was developed, long-term weathering test was compared with the corrosion behavior of the same steel, and validity of a new accelerating testing method was evaluated. 22 refs., 12 figs., 2 tabs.
Radiographic constant exposure technique
DEFF Research Database (Denmark)
Domanus, Joseph Czeslaw
1985-01-01
The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
International Nuclear Information System (INIS)
Chandra, R.
1977-01-01
On the grounds of the two correspondence limits, the Newtonian limit and the special theory limit of Einstein field equations, a modification of the cosmical constant has been proposed which gives realistic results in the case of a homogeneous universe. Also, according to this modification an explanation for the negative pressure in the steady-state model of the universe has been given. (author)
International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
International Nuclear Information System (INIS)
O Murchadha, N.
1991-01-01
The set of riemannian three-metrics with positive Yamabe constant defines the space of independent data for the gravitational field. The boundary of this set is investigated, and it is shown that metrics close to the boundary satisfy the positive-energy theorem. (Author) 18 refs
International Nuclear Information System (INIS)
Bertolami, Orfeu; Paramos, Jorge
2011-01-01
The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.
Improved Mars Upper Atmosphere Climatology
Bougher, S. W.
2004-01-01
The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the
Production in constant evolution
International Nuclear Information System (INIS)
Lozano, T.
2009-01-01
The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)
International Nuclear Information System (INIS)
Blake, J.B.; Dearborn, D.S.P.
1979-01-01
Small fluctuations in the solar constant can occur on timescales much shorter than the Kelvin time. Changes in the ability of convection to transmit energy through the superadiabatic and transition regions of the convection zone cause structure adjustments which can occur on a time scale of days. The bulk of the convection zone reacts to maintain hydrostatic equilibrium (though not thermal equilibrium) and causes a luminosity change. While small radius variations will occur, most of the change will be seen in temperature
Stabilized power constant alimentation
International Nuclear Information System (INIS)
Roussel, L.
1968-06-01
The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [fr
Yongquan, Han
2016-10-01
The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan
Connecting Fundamental Constants
International Nuclear Information System (INIS)
Di Mario, D.
2008-01-01
A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment
A Memorandum Report: Physical Constants of MCE
2016-08-01
the density and surface tension. In effect, this constant is a corrected molar volume = P = MS / = S / where P = Parachor M = molar volume ...3 3. Vapor Pressure of MCE Calculated from the Experimental Data by Method of Least Squares...values were obtained by averaging the determinations for each sample separately, and then averaging those values. **No average was calculated due to
Thermospheric density and satellite drag modeling
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Directory of Open Access Journals (Sweden)
Neal Jackson
2015-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
International Nuclear Information System (INIS)
Willson, R.C.; Hudson, H.
1984-01-01
The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots
Determining Atmospheric Pressure Using a Water Barometer
Lohrengel, C. Frederick, II; Larson, Paul R.
2012-01-01
The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…
International Nuclear Information System (INIS)
Frenzen, P.
1975-01-01
The relation between the Kolmogorov and von Karman constants in the atmospheric surface boundary layer appropriate to the special conditions of neutrally stratified and locally dissipating flow is essentially a straightforward combination of the logarithmic wind profile, the one-dimensional spectral relation for turbulent energy density in the inertial subrange, and a reduced turbulent energy equation that balances the dissipation rate with a mechanical production term alone. The effects of the stability-dependent, dimensionless wind shear, the diabatic wind profile (an integral of the above), on the complete energy equation are discussed
Czech Academy of Sciences Publication Activity Database
Sovová, Kristýna; Matulková, Irena; Kamas, Michal; Dryahina, Kseniya; Španěl, Patrik; Juha, Libor; Civiš, Svatopluk
2009-01-01
Roč. 39, 3-4 (2009), s. 249-250 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : SIFT-MS * plasma * atmosphere Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009
Czech Academy of Sciences Publication Activity Database
Civiš, Svatopluk; Juha, Libor; Jehlička, J.
2007-01-01
Roč. 7, č. 3 (2007), s. 503-503 ISSN 1531-1074. [Bioastronomy 2007. 16.07.2007-20.07.2007, San Juach] R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : planetary atmospheres * high-power lasers Subject RIV: CF - Physical ; Theoretical Chemistry
Fair weather atmospheric electricity
International Nuclear Information System (INIS)
Harrison, R G
2011-01-01
Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.
The Heating of the Solar Atmosphere: from the Bottom Up?
Winebarger, Amy
2014-01-01
The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.
DEFF Research Database (Denmark)
Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr
2015-01-01
The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...
Chandra Independently Determines Hubble Constant
2006-08-01
light years from Earth. These results do not rely on the traditional distance ladder. Bonamente and his colleagues find the Hubble constant to be 77 kilometers per second per megaparsec (a megaparsec is equal to 3.26 million light years), with an uncertainty of about 15%. This result agrees with the values determined using other techniques. The Hubble constant had previously been found to be 72, give or take 8, kilometers per second per megaparsec based on Hubble Space Telescope observations. The new Chandra result is important because it offers the independent confirmation that scientists have been seeking and fixes the age of the Universe between 12 and 14 billion years. Chandra X-ray Image of CL J1226.9+3332 Chandra X-ray Image of CL J1226.9+3332 "These new results are entirely independent of all previous methods of measuring the Hubble constant," said team member Marshall Joy also of MSFC. The astronomers used a phenomenon known as the Sunyaev-Zeldovich effect, where photons in the cosmic microwave background (CMB) interact with electrons in the hot gas that pervades the enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. The magnitude of this distortion depends on the density and temperature of the hot electrons and the physical size of the cluster. Using radio telescopes to measure the distortion of the microwave background and Chandra to measure the properties of the hot gas, the physical size of the cluster can be determined. From this physical size and a simple measurement of the angle subtended by the cluster, the rules of geometry can be used to derive its distance. The Hubble constant is determined by dividing previously measured cluster speeds by these newly derived distances. Chandra X-ray Image of Abell 1689 Chandra X-ray Image of Abell 1689 This project was championed by Chandra's telescope mirror designer, Leon Van Speybroeck, who passed
Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules
Energy Technology Data Exchange (ETDEWEB)
Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)
1981-04-01
The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.
Effects of quantum entropy on bag constant
International Nuclear Information System (INIS)
Miller, D.E.; Tawfik, A.
2012-01-01
The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)
1995-08-01
about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the
Association constants of telluronium salts
International Nuclear Information System (INIS)
Kovach, N.A.; Rivkin, B.B.; Sadekov, T.D.; Shvajka, O.P.
1996-01-01
Association constants in acetonitrile of triphenyl telluronium salts, which are dilute electrolytes, are determined through the conductometry method. Satisfactory correlation dependence of constants of interion association and threshold molar electroconductivity on the Litvinenko-Popov constants for depositing groups is identified. 6 refs
Anisotropic constant-roll inflation
Energy Technology Data Exchange (ETDEWEB)
Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)
2018-01-15
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)
The Nature of the Cosmological Constant Problem
Maia, M. D.; Capistrano, A. J. S.; Monte, E. M.
General relativity postulates the Minkowski space-time as the standard (flat) geometry against which we compare all curved space-times and also as the gravitational ground state where particles, quantum fields and their vacua are defined. On the other hand, experimental evidences tell that there exists a non-zero cosmological constant, which implies in a deSitter ground state, which not compatible with the assumed Minkowski structure. Such inconsistency is an evidence of the missing standard of curvature in Riemann's geometry, which in general relativity manifests itself in the form of the cosmological constant problem. We show how the lack of a curvature standard in Riemann's geometry can be fixed by Nash's theorem on metric perturbations. The resulting higher dimensional gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity represents a gravitational term which is not confined. In this case, the comparison between the vacuum energy and the cosmological constant in general relativity does not make sense. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear
Hendricks, Eric A.; Bell, Michael M.; Elsberry, Russell L.; Velden, Chris S.; Cecil, Dan
2016-01-01
Background: Initialization of tropical cyclones in numerical weather prediction (NWP) systems is a great challenge: Mass-wind ?eld balance; Secondary circulation and heating; Asymmetries. There can be large adjustments in structure and intensity in the ?rst 24 hours if the initial vortex is not in balance: Spurious gravity waves; Spin-up (model and physics). Existing mesoscale NWP model TC (Tropical Cyclone) initialization strategies: Bogus vortex, cold start from global analyses; 3DVAR or 4DVAR, possibly with synthetic observations; EnKF (Ensemble Kalman Filter); Dynamic initialization. Dynamic initialization allows vortex to have improved balance and physics spin-up at the initial time (e.g., Hendricks et al. 2013, 2011; Nguyen and Chen 2011; Fiorino and Warner 1981; Hoke and Anthes 1976). Himawari-8 geostationary satellite has capability of continuous imagery (10-minutes) over the full disk: New GOES-R satellites will have same capability. This will allow for unprecedented observations of tropical cyclones. However, current data assimila1on systems are not capable of ingesting such high temporal observations (Atmospheric Mo1on Vectors - AMVs). Hourly AMVs are produced, and thinned to 100-kilometer spacing in the horizontal. An entirely new data assimilation concept is required to utilize these observations.
International Nuclear Information System (INIS)
Allison, M.; Travis, L.D.
1986-10-01
A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers
Daylight calculations using constant luminance curves
Energy Technology Data Exchange (ETDEWEB)
Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda
2005-02-01
This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)
Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi
2018-04-01
Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.
Fröba, Andreas P; Kremer, Heiko; Leipertz, Alfred
2008-10-02
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the
Atmospheric Habitable Zones in Y Dwarf Atmospheres
Energy Technology Data Exchange (ETDEWEB)
Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)
2017-02-20
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
Energy Technology Data Exchange (ETDEWEB)
Palacios, E. [Universidad Politecnica de Madrid (Spain). Departamento de Mecanica Industrial; Nogueira, J.; Rodriguez, P.A.; Lecuona, A. [Universidad Carlos III de Madrid (Spain). Departamento de Ingenieria Termica y de Fluidos
2009-02-15
This work presents and characterizes the existence of two different regimes in the spreading and break-up of liquid flat-fan sheets when discharging in low-density atmospheres. The motivation of the study is the improvement on the absorption phenomena of lithium bromide aqueous solution when discharging in a 600-1,500 Pa water vapor environment. This corresponds to the absorber conditions in current absorption closed-cycle cooling machines. Despite this, the dimensionless characterization obtained has universal validity. The conditions that define the change in the break-up regime, the dimensionless sheet break-up length and the break-up time are given as a function of the parameters involved. Digital particle tracking velocimetry (PTV) has been applied to measure the velocity field and additional visualization techniques have been used to further characterize the break-up process. The experiments verify the existence of critical gas-to-liquid density and viscosity ratios below which gas to liquid interaction becomes negligible. The article also offers expressions that define their values as a function of the other dimensionless parameters. (orig.)
International Nuclear Information System (INIS)
Gruetter, Juerg
1997-01-01
It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination
Spectrophotometric determination of association constant
DEFF Research Database (Denmark)
2016-01-01
Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charge...
Some Dynamical Effects of the Cosmological Constant
Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.
Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.
International Nuclear Information System (INIS)
Hegg, D A; Baker, M B
2009-01-01
Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous
TASI Lectures on the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael
2007-08-30
The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.
Dynamic measurements of the elastic constants of glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
2005-01-01
. But a new mechanical design, which reduces mechanical resonance, is described. The measurements were carried out in atmospheric air at normal pressure, and this causes an oscillatory airflow in the sample. To obtain the elastic constants, the influence of the airflow was subtracted from the data by a new...
Varying Constants, Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
Jean-Philippe Uzan
2011-03-01
Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Stabilized power constant alimentation; Alimentation regulee a puissance constante
Energy Technology Data Exchange (ETDEWEB)
Roussel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)
From the Rydberg constant to the fundamental constants metrology
International Nuclear Information System (INIS)
Nez, F.
2005-06-01
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Simple liquid models with corrected dielectric constants
Fennell, Christopher J.; Li, Libo; Dill, Ken A.
2012-01-01
Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577
International Nuclear Information System (INIS)
Van de Water, P.K.; Leavitt, S.W.; Betancourt, J.L.
1994-01-01
Measurements of stomatal density and delta 13C of limber pine (Pinus flexilis) needles (leaves) preserved in pack rat middens from the Great Basin reveal shifts in plant physiology and leaf morphology during the last 30,000 years. Sites were selected so as to offset glacia to Holocene climatic differences and thus to isolate the effects of changing atmospheric CO2 levels. Stomatal density decreased approximately 17 percent and delta 13C decreased approximately 1.5 per ml during deglaciation from 15,000 to 12,000 years ago, concomitant with a 30 percent increase in atmospheric CO2. Water-use efficiency increased approximately 15 percent during deglaciation, if temperature and humidity were held constant and the proxy values for CO2 and delta 13C of past atmospheres are accurate. The delta 13C variations may help constrain hypotheses about the redistribution of carbon between the atmosphere and biosphere during the last glacial-interglacial cycle
Energy Technology Data Exchange (ETDEWEB)
Nez, F
2005-06-15
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Systematics of constant roll inflation
Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.
2018-02-01
We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
Time variable cosmological constants from the age of universe
International Nuclear Information System (INIS)
Xu Lixin; Lu Jianbo; Li Wenbo
2010-01-01
In this Letter, time variable cosmological constant, dubbed age cosmological constant, is investigated motivated by the fact: any cosmological length scale and time scale can introduce a cosmological constant or vacuum energy density into Einstein's theory. The age cosmological constant takes the form ρ Λ =3c 2 M P 2 /t Λ 2 , where t Λ is the age or conformal age of our universe. The effective equation of state (EoS) of age cosmological constant are w Λ eff =-1+2/3 (√(Ω Λ ))/c and w Λ eff =-1+2/3 (√(Ω Λ ))/c (1+z) when the age and conformal age of universe are taken as the role of cosmological time scales respectively. The EoS are the same as the so-called agegraphic dark energy models. However, the evolution histories are different from the agegraphic ones for their different evolution equations.
DEFF Research Database (Denmark)
Schmidt, Ulrik
Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...
Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.
Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan
2014-03-24
Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.
Universal relation between spectroscopic constants
Indian Academy of Sciences (India)
(3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.
Tachyon constant-roll inflation
Mohammadi, A.; Saaidi, Kh.; Golanbari, T.
2018-04-01
The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.
Stabilized power constant alimentation; Alimentation regulee a puissance constante
Energy Technology Data Exchange (ETDEWEB)
Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)
International Nuclear Information System (INIS)
Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.
1989-01-01
Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references
Chalmers, J Alan
1957-01-01
Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d
Vibronic coupling density and related concepts
International Nuclear Information System (INIS)
Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi
2013-01-01
Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.
Evolution of the solar constant
International Nuclear Information System (INIS)
Newman, M.J.
1978-01-01
The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales
Calculation of magnetic hyperfine constants
International Nuclear Information System (INIS)
Bufaical, R.F.; Maffeo, B.; Brandi, H.S.
1975-01-01
The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used
On the gravitational constant change
International Nuclear Information System (INIS)
Milyukov, V.K.
1986-01-01
The nowadays viewpoint on the problem of G gravitational constant invariability is presented in brief. The methods and results of checking of the G dependence on the nature of substance (checking of the equivalence principle), G dependepce on distance (checking of Newton gravity law) and time (cosmological experiments) are presented. It is pointed out that all performed experiments don't give any reasons to have doubts in G constancy in space and time and G independence on the nature of the substance
Photodissociation constant of NO2
International Nuclear Information System (INIS)
Nootebos, M.A.; Bange, P.
1992-01-01
The velocity of the dissociation of NO 2 into ozone and NO mainly depends on the ultraviolet sunlight quantity, and with that the cloudiness. A correct value for this reaction constant is important for the accurate modelling of O 3 - and NO 2 -concentrations in plumes of electric power plants, in particular in the case of determination of the amount of photochemical summer smog. An advanced signal processing method (deconvolution, correlation) was applied on the measurements. The measurements were carried out from aeroplanes
Schlichting, Hilke E.; Mukhopadhyay, Sujoy
2018-02-01
} ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.
Rate constant for reaction of atomic hydrogen with germane
Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.
1990-01-01
Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.
Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development
Gibson, M. Alan; Thomas, Susan; Wilson, Robert
1991-01-01
The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.
DEFF Research Database (Denmark)
Kinch, Sofie
2011-01-01
This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...
International Nuclear Information System (INIS)
Volland, H.
1984-01-01
The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work
Gandy, Matthew
2017-07-01
What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.
A comment on technical naturalness and the cosmological constant
International Nuclear Information System (INIS)
Itzhaki, Nissan
2006-01-01
We propose a model of dynamical relaxation of the cosmological constant. Technical naturalness of the model and the present value of the vacuum energy density imply an upper bound on the supersymmetry breaking scale and the reheating temperature at the TeV scale
Comparison between constant methanol feed and on-line ...
African Journals Online (AJOL)
Two methanol feeding methods, namely constant methanol feed and on-line monitoring feed control by methanol sensor were investigated to improve the production of recombinant human growth hormone (rhGH) in high cell density cultivation of Pichia pastoris KM71 in 2 L bioreactor. The yeast utilized glycerol as a carbon ...
Analytic formulation of neutrino oscillation probability in constant matter
International Nuclear Information System (INIS)
Kimura, Keiichi; Takamura, Akira; Yokomakura, Hidekazu
2003-01-01
In this paper, based on the work (Kimura K et al 2002 Phys. Lett. B 537 86) we present the simple derivation of an exact and analytic formula for neutrino oscillation probability. We consider three flavour neutrino oscillations in matter with constant density
Radiation transfer and stellar atmospheres
Swihart, T. L.
This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.
Fine-structure constant: Is it really a constant
International Nuclear Information System (INIS)
Bekenstein, J.D.
1982-01-01
It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level
The Einstein static universe with torsion and the sign problem of the cosmological constant
International Nuclear Information System (INIS)
Boehmer, C G
2004-01-01
In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalizing the Einstein cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested
Aplin, Karen; Fischer, Georg
2018-02-01
Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System
Dynamics of the cosmological and Newton’s constant
International Nuclear Information System (INIS)
Smolin, Lee
2016-01-01
A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density. (paper)
Smoothing densities under shape constraints
Davies, Paul Laurie; Meise, Monika
2009-01-01
In Davies and Kovac (2004) the taut string method was proposed for calculating a density which is consistent with the data and has the minimum number of peaks. The main disadvantage of the taut string density is that it is piecewise constant. In this paper a procedure is presented which gives a smoother density by minimizing the total variation of a derivative of the density subject to the number, positions and heights of the local extreme values obtained from the taut string density. 2...
Cryptography in constant parallel time
Applebaum, Benny
2013-01-01
Locally computable (NC0) functions are 'simple' functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simplicity and simultaneously provide a high level of security. Such constructions are highly parallelizable and they can be realized by Boolean circuits of constant depth.This book establishes, for the first time, the possibility of local implementations for many basic cryptographic primitives such as one-way func
Can coupling constants be related
International Nuclear Information System (INIS)
Nandi, Satyanarayan; Ng, Wing-Chiu.
1978-06-01
We analyze the conditions under which several coupling constants in field theory can be related to each other. When the relation is independent of the renormalization point, the relation between any g and g' must satisfy a differential equation as follows from the renormalization group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-series relation for various theories, especially the Weinberg-Salam type (including Higgs bosons) with an arbitrary number of quark and lepton flavors. (orig./WL) [de
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Hydrodynamic constants from cosmic censorship
International Nuclear Information System (INIS)
Nakamura, Shin
2008-01-01
We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)
International Nuclear Information System (INIS)
Das, M.P.
1984-07-01
The state of the art of the density functional formalism (DFT) is reviewed. The theory is quantum statistical in nature; its simplest version is the well-known Thomas-Fermi theory. The DFT is a powerful formalism in which one can treat the effect of interactions in inhomogeneous systems. After some introductory material, the DFT is outlined from the two basic theorems, and various generalizations of the theorems appropriate to several physical situations are pointed out. Next, various approximations to the density functionals are presented and some practical schemes, discussed; the approximations include an electron gas of almost constant density and an electron gas of slowly varying density. Then applications of DFT in various diverse areas of physics (atomic systems, plasmas, liquids, nuclear matter) are mentioned, and its strengths and weaknesses are pointed out. In conclusion, more recent developments of DFT are indicated
Formas estructurales de fuerza constante
Directory of Open Access Journals (Sweden)
Zalewski, Waclaw
1963-05-01
Full Text Available The author seeks to prove the need to obtain the most essential form in the various types of structures by applying a number of rational principles, of which the constant stress principle is one of the most decisive. The structural form should be a logical consequence of all its functional circumstances, and this requires a clear understanding of the general behaviour of each part of the structure, and also of the main stresses which operate on it, considered as a unitary whole. To complete his theoretical argument, the author gives some examples, in the design of which the criterion of constant stress has been adopted. The author considers the various aspects which are involved in obtaining a structural design that satisfies given functional and aesthetic requirements. In doing so he refers to his personal experience within Poland, and infers technical principles of general validity which should determine the rational design of the form, as an integrated aspect of the structural pattern. The projects which illustrate this paper are Polish designs of undoubted constructive significance, in which the principle of constant stress has been applied. Finally the author condenses his whole theory in a simple and straightforward practical formula, which should be followed if a truly rational form is to be achieved: the constancy of stress in the various structural elements.El autor se esfuerza en mostrar la necesidad de llegar a la forma real en las distintas estructuras siguiendo una serie de principios racionales, entre los que domina el criterio de la fuerza constante. La forma ha de ser una consecuencia lógica en todos sus aspectos, y esto exige un claro conocimiento del comportamiento general de cada una de las partes de la estructura, y de los esfuerzos generales que dominan en la misma al considerarla como un todo. Para completar la exposición de orden teórico, el autor presenta algunos ejemplos en cuyo proyecto se ha seguido el criterio de
International Nuclear Information System (INIS)
Maslov, V.M.
1998-01-01
Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)
Moroz, V.; Murdin, P.
2001-07-01
The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...
Holographic magnetisation density waves
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)
2016-10-10
We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...
Constant Proportion Debt Obligations (CPDOs)
DEFF Research Database (Denmark)
Cont, Rama; Jessen, Cathrine
2012-01-01
be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...
Energy, stability and cosmological constant
International Nuclear Information System (INIS)
Deser, S.
1982-01-01
The definition of energy and its use in studying stability in general relativity are extended to the case when there is a nonvanishing cosmological constant Λ. Existence of energy is first demonstrated for any model (with arbitrary Λ). It is defined with respect to sets of solutions tending asymptotically to any background space possessing timelike Killing symmetry, and is both conserved and of flux integral form. When Λ O, small excitations about De Sitter space are stable inside the event horizon. Outside excitations can contribute negatively due to the Killing vector's flip at the horizon. This is a universal phenomenon associated with the possibility of Hawking radiation. Apart from this effect, the Λ>O theory appears to be stable, also at the semi-classical level. (author)
Filament instability under constant loads
Monastra, A. G.; Carusela, M. F.; D’Angelo, M. V.; Bruno, L.
2018-04-01
Buckling of semi-flexible filaments appears in different systems and scales. Some examples are: fibers in geophysical applications, microtubules in the cytoplasm of eukaryotic cells and deformation of polymers freely suspended in a flow. In these examples, instabilities arise when a system’s parameter exceeds a critical value, being the Euler force the most known. However, the complete time evolution and wavelength of buckling processes are not fully understood. In this work we solve analytically the time evolution of a filament under a constant compressive force in the small amplitude approximation. This gives an insight into the variable force scenario in terms of normal modes. The evolution is highly sensitive to the initial configuration and to the magnitude of the compressive load. This model can be a suitable approach to many different real situations.
Evolution of the solar 'constant'
Energy Technology Data Exchange (ETDEWEB)
Newman, M J
1980-06-01
Variations in solar luminosity over geological time are discussed in light of the effect of the solar constant on the evolution of life on earth. Consideration is given to long-term (5 - 7% in a billion years) increases in luminosity due to the conversion of hydrogen into helium in the solar interior, temporary enhancements to solar luminosity due to the accretion of matter from the interstellar medium at intervals on the order of 100 million years, and small-amplitude rapid fluctuations of luminosity due to the stochastic nature of convection on the solar surface. It is noted that encounters with dense interstellar clouds could have had serious consequences for life on earth due to the peaking of the accretion-induced luminosity variation at short wavelengths.
Asympotics with positive cosmological constant
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
The fundamental constants a mystery of physics
Fritzsch, Harald
2009-01-01
The speed of light, the fine structure constant, and Newton's constant of gravity — these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist
Massey, Harrie; Potter, A. E.
1961-01-01
The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.
Value of the Cosmological Constant in Emergent Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig [Fermilab
2018-03-30
It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence length $\\approx 100$km and bandwidth $\\approx 3000$ Hz.
Neutron star model atmospheres - a comparison with MXB 1728-34
International Nuclear Information System (INIS)
Foster, A.J.; Fabian, A.C.; Ross, R.R.
1986-01-01
A detailed comparison between the X-ray spectra calculated for model atmospheres in neutron stars and the observed spectra of X-ray bursts is presented. Comptonization and free - free absorption and emission processes are taken into account, as are the effects of iron in its last three states of ionization. Two types of model are formulated: (i) a constant density atmosphere and (ii) an atmosphere in approximate hydrostatic equilibrium. The models have been fitted to X-ray burst data obtained with EXOSAT from the source MXB 1728-34. It is possible simultaneously to fit a sub-Eddington burst luminosity, a neutron star radius consistent with current equations of state, and a distance in agreement with optical estimates. (author)
Ionization Efficiency in the Dayside Martian Upper Atmosphere
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
Higgs inflation and the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2014-02-15
The Higgs not only induces the masses of all SM particles, the Higgs, given its special mass value, is the natural candidate for the inflaton and in fact is ruling the evolution of the early universe, by providing the necessary dark energy which remains the dominant energy density. SM running couplings not only allow us to extrapolate SM physics up to the Planck scale, but equally important they are triggering the Higgs mechanism. This is possible by the fact that the bare mass term in the Higgs potential changes sign at about μ{sub 0}≅1.40 x 10{sup 16} GeV and in the symmetric phase is enhanced by quadratic terms in the Planck mass. Such a huge Higgs mass term is able to play a key role in triggering inflation in the early universe. In this article we extend our previous investigation by working out the details of a Higgs inflation scenario. We show how different terms contributing to the Higgs Lagrangian are affecting inflation. Given the SM and its extrapolation to scales μ>μ{sub 0} we find a calculable cosmological constant V(0) which is weakly scale dependent and actually remains large during inflation. This is different to the Higgs fluctuation field dependent ΔV(φ), which decays exponentially during inflation, and actually would not provide a sufficient amount of inflation. The fluctuation field has a different effective mass which shifts the bare Higgs transition point to a lower value μ'{sub 0} ≅7.7 x 10{sup 14} GeV. The vacuum energy V(0) being proportional to M{sub Pl}{sup 4} has a coefficient which vanishes near the Higgs transition point, such that the bare and the renormalized cosmological constant match at this point. The role of the Higgs in reheating and baryogenesis is emphasized.
Atmospheric pollution in Lisbon urban atmosphere
Oliveira, C.
2009-04-01
Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmwork are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia". C. Oliveira thanks Project PAHLIS his scholarship.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
International Nuclear Information System (INIS)
Lambrozo, J.; Guillossou, G.
2008-01-01
The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)
Experimental level densities of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)
2015-12-15
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Arrhenius Rate: constant volume burn
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-06
A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.
DEFF Research Database (Denmark)
Garnett, E S; Webber, C E; Coates, G
1977-01-01
The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....
GENERATION OF GROUND ATMOSPHERE α-, β- AND γ-FIELDS BY NATURAL ATMOSPHERIC RADIONUCLIDES
Directory of Open Access Journals (Sweden)
V.S. Yakovleva
2014-06-01
Full Text Available The results of numerical investigation of influence of atmospheric turbulence, wind speed and direction as well as radon and thoron flux density from the soil on characteristics of atmospheric α-, β- and γ-radiation fields, which created by atmospheric radon, thoron and their short-lived decay products, are represented and analyzed in the work. It was showed that variation of radon and thoron flux densities from the earth surface changes yields and flux densities of α-, β- and γ-radiation in the ground atmosphere proportionally but does not change a form of their vertical profile.
DEFF Research Database (Denmark)
Højlund, Marie; Kinch, Sofie
2014-01-01
Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...
International Nuclear Information System (INIS)
Igor Kaganovich
2000-01-01
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas
Observations of CO in Titan's Atmosphere Using ALMA
Serigano, Joseph; Nixon, Conor A.; Cordiner, Martin; Irwin, Patrick G. J.; Teanby, Nicholas; Charnley, Steven B.; Lindberg, Johan E.; Remijan, Anthony J.
2015-11-01
The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has provided a powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the dense, nitrogen-dominated atmosphere of Titan, photodissociation of molecular nitrogen and methane leads to a wealth of complex hydrocarbons and nitriles in small abundances. Past millimeter/submillimeter observations, including ground-based observations as well as those by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, have proven the significance of this wavelength region for the derivation of vertical mixing profiles, latitudinal and seasonal variations, and molecular detections. Previous ALMA studies of Titan have presented mapping and vertical column densities of hydrogen isocyanide (HNC) and cyanoacetylene (HC3N) (Cordiner et al. 2014) as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan’s atmosphere (Cordiner et al. 2015).Here, we report several submillimetric observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C17O in Titan’s atmosphere obtained with flux calibration data from the ALMA Science Archive. We employ NEMESIS, a line-by-line radiative transfer code, to determine the stratospheric abundances of these molecules. The abundance of CO in Titan's atmosphere is determined to be approximately 50±1 ppm, constant with altitude, and isotopic ratios are determined to be approximately 12C/13C = 90, 16O/18O = 470, and 16O/17O = 2800. This report presents the first spectroscopic detection of C17O in the outer solar system, detected at >11σ confidence. This talk will focus on isotopic ratios in CO in Titan's atmosphere and will compare our results to previously measured values for Titan and other bodies in the Solar System. General implications for the history of Titan from measurements of CO and its isotopologues will be
Synthetic Strategies for High Dielectric Constant Silicone Elastomers
DEFF Research Database (Denmark)
Madsen, Frederikke Bahrt
synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...
Capacitive Cells for Dielectric Constant Measurement
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
The Dielectric Constant of Lubrication Oils
National Research Council Canada - National Science Library
Carey, A
1998-01-01
The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...
Globally Coupled Chaotic Maps with Constant Force
International Nuclear Information System (INIS)
Li Jinghui
2008-01-01
We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.
STABILITY CONSTANT OF THE TRISGLYCINATO METAL ...
African Journals Online (AJOL)
DR. AMINU
overall stability constants of the complexes were found to be similar. Keywords: Glycinato, titration ... +. −. = 1 where Ka = dissociation constant of the amino acid. [ ]+. H = concentration of the .... Synthesis and techniques in inorganic chemistry.
Gladstone-Dale constant for CF4. [experimental design
Burner, A. W., Jr.; Goad, W. K.
1980-01-01
The Gladstone-Dale constant, which relates the refractive index to density, was measured for CF4 by counting fringes of a two-beam interferometer, one beam of which passes through a cell containing the test gas. The experimental approach and sources of systematic and imprecision errors are discussed. The constant for CF4 was measured at several wavelengths in the visible region of the spectrum. A value of 0.122 cu cm/g with an uncertainty of plus or minus 0.001 cu cm/g was determined for use in the visible region. A procedure for noting the departure of the gas density from the ideal-gas law is discussed.
An approach to the cosmological constant problem(s)
International Nuclear Information System (INIS)
Kane, Gordon L.; Perry, Malcolm J.; Z-dot ytkow, Anna N.
2005-01-01
We argue that in the context of string theory a large number N of connected degenerate supersymmetric vacua will lead to a ground state for the universe with a small, non-zero cosmological constant. For concreteness, we imagine a history where quantum fluctuations in any one vacuum give an energy density ∼H 2 m pl 2 but the universe quickly cascades to a state of energy density ∼H 2 m pl 2 /N at the beginning of inflation. A similar process can occur at the electroweak and other phase transitions. The wavefunction of the universe becomes a superposition of many string vacua
Magnetically modified biocells in constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)
2017-02-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.
A new cosmological paradigm: the cosmological constant and dark matter
International Nuclear Information System (INIS)
Krauss, L.M.
1998-01-01
The Standard Cosmological Model of the 1980 close-quote s is no more. I describe the definitive evidence that the density of matter is insufficient to result in a flat universe, as well as the mounting evidence that the cosmological constant is not zero. I finally discuss the implications of these results for particle physics and direct searches for non-baryonic dark matter. copyright 1998 American Institute of Physics
Statistical Modelling of the Soil Dielectric Constant
Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy
2010-05-01
The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of
Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology
Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.
2017-12-01
The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia
2016-02-01
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Distance constant of the Risø cup anemometer
DEFF Research Database (Denmark)
Kristensen, L.; Frost Hansen, O.
2002-01-01
The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor...... and the increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind speed asmeasured by the cup anemometer and a fast-responding sonic anemometer with a spatial eddy...... resolution which is significantly better than that which can be obtained by a cup anemometer. The ratio between the measured power spectra of the horizontal windspeed by the two instruments contains the necessary information for determining the response characteristics of the cup anemometer and thereby lo...
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle
International Nuclear Information System (INIS)
Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.
2014-01-01
The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling
... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...
Investigation of the characteristics of atmospheric pressure surface barrier discharges
International Nuclear Information System (INIS)
Zhang Rui; Zhan Rujuan; Wen Xiaohui; Wang Lei
2003-01-01
Experiments were performed on atmospheric pressure surface barrier discharges. Two types of panels were used. Both have pectinate high voltage electrodes on their upper surface, but the difference is that in type I, the grounded electrode consists of the same pectinate electrodes on the lower surface, whereas type II has an extended grounded plane electrode on the lower surface. The excitation temperature was determined from a Fermi-Dirac model and a temperature near 0.7 eV is obtained. The electron density was estimated from an electrical conductivity approach (Ohmic heating model) - an equivalent circuit model is proposed and the electron density is found to be of the order of 10 11 cm -3 . The electrical behaviour was studied, and it was found that the average power consumed in the discharge plasma increases with increasing strip width in the type I discharge, whereas it remains almost constant with increasing strip width in the type II discharge. The average discharge power remains almost constant with variation in the strip-to-strip distance. The type II discharge consumes much higher average discharge power than type I. We also find that panels with a larger height of high voltage electrodes can generate brighter and thicker discharge plasmas. The equivalent circuit model was used to interpret these phenomena
Niemeijer, Sander
2017-04-01
The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and
CODATA recommended values of the fundamental constants
International Nuclear Information System (INIS)
Mohr, Peter J.; Taylor, Barry N.
2000-01-01
A review is given of the latest Committee on Data for Science and Technology (CODATA) adjustment of the values of the fundamental constants. The new set of constants, referred to as the 1998 values, replaces the values recommended for international use by CODATA in 1986. The values of the constants, and particularly the Rydberg constant, are of relevance to the calculation of precise atomic spectra. The standard uncertainty (estimated standard deviation) of the new recommended value of the Rydberg constant, which is based on precision frequency metrology and a detailed analysis of the theory, is approximately 1/160 times the uncertainty of the 1986 value. The new set of recommended values as well as a searchable bibliographic database that gives citations to the relevant literature is available on the World Wide Web at physics.nist.gov/constants and physics.nist.gov/constantsbib, respectively
Czech Academy of Sciences Publication Activity Database
Valtz, A.; Teodorescu, M.; Wichterle, Ivan; Richon, D.
2004-01-01
Roč. 215, č. 2 (2004), s. 129-142 ISSN 0378-3812 R&D Projects: GA ČR GA104/03/1555 Institutional research plan: CEZ:AV0Z4072921 Keywords : excess molar volume * density * triethylene glycol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.356, year: 2004
Atmospheric detritiation system performance
International Nuclear Information System (INIS)
Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.
1989-01-01
An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10/sup 7/ was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H/sub 2/O to the stream entering the molecular sieve and premoistening of the sieve with H/sub 2/O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled
Atmospheric detritiation system performance
International Nuclear Information System (INIS)
Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.; Los Alamos National Lab., NM; Princeton Univ., NJ
1988-01-01
An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10 7 was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H 2 O to the stream entering the molecular sieve and premoistening of the sieve with H 2 O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled. 13 refs., 4 figs
Stability constants of scandium complexes, 1
International Nuclear Information System (INIS)
Itoh, Hisako; Itoh, Naomi; Suzuki, Yasuo
1984-01-01
The stability constants of scandium complexes with some carboxylate ligands were determined potentiometrically at 25.0 and 40.0 0 C and at an ionic strength of 0.10 with potassium nitrate as supporting electrolyte. The constants of the scandium complexes were appreciably greater than those of the corresponding lanthanoid complexes, as expected. The changes in free energy, enthalpy, and entropy for the formation of the scandium complexes were calculated from the stability constants at two temperatures. (author)
Constant exposure technique in industrial radiography
International Nuclear Information System (INIS)
Domanus, J.C.
1983-08-01
The principles and advantages of the constant exposure technique are explained. Choice of exposure factors is analyzed. Film, paper and intensifying screens used throughout the investigation and film and paper processing are described. Exposure technique and the use of image quality indicators are given. Methods of determining of radiographic image quality are presented. Conclusions about the use of constant exposure vs. constant kilovoltage technique are formulated. (author)
Dose rate constants for new dose quantities
International Nuclear Information System (INIS)
Tschurlovits, M.; Daverda, G.; Leitner, A.
1992-01-01
Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)
International Nuclear Information System (INIS)
Ignatyuk, A.V.
1998-01-01
For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)
Titan's hydrodynamically escaping atmosphere
Strobel, Darrell F.
2008-02-01
The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].
The cosmological constant, branes and non-geometry
International Nuclear Information System (INIS)
Gautason, Fridhrik Freyr
2014-01-01
In this thesis we derive an equation for the classical cosmological constant in general string compactifications by employing scaling symmetries present in string theory. We find that in heterotic string theory, a perturbatively small, but non-vanishing, cosmological constant is impossible unless non-perturbative and/or string loop corrections are taken into account. In type II string theory we show that the classical cosmological constant is given by a sum of two terms, the source actions evaluated on-shell, and a certain combination of non-vanishing fluxes integrated over spacetime. In many cases we can express the classical cosmological constant in terms of only the source contributions by exploiting two scaling symmetries. This result can be used in two ways. First one can simply predict the classical cosmological constant in a given setup without solving all equations of motion. A second application is to give constraints on the near brane behavior of supergravity fields when the cosmological constant is known. In particular we motivate that energy densities of some fields diverge in the well-known KKLT scenario for de Sitter solutions in type IIB string theory. More precisely, we show, using our results and minimal assumptions, that energy densities of the three-form fluxes diverge in the near-source region of internal space. This divergence is unusual, since these fields do not directly couple to the source, and has been interpreted as a hint of instability of the solution. In the last chapter of the thesis we discuss the worldvolume actions of exotic five-branes. Using a specific chain of T- and S-dualities in a spacetime with two circular isometries, we derive the DBI and WZ actions of the so-called 5 2 2 - and 5 2 3 -brane. These actions describe the dynamics of the branes as well as their couplings to the ten-dimensional gauge potentials. We propose a modified Bianchi identity for the non-geometric Q-flux due to one of the branes. Q-flux often appears
Evaluating Henry's law constant of N-nitrosodimethylamine (NDMA).
Haruta, Shinsuke; Jiao, Wentao; Chen, Weiping; Chang, Andrew C; Gan, Jay
2011-01-01
N-Nitrosodimethylamine (NDMA), a potential carcinogen, may contaminate the groundwater when the reclaimed wastewater is used for irrigation and groundwater recharge. Henry's law constant is a critical parameter to assess the fate and transport of reclaimed wastewater-borne NDMA in the soil profile. We conducted a laboratory experiment in which the change of NDMA concentration in water exposed to the atmosphere was measured with respect to time and, based on the data, obtained the dimensionless Henry's law constant (K(H)') of NDMA, at 1.0 x 10(-4). The K(H)' suggests that NDMA has a relatively high potential to volatilize in the field where NDMA-containing wastewater is used for irrigation and the volatilization loss may be a significant pathway of NDMA transport. The experiment was based on the two boundary-layer approach of mass transfer at the atmosphere-water interface. It is an expedient method to delineate K(H)' for volatile or semi-volatile compounds present in water at low concentrations.
Equilibrium-constant expressions for aqueous plutonium
International Nuclear Information System (INIS)
Silver, G.L.
2010-01-01
Equilibrium-constant expressions for Pu disproportionation reactions traditionally contain three or four terms representing the concentrations or fractions of the oxidation states. The expressions can be rewritten so that one of the oxidation states is replaced by a term containing the oxidation number of the plutonium. Experimental estimations of the numerical values of the constants can then be checked in several ways. (author)
A null test of the cosmological constant
International Nuclear Information System (INIS)
Chiba, Takeshi; Nakamura, Takashi
2007-01-01
We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)
A stringy nature needs just two constants
International Nuclear Information System (INIS)
Veneziano, G.
1986-01-01
Dual string theories of everything, being purely geometrical, contain only two fundamental constants: c, for relativistic invariance, and a length lambda, for quantization. Planck's and Newton's constants appear only through Planck's length, a ''calculable'' fraction of lambda. Only the existence of a light sector breaks a ''reciprocity'' principle and unification at lambda, which is also the theory's cut-off
On special relativity with cosmological constant
International Nuclear Information System (INIS)
Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin
2004-01-01
Based on the principle of relativity and the postulate of invariant speed and length, we propose the theory of special relativity with cosmological constant SRc,R, in which the cosmological constant is linked with the invariant length. Its relation with the doubly special relativity is briefly mentioned
DETERMINATION OF STABILITY CONSTANTS OF MANGANESE (II ...
African Journals Online (AJOL)
DR. AMINU
Keywords: Amino acids, dissociation constant, potentiometry, stability constant. INTRODUCTION. Acids – base titration involves the gradual addition or removal of protons for example using the deprotic form of glycine. The plot has two distinct stages corresponding to the deprotonation of the two different groups on glycine.
Shapley Value for Constant-sum Games
Khmelnitskaya, A.B.
2002-01-01
It is proved that Young's axiomatization for the Shapley value by marginalism, efficiency, and symmetry is still valid for the Shapley value defined on the class of nonnegative constant-sum games and on the entire class of constant-sum games as well. To support an interest to study the class of
Constant Width Planar Computation Characterizes ACC0
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
Experimental Determination of the Avogadro Constant
Indian Academy of Sciences (India)
mental physical constant such as charge of an electron or the. Boltzmann constant ... ideas was that the number of particles or molecules in a gas of given volume could not ... knowledge of at least one property of a single molecule. Loschmidt ...
The time constant of the somatogravic illusion.
Correia Grácio, B J; de Winkel, K N; Groen, E L; Wentink, M; Bos, J E
2013-02-01
Without visual feedback, humans perceive tilt when experiencing a sustained linear acceleration. This tilt illusion is commonly referred to as the somatogravic illusion. Although the physiological basis of the illusion seems to be well understood, the dynamic behavior is still subject to discussion. In this study, the dynamic behavior of the illusion was measured experimentally for three motion profiles with different frequency content. Subjects were exposed to pure centripetal accelerations in the lateral direction and were asked to indicate their tilt percept by means of a joystick. Variable-radius centrifugation during constant angular rotation was used to generate these motion profiles. Two self-motion perception models were fitted to the experimental data and were used to obtain the time constant of the somatogravic illusion. Results showed that the time constant of the somatogravic illusion was on the order of two seconds, in contrast to the higher time constant found in fixed-radius centrifugation studies. Furthermore, the time constant was significantly affected by the frequency content of the motion profiles. Motion profiles with higher frequency content revealed shorter time constants which cannot be explained by self-motion perception models that assume a fixed time constant. Therefore, these models need to be improved with a mechanism that deals with this variable time constant. Apart from the fundamental importance, these results also have practical consequences for the simulation of sustained accelerations in motion simulators.
Zero cosmological constant from normalized general relativity
International Nuclear Information System (INIS)
Davidson, Aharon; Rubin, Shimon
2009-01-01
Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.
Graviton fluctuations erase the cosmological constant
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
Solar constant values for estimating solar radiation
International Nuclear Information System (INIS)
Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang
2011-01-01
There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.
Massa, Enrico; Nicolaus, Arnold
2011-04-01
This issue of Metrologia collects papers about the results of an international research project aimed at the determination of the Avogadro constant, NA, by counting the atoms in a silicon crystal highly enriched with the isotope 28Si. Fifty years ago, Egidi [1] thought about realizing an atomic mass standard. In 1965, Bonse and Hart [2] operated the first x-ray interferometer, thus paving the way to the achievement of Egidi's dream, and soon Deslattes et al [3] completed the first counting of the atoms in a natural silicon crystal. The present project, outlined by Zosi [4] in 1983, began in 2004 by combining the experiences and capabilities of the BIPM, INRIM, IRMM, NIST, NPL, NMIA, NMIJ and PTB. The start signal, ratified by a memorandum of understanding, was a contract for the production of a silicon crystal highly enriched with 28Si. The enrichment process was undertaken by the Central Design Bureau of Machine Building in St Petersburg. Subsequently, a polycrystal was grown in the Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences in Nizhny Novgorod and a 28Si boule was grown and purified by the Leibniz-Institut für Kristallzüchtung in Berlin. Isotope enrichment made it possible to apply isotope dilution mass spectroscopy, to determine the Avogadro constant with unprecedented accuracy, and to fulfil Egidi's dream. To convey Egidi's 'fantasy' into practice, two 28Si kilogram prototypes shaped as quasi-perfect spheres were manufactured by the Australian Centre for Precision Optics; their isotopic composition, molar mass, mass, volume, density and lattice parameter were accurately determined and their surfaces were chemically and physically characterized at the atomic scale. The paper by Andreas et al reviews the work carried out; it collates all the findings and illustrates how Avogadro's constant was obtained. Impurity concentration and gradients in the enriched crystal were measured by infrared spectroscopy and taken into
Acidity constants from DFT-based molecular dynamics simulations
International Nuclear Information System (INIS)
Sulpizi, Marialore; Sprik, Michiel
2010-01-01
In this contribution we review our recently developed method for the calculation of acidity constants from density functional theory based molecular dynamics simulations. The method is based on a half reaction scheme in which protons are formally transferred from solution to the gas phase. The corresponding deprotonation free energies are computed from the vertical energy gaps for insertion or removal of protons. Combined to full proton transfer reactions, the deprotonation energies can be used to estimate relative acidity constants and also the Broensted pK a when the deprotonation free energy of a hydronium ion is used as a reference. We verified the method by investigating a series of organic and inorganic acids and bases spanning a wide range of pK a values (20 units). The thermochemical corrections for the biasing potentials assisting and directing the insertion are discussed in some detail.
Water Density Raster Images for the Gulf of Maine
National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains water density raster images for the Gulf of Maine that were interpolated from water density (sigma t or kilograms/ meters cubed) point data...
In-tube shock wave driven by atmospheric millimeter-wave plasma
International Nuclear Information System (INIS)
Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya
2009-01-01
A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)
Synthesizing chaotic maps with prescribed invariant densities
International Nuclear Information System (INIS)
Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.
2004-01-01
The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized
Energy Technology Data Exchange (ETDEWEB)
Goodman, A L [Tulane Univ., New Orleans, LA (United States)
1992-08-01
Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.
International Nuclear Information System (INIS)
Lott, B.; Escande, L.; Larsson, S.; Ballet, J.
2012-01-01
Here, we present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. Furthermore, this method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LAT analysis during a second step. In the absence of major caveats associated with this method Monte-Carlo simulations have been established. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
On the constants for some Sobolev imbeddings
Directory of Open Access Journals (Sweden)
Pizzocchero Livio
2001-01-01
Full Text Available We consider the imbedding inequality is the Sobolev space (or Bessel potential space of type and (integer or fractional order . We write down upper bounds for the constants , using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if , , and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on for in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.
On the constant-roll inflation
Yi, Zhu; Gong, Yungui
2018-03-01
The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.
Cosmological constant and advanced gravitational wave detectors
International Nuclear Information System (INIS)
Wang, Y.; Turner, E.L.
1997-01-01
Interferometric gravitational wave detectors could measure the frequency sweep of a binary inspiral (characterized by its chirp mass) to high accuracy. The observed chirp mass is the intrinsic chirp mass of the binary source multiplied by (1+z), where z is the redshift of the source. Assuming a nonzero cosmological constant, we compute the expected redshift distribution of observed events for an advanced LIGO detector. We find that the redshift distribution has a robust and sizable dependence on the cosmological constant; the data from advanced LIGO detectors could provide an independent measurement of the cosmological constant. copyright 1997 The American Physical Society
Constant strength fuel-fuel cell
International Nuclear Information System (INIS)
Vaseen, V.A.
1980-01-01
A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use
Reactor group constants and benchmark test
Energy Technology Data Exchange (ETDEWEB)
Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-08-01
The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)
Effective constants for wave propagation through partially saturated porous media
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.
1985-01-01
The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new
The cosmological constant filter without big bang singularity
International Nuclear Information System (INIS)
Bauer, Florian
2011-01-01
In the recently proposed cosmological constant (CC) filter mechanism based on modified gravity in the Palatini formalism, gravity in the radiation, matter and late-time de Sitter eras is insensitive to energy sources with the equation of state -1. This implies that finite vacuum energy shifts from phase transitions are filtered out too. In this work, we investigate the CC filter model at very early times. We find that the initial big bang singularity is replaced by a cosmic bounce, where the matter energy density and the curvature are finite. In a certain case, this finiteness can be already observed on the algebraic level. (paper)
Atmospheric chemistry and climate
Satheesh, SK
2012-01-01
Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...
Atmosphere-Ionosphere Electrodynamic Coupling
Sorokin, V. M.; Chmyrev, V. M.
Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally
Relationship between electrophilicity index, Hammett constant and ...
Indian Academy of Sciences (India)
Unknown
Inter-relationships between the electrophilicity index (ω), Hammett constant (óp) and nucleus- independent chemical ... cess of DFT is that it provides simple working equa- tions to elucidate ... compasses both the ability of an electrophile to ac-.
Canonoid transformations and constants of motion
International Nuclear Information System (INIS)
Negri, L.J.; Oliveira, L.C.; Teixeira, J.M.
1986-01-01
The necessary and sufficient conditions for a canonoid transformation with respect to a given Hamiltonian are obtained in terms of the Lagrange brackets of the trasformation. The relation of these conditions with the constants of motion is discussed. (Author) [pt
An improved dosimeter having constant flow pump
International Nuclear Information System (INIS)
Baker, W.B.
1980-01-01
A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)
Interacting universes and the cosmological constant
International Nuclear Information System (INIS)
Alonso-Serrano, A.; Bastos, C.; Bertolami, O.; Robles-Pérez, S.
2013-01-01
In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts
Interacting universes and the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Bastos, C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Robles-Pérez, S., E-mail: salvarp@imaff.cfmac.csic.es [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao (Spain)
2013-02-12
In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts.
New perspectives on constant-roll inflation
Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro
2018-01-01
We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.
Hydrolysis and formation constants at 250C
International Nuclear Information System (INIS)
Phillips, S.L.
1982-05-01
A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO 4 , PO 4 and CO 3 . Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 25 0 C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 25 0 C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values
Wormholes and the cosmological constant problem.
Klebanov, I.
The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.
Building evolutionary architectures support constant change
Ford, Neal; Kua, Patrick
2017-01-01
The software development ecosystem is constantly changing, providing a constant stream of new tools, frameworks, techniques, and paradigms. Over the past few years, incremental developments in core engineering practices for software development have created the foundations for rethinking how architecture changes over time, along with ways to protect important architectural characteristics as it evolves. This practical guide ties those parts together with a new way to think about architecture and time.
Nuclei quadrupole coupling constants in diatomic molecule
International Nuclear Information System (INIS)
Ivanov, A.I.; Rebane, T.K.
1993-01-01
An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab
Parametrised Constants and Replication for Spatial Mobility
DEFF Research Database (Denmark)
Hüttel, Hans; Haagensen, Bjørn
2009-01-01
Parametrised replication and replication are common ways of expressing infinite computation in process calculi. While parametrised constants can be encoded using replication in the π-calculus, this changes in the presence of spatial mobility as found in e.g. the distributed π- calculus...... of the distributed π-calculus with parametrised constants and replication are incomparable. On the other hand, we shall see that there exists a simple encoding of recursion in mobile ambients....
A model for solar constant secular changes
Schatten, Kenneth H.
1988-01-01
In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.
A quadri-constant fraction discriminator
International Nuclear Information System (INIS)
Wang Wei; Gu Zhongdao
1992-01-01
A quad Constant Fraction (Amplitude and Rise Time Compensation) Discriminator Circuit is described, which is based on the ECL high-speed dual comparator AD 9687. The CFD (ARCD) is of the constant fraction timing type (the amplitude and rise time compensation timing type) employing a leading edge discriminator to eliminate error triggers caused by noises. A timing walk measurement indicates a timing walk of less than +- 150 ps from -50 mV to -5 V
Renormalization group equations with multiple coupling constants
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1975-01-01
The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given
Inflation with a constant rate of roll
International Nuclear Information System (INIS)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi
2015-01-01
We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime
RNA structure and scalar coupling constants
Energy Technology Data Exchange (ETDEWEB)
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
Induced cosmological constant in braneworlds with warped internal spaces
International Nuclear Information System (INIS)
Saharian, Aram A.
2006-01-01
We investigate the vacuum energy density induced by quantum fluctuations of a bulk scalar field with general curvature coupling parameter on two codimension one parallel branes in a (D + 1)-dimensional background spacetime AdS D1+1 x Σ with a warped internal space Σ. It is assumed that on the branes the field obeys Robin boundary conditions. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sums of single brane and second brane induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. The contribution of the Kaluza-Klein modes along Σ is investigated in various limiting cases. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the higher dimensional generalization of the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations. (author)
FOREWORD: Special issue on density
Fujii, Kenichi
2004-04-01
silicon spheres. These technologies are currently being used not only for establishing a solid density standard, but also for determining the Avogadro constant by the x-ray crystal density method, where the density, molar mass and lattice constant of a silicon crystal are measured based on the definition of the SI units. Considering that much of the present research on the Avogadro constant has been undertaken to replace the present definition of the kilogram with a new definition based on a number of atoms, it is satisfying to note that the most accurate density standard may contribute to a new definition of the kilogram. Differential density measurements by hydrostatic weighing and by the pressure of flotation method developed for measuring the density differences between silicon crystals and solids are given in a review article and three original articles, where combined standard uncertainties of a few parts in 108 have been achieved in measuring relative density differences. These technologies are being used not only for the determination of the Avogadro constant, but also for evaluating defects in silicon crystals used in the semiconductor industry. Another important liquid used in the density standard is mercury because the pressured standard determined from mercury column barometers, the molar gas constant determined from an acoustic resonator, and the Josephson constant determined from a mercury voltmeter are all dependent on the density of mercury. A review article is therefore dedicated to an overview of the history, recommended value and recent progress in the measurement of the density of mercury. This special issue also features the technologies developed for measuring the thermodynamic properties of fluids. New instruments with a magnetic suspension balance have substantially improved the uncertainty in measuring the density of fluids at elevated pressures and temperatures. Two review articles and an original article are therefore dedicated to describing the
Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges
Zhang, Yuan-Tao; Wang, Yan-Hui
2018-02-01
In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Moore, L.; Mendillo, M.
2006-12-01
The Saturn-Thermosphere-Ionosphere-Model (STIM), a global circulation model (GCM) of Saturn's upper atmosphere, is used to investigate a range of possible parameters that could lead to the profiles measured recently by the Radio Science Subsystem (RSS) aboard Cassini. Specifically, electron density observations of Saturn's equatorial ionosphere demonstrate a dawn/dusk asymmetry, a possible double peak, and a high degree of vertical structure and variability. On average, peak electron densities are larger at dusk than dawn (5400 cm-3 vs. 1700 cm-3) and the peak altitudes are lower at dusk than dawn (1880 km vs. 2360 km). Self-consistent, time-dependent 1D water diffusion calculations have been combined with the GCM in order to examine the possibility that a topside flux of neutral water into Saturn's atmosphere may provide a loss mechanism -- via charge exchange with protons -- that is sufficient to reproduce the observed ionosphere. Our previous modeling results indicated that a constant background influx of (0.5 -- 1.0) x 107 H2O cm-2 sec-1 was adequate in reproducing Cassini measurements on average [Moore et al., 2006], however the large observed variations in the vertical electron density profiles require additional complexities in the modeling. In this study we show that one possible source of the structuring observed in the electron density profiles could be from brief surges and/or reductions in the background water flux, which ultimately may be linked to geysers near Enceladus' southern pole. Moore, L., A.F. Nagy, A.J. Kliore, I. Mueller-Wodarg, J.D. Richardson, M. Mendillo (2006), Cassini radio occultations of Saturn's ionopshere: I. model comparisons using a constant water flux, submitted to GRL.
Change of MIT bag constant in nuclear medium and implication for the EMC effect
International Nuclear Information System (INIS)
Jin, X.; Jennings, B.K.
1997-01-01
The modified quark-meson coupling model, which features a density-dependent bag constant and bag radius in nuclear matter, is checked against the EMC effect within the framework of dynamical rescaling. Our emphasis is on the change in the average bag radius in nuclei, as evaluated in a local density approximation, and its implication for the rescaling parameter. We find that when the bag constant in nuclear matter is significantly reduced from its free-space value, the resulting rescaling parameter is in good agreement with that required to explain the observed depletion of the structure functions in the medium Bjorken x region. Such a large reduction of the bag constant also implies large and canceling Lorentz scalar and vector potentials for the nucleon in nuclear matter which are comparable to those suggested by the relativistic nuclear phenomenology and finite-density QCD sum rules. copyright 1997 The American Physical Society
Scaling behaviour of leptonic decay constants for heavy quarkonia and heavy mesons
International Nuclear Information System (INIS)
Kiselev, V.V.
1994-01-01
In the framework of QCD sum rules one uses a scheme, allowing one to apply the conditions of both nonrelativistic heavy quark motion inside mesons and the heavy quark flavour independence of nonsplitting nS-state density. In the leading order an analitic expression is derived for leptonic constants of both heavy quarkonia and heavy mesons with a single heavy quark. The expression allows one explicitly to determine scaling properties of the constants. 24 refs., 2 tabs
Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.
Husain, Viqar; Qureshi, Babar
2016-02-12
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
Degravitation, inflation and the cosmological constant as an afterglow
International Nuclear Information System (INIS)
Patil, Subodh P.
2009-01-01
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation — where Netwon's constant is promoted to a scale dependent filter function — as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant 'afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units Λ ∼ l 2 pl /L 2 . We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ ∼ O(10 −120 ). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large
International Nuclear Information System (INIS)
Bonamy, S.E.; Symons, J.G.
1974-08-01
Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)
Constant-Fluence Area Scaling for Laser Propulsion
International Nuclear Information System (INIS)
Sinko, John E.
2008-01-01
A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed
International Nuclear Information System (INIS)
Knuyt, G.K.; Callebaut, D.K.
1978-01-01
The equations defining the ion density in a non-quasineutral plasma (chasma) are derived for a number of particular cases from the general results obtained in paper 1. Explicit calculations are made for a fairly general class of boundaries: all tri-axial ellipsoids, including cylinders with elliptic cross-section and the plane parallel case. The results are very simple. When the ion production and the beam intensity are constant then the steady state ion space charge is also constant in space, it varies over less than 10% for the various geometries, it may exceed the beam density largely for comparatively high pressures (usually still less than about 10 -3 Torr), it is tabulated for a number of interesting cases and moreover it can be calculated precisely and easily by some simple formulae for which also approximations are elaborated. The total potential is U =-ax 2 -by 2 -cz 2 , a, b and c constants which can be calculated immediately from the space charge density and the geometry; the largest coefficient varies at most over a factor four for various geometries; it is tabulated for a number of interesting cases. (author)
The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant
Directory of Open Access Journals (Sweden)
Zhang T. X.
2012-04-01
Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.
Constant-roll (quasi-)linear inflation
Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.
2018-05-01
In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.
Cosmological constant is a conserved charge
Chernyavsky, Dmitry; Hajian, Kamal
2018-06-01
Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.
Fast optimization algorithms and the cosmological constant
Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad
2017-11-01
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.
Conformally invariant braneworld and the cosmological constant
International Nuclear Information System (INIS)
Guendelman, E.I.
2004-01-01
A six-dimensional braneworld scenario based on a model describing the interaction of gravity, gauge fields and 3+1 branes in a conformally invariant way is described. The action of the model is defined using a measure of integration built of degrees of freedom independent of the metric. There is no need to fine tune any bulk cosmological constant or the tension of the two (in the scenario described here) parallel branes to obtain zero cosmological constant, the only solutions are those with zero 4D cosmological constant. The two extra dimensions are compactified in a 'football' fashion and the branes lie on the two opposite poles of the compact 'football-shaped' sphere
Vanishing cosmological constant in elementary particles theory
International Nuclear Information System (INIS)
Pisano, F.; Tonasse, M.D.
1997-01-01
The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs
Stability constants for silicate adsorbed to ferrihydrite
DEFF Research Database (Denmark)
Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten
1994-01-01
Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...
Derivation of the optical constants of anisotropic
Aronson, J. R.; Emslie, A. G.; Smith, E. M.; Strong, P. F.
1985-07-01
This report concerns the development of methods for obtaining the optical constants of anisotropic crystals of the triclinic and monoclinic systems. The principal method used, classical dispersion theory, is adapted to these crystal systems by extending the Lorentz line parameters to include the angles characterizing the individual resonances, and by replacing the dielectric constant by a dielectric tensor. The sample crystals are gypsium, orthoclase and chalcanthite. The derived optical constants are shown to be suitable for modeling the optical properties of particulate media in the infrared spectral region. For those materials where suitable size single crystals are not available, an extension of a previously used method is applied to alabaster, a polycrystalline material of the monoclinic crystal system.
The Cosmological Constant Problem (1/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
The Cosmological Constant Problem (2/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
Atomic weights: no longer constants of nature
Coplen, Tyler B.; Holden, Norman E.
2011-01-01
Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature
Quintessence, Cosmic Coincidence, and the Cosmological Constant
International Nuclear Information System (INIS)
Zlatev, I.; Wang, L.; Steinhardt, P.J.; Steinhardt, P.J.
1999-01-01
Recent observations suggest that a large fraction of the energy density of the Universe has negative pressure. One explanation is vacuum energy density; another is quintessence in the form of a scalar field slowly evolving down a potential. In either case, a key problem is to explain why the energy density nearly coincides with the matter density today. The densities decrease at different rates as the Universe expands, so coincidence today appears to require that their ratio be set to a specific, infinitesimal value in the early Universe. In this paper, we introduce the notion of a open-quotes tracker field,close quotes a form of quintessence, and show how it may explain the coincidence, adding new motivation for the quintessence scenario. copyright 1999 The American Physical Society
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
A note on the local cosmological constant and the dark energy coincidence problem
International Nuclear Information System (INIS)
Tajmar, M
2006-01-01
It has been suggested that the dark energy coincidence problem could be interpreted as a possible link between the cosmological constant and a massive graviton. We show that by using this link and models for the graviton mass, a dark energy density can be obtained that is indeed very close to measurements by WMAP. As a consequence of the models, the cosmological constant was found to depend on the density of matter. A brief outline of the cosmological consequences such as the effect on the black hole solution is given. (comments, replies and notes)
Calculation of exchange constants in manganese ferrite (MnFe2O4)
International Nuclear Information System (INIS)
Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine
2004-01-01
The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α
Hydrolysis constants of tetravalent neptunium by using solvent extraction method
International Nuclear Information System (INIS)
Fujiwara, K.; Kohara, Y.
2008-01-01
The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free 239 Np(V) was from 243 Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants (β m ) of the reactions, Np 4+ + mOH - = Np(OH) m (4-m)+ was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H 2 -N 2 atmosphere (below 1.0 ppm of O 2 ) in a glove-box at room temperature (23 ± 2 C) to avoid oxidation of Np(IV). The β m values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log β 1 = 13.91 ± 0.23, log β 2 = 27.13 ± 0.15, log β 3 = 37.70 ± 0.30 and log β 4 = 46.16 ± 0.30. The ion interaction coefficients were also evaluated to be ε(NpOH 3+ , ClO 4 - ) = 0.49 ± 0.15, ε(Np(OH) 2 2+ , ClO 4 - ) = 0.35 ± 0.11, and ε(Np(OH) 3 + , ClO 4 - ) = 0.29 ± 0.15. (orig.)
Hydrolysis constants of tetravalent neptunium by using solvent extraction method
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, K. [Japan Atomic Energy Agency (JAEA), Naka-gun, Ibaraki-ken (Japan); Kohara, Y. [Inspection and Development Co., Naka-gun, Ibaraki-ken (Japan)
2008-07-01
The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free {sup 239}Np(V) was from {sup 243}Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants ({beta}{sub m}) of the reactions, Np{sup 4+} + mOH{sup -} = Np(OH){sub m}{sup (4-m)+} was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H{sub 2}-N{sub 2} atmosphere (below 1.0 ppm of O{sub 2}) in a glove-box at room temperature (23 {+-} 2 C) to avoid oxidation of Np(IV). The {beta}{sub m} values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log {beta}{sub 1} = 13.91 {+-} 0.23, log {beta}{sub 2} = 27.13 {+-} 0.15, log {beta}{sub 3} = 37.70 {+-} 0.30 and log {beta}{sub 4} = 46.16 {+-} 0.30. The ion interaction coefficients were also evaluated to be {epsilon}(NpOH{sup 3+}, ClO{sub 4}{sup -}) = 0.49 {+-} 0.15, {epsilon}(Np(OH){sub 2}{sup 2+}, ClO{sub 4}{sup -}) = 0.35 {+-} 0.11, and {epsilon}(Np(OH){sub 3}{sup +}, ClO{sub 4}{sup -}) = 0.29 {+-} 0.15. (orig.)
Time constant of logarithmic creep and relaxation
CSIR Research Space (South Africa)
Nabarro, FRN
2001-07-15
Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...
Study on electromagnetic constants of rotational bands
International Nuclear Information System (INIS)
Abdurazakov, A.A.; Adib, Yu.Sh.; Karakhodzhaev, A.K.
1991-01-01
Values of electromagnetic constant S and rotation bands of odd nuclei with Z=64-70 within the mass number change interval A=153-173 are determined. Values of γ-transition mixing parameter with M1+E2 multipolarity are presented. ρ parameter dependence on mass number A is discussed
On the determination of the Hubble constant
International Nuclear Information System (INIS)
Gurzadyan, V.G.; Harutyunyan, V.V.; Kocharyan, A.A.
1990-10-01
The possibility of an alternative determination of the distance scale of the Universe and the Hubble constant based on the numerical analysis of the hierarchical nature of the large scale Universe (galaxies, clusters and superclusters) is proposed. The results of computer experiments performed by means of special numerical algorithms are represented. (author). 9 refs, 7 figs
Dissociative electron attachment to ozone: rate constant
International Nuclear Information System (INIS)
Skalny, J.D.; Cicman, P.; Maerk, T.D.
2002-01-01
The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)
Running coupling constants of the Luttinger liquid
International Nuclear Information System (INIS)
Boose, D.; Jacquot, J.L.; Polonyi, J.
2005-01-01
We compute the one-loop expressions of two running coupling constants of the Luttinger model. The obtained expressions have a nontrivial momentum dependence with Landau poles. The reason for the discrepancy between our results and those of other studies, which find that the scaling laws are trivial, is explained
Constant force linear permanent magnet actuators
Paulides, J.J.H.; Encica, L.; Meessen, K.J.; Lomonova, E.A.
2009-01-01
In applications, such as vibration isolation, gravity compensation, pick-and-place machines, etc., there is a need for (long-stroke) passive constant force actuators combined with tubular permanent magnet actuators to minimize the power consumption, hence, passively counteract the gravitational
Lifetime of titanium filament at constant current
International Nuclear Information System (INIS)
Chou, T.S.; Lanni, C.
1981-01-01
Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating
Derivation of the fine-structure constant
International Nuclear Information System (INIS)
Samec, A.
1980-01-01
The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations
The atmospheric electric global circuit. [thunderstorm activity
Kasemir, H. W.
1979-01-01
The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Wind farm density and harvested power in very large wind farms: A low-order model
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.
2016-12-01
The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant
Constant force extensional rheometry of polymer solutions
DEFF Research Database (Denmark)
Szabo, Peter; McKinley, Gareth H.; Clasen, Christian
2012-01-01
We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...
Energy Technology Data Exchange (ETDEWEB)
Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)
2017-08-15
The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)
Benjamin Constant. Libertad, democracia y pluralismo
Directory of Open Access Journals (Sweden)
Claudia Patricia Fonnegra Osorio
2015-12-01
Full Text Available A partir de un enfoque interpretativo, en este artículo se aborda por qué para Benjamin Constant la democracia solo puede darse en donde se presenta una relación necesaria entre la libertad entendida como defensa de los derechos individuales -libertad como independencia o negativa- y la libertad concebida como principio de la participación pública -libertad como autonomía o positiva-. Asimismo, se presenta la importancia que atribuye el autor a las tradiciones que dan vida a la configuración del universo cultural de un pueblo. Se concluye que en la obra de Constant se encuentra una clara defensa del Estado de derecho y del pluralismo, la cual puede iluminar la comprensión de los problemas políticos de la contemporaneidad.
Varying constants, black holes, and quantum gravity
International Nuclear Information System (INIS)
Carlip, S.
2003-01-01
Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models
Cosmological constant in the quantum multiverse
International Nuclear Information System (INIS)
Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.
2011-01-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.
On determining dose rate constants spectroscopically
International Nuclear Information System (INIS)
Rodriguez, M.; Rogers, D. W. O.
2013-01-01
Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different
Understanding fine structure constants and three generations
International Nuclear Information System (INIS)
Bennett, D.L.; Nielsen, H.B.
1988-02-01
We put forward a model inspired by random dynamics that relates the smallness of the gauge coupling constants to the number of generations being 'large'. The new element in the present version of our model is the appearance of a free parameter χ that is a measure of the (presumably relatively minor) importance of a term in the plaquette action proportional to the trace in the (1/6, 2, 3) representation of the Standard Model. Calling N gen the number of generations, the sets of allowed (N gen , χN gen )-pairs obtained by imposing the three measured coupling constant values of the Standard Model form three lines. In addition to finding that these lines cross at a single point (as needed for a consistent fit), the intersection occurs with surprising accuracy at the integer N gen = 3 (thereby predicting exactly three generations). It is also encouraging that the parameter χ turns out to be small and positive as expected. (orig.)
Bardeen-Cooper-Schrieffer universal constants generalized
International Nuclear Information System (INIS)
Hazaimeh, A.H.
1992-01-01
Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism
Multiphoton amplitude in a constant background field
Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian
2018-01-01
In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.
Piezooptical constants of Rochelle salt crystals
V.Yo. Stadnyk; M.O. Romanyuk; V.Yu. Kurlyak; V.F.Vachulovych
2000-01-01
The influence of uniaxial mechanical pressure applied along the principal axes and the corresponding bisectors on the birefringent properties of Rochelle salt (RS) crystals are studied. The temperature (77-300 K) and spectral (300-700 nm) dependencies of the effective and absolute piezooptical constants of the RS crystals are calculated. The intercept of dispersion curves of is revealed in the region of the birefringence sign inversion. This testifies that the anizotropy of the piezooptical ...
Simulated annealing with constant thermodynamic speed
International Nuclear Information System (INIS)
Salamon, P.; Ruppeiner, G.; Liao, L.; Pedersen, J.
1987-01-01
Arguments are presented to the effect that the optimal annealing schedule for simulated annealing proceeds with constant thermodynamic speed, i.e., with dT/dt = -(v T)/(ε-√C), where T is the temperature, ε- is the relaxation time, C ist the heat capacity, t is the time, and v is the thermodynamic speed. Experimental results consistent with this conjecture are presented from simulated annealing on graph partitioning problems. (orig.)
A noteworthy dimensionless constant in gravitation theory
International Nuclear Information System (INIS)
Fayos, F.; Lobo, J.A.; Llanta, E.
1986-01-01
A simple problem of gravitation is studied classically and in the Schwarzchild framework. A relationship is found between the parameters that define the trajectories of two particles (the first in radial motion and the second in a circular orbit) which are initially together and meet again after one revolution of particle 2. Dimensional analysis is the clue to explain the appearance of a dimensionless constant in the Newtonian case. (author)
Electromagnetic corrections to pseudoscalar decay constants
Energy Technology Data Exchange (ETDEWEB)
Glaessle, Benjamin Simon
2017-03-06
First principles Lattice quantum chromodynamics (LQCD) calculations enable the determination of low energy hadronic amplitudes. Precision LQCD calculations with relative errors smaller than approximately 1% require the inclusion of electromagnetic effects. We demonstrate that including (quenched) quantum electrodynamics effects in the LQCD calculation effects the values obtained for pseudoscalar decay constants in the per mille range. The importance of systematic effects, including finite volume effects and the charge dependence of renormalization and improvement coefficients, is highlighted.
Cosmological Constant and the Final Anthropic Hypothesis
Cirkovic, Milan M.; Bostrom, Nick
1999-01-01
The influence of recent detections of a finite vacuum energy ("cosmological constant") on our formulation of anthropic conjectures, particularly the so-called Final Anthropic Principle is investigated. It is shown that non-zero vacuum energy implies the onset of a quasi-exponential expansion of our causally connected domain ("the universe") at some point in the future, a stage similar to the inflationary expansion at the very beginning of time. The transition to this future inflationary phase...
Singlet axial constant from QCD sum rules
International Nuclear Information System (INIS)
Belitskij, A.V.; Teryaev, O.V.
1995-01-01
We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs
Lattice Paths and the Constant Term
International Nuclear Information System (INIS)
Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A
2006-01-01
We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model
Elastic constants from microscopic strain fluctuations
Sengupta; Nielaba; Rao; Binder
2000-02-01
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.
Emergent gravity in spaces of constant curvature
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)
2017-03-07
In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.
Planck Constant Determination from Power Equivalence
Newell, David B.
2000-04-01
Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.
Elastic constants of stressed and unstressed materials in the phase-field crystal model
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Newtonian cosmology with a time-varying constant of gravitation
International Nuclear Information System (INIS)
McVittie, G.C.
1978-01-01
Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)
Optical constants from mirror reflectivities measured at synchrotrons
International Nuclear Information System (INIS)
Blake, R.L.; Davis, J.C.; Burbine, T.H.; Graessle, D.E.; Gullikson, E.M.
1992-01-01
Improved mirror reflectivity measurement techniques have been introduced to permit more accurate determinations of optical constants δ and β in the complex index of refraction n = 1 - δ-iβ over the energy range 50 to 5000 eV. When the density has been determined by x-ray or other means, one can calculate the real and imaginary parts f' and f double-prime, of the complex atomic scattering factor f = f o + f ' + if double-prime from δ and β. Preliminary results are given for the Ni LIII edge around 852 eV, and the Au M edge region from 2150 to 3500 eV. Since these are the first experimental evaluations of δ for these element edges, they are compared with appropriate reservations to semi-empirical tabulations. There is much potential for this technique applied to synchrotron sources
Constant leverage and constant cost of capital : A common knowledge half-truth
Vélez Pareja, Ignacio; Ibragimov, Rauf; Tham , Joseph
2008-01-01
Un enfoque típico para valorar flujos de caja finitos es suponer que el endeudamiento es constante (generalmente como un endeudamiento objetivo o deseado) y que por tanto, el costo del patrimonio, Ke y el costo promedio ponderado de capital CPPC, también son constantes. Para los flujos de caja perpetuos, y con el costo de la deuda, Kd como la tasa de descuento para el ahorro en impuestos o escudo fiscal, Ke y el CPPC aplicado al flujo de caja libre FCL son constantes si el endeudamiento es co...
Thomson scattering measurements in atmospheric plasma jets
International Nuclear Information System (INIS)
Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.
1999-01-01
Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society
Dowling, Tim
2018-05-01
Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
International Nuclear Information System (INIS)
Narimani, Ali; Scott, Douglas; Afshordi, Niayesh
2014-01-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4 = 0.105 ± 0.049 (+highL CMB), or ζ 4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets
Analysis of neutron leakage effect in the determination of macrogroup constants
International Nuclear Information System (INIS)
Martinez, A.S.; Vieira, H.D.
1986-01-01
A method to include the neutron leakage in the macrogroup constants calculation is presented. The method leads to independent equations for neutron flux and neutron current density. The results that have been gotten with the present method are very precise despite its simplicity. (Author) [pt
DEFF Research Database (Denmark)
Møller, Jesper; Pettitt, A. N.; Reeves, R.
2006-01-01
Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions are problematic when the probability density for the parameter of interest involves an intractable normalising constant which is also a function of that parameter. In this paper, an auxiliary variable metho...
Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes
DEFF Research Database (Denmark)
Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav
2018-01-01
We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...
Nonlinear quantum gravity on the constant mean curvature foliation
International Nuclear Information System (INIS)
Wang, Charles H-T
2005-01-01
A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory
Energy Technology Data Exchange (ETDEWEB)
McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)
2008-04-15
Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)
Diffusion constant in hot and dense hadronic matter. A hadro-molecular-dynamic calculation
International Nuclear Information System (INIS)
Sasaki, N.; Miyamura, O.; Muroya, S.; Nonaka, C.
2002-01-01
We evaluate baryon/charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 1-2 GeV/A and satisfies detailed balance at low temperatures (T ≤ 200 MeV). For the hot and dense hadronic matter of the temperature range, T = 100 - 200 MeV and baryon number density, n B =0.16 fm -3 - 0.32 fm -3 , charge diffusion constant D gradually increases from 0.5 fmc to 2 fmc with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions. (author)
Electrochemical Method of Making Porous Particles Using a Constant Current Density
Ferrari, Mauro (Inventor); Liu, Xuewu (Inventor); Cheng, Ming-Cheng (Inventor)
2014-01-01
Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.
International Nuclear Information System (INIS)
Syrota, A.; Delforge, J.; Mazoyer, B.M.
1988-01-01
The possibility of improving receptor model parameter estimation using a displacement experiment in which an excess of an unlabeled ligand (J) is injected after a delay (t D ) following injection of trace amounts of the β + - labeled ligand (J*) is investigated. The effects of varying t D and J/J* on parameter uncertainties are studied in the case of 11 C-MQNB binding to myocardial acetycholine receptor using parameters identified in a dog experiment
Validating and analyzing EPR hyperfine coupling constants with density functional theory
DEFF Research Database (Denmark)
Hedegård, Erik D.; Kongsted, Jacob; Sauer, Stephan P. A.
2013-01-01
Electron Paramagnetic Resonance (EPR) is a central spectroscopic technique for compounds with non-zero spin. The effective parameters from the EPR spin-Hamiltonian can today be calculated from rst principles using quantum chemical methods. We focus here on the hyperne coupling tensor, A, which....... Unfortunately both organometallic and traditional coordination complexes show a completely different behavior, where the core contributions to AKiso either are comparable (“class 2”) or far exceed (“class 3”) the contributions from the frontier orbitals. Agreement with experiment can for these complexes only...
International Nuclear Information System (INIS)
Sawant, R.M.; Ramakumar, K.L.; Sharma, R.S.
2003-01-01
Protonation constants of hydroquinone and stability constants of thorium hydroquinone complexes were determined in 1 M NaClO 4 medium at 25 ± 0.5 degC, by varying concentration of thorium, using pH titration technique. Protonation constants of hydroquinone (β 1H = [HQ]/[H][Q] and β 2H = [H 2 Q]/[H] 2 [Q]) were found to be β 1H = 11.404 ± 0.014 and β 2H = 21.402 ± 0.012. The analysis of titration data of thorium-hydroquinone system appears to indicate the formation of species Th(H 2 Q) 3 (OH) and Th(H 2 O) 4 (OH). Equilibrium constants obtained for these species are -log β 13-I = 48.51 ± 0.67 and -log β 14-1 64.86 ± 1.25 respectively which are not reported in the literature. (author)
Constant load and constant displacement stress corrosion in simulated water reactor environments
International Nuclear Information System (INIS)
Lloyd, G.J.
1987-02-01
The stress corrosion behaviour of selected water reactor constructional materials, as determined by constant load or constant displacement test techniques, is reviewed. Experimental results obtained using a very wide range of conditions have been collected in a form for easy reference. A discussion is given of some apparent trends in these data. The possible reasons for these trends are considered together with a discussion of how the observed discrepancies may be resolved. (author)
Directory of Open Access Journals (Sweden)
Hamit Yurtseven
2012-01-01
Full Text Available The temperature dependence of the spontaneous polarization P is calculated in the ferroelectric phase of KH2PO4 (KDP at atmospheric pressure (TC = 122 K. Also, the dielectric constant ε is calculated at various temperatures in the paraelectric phase of KDP at atmospheric pressure. For this calculation of P and ε, by fitting the observed Raman frequencies of the soft mode, the microscopic parameters of the pure tunnelling model are obtained. In this model, the proton-lattice interaction is not considered and the collective proton mode is identified with the soft-mode response of the system. Our calculations show that the spontaneous polarization decreases continuously in the ferroelectric phase as approaching the transition temperature TC. Also, the dielectric constant decreases with increasing temperature and it diverges in the vicinity of the transition temperature (TC = 122 K for KDP according to the Curie-Weiss law.
CONSTANT LEVERAGE AND CONSTANT COST OF CAPITAL: A COMMON KNOWLEDGE HALF-TRUTH
Directory of Open Access Journals (Sweden)
IGNACIO VÉLEZ-PAREJA
2008-01-01
Full Text Available Un enfoque típico para valorar flujos de caja finitos es suponer que el endeudamiento es constante (generalmente como un endeudamiento objetivo o deseado y que por tanto, el costo del patrimonio, Ke y el costo promedio ponderado de capital CPPC, también son constantes. Para los flujos de caja perpetuos, y con el costo de la deuda, Kd como la tasa de descuento para el ahorro en impuestos o escudo fiscal, Ke y el CPPC aplicado al flujo de caja libre FCL son constantes si el endeudamiento es constante. Sin embargo esto no es verdad para los flujos de caja finitos. En este documento mostramos que para flujos de caja finitos, Ke y por lo tanto el CPPC dependen de la tasa de descuento que se utiliza para valorar el ahorro en impuestos, AI y según lo esperado, Ke y el CPPC no son constantes con Kd como la tasa de descuento para el ahorro en impuestos, aunque el endeudamiento sea constante. Ilustramos esta situación con un ejemplo simple. Analizamos cinco métodos: el flujo de caja descontado, FCD, usando APV, el FCD y la formulación tradicional y general del CPPC, el valor presente del flujo de caja del accionista, FCA más deuda y el flujo de caja de capital, FCC.
Inflation with a smooth constant-roll to constant-roll era transition
Odintsov, S. D.; Oikonomou, V. K.
2017-07-01
In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.
Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...
Theoretical isochrones with decreasing gravitational constant
International Nuclear Information System (INIS)
Vandenberg, D.A.
1976-01-01
Van Flandern has postulated a variation of the gravitational constant at the rate approximately -8 x 10 -11 /yr. This variation, consistent with Hoyle-Narlikar and Dirac cosmologies, has been assumed in the computation of a 5 x 10 9 yr theoretical isochrone. Present results show that, even for this age, theory predicts a cluster turn-off luminosity approximately 0.5 to 1.0 mag fainter than the observed turn-offs of globular clusters. Unsatisfactory agreement between theoretical and observed luminosity functions is also indicated. (author)
Quantum black holes and Planck's constant
International Nuclear Information System (INIS)
Ross, D.K.
1987-01-01
It is shown that the Planck-scale black holes of quantum gravity must obey a consistency condition relating Planck's constant to the integral of the mass of the black holes over time, if the usual path integral formulation of quantum mechanics is to make sense on physical spacetime. It is also shown, using time-dependent perturbation theory in ordinary quantum mechanics, that a massless particle will not propagate on physical spacetime with the black holes present unless the same condition is met. (author)
Constant displacement rate testing at elevated temperatures
International Nuclear Information System (INIS)
Pepe, J.J.; Gonyea, D.C.
1989-01-01
A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development
Radiation balances and the solar constant
Crommelynck, D.
1981-01-01
The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.
O(4) texture with a cosmological constant
International Nuclear Information System (INIS)
Cho, Inyong
2002-01-01
We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which comove with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than 1. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations
Can the cosmological constant undergo abrupt changes?
Cabo-Montes de Oca, Alejandro; Rosabal, A; Cabo, Alejandro; Garcia-Chung, Alejandro; Rosabal, Alejandro
2005-01-01
The existence of a simple spherically symmetric and static solution of the Einstein equations in the presence of a cosmological constant vanishing outside a definite value of the radial distance is investigated. A particular succession of field configurations, which are solutions of the Einstein equations in the presence of the considered cosmological term and auxiliary external sources, is constructed. Then, it is shown that the associated succession of external sources tend to zero in the sense of the generalized functions. The type of weak solution that is found becomes the deSitter homogeneous space-time for the interior region, and the Schwartzschild space in the outside zone.
The Boltzmann constant from a snifter
International Nuclear Information System (INIS)
Tyukodi, B; Sárközi, Zs; Néda, Z; Tunyagi, A; Györke, E
2012-01-01
Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments. (paper)
Asymptotics with a positive cosmological constant II
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Empirical correlation for prediction of the elutriation rate constant
Directory of Open Access Journals (Sweden)
Stojkovski Valentino
2003-01-01
Full Text Available In vessels containing fluidized solids, the gas leaving carries some suspended particles. This flux of solids is called entrainment, E or carryover and the bulk density of solids on this leaving gas stream is called the holdup. For design we need to know the rate of this entrainment and the size distribution of these entrained particles Rim in relation to the size distribution in the bed, Rib, as well as the variation of both these quantities with gas and solids properties, gas flow rate, bed geometry and location of the leaving gas stream. Steady-state elutriation experiments have been done in a fluidized bed 0,2 m diameter by 2,94 m high freeboard with superficial gas velocities up to 1 m/s using solids ranging in mean size from 0,15 to 0,58 mm and with particle density 2660 kg/m3. When the fine and coarse particles were mixed, the total entrainment flux above the freeboard was increased. None of the published correlations for estimating the elutriation rate constant were useful. A new simple equation, which is developed on the base of experimental results and theory of dimensional analyses, is presented.
Atmospheric refraction : a history
Lehn, WH; van der Werf, S
2005-01-01
We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of
Atmospheric Profile Imprint in Firewall Ablation Coefficient
Ceplecha, Z.; Pecina, P.
1984-01-01
A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.
Positive Cosmological Constant and Quantum Theory
Directory of Open Access Journals (Sweden)
Felix M. Lev
2010-11-01
Full Text Available We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli.
Advances in constant-velocity Moessbauer instrumentation
International Nuclear Information System (INIS)
Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.
2006-01-01
A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.
Local Pain Dynamics during Constant Exhaustive Exercise.
Directory of Open Access Journals (Sweden)
Agne Slapsinskaite
Full Text Available The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20 = 15. During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.
Ventricular fibrillation time constant for swine
International Nuclear Information System (INIS)
Wu, Jiun-Yan; Sun, Hongyu; Nimunkar, Amit J; Webster, John G; O'Rourke, Ann; Huebner, Shane; Will, James A
2008-01-01
The strength–duration curve for cardiac excitation can be modeled by a parallel resistor–capacitor circuit that has a time constant. Experiments on six pigs were performed by delivering current from the X26 Taser dart at a distance from the heart to cause ventricular fibrillation (VF). The X26 Taser is an electromuscular incapacitation device (EMD), which generates about 50 kV and delivers a pulse train of about 15–19 pulses s −1 with a pulse duration of about 150 µs and peak current about 2 A. Similarly a continuous 60 Hz alternating current of the amplitude required to cause VF was delivered from the same distance. The average current and duration of the current pulse were estimated in both sets of experiments. The strength–duration equation was solved to yield an average time constant of 2.87 ms ± 1.90 (SD). Results obtained may help in the development of safety standards for future electromuscular incapacitation devices (EMDs) without requiring additional animal tests
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
International Nuclear Information System (INIS)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao
2015-01-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model
Modified large number theory with constant G
International Nuclear Information System (INIS)
Recami, E.
1983-01-01
The inspiring ''numerology'' uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the ''gravitational world'' (cosmos) with the ''strong world'' (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the ''Large Number Theory,'' cosmos and hadrons are considered to be (finite) similar systems, so that the ratio R-bar/r-bar of the cosmos typical length R-bar to the hadron typical length r-bar is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle: according to the ''cyclical big-bang'' hypothesis: then R-bar and r-bar can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P.Caldirola, G. D. Maccarrone, and M. Pavsic
Lepton Collider Operation with Constant Currents
Wienands, Ulrich
2005-01-01
Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in back...
Kinetics of water-mediated proton transfer in our atmosphere
International Nuclear Information System (INIS)
Loerting, T.
2000-07-01
Variational transition state theory and multidimensional tunneling methods on hybrid density functional theory generated hypersurfaces have been used to investigate the temperature dependence of the reaction rate constants of water-mediated proton transfer reactions relevant to the chemistry of our atmosphere, namely the hydration of sulfur dioxide and sulfur trioxide and the decomposition of chlorine nitrate. Highly accurate reaction barriers were calculated using ab initio methods taking into account most of the electron correlation, namely CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ and G2(MP2). On comparing the determined rate constants with laboratory and atmospheric data, the following points could be established: All of the investigated reactions are highly sensitive to changes in humidity, as water acts as efficient catalyst, i.e., the barrier to the reaction is reduced drastically. Present-day atmospheric chemistry can only be explained when a limited number of water molecules is available for the formation of molecular clusters. Both in the troposphere and in the stratosphere SO 3 is hydrated rather than SO 2 . SO 2 emissions have to be oxidized, therefore, before being subject to hydration. A mechanism involving two or three water molecules is relevant for the production of sulfate aerosols, which play a decisive role in the context of global climate change and acid rain. A third water molecule has the function of assisting double-proton transfer rather than acting as active participant in triple-proton transfer in the case of the hydration of sulfur oxides. The observed ozone depletion above Arctica and Antarctica can be explained either by decomposition of chlorine nitrate in the presence of three water molecules (triple proton transfer) or by decomposition of chlorine nitrate in the presence of one molecule of HCl and one molecule of water (double proton transfer). The preassociation reaction required for homogeneous gas-phase conversion of chlorine
PREFACE: Fundamental Constants in Physics and Metrology
Klose, Volkmar; Kramer, Bernhard
1986-01-01
This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and
Occultations for probing atmosphere and climate
Foelsche, Ulrich; Steiner, Andrea
2004-01-01
Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a...
Magnet and device for magnetic density separation
Polinder, H.; Rem, P.C.
2014-01-01
A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is
Phototransformation rate constants of PAHs associated with soot particles
International Nuclear Information System (INIS)
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2013-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow
Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere
Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.
2010-05-01
Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).
Systematics of nuclear level density parameters
International Nuclear Information System (INIS)
Bucurescu, Dorel; Egidy, Till von
2005-01-01
The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured
Search for a Variation of Fundamental Constants
Ubachs, W.
2013-06-01
Since the days of Dirac scientists have speculated about the possibility that the laws of nature, and the fundamental constants appearing in those laws, are not rock-solid and eternal but may be subject to change in time or space. Such a scenario of evolving constants might provide an answer to the deepest puzzle of contemporary science, namely why the conditions in our local Universe allow for extreme complexity: the fine-tuning problem. In the past decade it has been established that spectral lines of atoms and molecules, which can currently be measured at ever-higher accuracies, form an ideal test ground for probing drifting constants. This has brought this subject from the realm of metaphysics to that of experimental science. In particular the spectra of molecules are sensitive for probing a variation of the proton-electron mass ratio μ, either on a cosmological time scale, or on a laboratory time scale. A comparison can be made between spectra of molecular hydrogen observed in the laboratory and at a high redshift (z=2-3), using the Very Large Telescope (Paranal, Chile) and the Keck telescope (Hawaii). This puts a constraint on a varying mass ratio Δμ/μ at the 10^{-5} level. The optical work can also be extended to include CO molecules. Further a novel direction will be discussed: it was discovered that molecules exhibiting hindered internal rotation have spectral lines in the radio-spectrum that are extremely sensitive to a varying proton-electron mass ratio. Such lines in the spectrum of methanol were recently observed with the radio-telescope in Effelsberg (Germany). F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011). A. Malec, R. Buning, M.T. Murphy, N. Milutinovic, S.L. Ellison, J.X. Prochaska, L. Kaper, J. Tumlinson, R.F. Carswell, W. Ubachs, Mon. Not. Roy. Astron. Soc. 403, 1541 (2010). E.J. Salumbides, M.L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, W. Ubachs, Phys. Rev. A 86, 022510
Whole Atmosphere Simulation of Anthropogenic Climate Change
Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.
2018-02-01
We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.
Development code for group constant processing
International Nuclear Information System (INIS)
Su'ud, Z.
1997-01-01
In this paper methods, formalism and algorithm related to group constant processing problem from basic library such as ENDF/B VI will be described. Basically the problems can be grouped as follows; the treatment of resolved resonance using NR approximation, the treatment of unresolved resonance using statistical method, the treatment of low lying resonance using intermediate resonance approximation, the treatment of thermal energy regions, and the treatment group transfer matrices cross sections. it is necessary to treat interference between resonance properly especially in the unresolved region. in this paper the resonance problems are treated based on Breit-wigner method, and doppler function is treated using Pade approximation for calculation efficiency. finally, some samples of calculational result for some nuclei, mainly for comparison between many methods are discussed in this paper
Hawking temperature of constant curvature black holes
International Nuclear Information System (INIS)
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Dielectric Constant Measurements of Solid 4He
Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.
2011-03-01
Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.
Parallel computational in nuclear group constant calculation
International Nuclear Information System (INIS)
Su'ud, Zaki; Rustandi, Yaddi K.; Kurniadi, Rizal
2002-01-01
In this paper parallel computational method in nuclear group constant calculation using collision probability method will be discuss. The main focus is on the calculation of collision matrix which need large amount of computational time. The geometry treated here is concentric cylinder. The calculation of collision probability matrix is carried out using semi analytic method using Beckley Naylor Function. To accelerate computation speed some computer parallel used to solve the problem. We used LINUX based parallelization using PVM software with C or fortran language. While in windows based we used socket programming using DELPHI or C builder. The calculation results shows the important of optimal weight for each processor in case there area many type of processor speed
Cosmological constant and general isocurvature initial conditions
International Nuclear Information System (INIS)
Trotta, R.; Riazuelo, A.; Durrer, R.
2003-01-01
We investigate in detail the question of whether a nonvanishing cosmological constant is required by the present-day cosmic microwave background and large scale structure data when general isocurvature initial conditions are taken into account. We also discuss the differences between the usual Bayesian and the frequentist approaches in data analysis. We show that the Cosmic Background Explorer (COBE)-normalized matter power spectrum is dominated by the adiabatic mode and therefore breaks the degeneracy between initial conditions which is present in the cosmic microwave background anisotropies. We find that in a flat universe the Bayesian analysis requires Ω Λ =e0 to more than 3σ, while in the frequentist approach Ω Λ =0 is still within 3σ for a value of h≤0.48. Both conclusions hold regardless of the initial conditions
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Lepton Collider Operation With Constant Currents
International Nuclear Information System (INIS)
Wienands, U.
2006-01-01
Electron-positron colliders have been operating in a top-up-and-coast fashion with a cycle time depending on the beam life time, typically one or more hours. Each top-up involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity may be 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by always operating at peak luminosity. Constant beam currents also reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement gating procedures in the detectors, minimizing dead time. Beam collimation can reduce injection noise but also cause an increase in background rates. A challenge can be determining beam lifetime, important to maintain tuning of the beams
Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars
Energy Technology Data Exchange (ETDEWEB)
Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Glocer, A. [NASA/GSFC, Code 673, Greenbelt, MD 20771 (United States); Bell, J. M. [Center for Planetary Atmospheres and Flight Sciences, National Institute of Aerospace, Hampton, VA 23666 (United States); Ridley, A. J.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States)
2014-07-20
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.
Universal equations and constants of turbulent motion
International Nuclear Information System (INIS)
Baumert, H Z
2013-01-01
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t −1 . With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/√(2 π)= 0.399. Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1/3 (4 π) 2/3 =1.802, well within the scatter range of observational, experimental and direct numerical simulation results. (paper)
Universal equations and constants of turbulent motion
Baumert, H. Z.
2013-07-01
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.
Exponential growth and atmospheric carbon dioxide
International Nuclear Information System (INIS)
Laurmann, J.A.; Rotty, R.M.
1983-01-01
The adequacy of assumptions required to project atmospheric CO 2 concentrations in time frames of practical importance is reviewed. Relevant issues concern the form assumed for future fossil fuel release, carbon cycle approximations, and the implications of revisions in fossil fuel patterns required to maintain atmospheric CO 2 levels below a chosen threshold. In general, we find that with a judiciously selected exponential fossil fuel release rate, and with a constant airborn fraction, we can estimate atmospheric CO 2 growth over the next 50 years based on essentially surprise free scenarios. Resource depletion effects must be included for projections beyond about 50 years, and on this time frame the constant airborne fraction approximation has to be questioned as well (especially in later years when the fossil fuel use begins to taper off). For projections for over 100 years, both energy demand scenarios and currently available carbon cycle models have sufficient uncertainties that atmospheric CO 2 levels derived from them are not much better than guesses
Sintering of dioxide pellets in an oxidizing atmosphere (CO2)
International Nuclear Information System (INIS)
Santos, G.R.T.
1992-01-01
This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)
Aspects of the atmospheric surface layers on Mars and Earth
DEFF Research Database (Denmark)
Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.
2002-01-01
and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance...
Constant depression fan system a novel glovebox ventilation system
International Nuclear Information System (INIS)
Milliner, W.V.
1995-01-01
In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE
Constant depression fan system a novel glovebox ventilation system
Energy Technology Data Exchange (ETDEWEB)
Milliner, W.V. [AME plc., Aldermaston (United Kingdom)
1995-02-01
In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE.
High Density GEOSAT/GM Altimeter Data
National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...
Idaho Batholith Study Area Density Grid
National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer terrace-density grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the lower...
Constant Leverage And Constant Cost Of Capital: A Common Knowledge Half-Truth
Directory of Open Access Journals (Sweden)
Ignacio Vélez–Pareja
2008-04-01
In this document we show that for finite cash flows, Ke and hence WACC depend on the discount rate that is used to value the tax shield, TS and as expected, Ke and WACC are not constant with Kd as the discount rate for the tax shield, even if the leverage is constant. We illustrate this situation with a simple example. We analyze five methods: DCF using APV, FCF and traditional and general formulation for WACC, present value of CFE plus debt and Capital Cash Flow, CCF.
Worldwide trend of atmospheric mercury since 1995
Directory of Open Access Journals (Sweden)
F. Slemr
2011-05-01
Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.
A constant flow filter air sampler for workplace environments
International Nuclear Information System (INIS)
Parulian, A.; Rodgers, J.C.; McFarland, A.R.
1996-01-01
A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab
Electromagnetism based atmospheric ice sensing technique - A conceptual review
Directory of Open Access Journals (Sweden)
U Mughal
2016-09-01
Full Text Available Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.
Some aspects of preparation and testing of group constants group constant system ABBN-90
International Nuclear Information System (INIS)
Nikolaev, M.N.; Tsiboulia, A.M.; Manturov, G.N.
1996-01-01
This paper presents an overview of activities performed to prepare and test the group constants ABBN-90. The ABBN-90 set is designed for application calculations of fast, intermediate and thermal nuclear reactors. The calculations of subgroup parameters are discussed. The processing code system GRUCON is mentioned in comparison to the NJOY code system. Proposals are made for future activities. (author). Figs, tabs
Atmosphere physics and chemistry
International Nuclear Information System (INIS)
Delmas, R.; Megie, G.; Peuch, V.H.
2005-10-01
Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)