WorldWideScience

Sample records for consolidated porous medium

  1. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling

    International Nuclear Information System (INIS)

    Dalla Costa, C.

    2007-07-01

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  2. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling; Transferts d'un traceur en milieu poreux consolide et en milieu poreux fissure: experimentations et modelisations

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Costa, C

    2007-07-15

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  3. An improved electrokinetic method to consolidate porous materials

    DEFF Research Database (Denmark)

    Feijoo, Jorge; Ottosen, Lisbeth M.; Nóvoa, X. R.

    2017-01-01

    the consolidation using commercial products have some limitations, such as: (1) low penetrability; (2) no chemical and mineralogical affinity with the material to treat and (3) release of toxic compounds (VOCs), during the solvent evaporation. In the last years, a new consolidation method based on electrokinetic...... the pH of the solutions in contact with the porous material, which can damage it and (2) it is difficult to determine in which area the consolidation takes place. In this study an electrokinetic consolidation method, which has two steps between which the current is reversed, is proposed to solve all...... techniques was developed. This method allows filling some pores by the precipitation of an inorganic compound. As a result the method allows increasing the penetration depth of current consolidation treatments. However, this method needs to be improved since: (1) no special care is taking in controlling...

  4. THERMAL CONSOLIDATION OF LAYERED POROUS HALF-SPACE TO VARIABLE THERMAL LOADING

    Institute of Scientific and Technical Information of China (English)

    BAI Bing

    2006-01-01

    An analytical method was derived for the thermal consolidation of layered,saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, thc thermo-osmosis effect has an obvious influence on thermal responses.

  5. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    Science.gov (United States)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  6. Relation Between Filtration and Soil Consolidation Theories

    Directory of Open Access Journals (Sweden)

    Strzelecki Tomasz

    2015-03-01

    Full Text Available This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

  7. Effect of deformability on fluid flow through a fractured-porous medium

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Witherspoon, P.A.

    1985-01-01

    A permeable geologic medium containing interstitial fluids generally undergoes deformation as the fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal to finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon which can basically be formulated in the generalized three-dimensional theory of consolidation. Dealing mainly with media of little deformability, traditional hydrogeology accounts for medium deformability as far as it affects the volume of pore spaces, through the introduction of a coefficient of specific storage in the fluid flow equation. This treatment can be justified on the basis of a one-dimensional effective stress law and the assumption of homogeneity of the total stress field throughout the medium. The present paper uses a numerical model called ROCMAS (Noorishad et al., 1982; Noorishad e al., 1984) which was developed to calculate fluid flow through a deformable fractured-porous medium. The code employs the Finite Element Method based on a variational approach. It has been verified against a number of simple analytic solutions. In this work, the code is used to address the role of medium deformability in continuous and pulse testing techniques. The errors that may result because of application of traditional fluid flow methods are discussed. It is found that low pressure continuous well testing or pulse testing procedures can reduce such errors. 16 references, 9 figures, 1 table

  8. CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media

    International Nuclear Information System (INIS)

    Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.

    1982-01-01

    1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium

  9. Processing of porous zirconia ceramics by direct consolidation with starch

    International Nuclear Information System (INIS)

    Garrido, Liliana B; Albano, Maria P

    2008-01-01

    Porous ceramics are used especially for those environments with high temperatures, heavy wear and in a corrosive medium. Zirconium-based materials are useful for such applications as sensors, filters, support for catalytic reactions, porous components for sofc and in biomedical applications. A conventional method for producing porous ceramics consists of the addition and later decomposition by calcination (pyrolisis) of different organic materials that act as pore formers. Several wet processing possibilities have been developed. Among these is a technique of direct consolidation with starch. This process begins with the preparation of an aqueous suspension of the ceramic with the dispersants needed to stabilize it, to which the starch is added. After casting in a waterproof mold, the suspension thermally hardens into the desired shape. The dry compacts undergo the sintering cycle to obtain pieces almost in their final form. This study aims to optimize the processing of porous zirconium ceramics using starch as a pore and binder forming agent. Zirconium with 3% yttrium molar stabilized in tetragonal phase was used. The aqueous suspensions (52-55% vol) of the zirconium-starch mixtures with different compositions were stabilized with a commercial solution of ammonium polyacrylate as a dispersant and were hardened in plastic molds at 90 o C for 30 min. The influence of added volume of starch on the physical characteristics of the pieces in green state was established while maintaining the temperature, the gelling time and the conditions of constant drying. The sintering was carried out at 1000-1500 o C-2h. The characteristics of the sintered product were evaluated by measuring density, volumetric contraction, intrusion of Hg and the evolution of the crystalline phases by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural properties of ceramic (pore volume, the relation between open and closed porosity, size distribution, morphology of

  10. Relation Between Filtration and Soil Consolidation Theories

    OpenAIRE

    Strzelecki Tomasz; Strzelecki Michał

    2015-01-01

    This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on...

  11. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  12. A practical approach in porous medium combustion for domestic application: A review

    Science.gov (United States)

    Ismail, A. K.; Ibrahim, N. H.; Shamsuddin, K. A.; Abdullah, M. Z.; Zubair, M.

    2018-05-01

    Combustion in porous media has been widely studied. Many application involving the combustion of porous media has been reported in various way with most consider on numerical works and industrial application. Besides, recent application of porous medium combustion for domestic is the topic of interest among researchers. In this paper, a review was conducted on the combustion of porous media in term of practical application for domestic consumers. Details on the type of fuel used including bio fuel and their system have been search thoroughly. Most of the system have utilized compressed air system to provide lean combustion in domestic application. Some self-aspirating system of porous medium burner was also reported. The application of new technology such as cogeneration by using thermoelectric cells in tandem with porous medium combustion is also revised according to recent work which have already been published. Besides, the recent advances which include coating of porous material is also considered at the end of this paper.

  13. Feasibility demonstration of consolidating porous beryllium/carbon structures. Final report

    International Nuclear Information System (INIS)

    Browning, M.J.; Hoover, G.E.; Mueller, J.J.; Hanes, H.D.

    1977-01-01

    A preliminary feasibility study was initiated to determine if porous beryllium structures could be fabricated by consolidating beryllium-coated microballoons into a rigid structure. The target specifications were to coat nominally 1-mm diameter microspheres with 0.5-mil beryllium coatings and then bond into a structure. Because of the very short time period, it was agreeable to use existing or quickly-available materials. The general approach was to apply coatings to carbon or quartz microspheres. Physical vapor deposition and ''snow-balling'' of fine beryllium powder were the two methods investigated. Once the particles were coated, HIP (pressure bonding) and pressureless sintering were to be investigated as methods for consolidating the microballoons. A low level of effort was to be spent to look at means of fabricating an all-carbon structure

  14. Effect of partial heating at mid of vertical plate adjacent to porous medium

    Science.gov (United States)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  15. Analysis of the resistive force in fluid flow through porous media

    International Nuclear Information System (INIS)

    Thirriot, C.; Cohen, A.M.S.; Massarani, G.; Cohen, B.M.S.

    1976-01-01

    The resistive term appearing in the equation of motion for a fluid flowing through a porous medium is analyzed. This term represents the interactive force between the fluid and the solid mesh. The analysis was done starting with a simple constitutive equation with the help of large number of experimental data points, both with consolidated and non-consolidated porous media. It was found that in almost all cases the resistive term can be adequately expressed in the vetorial from of Forchheimer's quadratic equation [pt

  16. Application of porous medium for efficiency improvement of a concentrated solar air heating system

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.

  17. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yiqi, E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, Elia; Obabko, Aleksandr [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Thomas, Justin [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-12-15

    Highlights: • The proposed models are 400 times less computationally expensive than CFD simulations. • The proposed models show good duct wall temperature agreement with CFD simulations. • The paper provides an efficient tool for coupled radial core expansion calculation. - Abstract: Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet.

  18. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    Science.gov (United States)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  19. Hydrodynamic instability of compressible fluid in porous medium

    International Nuclear Information System (INIS)

    Argal, Shraddha; Tiwari, Anita; Sharma, P K; Prajapati, R P

    2014-01-01

    The hydrodynamic Rayleigh -Taylor instability of two superposed compressible fluids in porous medium has been studied. The dispersion relation is derived for such a medium by using normal mode analysis. The RT instability is discussed for various simplified configuration. The effect of porosity and dynamic viscosity has been analyzed and it is observed that porosity and dynamic viscosity have stabilizing effect on the Rayleigh- Taylor instability of compressible fluids.

  20. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    Sapin, Paul

    2014-01-01

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author) [fr

  1. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Science.gov (United States)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  2. Experimental studies on solar parabolic dish cooker with porous medium

    International Nuclear Information System (INIS)

    Lokeswaran, S.; Eswaramoorthy, M.

    2012-01-01

    The solar cooking is the alternate method of cooking to reduce consumptions of fossil fuels. An affordable, energy efficient solar cooking technology is much need due to the fossil fuels increasing cost and it is the hottest research topic in all over the world. This paper presents an experimental analysis of the heat transfer enhancement of solar parabolic dish cookers by a porous medium made of scrap material. Using the stagnation temperature test and water boiling test are conducted on the cooking vessel with and without porous medium. Experimental results are compared for both cases in terms of thermal performance, optical efficiency, heat loss factor and cooking power. (authors)

  3. Optimization of nanolime solvent for the consolidation of coarse porous limestone

    Science.gov (United States)

    Borsoi, Giovanni; Lubelli, Barbara; van Hees, Rob; Veiga, Rosário; Silva, António Santos

    2016-09-01

    The potentialities of nanomaterials for application in the field of conservation have been widely investigated in the last two decades. Among nanomaterials, nanolimes, i.e., dispersions of lime nanoparticles in alcohols are promising consolidating products for calcareous materials. Nanolimes are effective in recovering the very superficial loss of cohesion of decayed materials, but they do not always provide sufficient mass consolidation. This limitation is mainly related to the deposition of the nanoparticles nearby the surface of the material. Experimental research has been set up with the aim of improving the in-depth deposition of lime nanoparticles. Previous research by the authors has shown that nanolime deposition within a substrate can be controlled by adapting the nanolimes properties (kinetic stability and evaporation rate) to the moisture transport behavior of the substrate. Nanolime properties can be modified by the use of different solvents. In this research, nanolime dispersions have been further optimized for application on Maastricht limestone, a coarse porous limestone. Firstly, nanolimes were synthesized and dispersed in ethanol and/or water, both pure and mixed in different percentages. Subsequently, based on the kinetic stability of the nanolime dispersions, the most promising solvent mixtures were selected and applied on the limestone. The deposition of lime nanoparticles within the limestone was studied by phenolphthalein test, optical microscopy and scanning electron microscopy. The results confirm that nanolime dispersed in a mixture of ethanol (95 %) and water (5 %) can guarantee a better nanoparticles in-depth deposition within coarse porous substrates, when compared to dispersions in pure ethanol.

  4. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    Science.gov (United States)

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  5. Fluid-Driven Deformation of a Soft Porous Medium

    Science.gov (United States)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  6. Fem Formulation for Heat and Mass Transfer in Porous Medium

    Science.gov (United States)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  7. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  8. Effective medium approximation for elastic constants of porous solids with microscopic heterogeneity

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1986-01-01

    Formulas for the scattering from an inhomogeneous sphere in a fluid-saturated porous medium are used to construct a self-consistent effective medium approximation for the coefficients in Biot's equations of poroelasticity [J. Acoust. Soc. Am. 28, 168 (1956)] when the material constituting the porous solid frame is not homogeneous on the microscopic scale. The discussion is restricted to porous materials exhibiting both macroscopic and microscopic isotropy. Brown and Korringa [Geophysics 40, 608 (1975)] have previously found the general form of these coefficients. The present results give explicit estimates of all the coefficients in terms of the moduli of the solid constituents. The results are also shown to be completely consistent with the well-known results of Gassmann and of Biot and Willis, as well as those of Brown and Korringa

  9. Energy dissipation during an explosion in a porous elasto-plastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Lovetskii, E.E.; Maslennikov, A.M.; Fetisov, V.S.

    1979-01-01

    A study is made of the redistribution of energy from camouflage blasting in a saturated porous medium. The study is undertaken with the aid of a numerical solution to a system of hydrodynamic equations, that account for shear strength of the substance under investigation. A study is made of the energy characteristics of explosion, their dynamic development, the influence of strength parameters of the medium, and porosity on these characteristics. A mechanism that is associated with the impact compression of matter is identified as the basic mechanism of energy dissipation for dry porous media. Water saturation of pores brings the energy characteristics of the explosion close to the explosion in a monolith. 12 references, 5 figures, 1 table.

  10. Unsteady flow of an incompressible fluid in a horizontal porous medium with suction

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1988-04-01

    A theoretical analysis of two-dimensional unsteady flow in a porous medium bounded by a horizontal wall is presented as a perturbation on a basic flow. It is assumed that the perturbation is occasioned by a sudden suction at the wall. Even for a highly permeable medium the characteristic Reynolds number in porous media flow is usually small and asymptotic solutions are developed by the Laplace transform technique. It is observed that the perturbed shear stress at the wall decays exponentially with time. (author). 5 refs

  11. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  12. Thermal convection and nonlinear effects of a superfluid 3He-4He mixture in a porous medium

    International Nuclear Information System (INIS)

    Chien, L.C.L.

    1986-01-01

    The convective instability of one-component classical fluids in a porous medium confined between two unbounded slabs was studied. This system behaves like a high Prandtl number bulk fluid. It has boundary conditions similar to the stress-free boundary conditions of bulk one-component classical fluids. Both the amplitude expansion method and the Galerkin method were used to investigate the nonlinear steady convection. Two dimensional rolls are the only stable motion at the onset of convection. Beyond threshold, the steady convection rolls become unstable to formation of cross-roll and zigzag instabilities. Applying the phase-dynamics approach for the zigzag instability, the author obtained the diffusion coefficient D, which can signal the onset of instability. Also investigated was the convective instability of superfluid 3 He- 4 He mixtures in porous media. Assuming no interaction between the average superflow and the porous medium and treating the normal flow in the equation of motion like a classical fluid in a porous medium, it was found that the superfluid mixtures in a porous medium. To investigate the effects of a lateral boundary, the convective instability of classical one-component fluids in porous media inside a box was studied. The zigzag instability does not exist because of the boundary conditions at the side of the box

  13. Sensitivity and inversion of full seismic waveforms in stratified porous medium

    International Nuclear Information System (INIS)

    Barros, L. de

    2007-12-01

    Characterization of porous media parameters, and particularly the porosity, permeability and fluid properties are very useful in many applications (hydrologic, natural hazards or oil industry). The aim of my research is to evaluate the possibility to determine these properties from the full seismic wave fields. First, I am interested in the useful parameters and the specific properties of the seismic waves in the poro-elastic theory, often called Biot (1956) theory. I then compute seismic waves propagation in fluid saturated stratified porous media with a reflectivity method coupled with the discrete wavenumber integration method. I first used this modeling to study the possibilities to determine the carbon dioxide concentration and localization thanks to the reflected P-waves in the case of the deep geological storage of Sleipner (North Sea). The sensitivity of the seismic response to the poro-elastic parameters are then generalized by the analytical computation of the Frechet derivatives which are expressed in terms of the Green's functions of the unperturbed medium. The numerical tests show that the porosity and the consolidation are the main parameters to invert. The sensitivity operators are then introduced in a inversion algorithm based on iterative modeling of the full waveform. The classical algorithm of generalized least-square inverse problem is solved by the quasi-Newton technique (Tarantola, 1984). The inversion of synthetic data show that we can invert for the porosity and the fluid and solid parameters (densities and mechanical modulus, or volume rate of fluid and mineral) can be correctly rebuilt if the other parameters are well known. However, the strong seismic coupling of the porous parameters leads to difficulties to invert simultaneously for several parameters. One way to get round these difficulties is to use additional information and invert for one single parameter for the fluid properties (saturating rate) or for the lithology. An other way

  14. Uzawa smoother in multigrid for the coupleD porous medium and stokes flow system

    NARCIS (Netherlands)

    P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Kees)

    2017-01-01

    textabstractThe multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the

  15. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    International Nuclear Information System (INIS)

    Vasilic, Ksenija

    2016-01-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  16. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    Energy Technology Data Exchange (ETDEWEB)

    Vasilic, Ksenija

    2016-05-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  17. Transient response of a cylindrical cavity in viscoelastic saturated porous medium

    Directory of Open Access Journals (Sweden)

    LIU Tao

    2016-10-01

    Full Text Available The study on dynamic characteristics for fluid-solid coupling system in saturated porous medium is of significant academic value and potential application foreground.In this paper,the transient response of a cylindrical cavity in infinite viscoelastic saturated porous medium with the circular lining is studied,and the corresponding results can be used in the design of foundation engineering,such as the tunnel analyses in saturated soil,the nuclear waste disposal engineering,and the exploitation and utilization of geothermal reservoirs and so on.Firstly,based on the porous media theory,the governing equations of coupled system are presented,and the corresponding boundary conditions,initial conditions as well as the joint conditions are derived.Then,the differential quadrature element method and the second-order backward difference scheme are applied to discretize the governing differential equations of the coupled system on the spatial and temporal domains,respectively.Finally,the Newton-Raphson method is adopted to solve the discretization equations with the initial conditions,the transient responses of the coupled system are analyzed,the effects of the parameters are considered,and the validity of the numerical method is verified.

  18. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  19. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    International Nuclear Information System (INIS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-01-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  20. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.; Hassanizadeh, S. M.

    2012-01-01

    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate

  1. Experimental Study on Water Sensitivity Difference Based on Oiliness of Porous Medium Rock

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-01-01

    Full Text Available This study presents the differences of water sensitivity experiment of porous medium rock between conventional dry core samples and oil-bearing core. The comparison was made to analyze the impact of single-phase fluid and multiphase fluid on the actual sensitivity of rock. The nuclear magnetic resonance (NMR test was carried out to reveal the distribution of oil in porous medium and the microscopic influence mechanism of oil phase. The study shows that the initial oil in place could isolate the clay from water, and then the expansion and the migration of the clay were prevented to reduce the decrease of degree of damage.

  2. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  3. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  4. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    Science.gov (United States)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  5. Analytical solution for the transient response of a fluid/saturated porous medium halfspace system subjected to an impulsive line source

    Science.gov (United States)

    Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang

    2018-05-01

    In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.

  6. Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature

    International Nuclear Information System (INIS)

    Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari

    2006-01-01

    Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%

  7. Non-Darcy Mixed Convection in a Doubly Stratified Porous Medium with Soret-Dufour Effects

    Directory of Open Access Journals (Sweden)

    D. Srinivasacharya

    2014-01-01

    Full Text Available This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.

  8. CFD prediction of mixing in a steam generator mock-up: Comparison between full geometry and porous medium approaches

    International Nuclear Information System (INIS)

    Dehbi, A.; Badreddine, H.

    2013-01-01

    Highlights: • CFD is used to simulate single phase mixing in a model steam generator. • Motive of the work is to compare porous media approach with full geometry representation of tubes. • Porous media approach is found to compare favorably with full representation in steady states. - Abstract: In CFD simulations of single phase flow mixing in a steam generator (SG) during a station blackout severe accident, one is faced with the problem of representing the thousands of SG U-tubes. Typically simplifications are made to render the problem computationally tractable. In particular, one or a number of tubes are lumped in one volume that is treated as a single porous medium which replicates the pressure loss and heat transfer characteristics of the real tube. This approach significantly reduces the computational size of the problem and hence simulation time. In this work, we endeavor to investigate the adequacy of this approach by performing a series of simulations. We first validate the porous medium approach against results of the 1/7th scale Westinghouse SG-S3 test. In a second step, we make two separate simulations of flow in the PSI SG mock-up, i.e. one in which the porous medium model is used for the tube bundle, and another in which the full geometry is represented. In all simulations, the Reynolds Stress (RSM) model of turbulence is used. We show that in steady state conditions, the porous medium treatment yields results which are comparable to those of the full geometry representation (temperature distribution, recirculation ratio, hot plume spread, etc.). Hence, the porous medium approach can be extended with a good degree of confidence to model single phase mixing in the full scale SG

  9. Experimental investigation of clogging dynamics in homogeneous porous medium

    Science.gov (United States)

    Shen, Jikang; Ni, Rui

    2017-03-01

    A 3-D refractive-index matching Lagrangian particle tracking (3D-RIM-LPT) system was developed to study the filtration and the clogging process inside a homogeneous porous medium. A small subset of particles flowing through the porous medium was dyed and tracked. As this subset was randomly chosen, its dynamics is representative of all the rest. The statistics of particle locations, number, and velocity were obtained as functions of different volumetric concentrations. It is found that in our system the clogging time decays with the particle concentration following a power law relationship. As the concentration increases, there is a transition from depth filtration to cake filtration. At high concentration, more clogged pores lead to frequent flow redirections and more transverse migrations of particles. In addition, the velocity distribution in the transverse direction is symmetrical around zero, and it is slightly more intermittent than the random Gaussian curve due to particle-particle and particle-grain interactions. In contrast, as clogging develops, the longitudinal velocity of particles along the mean flow direction peaks near zero because of many trapped particles. But at the same time, the remaining open pores will experience larger pressure and, as a result, particles through those pores tend to have larger longitudinal velocities.

  10. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation); Bagratashvili, V N [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)

  11. The effect of Coriolis force on nonlinear convection in a porous medium

    Directory of Open Access Journals (Sweden)

    D. H. Riahi

    1994-01-01

    Full Text Available Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.

  12. Description of regional blow-up in a porous-medium equation

    Directory of Open Access Journals (Sweden)

    Carmen Cortazar

    2002-10-01

    Full Text Available We describe the (finite-time blow-up phenomenon for a non-negative solution of a porous medium equation of the form $$ u_t = Delta u^m + u^m $$ in the entire space. Here $m>1$ and the initial condition is assumed compactly supported. Blow-up takes place exactly inside a finite number of balls with same radii and exhibiting the same self-similar profile.

  13. Theoretical Study of Heat Transfer through a Sun Space Filled with a Porous Medium

    Directory of Open Access Journals (Sweden)

    Ahmed Tawfeeq Ahmed Al-Sammarraie

    2016-10-01

    Full Text Available A theoretical study had been conducted to detect the effect of using a porous medium in sunspace to reduce  heating  load  and  overcoming  coldness  of  winter  in  the  cold  regions.  In  this  work,  the  heat transferred and stored in the storage wall was investigated. The mathematical model was unsteady, heat conduction equation with nonlinear boundary conditions was solved by using finite difference method and the solution technique  of heat conduction had based  on the  Crank Nicholson method. The results had adopted  on  the  aspect  ratio  (H/L=30,  Darcy  number  (Da=10-3,  porosity  (φ=0.35  and  particle  to  fluid thermal conductivity ratio (kp/kf=38.5. The results showed that using the porous medium had enhanced the heat transferred and stored in the storage wall. For   the outside storage wall temperature, an increase of 19.7%  was achieved by using the porous medium instead of the air, while it was 20.3%  for the inside storage wall temperature.

  14. On the viscous dissipation modeling of thermal fluid flow in a porous medium

    KAUST Repository

    Salama, Amgad; El-Amin, Mohamed; Abbas, Ibrahim A A; Sun, Shuyu

    2011-01-01

    wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non

  15. Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium

    International Nuclear Information System (INIS)

    Lee, K.; Howell, J.R.

    1986-01-01

    A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating

  16. A note on similarity in single-phase and porous-medium natural convection

    International Nuclear Information System (INIS)

    Lyall, H.G.

    1981-03-01

    The similarity laws for single-phase and porous-medium natural convection are developed. For single-phase flow Nu = Nu(Ra) implies that inertial effects are negligible, while Nu = Nu(Ra.Pr) implies that viscous effects are. The first correlation is adequate for Pr>10, while the second applies for Pr<0.01. For intermediate values of Pr, a more general correlation, Nu = Nu(Ra,Pr) is necessary. For a porous-medium, if inertial effects and dispersion are negligible, Nu* = Nu*(Ra*). However dispersion will only be negligible if the ratio of grain size d to the width of the region L is very small (d/L<< l). If this condition does not hold it is necessary to model d/L. If inertial effects are significant, i.e. the Reynolds number is too large for Darcy's law to apply, a group containing the effective Prandtl number, Pr*, also needs to be modelled for similarity. (author)

  17. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  18. Influence of gas hydrates crystals or ice crystals on the permeability of a porous medium; Influence de cristaux d'hydrates de gaz ou de glace sur la permeabilite d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoy, O

    2005-03-15

    The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvent this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second series of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium: 3 mm and 0.2 mm. With the large grains, results show two thresholds: for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability

  19. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.

    2012-01-01

    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate the influence of initial conditions on the dynamics of the process. In this study, using dynamic pore-network modeling, we simulated capillary rise in a porous medium for different initial saturations (and consequently initial capillary pressures). Furthermore, the effect of hydraulic connectivity of the wetting phase in corners on the height and velocity of the wetting front was studied. Our simulation results show that there is a trade-off between capillary forces and trapping due to snap-off, which leads to a nonlinear dependence of wetting front velocity on initial saturation at the pore scale. This analysis may provide a possible answer to the experimental observations in the literature showing a non-monotonic dependency between initial saturation and the macroscopic front velocity. © Soil Science Society of America.

  20. Thermodynamic analysis of the heat regenerative cycle in porous medium engine

    International Nuclear Information System (INIS)

    Liu Hongsheng; Xie Maozhao; Wu Dan

    2009-01-01

    The advantages of homogeneous combustion in internal combustion engines are well known all over the world. Recent years, porous medium (PM) engine has been proposed as a new type engine based on the technique of combustion in porous medium, which can fulfils all requirements to perform homogeneous combustion. In this paper, working processes of a PM engine are briefly introduced and an ideal thermodynamic model of the PM heat regeneration cycle in PM engine is developed. An expression for the relation between net work output and thermal efficiency is derived for the cycle. In order to evaluate of the cycle, the influences of the expansion ratio, initial temperature and limited temperature on the net work and efficiency are discussed, and the availability terms of the cycle are analyzed. Comparing the PM heat regenerative cycle of the PM engine against Otto cycle and Diesel cycle shows that PM heat regenerative cycle can improve net work output greatly with little drop of efficiency. The aim of this paper is to predict the thermodynamic performance of PM heat regeneration cycle and provide a guide to further investigations of the PM engine

  1. Heat transfer prediction in a square porous medium using artificial neural network

    Science.gov (United States)

    Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.

  2. Apparatus for consolidation of earth formations

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    1968-02-08

    Earth formations are consolidated by injecting into the formation a fluid medium through vertically spaced perforations; a device lowered into the borehole permits creating chambers isolated from each other and communicating with only one, or a group of perforations. These chambers are connected through valved conduits to a reservoir of the consolidating medium. Each chamber or each group of chambers has its own supply conduit, and flow-measuring means are provided in each conduit. The valves may be magnetic valves, controlled electrically from the surface; the reservoirs for the consolidating medium may be equipped with hydraulically actuated pistons. (8 claims)

  3. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NARCIS (Netherlands)

    P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)

    2018-01-01

    textabstractThe interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled

  4. Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments

    NARCIS (Netherlands)

    Noorden, van T.L.

    2009-01-01

    We investigate a two-dimensional microscale model for crystal dissolution and precipitation in a porous medium. The model contains a free boundary and allows for changes in the pore volume. Using a level set formulation of the free boundary, we apply a formal homogenization procedure to obtain

  5. Influence of gas hydrates crystals or ice crystals on the permeability of a porous medium; Influence de cristaux d'hydrates de gaz ou de glace sur la permeabilite d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoy, O.

    2005-03-15

    The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvent this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second series of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium: 3 mm and 0.2 mm. With the large grains, results show two thresholds: for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability

  6. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  7. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.; Botkin, N.D.; Pykhteev, O.A.

    2012-01-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic

  8. Analytical solution to the diffusion, sorption and decay chain equation in a saturated porous medium between two reservoirs

    International Nuclear Information System (INIS)

    Guzman, Juan; Maximov, Serguei; Escarela-Perez, Rafael; López-García, Irvin; Moranchel, Mario

    2015-01-01

    The diffusion and distribution coefficients are important parameters in the design of barrier systems used in radioactive repositories. These coefficients can be determined using a two-reservoir configuration, where a saturated porous medium is allocated between two reservoirs filled by stagnant water. One of the reservoirs contains a high concentration of radioisotopes. The goal of this work is to obtain an analytical solution for the concentration of all radioisotopes in the decay chain of a two-reservoir configuration. The analytical solution must be obtained by taking into account the diffusion and sorption processes. Concepts such as overvalued concentration, diffusion and decay factors are employed to this end. It is analytically proven that a factor of the solution is identical for all chains (considering a time scaling factor), if certain parameters do not change. In addition, it is proven that the concentration sensitivity, due to the distribution coefficient variation, depends of the porous medium thickness, which is practically insensitive for small porous medium thicknesses. The analytical solution for the radioisotope concentration is compared with experimental and numerical results available in literature. - Highlights: • Saturated porous media allocated between two reservoirs. • Analytical solution of the isotope transport equation. • Transport considers diffusion, sorption and decay chain

  9. Debris bed coolability using a 3-D two phase model in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C.; Duval, F.; Fichot, F. [CEA Cadarache, Inst. de Protection et de Surete Nucleaire13 - Saint-Paul-lez-Durance (France); Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France); Parent, M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France)

    2001-07-01

    During a severe nuclear accident, a part of the molten corium resulting from the core degradation may relocate in the lower plenum of the reactor vessel. In order to predict the safety margin of the reactor under such conditions, the coolability of this porous heat-generating medium is evaluated in this study and compared with other investigations. In this work, conservation equations derived for debris beds are implemented in the three dimensional thermal-hydraulic module of the CATHARE code. The coolant flow is a two phase flow with phase change. The momentum balance equation for each fluid phase is an extension of Darcy's law. This extension takes into account the capillary effects between the two phases, the relative permeabilities and passabilities of each phase, the interfacial drag force between liquid and gas, and the porous bed configuration (porosity, particle diameter,... ). The model developed is three-dimensional which is important to better predict the flow in configuration such as counter-current flow or to emphasize preferential ways induced by porous geometry. The energy balance equations of the three phases (liquid, gas and solid phase) are obtained by a volume averaging process of the local conservation equations. In this method, the local thermal non-equilibrium between the three phases is considered and the heat exchanges, the phase change rate as well as the thermal dispersion coefficients are calculated as a function of the local geometry of the porous medium. Such a method allows the numerical estimation of these thermal properties which are very difficult to determine experimentally. This feature is a great advantage of this approach. After a brief description of the thermal-hydraulic model, one-dimensional predictions of critical dryout fluxes are presented and compared with results from the literature. Reasonable agreement is obtained. Then a two-dimensional calculation is presented and shows the influence of the porous medium

  10. Analytical and numerical investigation of double diffusion in thermally anisotropy multilayer porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bennacer, R. [Neuville sur Oise, LEEVAM 5 mail Gay Lussac, Cergy-Pontoise Cedex (France); Mohamad, A.A. [CEERE University of Calgary, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta (Canada); Ganaoui, M.El [Faculte des Sciences et Techniques de Limoges, Limoges (France)

    2005-02-01

    Double-diffusive natural convection within a multilayer anisotropic porous medium is studied numerically and analytically. The domain composed of two horizontal porous layers is subjected to a uniform horizontal heat flux and a vertical mass flux, where only the lower one is thermally anisotropic. Darcy model with classical Boussinesq approximation is used in formulating the mathematical model. The effect of thermal anisotropy and the relative width of the two layers on the flow and transfers is illustrated with characterising the transitions from the diffusive to the convective solution. Results were well compared with respect to a developed analytical approach, based on a parallel flow approximation for thermally anisotropic multilayer media. (orig.)

  11. The Riemann Solution for the Injection of Steam and Nitrogen in a Porous Medium

    NARCIS (Netherlands)

    Lambert, W.; Marchesin, D.; Bruining, J.

    2009-01-01

    We solve the model for the flow of nitrogen, vapor, and water in a porous medium, neglecting compressibility, heat conductivity, and capillary effects. Our choice of injection conditions is determined by the application to clean up polluted sites. We study all mathematical structures, such as

  12. On the viscous dissipation modeling of thermal fluid flow in a porous medium

    KAUST Repository

    Salama, Amgad

    2011-02-24

    The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.

  13. An Interface Tracking Algorithm for the Porous Medium Equation.

    Science.gov (United States)

    1983-03-01

    equation (1.11). N [v n n 2(2) = n . AV k + wk---IY" 2] +l~ x A t K Ax E E 2+ VeTA i;- 2k1 n- o (nr+l) <k-<.(n+l) N [Av] [ n+l <Ax Z m(v ) I~+lIAxAt...RD-R127 685 AN INTERFACE TRACKING ALGORITHM FOR THE POROUS MEDIUM / EQURTION(U) WISCONSIN UNIV-MRDISON MATHEMATICS RESEARCH CENTER E DIBENEDETTO ET...RL. MAR 83 NRC-TSR-249 UNCLASSIFIED DAG29-88-C-8041 F/G 12/1i N E -EEonshhhhI EhhhMhhhhhhhhE mhhhhhhhhhhhhE mhhhhhhhhhhhhI IMhhhhhhhMhhhE

  14. Permeability of model porous medium formed by random discs

    Science.gov (United States)

    Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.

    2018-03-01

    Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.

  15. Mathematical modeling of deformation of a porous medium, considering its strengthening due to pore collapse

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru [Institute of Computational Modeling, SB RAS, Akademgorodok 50/44, 660036 Krasnoyarsk (Russian Federation)

    2015-10-28

    Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the pore size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.

  16. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    Science.gov (United States)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent

  17. Film condensation on a porous vertical surface in a porous media

    International Nuclear Information System (INIS)

    Ebinuma, C.D.; Liu, C.Y.; Ismail, K.A.R.

    1983-01-01

    The problem of dry saturated steam film condensation by natural convection on a porous surface in a porous medium is presented. Through the classical Darcy law for flow in porous medium and the approximations considered in the Boundary layer theory, it is shown that the analytical solution exists only when the normal velocity to the porous wall is inversly proportional to the square root of the distance along the plate. (E.G.) [pt

  18. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    Science.gov (United States)

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

  19. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of a saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobsayashi, A.

    1987-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of a porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. If the medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in the plane strain condition; that water in the ground does not change its phase; and that heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively, in the coupled model. Several types of problems are analyzed

  20. Fluid flow in a porous medium with transverse permeability discontinuity

    Science.gov (United States)

    Pavlovskaya, Galina E.; Meersmann, Thomas; Jin, Chunyu; Rigby, Sean P.

    2018-04-01

    Magnetic resonance imaging (MRI) velocimetry methods are used to study fully developed axially symmetric fluid flow in a model porous medium of cylindrical symmetry with a transverse permeability discontinuity. Spatial mapping of fluid flow results in radial velocity profiles. High spatial resolution of these profiles allows estimating the slip in velocities at the boundary with a permeability discontinuity zone in a sample. The profiles are compared to theoretical velocity fields for a fully developed axially symmetric flow in a cylinder derived from the Beavers-Joseph [G. S. Beavers and D. D. Joseph, J. Fluid Mech. 30, 197 (1967), 10.1017/S0022112067001375] and Brinkman [H. C. Brinkman, Appl. Sci. Res. A 1, 27 (1947), 10.1007/BF02120313] models. Velocity fields are also computed using pore-scale lattice Boltzmann modeling (LBM) where the assumption about the boundary could be omitted. Both approaches give good agreement between theory and experiment, though LBM velocity fields follow the experiment more closely. This work shows great promise for MRI velocimetry methods in addressing the boundary behavior of fluids in opaque heterogeneous porous media.

  1. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    Science.gov (United States)

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  2. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    Science.gov (United States)

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  3. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    Science.gov (United States)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  4. On the description of the properties of fractured rock using the concept of a porous medium

    International Nuclear Information System (INIS)

    Stokes, J.

    1980-05-01

    In order to describe the flow of groundwater through fractured rock, water is either assumed to flow through a pervious continuum of through descrete fractures between impervious blocks of rock. The latter approach being the one demanding more information on the rock, problems on groundwater flow are usually discussed using the porous medium approach. It is often a question of debate wether the continuum approach is applicable to the fractured rock under consideration. Therefore, it is essential that after assuming that a certain flow region acts as a porous medium, we use a procedure for measuring the properties that at the same time gives a test of this assumption. When giving a description of groundwater flow, the goal is often a presentation of pathlines and flowtimes between points of interest and the ground surface. Using a porous medium approach, this means that hydraulic conductivity and porosity must be known through the medium. In order to cope with transient flow, we must also know the time constant governing the development of the flow. The pathlines depend to a great extent on the variation of conductivity through space. A conductivity decreasing with depth will force the pathlines to the surface giving local flow. If instead the conductivity is constant, the flow is regional. It is therefore important to know the gradient of hydraulic conductivity. Finally, as we know that the flow takes place through a geological structure, the anisotropic behaviour of the rock must be known in order to describe the flow. In this report a procedure to measure the properties listed above is developed. (author)

  5. FEM validation of a double porosity elastic model for consolidation of structurally complex clayey soils

    Science.gov (United States)

    Callari, C.; Federico, F.

    2000-04-01

    Laboratory consolidation of structured clayey soils is analysed in this paper. The research is carried out by two different methods. The first one treats the soil as an isotropic homogeneous equivalent Double Porosity (DP) medium. The second method rests on the extensive application of the Finite Element Method (FEM) to combinations of different soils, composing 2D or fully 3D ordered structured media that schematically discretize the complex material. Two reference problems, representing typical situations of 1D laboratory consolidation of structured soils, are considered. For each problem, solution is obtained through integration of the equations governing the consolidation of the DP medium as well as via FEM applied to the ordered schemes composed of different materials. The presence of conventional experimental devices to ensure the drainage of the sample is taken into account through appropriate boundary conditions. Comparison of FEM results with theoretical results clearly points out the ability of the DP model to represent consolidation processes of structurally complex soils. Limits of applicability of the DP model may arise when the rate of fluid exchange between the two porous systems is represented through oversimplified relations. Results of computations, obtained having assigned reasonable values to the meso-structural and to the experimental apparatus parameters, point out that a partially efficient drainage apparatus strongly influences the distribution along the sample and the time evolution of the interstitial water pressure acting in both systems of pores. Data of consolidation tests in a Rowe's cell on samples of artificially fissured clays reported in the literature are compared with the analytical and numerical results showing a significant agreement.

  6. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobayashi, A.

    1985-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository

  7. A model to analyse the flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium

    International Nuclear Information System (INIS)

    Gama, R.M.S. da; Sampaio, R.

    1985-01-01

    The flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium which has a given inicial distribuition of the mentioned fluid, is analyzed. It is proposed a model that assumes that the motion is caused by concentration gradient, but it does not consider the friction between the porous medium and the fluid. We solve an onedimensional case where the mathematical problem is reduced to the solution of a non-linear hyperbolic system of differential equations, subjected to an inicial condition given by a step function, called 'Riemann Problem'. (Author) [pt

  8. Self-Consolidation Mechanism Of Porous Ti-6Al-4V Implant Prototypes Produced By Electro-Discharge-Sintering Of Spherical Ti-6Al-4V Powders

    Directory of Open Access Journals (Sweden)

    Lee W.H.

    2015-06-01

    Full Text Available Electro-Discharge-Sintering (EDS was employed to fabricate Ti-6Al-4V porous implant prototypes from atomized powders (100 – 150 μm, that were subjected to discharges of 0.75 to 2.0 kJ/0.7g-powder from 150, 300, and 450 μF capacitors. Both fully porous and porous-surfaced Ti-6Al-4V compacts with various solid core sizes were self-consolidated in less than 86 – 155 μsec. It is known that EDS can simultaneously produce the pinch pressure to squeeze and deform powder particles and the heat to weld them together. The formation of a solid core in these prototypes depends on the amounts of both the pinch pressure and heat generated during a discharge. The size of the solid core and the thickness of the porous layer can be successfully controlled by manipulating the discharge conditions such as input energy and capacitance.

  9. Computed tomography for the quantitative characterization of flow through a porous medium

    International Nuclear Information System (INIS)

    Auzerais, F.M.; Dussan, E.B.; Reischer, A.J.

    1991-01-01

    X-ray computer tomography (CT) has become an increasingly popular research tool in petroleum engineering for characterizing porous media. Its highly detailed images have been used to construct maps of porosity, saturation and atomic composition, and to visualize the displacement of fluids. However, extracting data necessary to characterize flow through porous media is both time consuming and dependent on the availability of extensive computational resources - - a consequence of the large size of the image files. The authors of this paper applied to known technique, based upon the ability to recognize regions with similar features, which avoids these difficulties. It allows the authors to substitute for the image, the pixel location of the boundaries of the recognized regions, reducing considerably the computer storage requirements. The authors this technique to study the dynamics of two miscible liquids of different densities flowing through a porous medium where buoyancy plays an important role. The authors' specific concern is the movement of mud filtrate as it penetrates a permeable formation in the vicinity of a recently drilled wellbore. The authors quantify the manner in which impermeable horizontal barriers influence the movement of the filtrate

  10. Chemical reaction effects on unsteady MHD free convective flow in a rotating porous medium with mass transfer

    Directory of Open Access Journals (Sweden)

    Govindarajan Arunachalam

    2014-01-01

    Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.

  11. ELECTROKINETIC DEVICE AND METHOD FOR CONSOLIDATING POROUS MATERIALS

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a device and an associated electrokinetic method which allows the pores (superficial and deep) of a porous material to be filled, by forcing the precipitation therein of a product of low solubility in water by creating an electric field which will mobilise the cations...... and anions supplied by previously selected solutions. This method comprises two phases. In the first phase, the pores located at a specified distance from the surface of contact between the porous material and the anodic or cathodic compartment are plugged. In a second phase, the rest of the pores, mainly...... those which are on the surface level, are collapsed. As a result of the designed device and the plugging system contained therein, the porous material is not affected at any moment by chemical alteration processes caused by contact with extreme pH values. This device allows the treatment to be applied...

  12. On the Onset of Thermal Convection in a Layer of Oldroydian Visco-Elastic Fluid Saturated by Brinkman–Darcy Porous Medium

    Directory of Open Access Journals (Sweden)

    Chand Ramesh

    2015-12-01

    Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.

  13. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  14. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy

    2010-01-01

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  15. Heat transfer in a Couette flow with part of the space between the plates filled with porous medium

    International Nuclear Information System (INIS)

    Carrocci, L.R.; Liu, C.Y.; Ismail, K.A.R.

    1982-01-01

    The effect of various parameters in the temperature profile is shown under boundary conditions for the Couette flow between infinite plates with part of the space filled with porous medium. The parameters observed are: pressure gradient, permeability, the non-dimensional product PE (Prandtl number x Eckert number), the relation between the thermal conductibility coefficient between porous region and pure fluid, and finally the non-dimensional product PR (Prandtl number x Reynolds number). (E.G.) [pt

  16. Natural convection boundary layer with suction and mass transfer in a porous medium

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1989-03-01

    The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs

  17. Ultimate regime of high Rayleigh number convection in a porous medium.

    Science.gov (United States)

    Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R

    2012-06-01

    Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).

  18. Theoretical and experimental investigation of thermohydrologic processes in a partially saturated, fractured porous medium

    International Nuclear Information System (INIS)

    Green, R.T.; Manteufel, R.D.; Dodge, F.T.; Svedeman, S.J.

    1993-07-01

    The performance of a geologic repository for high-level nuclear waste will be influenced to a large degree by thermohydrologic phenomena created by the emplacement of heat-generating radioactive waste. The importance of these phenomena is manifest in that they can greatly affect the movement of moisture and the resulting transport of radionuclides from the repository. Thus, these phenomena must be well understood prior to a definitive assessment of a potential repository site. An investigation has been undertaken along three separate avenues of analysis: (i) laboratory experiments, (ii) mathematical models, and (iii) similitude analysis. A summary of accomplishments to date is as follows. (1) A review of the literature on the theory of heat and mass transfer in partially saturated porous medium. (2) A development of the governing conservation and constitutive equations. (3) A development of a dimensionless form of the governing equations. (4) A numerical study of the importance and sensitivity of flow to a set of dimensionless groups. (5) A survey and evaluation of experimental measurement techniques. (6) Execution of laboratory experiments of nonisothermal flow in a porous medium with a simulated fracture

  19. Transport of radionuclides by concentrated brine in a porous medium with micropore-macropore structure

    International Nuclear Information System (INIS)

    Hassanizadeh, S.M.

    1987-01-01

    This work concerns itself with the study of effects of soil aggregation and high salt concentrations on the transport of radionuclides by concentrated brine flowing through an aggregated porous medium. The medium is considered to be composed of porous rock aggregates separated by macropores through which the brine flows and transport of salt and radionuclides takes place. The aggregates contain dead-end pores, cracks, and stationary pockets collectively called micropores. The micropore space does not contribute to the flow, but it serves as a storage for salt and radionuclides. Adsorption of radionuclides takes place at internal surfaces of aggregates where they assume that a linear equilibrium isotherm describes the process. A one-dimensional numerical model is developed which is based on two sets of equations: one set for the flow and transport of salt and another set for transport of radionuclides. Results of numerical experiments clearly indicate that the existence of high salt concentrations markedly reduces the peak of nuclides concentration and slows down their movement. Also, it is found that diffusive mass exchange between macropores and aggregates results in a pronounced lowering of the radionuclides concentration peaks. 9 references, 7 figures

  20. Numerical Simulation of Transient Free Convection Flow and Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Rajesh Sharma

    2013-01-01

    Full Text Available The coupled momentum and heat transfer in unsteady, incompressible flow along a semi-infinite vertical porous moving plate adjacent to an isotropic porous medium with viscous dissipation effect are investigated. The Darcy-Forchheimer nonlinear drag force model which includes the effects of inertia drag forces is employed. The governing differential equations of the problem are transformed into a system of nondimensional differential equations which are solved numerically by the finite element method (FEM. The non-dimensional velocity and temperature profiles are presented for the influence of Darcy number, Forchheimer number, Grashof number, Eckert number, Prandtl number, plate velocity, and time. The Nusselt number is also evaluated and compared with finite difference method (FDM, which shows excellent agreement.

  1. Transfers in porous medium, drying; Transferts en milieu poreux, sechage

    Energy Technology Data Exchange (ETDEWEB)

    Ferrasse, J.H.; Arlabosse, P.; Puaux, J.P. [Ecole des Mines d' Albi-Carnaux, Centre Energetique Environnement, 81 - Albi (France)] (and others)

    2000-07-01

    This congress, on thermology, took place at Lyon in France, the 15-17 may 2000 with a presentation of 143 papers on the recent researches and specialized discussions. The talks published in this book are sorted out in ten thema. One of the thema concerns the transfers in porous medium and the drying, with seven talks presented. They can be applied to many natural domains as the residual waters filtering, the hydrocarbons extraction, the soil utilization for energy source or reserve, the thermal insulation improvement. In the drying domain, two papers are presented, one on the development of the drying of sewage sludges, the other on a drying process for superheated steam. (A.L.B.)

  2. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  3. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  4. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  5. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-01-01

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented. PMID:28492471

  6. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium.

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-05-11

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented.

  7. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  8. Magnetogravitational stability of resistive plasma through porous medium with thermal conduction and FLR corrections

    International Nuclear Information System (INIS)

    Vaghela, D.S.; Chhajlani, R.K.

    1989-01-01

    The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conductivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though Finite Larmor Radius (FLR) corrections have no effect on sonic mode but it changes the growth rate for Alfven mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of non-viscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition. (author)

  9. Finite medium Green's function solutions to nuclide transport in porous media

    International Nuclear Information System (INIS)

    Oston, S.G.

    1979-01-01

    Current analytical techniques for predicting the transport of nuclides in porous materials center on the Green's function approach - i.e., determining the response characteristics of a geologic pathway to an impulse function input. To data, the analyses all have set the boundary conditions needed to solve the 1-D transport equation as though each pathway were infinite in length. The purpose of this work is to critically examine the effect that this infinite pathway assumption has on Green's function models of nuclide transport in porous media. The work described herein has directly attacked the more difficult problem of obtaining suitable Green's functions for finite pathways whose dimensions, in fact, may not be much greater than the diffusion length. Two different finite media Green's functions describing the nuclide mass flux have been determined, depending on whether the pathway is terminated by a high or a low flow resistance at the outlet end. Pulse shapes and peak amplitudes have been computed for each Green's function over a wide range of geohydrologic parameters. These results have been compared to both infinite and semi-infinite medium solutions. It was found that predicted pulse shapes are quite sensitive to selection of a Green's function model for short pathways only. For long pathways all models tend toward a symmetric Gaussian flux-time history at the outlet. Thus, the results of our previous waste transport studies using the infinite pathway assumption are still generally valid because they always included at least one long pathway. It was also found that finite medium models offer some unique computational advantages for evaluating nuclide transport in a series of connecting pathways

  10. Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium

    Directory of Open Access Journals (Sweden)

    A.S. Eegunjobi

    Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction

  11. Effect of magnetic field on Rayleigh-Taylor instability of quantum and stratified plasma in porous medium

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    This paper is devoted to an investigation of Quantum effects and magnetic field effects on the Rayleigh Taylor instability of two superposed incompressible fluids in bounded porous medium. The Quantum magneto hydrodynamic equations are solved by using normal mode method and a dispersion relation is obtained. The dispersion relation is derived for the case where plasma is bounded by two rigid planes z = 0 and z = h. The Rayleigh Taylor instability growth rate and stability condition of the medium is discussed in the presence of quantum effect, magnetic field, porosity and permeability. It is found that the magnetic field and medium porosity have stabilizing influence while permeability has destabilizing influence on the Rayleigh Taylor instability. (author)

  12. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  13. Carbofuran biodegradation in brackish groundwater and its effect on the hydraulic properties of the porous medium

    Science.gov (United States)

    Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam

    2015-04-01

    A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on

  14. Modeling of filtration of 2-types particles suspension in a porous medium

    Directory of Open Access Journals (Sweden)

    Galaguz Yuri

    2017-01-01

    Full Text Available The filtration problem describes the process of concreting loose soil with a liquefied concrete solution. The filtration of 2-types particles suspension in a homogeneous porous medium with a size-exclusion particles retention mechanism is considered. The difference in the filtration coefficients of 2-types particles leads to the separation of the filtration domain into two zones, in one of which two types of particles are deposited and in another – only particles of one type are deposited. In this paper, the mobile boundary of two zones is calculated, and numerical solution of the problem is calculated.

  15. Creep consolidation of nuclear depository backfill materials

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1980-10-01

    Evaluation of the effects of backfilling nuclear waste repository rooms is an important aspect of waste repository design. Consolidation of the porous backfill takes place as the room closes with time, causing the supporting stress exerted by the backfill against the intact rock to increase. Estimation of the rate of backfill consolidation is required for closure rate predictions and should be possible if the creep law for the solid constituent is known. A simple theory describing consolidation with a spherical void model is derived to illustrate this relationship. Although the present form of the theory assumes a homogeneous isotropic incompressible material atypical of most rocks, it may be applicable to rock salt, which exhibits considerable plasticity under confined pressure. Application of the theory is illustrated assuming a simple steady-state creep law, to show that the consolidation rate depends on the externally applied stress, temperature, and porosity

  16. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  17. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Science.gov (United States)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  18. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  19. Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium

    Directory of Open Access Journals (Sweden)

    M. Dayyan

    2013-01-01

    Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.

  20. Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium

    Directory of Open Access Journals (Sweden)

    R. Ellahi

    2012-01-01

    Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.

  1. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension

  2. A novel direct-fired porous-medium boiler

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.

  3. MHD flow of a dusty viscoelastic liquid through a porous medium between two inclined parallel plates

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, N.P.

    1996-01-01

    Magnetohydrodynamic flow of a dusty viscoelastic liquid (Oldroyd B-liquid) through a porous medium between two parallel plates inclined to the horizon has been studied. The liquid velocity, dust particle velocity and flux of flow have been obtained. Earlier results have been deduced as particular cases of the present investigation. The physical situation of the motion has been discussed graphically. (author)

  4. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    International Nuclear Information System (INIS)

    Brokate, M.; Botkin, N.D.; Pykhteev, O.A.

    2012-01-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcy's law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases.

  5. Numerical artifacts in the Generalized Porous Medium Equation: Why harmonic averaging itself is not to blame

    Science.gov (United States)

    Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot

    2018-05-01

    The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.

  6. Low Temperature Two-Steps Sintering (LTTSS) - an innovative method for consolidating porous UO2 pellets

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Senapati, Abhiram; Venkata Krishnan, R.

    2015-01-01

    Metallic uranium and its alloys are an important fuel for fast reactors. Presently, metallic uranium is being prepared using expensive fluoro-metallothermic process. Recent reports suggest that metal oxide could be reduced to metal using a novel electrochemical de-oxidation method and this could serve as attractive alternate for expensive metallothermic process. In view of which, a research program is being pursued in our Centre to develop an optimum process parameter for the scaled up preparation of metallic uranium efficiently. One of the important process parameter is the size, nature and distribution of porosity in the urania pellet. Essentially the ceramic form of the urania should encompass interconnected porosity that would allow percolation of melts into the UO 2 . However, the matrix density of the pellet should be high to ensure that it possesses good handling strength and is electrically conducting. Hence preparation of high dense porous UO 2 pellets was required. In this study, we report the preparation of porous UO 2 pellets possessing a very high matrix density by using the citrate gel-combustion method. The 'as-prepared' powders were consolidated at various compaction pressures as such and these pellets were sintered in 8 mol %Ar+H 2 gas with a flow rate of 250 mL/min at 1073 K for 30 min followed by soaking at 1473 K for 4 h with heating rate of 5 K min -1 in a molybdenum furnace. X-ray diffraction studies revealed that these pellets contained UO 2 . The morphological analysis sintered pellets was carried out by using Scanning Electron Microscope (M/s. Philips model XL 30, Netherlands). All these pellets were gold coated

  7. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  8. A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended dust particles saturating a porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available In this paper, the effect of suspended particles on thermal convection in Couple-Stress fluid saturating a porous medium is considered. By applying linear stability theory and normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the couple-stress parameter F and suspended particles parameter B, satisfy the inequality

  9. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-11-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  10. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2013-01-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  11. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.

    2012-05-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.

  12. CALCULATION OF LONG-TERM FILTRATION IN A POROUS MEDIUM

    Directory of Open Access Journals (Sweden)

    Ludmila I. Kuzmina

    2018-03-01

    Full Text Available he filtration problem in a porous medium is an important part of underground hydromechanics. Filtration of suspensions and colloids determines the processes of strengthening the soil and creating waterproof walls in the ground while building the foundations of buildings and underground structures. It is assumed that the formation of a deposit is dominated by the size-exclusion mechanism of pore blocking: solid particles pass freely through large pores and get stuck at the inlet of pores smaller than the diameter of the particles. A one-dimensional mathematical model for the filtration of a monodisperse suspension includes the equation for the mass balance of suspended and retained particles and the kinetic equation for the growth of the deposit. For the blocking filtration coefficient with a double root, the exact solution is given implicitly. The asymptotics of the filtration problem is constructed for large time. The numerical calculation of the problem is carried out by the finite differences method. It is shown that asymptotic approximations rapidly converge to a solution with the increase of the expansion order.

  13. Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity

    Directory of Open Access Journals (Sweden)

    M. Farooq

    Full Text Available This research article investigates the squeezing flow of Newtonian fluid with variable viscosity over a stretchable sheet inserted in Darcy porous medium. Cattaneo-Christov double diffusion models are implemented to scrutinize the characteristics of heat and mass transfer via variable thermal conductivity and variable mass diffusivity. These models are the modification of conventional laws of Fourier’s and Fick’s via thermal and solutal relaxation times respectively. The homotopy analysis Method (HAM is being utilized to provide the solution of highly nonlinear system of coupled partial differential equations after converted into dimensionless governing equations. The behavior of flow parameters on velocity, concentration, and temperature distributions are sketched and analyzed physically. The result indicates that both concentration and temperature distributions decay for higher solutal and thermal relaxation parameters respectively. Keywords: Squeezing flow, Porous medium, Variable viscosity, Cattaneo-Christov heat and mass flux models, Variable thermal conductivity, Variable mass diffusivity

  14. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  15. Thermal Consolidation of Dredge Sand for Artificial Reef Formations

    Science.gov (United States)

    Trevino, Alexandro

    Coral Reef ecosystems have degraded over years due to a variety of environmental issues such as ocean acidification. The continuous stress has detrimental effects on coral reef ecosystems that can possibly lead to the loss of the ecosystem. Our research aims to construct a prototype of an artificial reef by consolidating dredge sand from the ship channels of South Texas. Consolidation is achieved through an aluminum polytetrafluoroethylene self-propagating high temperature process that yields a solid formation to mimic the physical properties of coral reef structures. Using thermodynamic calculations, the variation of initial components was determined that reached an adiabatic temperature with a maximum peak of 2000 K. The self-sustaining reaction front was obtained to rigidly consolidate the dredge sand only at composition concentrations exceeding a critical value of 24 wt.% Al, and 3 wt.% PTFE. The combustion synthesis produced a consolidated formation with a hardened and porous structure.

  16. Approximation and stability of three-dimensional natural convection flows in a porous medium

    International Nuclear Information System (INIS)

    Janotto, Marie-Laurence

    1991-01-01

    The equations of the three-dimensional natural convection in a porous medium within a differentially heated horizontal walls cavity are solved by a pseudo-spectral method. First we will present the evolution of the two main modes according to two models of convection. A few asymptotic properties connected to the small and large eddies are set up and numerically validated. A new approximate inertial manifold is then proposed. The numerical scheme used is an exponential fitting algorithm the convergence of which is proved. We will present the physical mechanism at the origin of the un-stationary three-dimensional convection at high Rayleigh numbers. (author) [fr

  17. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  18. Scaled particle theory for a hard spherocylinder fluid in a disordered porous medium: Carnahan-Starling and Parsons-Lee corrections

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2018-03-01

    Full Text Available The scaled particle theory (SPT approximation is applied for the study of the influence of a porous medium on the isotropic-nematic transition in a hard spherocylinder fluid. Two new approaches are developed in order to improve the description in the case of small lengths of spherocylinders. In one of them, the so-called SPT-CS-PL approach, the Carnahan-Starling (CS correction is introduced to improve the description of thermodynamic properties of the fluid, while the Parsons-Lee (PL correction is introduced to improve the orientational ordering. The second approach, the so-called SPT-PL approach, is connected with generalization of the PL theory to anisotropic fluids in disordered porous media. The phase diagram is obtained from the bifurcation analysis of a nonlinear integral equation for the singlet distribution function and from the thermodynamic equilibrium conditions. The results obtained are compared with computer simulation data. Both ways and both approaches considerably improve the description in the case of spherocylinder fluids with smaller spherocylinder lengths. We did not find any significant differences between the results of the two developed approaches. We found that the bifurcation analysis slightly overestimates and the thermodynamical analysis underestimates the predictions of the computer simulation data. A porous medium shifts the phase diagram to smaller densities of the fluid and does not change the type of the transition.

  19. Unsteady MHD blood flow through porous medium in a parallel plate channel

    Science.gov (United States)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.

  20. Low-Reynolds number flow of a viscous fluid in a channel partially filled with a porous medium

    International Nuclear Information System (INIS)

    Deng, C.; Martinez, D.M.

    2003-01-01

    Steady flow inside a rectangular channel with wall suction and partially filled with a porous material is examined. We solve the Navier-Stokes equations in the clear fluid region of the channel and the Brinkman extended Darcy's law in the porous material. The stress jump conditions outlined by Ochoa-Tapia and Whitaker are employed at the interface between these two regions. Ochoa-Tapia and Whitaker's conditions contain an empirical constant β which is unknown a priori. In this work we propose a method to estimate β. To do so, we solve for the flow field using two different approaches. In the first approach, the flow is assumed to be of similarity form and a new asymmetric solution is reported; β is retained in this formulation. In the second approach, we re-pose the equations of motion over the entire domain by considering the porous medium as a sink-term (which can be turned on and off); β is not required in this formulation. We estimate the value of β by comparing the resulting flow fields. (author)

  1. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  2. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  3. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium.

    Science.gov (United States)

    Hossain, Tahmina; Miah, Abdul Bathen; Mahmud, Siraje Arif; Mahin, Abdullah-Al-

    2018-04-12

    In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH 2 PO 4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.

  4. Magnetohydrodynamic (MHD Jeffrey fluid over a stretching vertical surface in a porous medium

    Directory of Open Access Journals (Sweden)

    Kartini Ahmad

    2017-12-01

    Full Text Available This paper presents the study of steady two-dimensional mixed convection boundary layer flow and heat transfer of a Jeffrey fluid over a stretched sheet immersed in a porous medium in the presence of a transverse magnetic field. The governing partial differential equations are reduced to nonlinear ordinary differential equations with the aid of similarity transformation, which are then solved numerically using an implicit finite difference scheme. The effects of some of the embedded parameters, such as Deborah number β, magnetic parameter M, mixed convection parameter λ, porosity parameter γ and Prandtl number Pr, on the flow and heat transfer characteristics, are given in forms of tables and graphs.

  5. Modeling approaches to natural convection in porous media

    CERN Document Server

    Su, Yan

    2015-01-01

    This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.

  6. Scattering by a spherical inhomogeneity in a fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A fast compressional wave incident on an inhomogeneity in a fluid-saturated porous medium will produce three scattered elastic waves: a fast compressional wave, a slow compressional wave, and a shear wave. This problem is formulated as a multipole expansion using Biot's equations of poroelasticity. The solution for the first term (n = 0) in the multipole series involves a 4 x 4 system which is solved analytically in the long-wavelength limit. All higher-order terms (n > or = 1) require the solution of a 6 x 6 system. A procedure for solving these equations by splitting the problem into a 4 x 4 system and a 2 x 2 system and then iterating is introduced. The first iterate is just the solution of the elastic wave scattering problem in the absence of fluid effects. Higher iterates include the successive perturbation effects of fluid/solid interaction

  7. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    Science.gov (United States)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  8. Hall Currents and Heat Transfer Effects on Peristaltic Transport in a Vertical Asymmetric Channel through a Porous Medium

    Directory of Open Access Journals (Sweden)

    E. Abo-Eldahab

    2012-01-01

    a porous medium are investigated theoretically and graphically under assumptions of low Reynolds number and long wavelength. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Analytical solutions have been obtained for temperature, axial velocity, stream function, pressure gradient, and shear stresses. The trapping phenomenon is discussed. Graphical results are sketched for various embedded parameters and interpreted.

  9. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  10. Perturbation analysis of magnetohydrodynamics oscillatory flow on convective-radiative heat and mass transfer of micropolar fluid in a porous medium with chemical reaction

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2016-03-01

    Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.

  11. A medium-independent variational macroscopic theory of two-phase porous media – Part I: Derivation of governing equations and stress partitioning laws

    OpenAIRE

    Serpieri , Roberto; Travascio , Francesco

    2016-01-01

    A macroscopic continuum theory of two-phase saturated porous media is derived by a purely variational deduction based on the least Action principle. The proposed theory proceeds from the consideration of a minimal set of kinematic descriptors and keeps a specific focus on the derivation of most general medium-independent governing equations, which have a form independent from the particular constitutive relations and thermodynamic constraints characterizing a specific medium. The kinematics o...

  12. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  13. Densification of porous bodies in a granular pressure-transmitting medium

    International Nuclear Information System (INIS)

    Olevsky, E.A.; Ma, J.; LaSalvia, J.C.; Meyers, M.A.

    2007-01-01

    Densification is a critical step in the manufacture of near-net-shaped components via powder processing. A non-isostatic stress state will in general result in shape distortion in addition to densification. In the quasi-isostatic pressing (QIP) process the green body is placed into a granular pressure-transmitting medium (i.e. PTM), which is itself contained in a rigid die. Upon the application of a uniaxial load, the PTM redistributes the tractions on the green body, thereby creating a stress state that is quasi-isostatic. The character of the deformation of the PTM is studied using model experiments on pressing of the PTM in a rigid die and a scanning electron microscopy analysis of the PTM powder. An important problem of the optimization of the PTM chemical composition enabling the maximum densification of a porous specimen with the minimum possible shape distortion is solved. The results of modeling agree satisfactorily with the experimental data on cold QIPing Ti and Ni powder samples and hot QIPing TiC-TiNi cermet composites

  14. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  15. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  16. HAM solutions on MHD squeezing axisymmetric flow of water nanofluid through saturated porous medium between two parallel disks

    Science.gov (United States)

    Reddy, B. Siva Kumar; Rao, K. V. Surya Narayana; Vijaya, R. Bhuvana

    2017-07-01

    In this paper, we have considered the unsteady magnetohydrodynamic squeezing axi-symmetric flow of water-nanofluid through saturated porous medium between two parallel disks. The equations for the governing flow are solved by Galerkin optimal Homotopy asymptotic method. The effects of non-dimensional parameters on velocity, temperature and concentration have been discussed with the help of graphs. Also we obtained local Nusselt number and computationally discussed with reference to flow parameters.

  17. Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability

    KAUST Repository

    El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.

    2011-01-01

    The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.

  18. Forming of porous mullite green bodies by albumin thermal consolidation

    International Nuclear Information System (INIS)

    Sandoval, M.L.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Pre-firing mullite microstructures developed by a new thermal consolidation method using globular proteins as foaming and consolidator/binders were analyzed. Commercial available powders of mullite (Baikowski) and bovine serum albumin (BSA, Aldricht) were employed. Stable aqueous suspensions (40 vol.%) of mullite- BSA (10 vol.%) were foamed (2300 rpm, 10 min) at: I) room temperature; II) 68 deg C, temperature slightly lower to the gelling 'onset' TG"0, and III) 68 deg C with the addition of 2 wt.% of methylcellulose. Green disks were prepared by pouring of foamed suspensions into pre-heated metal molds (70 deg C), thermal gelling (80 °C, 3h) and drying (50 °C, 12h). Previously, the developed foams were characterized and their rheological properties were determined as a function of temperature (TG"0). The characterization of the pre-firing microstructures were carried out by measurements of porosity (>80%) and microstructural analysis in fracture surface by SEM. (author)

  19. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    Science.gov (United States)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  20. Sensitivity and inversion of full seismic waveforms in stratified porous medium; Sensibilite et inversion de formes d'ondes completes en milieu poreux stratifie

    Energy Technology Data Exchange (ETDEWEB)

    Barros, L. de

    2007-12-15

    Characterization of porous media parameters, and particularly the porosity, permeability and fluid properties are very useful in many applications (hydrologic, natural hazards or oil industry). The aim of my research is to evaluate the possibility to determine these properties from the full seismic wave fields. First, I am interested in the useful parameters and the specific properties of the seismic waves in the poro-elastic theory, often called Biot (1956) theory. I then compute seismic waves propagation in fluid saturated stratified porous media with a reflectivity method coupled with the discrete wavenumber integration method. I first used this modeling to study the possibilities to determine the carbon dioxide concentration and localization thanks to the reflected P-waves in the case of the deep geological storage of Sleipner (North Sea). The sensitivity of the seismic response to the poro-elastic parameters are then generalized by the analytical computation of the Frechet derivatives which are expressed in terms of the Green's functions of the unperturbed medium. The numerical tests show that the porosity and the consolidation are the main parameters to invert. The sensitivity operators are then introduced in a inversion algorithm based on iterative modeling of the full waveform. The classical algorithm of generalized least-square inverse problem is solved by the quasi-Newton technique (Tarantola, 1984). The inversion of synthetic data show that we can invert for the porosity and the fluid and solid parameters (densities and mechanical modulus, or volume rate of fluid and mineral) can be correctly rebuilt if the other parameters are well known. However, the strong seismic coupling of the porous parameters leads to difficulties to invert simultaneously for several parameters. One way to get round these difficulties is to use additional information and invert for one single parameter for the fluid properties (saturating rate) or for the lithology. An other

  1. Effective Stresses in Soil and Rock and Consolidation in Three Dimensions

    DEFF Research Database (Denmark)

    Andersen, Lars

    In the following, the continuum model for a fully saturated porous material is presented. The theory is mainly due to M.A. Biot [?, ?]. We shall only consider a twophase system consisting of a solid skeleton and a single pore fluid, e.g. water. The theory for three-dimensional consolidation...... is developed. Anisotropic permeability of the material is allowed, but for simplicity the analysis is restricted to isotropic linear elastic material behaviour. However, the theory is easily extended to elastoplasticity. Finally, it will be shown that the effective stresses in a porous material may in general...

  2. Pore scale modelling of electrical and hydraulic properties of a semi-consolidated sandstone under unsaturated conditions

    Science.gov (United States)

    Cassiani, G.; dalla, E.; Brovelli, A.; Pitea, D.; Binley, A. M.

    2003-04-01

    The development of reliable constitutive laws to translate geophysical properties into hydrological ones is the fundamental step for successful applications of hydrogeophysical techniques. Many such laws have been proposed and applied, particularly with regard to two types of relationships: (a) between moisture content and dielectric properties, and (b) between electrical resistivity, rock structure and water saturation. The classical Archie's law belongs to this latter category. Archie's relationship has been widely used, starting from borehole logs applications, to translate geoelectrical measurements into estimates of saturation. However, in spite of its popularity, it remains an empirical relationship, the parameters of which must be calibrated case by case, e.g. on laboratory data. Pore-scale models have been recently recognized and used as powerful tools to investigate the constitutive relations of multiphase soils from a pore-scale point of view, because they bridge the microscopic and macroscopic scales. In this project, we develop and validate a three-dimensional pore-scale method to compute electrical properties of unsaturated and saturated porous media. First we simulate a random packing of spheres [1] that obeys the grain-size distribution and porosity of an experimental porous medium system; then we simulate primary drainage with a morphological approach [2]; finally, for each state of saturation during the drainage process, we solve the electrical conduction equation within the grain structure with a new numerical model and compute the apparent electrical resistivity of the porous medium. We apply the new method to a semi-consolidated Permo-Triassic Sandstone from the UK (Sherwood Sandstone) for which both pressure-saturation (Van Genuchten) and Archie's law parameters have been measured on laboratory samples. A comparison between simulated and measured relationships has been performed.

  3. MHD heat and mass diffusion flow by natural convection past a surface embedded in a porous medium

    Directory of Open Access Journals (Sweden)

    Chaudhary R.C.

    2009-01-01

    Full Text Available This paper presents an analytical study of the transient hydromagnetic natural convection flow past a vertical plate embedded in a porous medium, taking account of the presence of mass diffusion and fluctuating temperature about time at the plate. The governing equations are solved in closed form by the Laplace-transform technique. The results are obtained for temperature, velocity, penetration distance, Nusselt number and skin-friction. The effects of various parameters are discussed on the flow variables and presented by graphs.

  4. Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations

    International Nuclear Information System (INIS)

    Cheng, C.-Y.

    2006-01-01

    This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid

  5. Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics

    2012-01-15

    The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)

  6. Experimental procedure for determination of dispersion coefficient in a column of porous medium using radiotracer; Procedimento experimental para determinacao do coeficiente de dispersao num meio poroso em coluna utilizando radiotracador

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Heilbron Filho, Paulo Fernando Lavalle [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    The experimental procedures used for determination of parameters such as the molecular diffusion and the diffusion by mechanical convection, responsible for the dispersion in the porous medium, are presented. The experiments were conduct in a column, based on the theory of hydrodynamic dispersion. The radiotracer technique was employed to monitor the dispersion of the radioactive cloud through the porous medium. The radionuclide employed was the bromide 82 (Br{sup 82}), in the KBr chemical form 11 refs., 5 figs., 4 tabs.; e-mail: rs at serv.com.ufrj.br; paulo at cnen.gov.br

  7. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  8. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling

    Science.gov (United States)

    Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2018-03-01

    Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.

  9. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  10. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory

    Science.gov (United States)

    Zhang, Xueang; Yang, Zhichao; Tang, Bin; Wang, Renbo; Wei, Xiong

    2018-05-01

    During geophysical surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in porous cracked media, research on the properties of the cracks, the oil and water layers, and their relation to pulsed neutron logging characteristics is essential. Using Hudson's crack theory, we simulated oil and water layers in a cracked porous medium with different crack parameters corresponding to the well log responses. We found that, in a cracked medium with medium-angle (40°-50°) cracks, the thermal neutron count peak value is higher and more sensitive than those in low-angle and high-angle crack environments; in addition, the thermal neutron density distribution shows more minimum values than in other cases. Further, the thermal neutron count and the rate of change for the oil layer are greater than those of the water layer, and the time spectrum count peak value for the water layer in middle-high-angle (40°-70°) cracked environments is higher than that of the oil layer. The thermal neutron density distribution sensitivity is higher in the water layer with a range of small crack angles (0°-30°) than in the oil layer with the same range of angles. In comparing the thermal neutron density distribution, thermal neutron count peak, thermal neutron density distribution sensitivity, and time spectrum maximum in the oil and water layers, we find that neutrons in medium-angle (40°-50°) cracked reservoirs are more sensitive to deceleration and absorption than those in water layers; neutrons in approximately horizontal (0°-30°) cracked water layers are more sensitive to deceleration than those in reservoirs. These results can guide future work in the cracked media neutron logging field.

  11. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  12. Application of artificial neural network for heat transfer in porous cone

    Science.gov (United States)

    Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.

  13. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  14. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  15. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  16. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    Science.gov (United States)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation

  17. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    Science.gov (United States)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically

  18. Radiative properties effects on unsteady natural convection inside a saturated porous medium. Application for porous heat exchangers

    International Nuclear Information System (INIS)

    Abdesslem, Jbara; Khalifa, Slimi; Abdelaziz, Nasr; Abdallah, Mhimid

    2013-01-01

    The present article deals with a numerical study of coupled fluid flow and heat transfer by transient natural convection and thermal radiation in a porous bed confined between two-vertical hot plates and saturated by a homogeneous and isotropic fluid phase. The main objective is to study the effects of radiative properties on fluid flow and heat transfer behavior inside the porous material. The numerical results show that the temperature, the axial velocity, the volumetric flow rate and the convective heat flux exchanged at the channel's exit are found to be increased when the particle emissivity (ε) and/or the absorption coefficient (κ) increase or when the scattering coefficient (σ s ) and/or the single scattering albedo (ω) decrease. Furthermore, the amount of heat (Q c ) transferred to fluid and the energetic efficiency E c are found to be increased when there is a raise in the particle emissivity values. In order to improve the performance of heat exchanger, we proposed the model of a porous heat exchanger which includes a porous bed of large spherical particles with high emissivity as a practical application of the current study. - Highlights: • The temperature increases with the particle emissivity ε. • The volumetric flow rate and the convective heat flux exchanged increase with the particle emissivity ε. • The amount of heat transferred to fluid and the energetic efficiency increase with the particle emissivity ε. • A heat exchanger including a porous bed of spherical particles with high emissivity is proposed like a practical application

  19. An equation for the dimensionless friction factor of consolidated ...

    African Journals Online (AJOL)

    An equation that relates the dimensionless friction factor of a porous medium its Reynolds number, during incompressible and compressible fluid flow through the medium is proposed. The equation is a curve fit of a graph drawn from the results of Ohirhian for water (liquid) and that of Akpokene for Nitrogen (gas) flow ...

  20. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  1. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  2. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  3. Numerical investigation of heat transfer in a laminar flow in a helical pipe filled with a fluid saturated porous medium: the sensitivity to parameter variations

    International Nuclear Information System (INIS)

    Cheng, L.; Kuznetsov, A.V.

    2005-01-01

    This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)

  4. Numerical investigation of heat transfer in a laminar flow in a helical pipe filled with a fluid saturated porous medium: the sensitivity to parameter variations

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L.; Kuznetsov, A.V. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-07-01

    This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)

  5. Hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non-darcian porous medium with radiation

    Directory of Open Access Journals (Sweden)

    Mostafa A. A. Mahmoud

    2006-01-01

    Full Text Available We have studied the effects of radiation on the boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a continuously moving stretching surface embedded in a non-Darcian porous medium with a uniform magnetic field. The transformed coupled nonlinear ordinary differential equations are solved numerically. The velocity, the angular velocity, and the temperature are shown graphically. The numerical values of the skin friction coefficient, the wall couple stress, and the wall heat transfer rate are computed and discussed for various values of parameters.

  6. Effects of Buoyancy Forces on Immiscible Water/Oil Displacements in a Vertically Oriented Porous Medium Effets des facteurs de flottabilité sur les déplacements non-miscibles eau/huile dans un milieu poreux vertical

    Directory of Open Access Journals (Sweden)

    Thirunavu S. R.

    2006-11-01

    Full Text Available The effects of buoyancy forces on liquid-liquid displacement processes occurring in porous media are important in a variety of practical situations, in particular during the displacement of oil from partially-depleted underground reservoirs by means of aqueous solutions. Most previous studies involving the visualization of water/oil displacements in porous media have been undertaken in horizontal two-dimensional porous medium cells. The objective of the present work was to determine the effects of buoyancy forces; on the fingering pattern and oil recovery by conducting immiscible displacement experiments in two-dimensional consolidated porous medium cells aligned in the vertical plane. In order to obtain a clear understanding of the favourable and unfavourable effects of buoyancy forces, experiments were carried out in three different flow modes, namely horizontal, vertical upward, and vertical downward. As the effects of buoyancy forces are negligible for two-dimensional porous media in the horizontal flow mode, the recoveries obtained in this mode were used as a reference for comparison with those obtained in the two vertical modes. Displacements using five different density ratios were studied. The breakthrough time and percentage oil recovery were measured in each case. The effects of buoyancy forces, viscous forces, and capillary forces, as well as the injection flow rate, were also recorded. The results obtained indicate that the effects of buoyancy forces are very pronounced at low flow rates and low oil/water density ratios, and that even a slight increase in the flow rate causes the buoyancy forces to rapidly become less significant. Les facteurs de flottabilité exercent un effet important sur les déplacements liquide/liquide en milieu poreux dans toute une gamme de situations pratiques, en particulier lorsqu'on veut déplacer l'huile de roches réservoirs partiellement épuisées à l'aide de solutions aqueuses. La plupart des

  7. Natural convection in a composite fluid-porous cavity by the boundary element method

    International Nuclear Information System (INIS)

    Jecl, R.; Skerget, L.

    2005-01-01

    The main purpose of this work is to present the use of the boundary element method (BEM) for analyzing the convective fluid flow and heat transfer in composite fluid-porous media domain when the fluid is compressible. In our case the flow is modeled by utilizing the Brinkman extended Darcy momentum equation (Brinkman model) which is commonly used when it is important to satisfy the no-slip boundary condition and when one wishes to compare flows in porous medium with those in pure fluids. The Brinkman equation reduce to the classical Navier Stokes equation for clear fluid when the permeability tends to infinity (porosity is equal to unity), i.e. when the solid matrix in the porous medium disappears and, when the permeability is finite the equation is valid for porous medium. Therefore it is possible to handle porous medium free fluid interface problems by changing the properties of the medium in the computational domain appropriately. Our goal is to widen the applicability of the computational model based on the boundary domain integral method (BDIM) which is an extension of the classical BEM. The governing equations are transformed by using the velocity-vorticity variables formulation and therefore the computation scheme is partitioned into kinematic and kinetic part. (authors)

  8. The nonlinear interaction of convection modes in a box of a saturated porous medium

    Science.gov (United States)

    Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas

    2015-05-01

    A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.

  9. A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium

    Science.gov (United States)

    Vogler, Daniel; Ostvar, Sassan; Paustian, Rebecca; Wood, Brian D.

    2018-04-01

    In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2 = 5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bimodal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced-information models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. We discuss the necessity to assign value (via a utility function or other similar method) to outcomes if one is to further select from among model options. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more

  10. Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media

    NARCIS (Netherlands)

    Galindo-Rosales, F.J.; Campo-Deano, L.; Pinho, F.T.; Van Bokhorst, E.; Hamersma, P.J.; Oliveira, M.S.N.; Alves, M.A.

    2011-01-01

    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better

  11. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu; Reddy Gorla, Rama Subba

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  12. Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy

    2015-09-01

    Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer flow of an electrically conducting viscous fluid subject to transverse magnetic field past over a moving vertical plate through porous medium in the presence of heat source and chemical reaction. The governing non-linear partial differential equations have been transformed into a two-point boundary value problem using similarity variables and then solved numerically by fourth order Runge–Kutta fourth order method with shooting technique. Graphical results are discussed for non-dimensional velocity, temperature and concentration profiles while numerical values of the skin friction, Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.

  13. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  14. The kinetics of ice-lens growth in porous media

    KAUST Repository

    Style, Robert W.

    2012-01-09

    Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an \\'interfacial resistance\\' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.

  15. Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)

    2016-03-15

    A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.

  16. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    Science.gov (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  17. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    ber of processes and porous media properties including convective transport .... existence of regions within the porous medium in which there is minimum advective flow. .... concentration at x = L. The initial and the exit boundary conditions can be .... rial was cleaned, washed and dried to ensure that the material free from ...

  18. Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method

    Science.gov (United States)

    Yang, Guang; Weigand, Bernhard

    2018-04-01

    The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.

  19. A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface

    DEFF Research Database (Denmark)

    Shapiro, Alexander A.

    2018-01-01

    A new three-dimensional hydrodynamic model for unsteady two-phase flows in a porous medium, accounting for the motion of the interface between the flowing liquids, is developed. In a minimum number of interpretable geometrical assumptions, a complete system of macroscale flow equations is derived......, their expansion or contraction is also described, while rotation has been proven negligible. A detailed comparison with the previous studies for the two-phase flows accounting for propagation of the interface on micro- and macroscale has been carried out. A numerical algorithm has been developed allowing...

  20. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  1. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  2. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  3. Equilibrium and transfer in porous media 2 transfer laws

    CERN Document Server

    Daïan, Jean-François

    2014-01-01

    A porous medium is composed of a solid matrix and its geometrical complement: the pore space. This pore space can be occupied by one or more fluids. The understanding of transport phenomena in porous media is a challenging intellectual task.  This book provides a detailed analysis of the aspects required for the understanding of many experimental techniques in the field of porous media transport phenomena. It is aimed at studentsor engineers who may not be looking specifically to become theoreticians in porous media, but wish to integrate knowledge of porous media with their previous scientif

  4. Transport Phenomena in Porous Media Aspects of MicroMacro Behaviour

    CERN Document Server

    Ichikawa, Yasuaki

    2012-01-01

    This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms.  This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.

  5. Twenty-five year Consolidation project for the CERN’s Injector Machines of the LHC

    CERN Document Server

    Chohan, V

    2010-01-01

    The 25 year consolidation project was a result of a major re-thinking of CERN’s strategy for consolidating the LHC operation and the decision not to build a new PS Ring or a new Superconducting Proton Linac in early 2010. The work packages envisaged under this consolidation exercise came to a budget estimation of nearly 500 MCHF and were subjected to risk analyses to establish priorities and allocated funds based on limited spending profiles permitted under the CERN’s rolling Medium Term Plan, MTP.

  6. Understanding the evolution of channeling and fracturing in porous medium due to fluid flow.

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Langliné, Olivier; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2017-04-01

    Fluid induced brittle deformation of porous medium is a phenomenon commonly present in everyday life. From an espresso machine to volcanoes, from food industry to construction, it is possible to see traces of this phenomenon. In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that occur during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems - in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary - using two monitoring techniques: optical imaging using a high speed camera (1000 fps), high frequency resolution accelerometers and piezoelectrical sensors. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. These peaks on the spectrum are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an exponent p value around 0.5. An analytical model of overpressure diffusion predicting p = 0.5 and two other free parameters of the Omori Law (prefactor and origin time) is developed. The spatial density of the seismic events, and the time of end of formation of the channels can also be predicted using this developed model. Different

  7. Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-03-01

    Full Text Available A weak nonlinear oscillatory mode of thermal instability is investigated while deriving a non autonomous complex Ginzburg–Landau equation. Darcy porous medium is considered in the presence of vertical throughflow and time periodic thermal boundaries. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature and solutal fields are treated by a perturbation expansion in powers of amplitude of applied temperature field. The effect of throughflow has either to stabilize or to destabilize the system for stress free and isothermal boundary conditions. Nusselt and Sherwood numbers are obtained numerically and presented the results on heat and mass transfer. It is found that, throughflow and thermal modulation can be used alternatively to control the heat and mass transfer. Further, it is also found that oscillatory flow enhances the heat and mass transfer than stationary flow. Effect of modulation frequency and phase angle on mean Nusselt number is also discussed.

  8. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  9. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  10. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  11. The Role of Surface Infiltration in Hydromechanical Coupling Effects in an Unsaturated Porous Medium of Semi-Infinite Extent

    Directory of Open Access Journals (Sweden)

    L. Z. Wu

    2017-01-01

    Full Text Available Rainfall infiltration into an unsaturated region of the earth’s surface is a pervasive natural phenomenon. During the rainfall-induced seepage process, the soil skeleton can deform and the permeability can change with the water content in the unsaturated porous medium. A coupled water infiltration and deformation formulation is used to examine a problem related to the mechanics of a two-dimensional region of semi-infinite extent. The van Genuchten model is used to represent the soil-water characteristic curve. The model, incorporating coupled infiltration and deformation, was developed to resolve the coupled problem in a semi-infinite domain based on numerical methods. The numerical solution is verified by the analytical solution when the coupled effects in an unsaturated medium of semi-infinite extent are considered. The computational results show that a numerical procedure can be employed to examine the semi-infinite unsaturated seepage incorporating coupled water infiltration and deformation. The analysis indicates that the coupling effect is significantly influenced by the boundary conditions of the problem and varies with the duration of water infiltration.

  12. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  13. Review of enhanced vapor diffusion in porous media

    International Nuclear Information System (INIS)

    Webb, S.W.; Ho, C.K.

    1998-01-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper

  14. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  15. Influence of petrographical characterístics in the penetration of consolidants in porous building stones

    Directory of Open Access Journals (Sweden)

    Esbert, R. M.

    1993-06-01

    Full Text Available This paper describes a study of the penetration capacity of a consolidant frequently used in restoration —ethyl silicate— applied to two monumental stones with different porosities and pore geometries: the Hontoria limestone (Burgos and the Laspra dolomite (Asturias. The relation between mode of application and penetration into the rock, and changes in porosity and pore geometry in the treated rocks, are discussed. Mercury porosimetry has been employed to measure both the depth of penetration of the treatment and its influence on the void spaces in the rock. The results obtained reveal that the most porous rock is not always that which most easily admits the treatment solution, and that the penetration of a treatment product is also influenced by the petrophysical properties of the rock.

    En este trabajo se estudia la capacidad de penetración de un tratamiento consolidante, de uso frecuente en restauración —silicato de etilo—, aplicado a dos rocas monumentales con porosidades y configuraciones del sistema poroso diferentes; la caliza de Hontoria (Burgos y la dolomía de Laspra (Asturias. Se pretende tener una idea precisa de las relaciones entre: modo de aplicación del producto, profundidad de penetración y cambios inducidos en la porosidad y configuración del sistema poroso de las rocas mencionadas. La técnica empleada para controlar, tanto la profundidad de penetración del tratamiento, como su influencia en los espacios vacíos de la piedra, ha sido la porosimetría de mercurio. Los resultados obtenidos revelan que no siempre la roca más porosa es la que mejor admite el tratamiento, y que la penetración de un producto de este tipo en la roca, está condicionada también por las características petrofísicas de la misma.

  16. Opposing flow in square porous annulus: Influence of Dufour effect

    International Nuclear Information System (INIS)

    Athani, Abdulgaphur; Al-Rashed, Abdullah A. A. A.; Khaleed, H. M. T.

    2016-01-01

    Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smaller elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.

  17. Opposing flow in square porous annulus: Influence of Dufour effect

    Energy Technology Data Exchange (ETDEWEB)

    Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com [Dept. of Mechanical Engineering, Anjuman Institute of Technology & Management, Bhatkal (India); Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw [Dept. of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training (Kuwait); Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com [Dept of Mechanical Engineering, Faculty of Engineering, Islamic University, Madinah Munawwarra (Saudi Arabia)

    2016-06-21

    Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smaller elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.

  18. Osmosis, filtration and fracture of porous media

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete

  19. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    A. Rauf

    2015-07-01

    Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  20. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)

    2015-07-15

    This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  1. Method for obtaining silver nanoparticle concentrations within a porous medium via synchrotron X-ray computed microtomography.

    Science.gov (United States)

    Molnar, Ian L; Willson, Clinton S; O'Carroll, Denis M; Rivers, Mark L; Gerhard, Jason I

    2014-01-21

    Attempts at understanding nanoparticle fate and transport in the subsurface environment are currently hindered by an inability to quantify nanoparticle behavior at the pore scale (within and between pores) within realistic pore networks. This paper is the first to present a method for high resolution quantification of silver nanoparticle (nAg) concentrations within porous media under controlled experimental conditions. This method makes it possible to extract silver nanoparticle concentrations within individual pores in static and quasi-dynamic (i.e., transport) systems. Quantification is achieved by employing absorption-edge synchrotron X-ray computed microtomography (SXCMT) and an extension of the Beer-Lambert law. Three-dimensional maps of X-ray mass linear attenuation are converted to SXCMT-determined nAg concentration and are found to closely match the concentrations determined by ICP analysis. In addition, factors affecting the quality of the SXCMT-determined results are investigated: 1) The acquisition of an additional above-edge data set reduced the standard deviation of SXCMT-determined concentrations; 2) X-ray refraction at the grain/water interface artificially depresses the SXCMT-determined concentrations within 18.1 μm of a grain surface; 3) By treating the approximately 20 × 10(6) voxels within each data set statistically (i.e., averaging), a high level of confidence in the SXCMT-determined mean concentrations can be obtained. This novel method provides the means to examine a wide range of properties related to nanoparticle transport in controlled laboratory porous medium experiments.

  2. Mechanical behavior of porous ceramic disks

    International Nuclear Information System (INIS)

    Pucheu, M.A; Sandoval, M.L; Tomba Martinez, A.G; Camerucci, M.A

    2008-01-01

    The mechanical behavior of green and sintered porous ceramic materials, obtained by processing control, in relation to the microstructure developed was studied. Disks in green state were prepared by direct thermal consolidation of aqueous suspensions of kaolin, talc and alumina (preliminary mixture of cordierite) with the addition of different starches as consolidating/binding agents and as formers of pores at high temperature. Commercial kaolin (C-80 washed kaolin, Piedra Grande S.A., Argentina), micronized talc (Talc 40, China), calcinated alumina (A2G ALCOA, USA) and commercial potato, manioc, modified potato and corn starches were used as raw materials. The preliminary ceramic mixture was prepared based on the composition in oxides of the ceramic raw materials, in a relationship that was as close as possible to stoichiometric cordierite. Aqueous suspensions of the powders (65% solids; 0.5% sodium naphtolenosulfonate; 1% Dolapix with 17% of each kind of starch were prepared by intensive mechanical mixing, homogenization (ball mills, 2h) and extracting the air with vacuum 20 min. Disks were prepared (diameter=20-30 mm; thickness=3-4 mm) by thermal consolidation of the suspensions in steel molds at the maximum swelling factor temperature (Tms) for each starch (75- 85 o C) for 4h and, later drying at 50 o C, 12h. The porous materials of cordierite were obtained by calcination and reaction-sintering using a controlled thermal cycle: 1 o C/min up to 650 o C, 2h; 3 o C/min up to 1330 o C, 4h and 5 o C/min to room temperature. The characterization of the porous materials in green and sintered state was done by measuring density and apparent porosity, distribution of pore sizes and SEM. The mechanical resistance of the materials in green and sintered state was evaluated in diametrical compression (Instron universal testing machine servo hydraulic model 8501), in position control (0.1-0.2 mm/min) with a statistical number of test pieces, at room air temperature. The

  3. Lattice Boltzmann simulation for temperature-sensitive magnetic fluids in a porous square cavity

    International Nuclear Information System (INIS)

    Jin Licong; Zhang Xinrong; Niu Xiaodong

    2012-01-01

    A lattice Boltzmann method is developed to simulate temperature-sensitive magnetic fluids in a porous cavity. In the simulation, the magnetic force, efficient gravity, viscous loss term and geometric loss term in porous medium are imported to the momentum equation. To test the reliability of the method, a validation with water in porous cavity is carried out. Good agreements with the previous results verify that the present lattice Boltzmann method is promising for simulation of magnetic fluids in porous medium. In this study, we investigate the change of magnetization with external magnetic field, and we present numerical results for the streamlines, isotherms, and magnetization at vertical or horizontal mid-profiles for different values of Ram. In addition, Nusselt numbers changing with magnetic Rayleigh numbers are also investigated. - Highlights: → Developed a lattice Boltzmann method for magnetic nano-fluids in porous cavity. → Clarified flow and heat transfer for different values of (magnetic) Rayleigh numbers. → Heat transfer enhancement for magnetic fluid in porous cavity.

  4. Heat and mass transfer on a MHD third grade fluid with partial slip flow past an infinite vertical insulated porous plate in a porous medium

    International Nuclear Information System (INIS)

    Baoku, I.G.; Olajuwon, B.I.; Mustapha, A.O.

    2013-01-01

    Highlights: ► We model the flow of a MHD third grade fluid, heat and mass transfer in a porous medium with partial slip flow regime. ► We examine the effects of pertinent parameters on the velocity, temperature and species concentration distributions. ► The values momentum and thermal boundary layers increase with increasing third grade parameter β. ► The consequences of increasing the permeability parameter m and partial slip parameter λ give rise to fluid velocity. ► The magnetic field parameter H decreases the momentum boundary layer and increases the concentration boundary layer. -- Abstract: The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum

  5. A linear analytical study of Soret-driven ferrothermohaline convection in an anisotropic porous medium

    International Nuclear Information System (INIS)

    Sekar, R.; Raju, K.; Vasanthakumari, R.

    2013-01-01

    The Soret-driven ferrothermoconvective instability of multi- component fluid in an anisotropic porous medium heated from below and salted from above has been analyzed using Brinkman model for various values of anisotropic parameter. The salinity effect is contained in magnetization and density of the ferrofluid and the system is assumed to have anisotropy in the vertical direction and isotropy in the horizontal direction. A small perturbation imparted on the basic state and a linear stability analysis is used for this model for which the normal mode technique is applied. The present analysis has been carried out through both stationary as well as oscillatory modes. The vertical anisotropy tends to destabilize the system. -- Highlights: ► We examine the effect of anisotropy and magnetization of convection in Soret effect. ► The system loses its stability for critical Rayleigh number for various parameters like R s and K 1 . ► The larger temperature difference is needed to guarantee the occurring of convection. ► The Soret effect plays a dominant role for the stability of the system

  6. Analytical method for steady state heat transfer in two-dimensional porous media

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, R.; Goldstein, M.E.

    1970-07-01

    A general technique has been devised for obtaining exact solutions for the heat transfer behavior of a 2- dimensional porous cooled medium. Fluid flows through the porous medium from a reservoir at constant pressure and temperature to a second reservoir at a lower pressure. For the type of flow involved, the surfaces of the porous region that are each at constant pressure are boundaries of constant velocity potential. This fact is used to map the porous region into a strip bounded by parallel potential lines in a complex potential plane. The energy equation, derived by assuming the local matrix and fluid temperatures are equal, is transformed into a separable equation when its independent variables are changed to the coordinates of the potential plane. This allows the general solution for the temperature distribution to be found in the potential plane. The solution is then mapped into the physical plane to yield the heat transfer characteristics of the porous region. An example problem of a porous wall having a step in thickness and a specified surface temperature or heat flux is worked out in detail.

  7. Experimental validation of a numerical model of two-phase displacement in porous medium

    International Nuclear Information System (INIS)

    Genty, A.

    1996-01-01

    Burial in geological layers appears to be an interesting solution to dispose of radioactive wastes. This thesis analyzes and simulates the behaviour of gas produced by waste barrels corrosion. The released contaminated gas drains the water initially present in the host rock and yields a water-gas two phase flow. A literature survey of two phase flow shows that fluid interfaces may display instabilities for definite flow characteristics. When the displacement is stable a smooth interface proceeds through the porous medium. When the interface shows fingering, the displacement is said to be 'viscous-unstable', and when the front is jagged the displacement is called 'capillary' displacement. A dimensional analysis of classical equations governing two phase flow in porous media is combined with a classification of dominant forces to define an original map of flow regimes that includes gravitational forces. The map is based on three dimensionless numbers and predicts a priori the flow type. For typical data describing a radioactive waste repository a 'viscous-unstable' displacement is predicted by the map. We simulate water-gas displacement with a numerical model previously developed; this code, based on the Muskat model, uses the mixed-hybrid finite elements technique and is therefore well adapted for tracking moving interfaces. Fluxes are well conserved, however instabilities cannot be simulated. We assume that there is always a scale to be found where instabilities can be averaged and we try to validate the model with experimental two phase flows. We performed laboratory water-gas flow experiments for a variety of flow conditions. The observed displacement types are consistent with the map of flow regimes. Good agreement with numerical simulations is obtained when precise parameters of the displacements are available, in particular relative permeability curves. We conclude that our model allows a first approach of migration of gas near a radioactive waste repository

  8. Ensemble distribution for immiscible two-phase flow in porous media.

    Science.gov (United States)

    Savani, Isha; Bedeaux, Dick; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex

    2017-02-01

    We construct an ensemble distribution to describe steady immiscible two-phase flow of two incompressible fluids in a porous medium. The system is found to be ergodic. The distribution is used to compute macroscopic flow parameters. In particular, we find an expression for the overall mobility of the system from the ensemble distribution. The entropy production at the scale of the porous medium is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. We test numerically some of the central theoretical results.

  9. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  10. Evaporation Limited Radial Capillary Penetration in Porous Media.

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  11. Nonlinear Finite Strain Consolidation Analysis with Secondary Consolidation Behavior

    Directory of Open Access Journals (Sweden)

    Jieqing Huang

    2014-01-01

    Full Text Available This paper aims to analyze nonlinear finite strain consolidation with secondary consolidation behavior. On the basis of some assumptions about the secondary consolidation behavior, the continuity equation of pore water in Gibson’s consolidation theory is modified. Taking the nonlinear compressibility and nonlinear permeability of soils into consideration, the governing equation for finite strain consolidation analysis is derived. Based on the experimental data of Hangzhou soft clay samples, the new governing equation is solved with the finite element method. Afterwards, the calculation results of this new method and other two methods are compared. It can be found that Gibson’s method may underestimate the excess pore water pressure during primary consolidation. The new method which takes the secondary consolidation behavior, the nonlinear compressibility, and nonlinear permeability of soils into consideration can precisely estimate the settlement rate and the final settlement of Hangzhou soft clay sample.

  12. Fully-developed conjugate heat transfer in porous media with uniform heating

    NARCIS (Netherlands)

    Lopez Penha, D.J.; Stolz, S.; Kuerten, Johannes G.M.; Nordlund, M.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2012-01-01

    We propose a computational method for approximating the heat transfer coefficient of fully-developed flow in porous media. For a representative elementary volume of the porous medium we develop a transport model subject to periodic boundary conditions that describes incompressible fluid flow through

  13. Effective behavior of a free fluid in contact with a flow in a curved porous medium

    DEFF Research Database (Denmark)

    Dobberschütz, Sören

    2015-01-01

    The appropriate boundary condition between an unconfined incompressible viscous fluid and a porous medium is given by the law of Beavers and Joseph. The latter has been justified both experimentally and mathematically, using the method of periodic homogenization. However, all results so far deal...... only with the case of a planar boundary. In this work, we consider the case of a curved, macroscopically periodic boundary. By using a coordinate transformation, we obtain a description of the flow in a domain with a planar boundary, for which we derive the effective behavior: The effective velocity...... is continuous in normal direction. Tangential to the interface, a slip occurs. Additionally, a pressure jump occurs. The magnitude of the slip velocity as well as the jump in pressure can be determined with the help of a generalized boundary layer function. The results indicate the validity of a generalized...

  14. Factors affecting storage of compressed air in porous-rock reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Erikson, R.L.; Wiles, L.E.

    1983-05-01

    This report documents a review and evaluation of the geotechnical aspects of porous medium (aquifer) storage. These aspects include geologic, petrologic, geophysical, hydrologic, and geochemical characteristics of porous rock masses and their interactions with compressed air energy storage (CAES) operations. The primary objective is to present criteria categories for the design and stability of CAES in porous media (aquifers). The document will also describe analytical, laboratory, and field-scale investigations that have been conducted.

  15. Effect of pore structure on capillary condensation in a porous medium.

    Science.gov (United States)

    Deinert, M R; Parlange, J-Y

    2009-02-01

    The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small. Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs capillary condensation and that previous analyses can be obtained as limiting cases of a more general formulation.

  16. Inorganic treatments for the consolidation and protection of stone artefacts

    Directory of Open Access Journals (Sweden)

    Mauro Matteini

    2008-04-01

    Full Text Available Consolidation and protection are two of the principal kinds of treatments through which the decay of old statues, stone facades, plasters and mural paintings caused by both natural atmospheric agents and, above all in the last five decades, by atmospheric pollution, is faced. The most traditional approach has been and is mainly based on the use of organic polymeric materials. They offer the advantage of easy application procedures and the possibility to obtain, at short times, very satisfying results. Different is their behaviour at long times. Some drawbacks come out over time both under the esthetical point of view as well as to the durability, compatibility and efficacy. Particularly critical is the situation when porous materials and soluble salts - gypsum above all - are simultaneously present. In such a situation inorganic treatments demonstrate to be much more appropriate. They assure durable and compatible results. In the present paper two of the most efficient and appropriate inorganic methods are reviewed in detail: the barium hydroxide method, both as desulfating and consolidating agent, and the ammonium oxalate method as passivating agent, consolidant and as a treatment capable of improving the natural colour contrast of the stone, when it is lost due to decay processes.

  17. Consolidated financial statements

    OpenAIRE

    Blaha, Miroslav

    2010-01-01

    This work provides basic information about consolidation and consolidated financial statements. In the beginning there are definisions of the members of the group under discussion and their relationship. Hereafter concepts of consolidation, accounting methods and methods of consolidation are discussed. It also compares approach of different accounting systems to consolidation.

  18. Heat and mass transfer effects on MHD viscoelastic fluid over a stretching sheet through porous medium in presence of chemical reaction

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Nayak

    2016-03-01

    Full Text Available An attempt has been made to study the heat and mass transfer effects in a boundary layer flow through porous medium of an electrically conducting viscoelastic fluid subject to transverse magnetic field in the presence of heat source/sink and chemical reaction. It has been considered the effects of radiation, viscous and Joule dissipations and internal heat generation/absorption. Closed form solutions for the boundary layer equations of viscoelastic, second-grade and Walters׳ B′ fluid models are obtained. The method of solution involves similarity transformation. The transformed equations of thermal and mass transport are solved by applying Kummer׳s function. The solutions of temperature field for both prescribed surface temperature (PST as well as prescribed surface heat flux (PHF are obtained. It is important to remark that the interaction of magnetic field is found to be counterproductive in enhancing velocity and concentration distribution whereas the presence of chemical reaction as well as porous matrix with moderate values of magnetic parameter reduces the temperature and concentration fields at all points of flow domain.

  19. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Science.gov (United States)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  20. Radial Fingering in a Porous Medium Digitation radiale dans un milieu poreux

    Directory of Open Access Journals (Sweden)

    Ni W.

    2006-11-01

    Full Text Available The theory of immiscible radial displacement in a Hele-Shaw cell is extended to the case of a porous medium contained between two closely-spaced parallel plates, and experiments are described for the displacement of glycerine by paraffin oil in such a system. Data are presented for the number of fingers, the breakthrough time, and the glycerine recovery, for a range of flowrates varying through three orders of magnitude. Good agreement between theory and experiment is observed. La théorie s'appliquant aux déplacements radiaux dans les cellules Hele-Shaw a été étendue à un système qui consiste en une couche mince de milieux poreux encapsulée entre deux plaques en verre. Dans cet article, on examine les déplacements de la glycérine par de l'huile de paraffine. En faisant varier le débit de l'huile de paraffine dans un intervalle de trois ordres de grandeur, on a étudié les variables telles que le nombre de digitations, le temps de percée et le taux de récupération de la glycérine. On a observé un bon accord entre la théorie et les résultats expérimentaux.

  1. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer

    Science.gov (United States)

    Khalid, Asma; Khan, Ilyas; Khan, Arshad; Shafie, Sharidan

    2018-06-01

    The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD) flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement.

  2. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  3. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  4. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2012-01-01

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  5. The movement of groundwater flow in unsaturated fractured porous medium

    International Nuclear Information System (INIS)

    Li Jinxuan

    1995-01-01

    The author analyses the fundamental processes governing infiltration in fractured porous rock. Asymptotic solutions for the front movement are given for each flow period and comparisons with numerical solutions are made. The result of the study is relevant to nuclear waste storage, hazardous waste disposal and petroleum recovery

  6. Growth of fingers at an unstable diffusing interface in a porous medium or hele-shaw cell

    Energy Technology Data Exchange (ETDEWEB)

    Wooding, R A

    1969-11-27

    Waves at an unstable horizontal interface, between 2 fluids moving vertically through a saturated porous medium, are observed to grow rapidly to become fingers (i.e., the amplitude greatly exceeds the wavelength). For a diffusing interface, in experiments using a Hele-Shaw cell, the mean amplitude taken over many fingers grows approx. as (time)U2D, followed by a transition to a growth proportional to time. Correspondingly, the mean wave number decreases approx. as (time)U-1/2D. Because of the rapid increase in amplitude, longitudinal dispersion ultimately becomes negligible relative to wave growth. To represent the observed quantities at large time, the transport equation is suitably weighted and averaged over the horizontal plane. Hyperbolic equations result, and the ascending and descending zones containing the fronts of the fingers are replaced by discontinuities. These averaged equations form an open set, but closure is achieved by assuming a law for the mean wave number based on similarity. (22 refs.)

  7. Influence of heat transfer on Poiseuille flow of MHD Jeffrey fluid through porous medium with slip boundary conditions

    Science.gov (United States)

    Ramesh, K.

    2017-07-01

    In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.

  8. Entropy-induced separation of star polymers in porous media

    International Nuclear Information System (INIS)

    Blavats'ka, V.; Ferber, C. von; Holovatch, Yu.

    2006-01-01

    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)∼r -a . Applying the field-theoretical renormalization group approach we show in a double expansion in ε=4-d and δ=4-a that there is a range of correlation strengths δ for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of the correlation parameter a the corresponding scaling exponents γ f that govern entropic effects. We find that γ f -1, the deviation of γ f from its mean field value is amplified by the disorder once we increase δ beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers

  9. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    Science.gov (United States)

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity

  10. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  11. Experimental Investigation of Natural Convection into a Horizontal Annular Tube with Porous Medium Effects

    Directory of Open Access Journals (Sweden)

    Saad Najeeb Shehab

    2018-12-01

    Full Text Available In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. The experimental results show that the average Nusselt number increases with increasing annulus radius ratio and particle diameter for same porous media material. Furthermore, two empirical correlations of average Nusselt number with average Rayleigh number for glass and PVC particles are developed. The present experimental results are compared with previously works and good correspondence is showed.

  12. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  13. AN OVERVIEW OF FISCAL CONSOLIDATION PROCESS IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Iulia Andreea Bucur

    2014-12-01

    Full Text Available This paper aims to explore, based on theoretical and empirical research in the field and on data available on Eurostat and European Commission, in the context of financial significant imbalances and thus of the financial stress in the EU countries and especially in the Euro area, the main developments in the fiscal consolidation process given the fiscal effort of each country towards fiscal union. Since the financial crisis started in 2008, many EU Member States demonstrates an obvious macroeconomic imbalance which requires increased responsibility regarding fiscal developments. The impact of the crisis and the causes of sovereign debt high levels trends varied between EU countries as well as the budget deficit levels. Thus, the main priority for EU members must be the continuation of differentiated fiscal consolidation, given the specificities of each economy, favoring growth. The medium-term fiscal policy needs to focus on consolidating public finances along with restoring long-term sustainability.

  14. Inverse solutions for a second-grade fluid for porous medium ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    to the free spiraling of electrons and ions about the magnetic lines of force before ... An understanding of the dynamics of fluids in porous media has practical ... viscous term in order to account for the vorticity diffusion caused by the boundary resis- ... The governing equations that describe the flow of a Newtonian fluid is the ...

  15. 20 CFR 702.345 - Formal hearings; consolidated issues; consolidated cases.

    Science.gov (United States)

    2010-04-01

    ...; consolidated cases. (a) When one or more additional issues are raised by the administrative law judge pursuant... Administrative Law Judge may consolidate such cases for hearing. ...; consolidated cases. 702.345 Section 702.345 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT...

  16. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory, & simulations

    NARCIS (Netherlands)

    Güven, Ibrahim

    2016-01-01

    Wave and transport phenomena through porous media are of great importance in science and industrial applications, because they involve the interaction of various physical mechanisms and can provide useful informations of the structure of the porous medium. Despite the extensive application in modern

  17. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  18. Heat and Mass Transfer with Free Convection MHD Flow Past a Vertical Plate Embedded in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    on free convection unsteady magnetohydrodynamic (MHD flow of viscous fluid embedded in a porous medium is presented. The flow in the fluid is induced due to uniform motion of the plate. The dimensionless coupled linear partial differential equations are solved by using Laplace transform method. The solutions that have been obtained are expressed in simple forms in terms of elementary function exp(· and complementary error function erfc(·. They satisfy the governing equations; all imposed initial and boundary conditions and can immediately be reduced to their limiting solutions. The influence of various embedded flow parameters such as the Hartmann number, permeability parameter, Grashof number, dimensionless time, Prandtl number, chemical reaction parameter, Schmidt number, and Soret number is analyzed graphically. Numerical solutions for skin friction, Nusselt number, and Sherwood number are also obtained in tabular forms.

  19. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  20. Heat transfer through natural convection in a porous saturated medium between two vertical cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Hasnaoui, M. [Faculte des Sciences Semlalia, Marrakech (Morocco); Vasseur, P.; Bilgen, E.; Robillard, L. [Ecole Polytechnique, Montreal, PQ (Canada)

    1993-12-31

    A numerical and analytical study of two dimensional, laminar and near steady convection in a vertical porous annular region. The mathematical model was established, basing on Darcy-Oberbeck-Boussinesq equations. The analytical resolution is in the limit where the width of the porous layer is small compared to the cylinders height and it is based on the hypothesis of the parallel flow. (Authors). 4 refs., 4 figs.

  1. Three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites for high performance photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Zeng, E-mail: 21467855@qq.com [College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000 (China); Hui, Long [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-12-01

    Highlights: • The three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized. • Excellent photocatalytic performance. • Separated from the reaction medium by magnetic decantation. - Abstract: Novel three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized by freeze-drying methods. Scanning and transmission electron microscopy revealed that the graphene formed a three-dimensional porous structure with Co{sub 3}O{sub 4} nanoparticles decorated surfaces. The as-obtained product showed high photocatalytic efficiency and could be easily separated from the reaction medium by magnetic decantation. This nanocomposite may be expected to have potential in water purification applications.

  2. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  3. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  4. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications

    International Nuclear Information System (INIS)

    Hu, Bo-wen; Wang, Qian; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel gravity-assisted heat pipe thermal storage unit (GAHP-TSU) is presented and tested. • Composite granular solid–liquid PCM is piled up as the porous medium layer in GAHP-TSU. • GAHP-TSU avoids the major obstacle of low thermal conductivity of the PCM. • GAHP-TSU enables the thermal storage unit with outstanding heat transfer performance. - Abstract: In this study, a novel gravity-assisted heat pipe type thermal storage unit (GAHP-TSU) has been presented for the potential application in solar air conditioning and refrigeration systems, in which composite granular solid–liquid PCMs compounded by RT100 and high-density polyethylene with phase change temperature of 100 °C are piled up as a porous PCMs medium layer. Water is used as heat transfer fluid in the GAHP-TSU. The heat transfer mechanism of heat storage/release in the GAHP-TSU is similar to that of the gravity-assisted heat pipe, which is superior to traditional direct-contact or indirect-contact thermal storage units. The properties of start-up, heat transfer characteristics on the stages of heat absorption and release of the GAHP-TSU are studied in detailed, including necessary calculations based on heat transfer theory. The results show that the whole system is almost isothermal at the temperature over 70 °C and the heat transfer properties are excellent both for heat absorption and release stages. The GAHP-TSU device with low thermal conductivity of the PCMs is promising in potential industry applications

  5. Heat and mass transfer by free convection in a porous medium along a surface of arbitrary shape

    International Nuclear Information System (INIS)

    Hossain, M.A.; Nakayama, A.

    1993-06-01

    Free convection flow of a viscous incompressible fluid in the presence of species concentration along a surface of arbitrary shape embedded in a saturated porous medium is investigated with non-uniform surface temperature and surface concentration distributions. The equations governing the flow, derived in the form of local similarity and nonsimilarity equations, are integrated numerically using the implicit finite difference approximation together with the Keller box method. Exact solutions of the local similarity equations are also obtained and compared with the finite difference solutions. All the solutions are shown graphically in terms of local Nusselt number, Nu χ , and local Sherwood number, Sh χ , against the physical parameter ξ (which characterizes the streamwise distance along the surface from the leading edge) taking the value of the Lewis number, Le, equals 1 0, 5, and 10 while N (which defines the ratio between the buoyancy forces arise due to thermal and mass diffusion) is unity. (author). Refs, 5 figs, 1 tab

  6. Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium

    Science.gov (United States)

    Parand, Kourosh; Latifi, Sobhan; Delkhosh, Mehdi; Moayeri, Mohammad M.

    2018-01-01

    In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [0, ∞). Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y'(0), is obtained as -1.191790649719421734122828603800159364 for η = 0.5. Comparing to the best result obtained so far, it is accurate up to 36 decimal places.

  7. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    Science.gov (United States)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  8. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  9. Two-dimensional lift-up problem for a rigid porous bed

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.; Huang, L. H.; Yang, F. P. Y. [Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (China)

    2015-05-15

    The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu [“Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy’s law, and the slip-flow condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang’s [“Laminar poroelastic media flow,” J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei’s experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei’s model are revealed, and the theoretical breakout times obtained using Mei’s model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.

  10. Aligned Magnetic Field, Radiation, and Rotation Effects on Unsteady Hydromagnetic Free Convection Flow Past an Impulsively Moving Vertical Plate in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2014-01-01

    Full Text Available We analyse the effects of aligned magnetic field, radiation, and rotation on unsteady hydromagnetic free convection flow of a viscous incompressible electrically conducting fluid past an impulsively moving vertical plate in a porous medium in presence of heat source. An exact solution of the governing equations in dimensionless form is obtained by Laplace transform technique in ramped temperature case. To compare the results obtained in this case with that of isothermal plate, the exact solution of the governing equations is also obtained for isothermal plate and results are discussed graphically in both ramped temperature and isothermal cases.

  11. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2018-06-01

    Full Text Available The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement. Keywords: Micropolor fluid, Microrotation, MHD, Porosity, Wall couple stress, Exact solutions

  12. Multi-component acoustic characterization of porous media

    NARCIS (Netherlands)

    Van Dalen, K.N.

    2011-01-01

    The characterization of porous materials (e.g., sandstone) is very important for geotechnical and reservoir engineers. For this purpose, often use is made of acoustic waves that are sent through the medium. The desired material parameters can then be estimated from the measured signals. However,

  13. NUMERICAL STUDY OF NON-DARCIAN NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE FILLED WITH POROUS MEDIUM SATURATED WITH VISCOUS FLUID

    Directory of Open Access Journals (Sweden)

    Mahmood H. Ali

    2015-02-01

    Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.

  14. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-03-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  15. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-04-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  16. On the gravitational instability of an ionized magnetized rotating plasma flowing through a porous medium with other transport processes and the suspended particles

    International Nuclear Information System (INIS)

    Vyas, M.K.; Chhajlani, R.K.

    1989-01-01

    The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)

  17. Microwave sintering of cordierite ceramic precursors obtained by starch direct consolidation

    International Nuclear Information System (INIS)

    Sandoval, M.L.; Talou, M.H.; Camerucci, M.A.; Universidad Nacional de Mar Del Plata; Souto, P.M. de; Kiminami, R.H.G.A.

    2009-01-01

    Microwave sintering of cordierite disk precursors (mixture of kaolin, talc and alumina) with potato starch was studied. Green disks were obtained by thermal consolidation of stable aqueous suspensions of the ceramic powders (29.6 % vol.) with potato starch (11.5 % vol.) at 75 and 85 deg C, 4h; drying (50 deg C,12h) and calcination (650 deg C, 2h). The reaction-sintering by microwave heating (power: 2.45 GHz; heating rate: 50 deg C/min) at different temperatures (1250-1330 deg C) and dwell times (10-20 min) was carried out. For comparative purposes, the reaction-sintering by conventional heating was analyzed (1330 deg C, 4h a 3 deg C/min). The evolution of the phases as a function of temperature and time was studied by XRD analysis. The developed microstructures (dense or porous) were characterized by density and porosity measurements, and SEM. The obtained results were analyzed in relation to the characteristics of starch behavior in aqueous suspension at temperature and the employed consolidation and sintering conditions. (author)

  18. Anomalous dynamics of capillary rise in porous media

    KAUST Repository

    Shikhmurzaev, Yulii D.; Sprittles, James E.

    2012-01-01

    The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade ago is described. The developed theory is based on considering the principal modes of motion of the menisci that collectively form the wetting

  19. Steam injection into water-saturated porous rock

    NARCIS (Netherlands)

    Bruining, J.; Marchesin, D.; Duijn, van C.J.

    2003-01-01

    We formulate conservation laws governing steam injection in a linear porous medium containing water. Heat losses to the outside are neglected. We find a complete and systematic description of all solutions of the Riemann problem for the injection of a mixture of steam and water into a

  20. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Science.gov (United States)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  1. Some micromechanical models of elastoplastic behaviors of porous geomaterials

    Directory of Open Access Journals (Sweden)

    W.Q. Shen

    2017-02-01

    Full Text Available Some micromechanics-based constitutive models are presented in this study for porous geomaterials. These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix (von Mises, Green type, Mises–Schleicher and Drucker–Prager. Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Drucker–Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials (sandstone, porous chalk and argillite. Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.

  2. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  3. Studies of Tracer Dispersion and Fluid Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Rage, T.

    1996-12-31

    This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table

  4. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  5. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  6. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  7. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyro-tactic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Pop, I. [Department of Applied Mathematics, Babes-Bolyai University, Cluj-Napoca (Romania)

    2012-06-15

    The steady boundary layer free convection flow past a horizontal flat plate embedded in a porous medium filled by a water-based nano-fluid containing gyro-tactic microorganisms is investigated. The Oberbeck-Boussinesq approximation is assumed in the analysis. The effects of bio-convection parameters on the dimensionless velocity, temperature, nano-particle concentration and density of motile microorganisms as well as on the local Nusselt, Sherwood and motile microorganism numbers are investigated and presented graphically. In the absence of bio-convection, the results are compared with the existing data in the open literature and found to be in good agreement. The bio-convection parameters strongly influence the heat, mass, and motile microorganism transport rates. (authors)

  8. Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion

    International Nuclear Information System (INIS)

    Mueller, Kyle T.; Waters, Oliver; Bubnovich, Valeri; Orlovskaya, Nina; Chen, Ruey-Hung

    2013-01-01

    The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al 2 O 3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH 4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al 2 O 3 and SiC ceramic surfaces were studied

  9. Dynamics of foam flow in porous media in the presence of oil

    Science.gov (United States)

    Shokri, N.; Osei-Bonsu, K.

    2016-12-01

    Foams demonstrate great potential for fluid displacement in porous media which is important in a number of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is down to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media [1-4]. To investigate the fundamental aspects of foam flow in porous media, we have conducted a systematic series of experiment using a well-characterised porous medium manufactured by a high resolution 3D printer. This enabled us to design and control the properties of porous media with high accuracy. The model porous medium was initially saturated with oil. Then the pre-generated foam was injected into the model at well-defined injection rates to displace oil. The dynamics of foam-oil displacement in porous media was recorded using a digital camera controlled by a computer [5]. The recorded images were analysed in MATLAB to determine the dynamics of foam-oil displacement under different boundary conditions. Effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to the heavy oil. Furthermore, higher foam quality appears to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil patterns formed during displacement revealed formation of a more stable front in the case of lower foam quality which affected the oil recovery efficiency. This study extends the physical understanding of governing mechanisms controlling oil displacement by foam in porous media. Grassia, P., E. Mas-Hernandez, N. Shokri, S.J. Cox, G. Mishuris, W.R. Rossen (2014), J. Fluid Mech., 751, 346-405. Grassia, P., C. Torres-Ulloa, S. Berres, E. Mas-Hernandez, N. Shokri (2016), European Physical Journal E, 39 (4), 42. Mas

  10. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  11. Influence of Thermal Radiation on Unsteady Free Convection MHD Flow of Brinkman Type Fluid in a Porous Medium with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.

  12. Error estimates for the finite volume discretization for the porous medium equation

    NARCIS (Netherlands)

    Pop, I.S.; Sepúlveda, M.; Radu, F.A.; Vera Villagrán, O.P.

    2010-01-01

    We analyze the convergence of a numerical scheme for a class of degenerate parabolic problems modelling reactions in porous media, and involving a nonlinear, possibly vanishing diffusion. The scheme involves the Kirchhoff transformation of the regularized nonlinearity, as well as an Euler implicit

  13. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    Science.gov (United States)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  14. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  15. Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium

    Directory of Open Access Journals (Sweden)

    Shao-Yiu Hsu

    2017-01-01

    Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.

  16. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Directory of Open Access Journals (Sweden)

    Bhadauria B.S.

    2016-12-01

    Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  17. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.

  18. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  19. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  20. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  1. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  2. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  3. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  4. Magnetic properties of iron oxide photolytically produced from Fe(CO)5 impregnated porous glass

    Science.gov (United States)

    Borelli, N. F.; Morse, D. L.; Schreurs, J. W. H.

    1983-06-01

    This article discusses the magnetic properties observed in porous glasses impregnated with metal carbonyls after exposure to light. In the photolyzed and consolidated glasses both superparamagnetic and single domain ferrimagnetic particles were found to be present, with the single domain particles having an exceedingly high coercive force. The concentration ratio between superparamagnetic and single domain particles depends strongly on temperature. An analysis of the observed phenomena is given.

  5. A SANS study of capillary condensation in porous media

    International Nuclear Information System (INIS)

    Lin, M.; Glinka, C.; Sinna, S.; Huang, J.; Abeles, B.; Johnson, J.; Drake, J.

    1990-01-01

    The authors use small angle neutron scattering (SANS) to study the microstructure of porous Vycor glass and the capillary condensation of fluids in the medium. Using a chord distribution model, they can predict the structure factor measured by SANS. Excellent agreement with the data is obtained. The fitted parameters characterize quantitatively the porous structure before and during the process of condensation, and are in good agreement with isotherm measurements. However, at the latest stages of the process, when all the pores are nearly filled, the model can no longer describe the system

  6. Effect of wetting properties on the kinetics of drying of porous media

    International Nuclear Information System (INIS)

    Shahidzadeh-Bonn, N; Azouni, A; Coussot, P

    2007-01-01

    The influence of the wetting properties of a model porous medium on the evaporation rate of water contained in the sample is studied experimentally. For a hydrophilic porous medium, drying is mainly controlled by the liquid film covering the solid grains and capillary rise inside the pores, leading to a constant drying rate and a homogeneous desaturation of the whole sample in time. For a hydrophobic porous medium, a drying front penetrates into the sample in the early stages of evaporation and the drying rate is found to strongly depend on the boundary conditions and wetting heterogeneities. In the presence of an air flow along the free surface of the sample, the drying rate varies as the square root of time, indicating a diffusive transport mechanism. Without air flow, a power law behaviour for the drying rate as a function of time is observed with an exponent of 0.75 ± 0.03. This is likely to be due to competition between diffusion through the vapour phase and local capillary rise of the liquid due to wetting heterogeneities. A surprising consequence is that for the late stages of drying, the total evaporated mass may become larger without air flow than with air flow. (fast track communication)

  7. The kinetics of ice-lens growth in porous media

    KAUST Repository

    Style, Robert W.; Peppin, Stephen S. L.

    2012-01-01

    -growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends

  8. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    Science.gov (United States)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  9. Optimization of process for creating porous structure of materials from industrial waste

    International Nuclear Information System (INIS)

    Mangutova-Stoilkovska, Bianka

    2005-01-01

    Republic of Macedonia, as many European countries, possesses great quantities of industrial waste materials from thermo electrical power stations and metallurgical capacities. The powder from waste fly ash and metallurgical slag was specified from chemical, geometrical, structural and thermochemical aspects. After the consolidation, the compacts were specified from structural, mechanical and thermophysical aspects. Using three kinds of waste glasses (TV glass, window and flask), the sintering temperature was significantly reduced and ecologically risky components were fixed molecularly in the matrix based on fly ash and metallurgical slag. The glass was characterized from chemical, geometrical and thermophysical point of view. The amount of glass in the composites varied from 10%-50%. The mechanical and thermal expansion properties of the sintered compacts, in the temperature region from 800 o -1200 o C were determined. The thermodynamic stability, mechanical properties and chemical inertness have been used as criterion for selection of the consolidated compacts. Special attention was given to the creation of highly porous structure. For the purpose to obtain a high joint porous structure, several types of porosity have been used: polyurethane foam, hydrogen peroxide, limestone, carbon ash and carbon fibres. The obtained glass-ceramic materials could be used in the building industry, for making filters for gases and liquids as well as diffusers for waste water aeration. (Author)

  10. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    Science.gov (United States)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the

  11. Role of dielectric effects in the red-green switching of porous silicon luminescence

    International Nuclear Information System (INIS)

    Chazalviel, J.N.; Ozanam, F.; Dubin, V.M.

    1994-01-01

    Trapping of a carrier at an ionized impurity in porous silicon may be significantly hindered when the material is embedded in a high-dielectric-constant medium such as an aqueous electrolyte. This effect is estimated for a geometry of cylindrical silicon wires, and by modeling the two media with wavevector-independent dielectric constants. The self-image potential of the electron is taken into account, and the frequency dependence of the outer dielectric constant is treated in a simple manner. The results demonstrate that the impurity states are not accessible in the presence of the electrolyte, just due to the dielectric relaxation of the embedding medium. This result may apply to different kinds of localized electronic states, including those responsible for the red luminescence in dry porous silicon. This provides a plausible explanation for the red to green switching of the luminescence when the porous silicon is wet and suggests that using embedding media of intermediate dielectric constants should allow one to observe a progressive transition between red and green luminescence. Observation of porous silicon luminescence in solvents of various dielectric constants provides a preliminary test of this prediction. (orig.)

  12. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  13. Investigation of mixing enhancement in porous media under helical flow conditions: 3-D bench-scale experiments

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Ye, Yu; Cirpka, Olaf A.

    2017-01-01

    us to quantify spreading and dilution of the solute plumes at the outlet cross section. Moreover, we collected direct evidence of plume spiraling and visual proof of helical flow by freezing and slicing the porous medium at different cross sections and observing the dye-tracer distribution. Model...... performed steady-state conservative tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution [4]. Helical flow was created by packing the porous medium in angled stripes of materials...

  14. Pressurized Anneal of Consolidated Powders

    Science.gov (United States)

    Nemir, David Charles (Inventor); Rubio, Edward S. (Inventor); Beck, Jan Bastian (Inventor)

    2017-01-01

    Systems and methods for producing a dense, well bonded solid material from a powder may include consolidating the powder utilizing any suitable consolidation method, such as explosive shockwave consolidation. The systems and methods may also include a post-processing thermal treatment that exploits a mismatch between the coefficients of thermal expansion between the consolidated material and the container. Due to the mismatch in the coefficients, internal pressure on the consolidated material during the heat treatment may be increased.

  15. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  16. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

    International Nuclear Information System (INIS)

    Beckermann, C.; Ramadhyani, S.; Viskanta, R.

    1986-01-01

    A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments with spherical glass beads as the porous medium and water and glycerin as the fluids in rectangular test-cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On the other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure

  17. Petrophysical measurements on drill cuttings; Mesures petrophysiques sur deblais de forage

    Energy Technology Data Exchange (ETDEWEB)

    Egermann, P.

    2003-12-01

    This thesis describes new methods to determine petrophysical properties of porous medium from millimetric fragments. Fundamental properties are measured: permeability, porosity, capillary pressure and the tortuosity. The permeability measurement is based on the flow of a viscous fluid inside the fragments, which is interpreted using a numerical model. The tortuosity (formation factor) is obtained from electrical measurements and a conductivity model in heterogeneous media. The methods are validated on crushed core fragments of known properties with a good agreement. The applications are numerous: measurements from drill cuttings to characterize underground reservoirs (hydrocarbons, aquifers), low permeability consolidated formations (cap rocks) and also the characterization of any dispersed porous medium (natural or artificial). (author)

  18. Ice-water convection in an inclined rectangular cavity filled with a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. (Dept. of Mechanical Engineering, Ecole Polytechnique de Montreal (Canada)); Kahawita, R. (Dept. of Civil Engineering, Ecole Polytechnique de Montreal (Canada))

    1994-10-01

    This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20 . In a vertical cavity, the density inversion causes the formation of two counter-rotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Benard and side heating branches). Due to the inversion of density, the solution on the Benard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70 but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature. (orig.)

  19. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  20. Dispersion and consolidation of WO{sub x}-doped zirconia from zirconium tungstate and triethanolamine in aqueous medium; Dispersao e consolidacao de zirconia dopada com WO{sub x} a partir do tungstato de zirconio e trietanolamina em meio aquoso

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.; Zorzi, J.E.; Perottoni, C.A., E-mail: jezorzi@ucs.br [Universidade de Caxias do Sul (UCS), RS (Brazil); Machado, G. [Centro de Tecnologias Estrategicas do Nordeste, Recife, PE (Brazil)

    2017-01-15

    In recent studies, it was possible to produce hydrous zirconia nanoparticles with crystallite sizes as small as 2 nm from ZrW{sub 2} O{sub 8} powder with initial particle size of 1.7 μm in an aqueous medium. The zirconia nanoparticles formed transparent polycrystalline aggregates. However, the controlled production of transparent zirconia solids by centrifugation of stable suspensions, deagglomerated in the moment of the synthesis, has not been explored yet. In this context, this study aimed to evaluate the dispersion and consolidation of hydrous zirconia nanoparticles produced from ZrW{sub 2} O{sub 8} , in aqueous medium and using triethanolamine (TEOA) as surfactant, and to understand the effect of experimental conditions on the tungsten content in the consolidated solids. The synthesis and dispersion were carried out in aqueous medium at 80 °C with the use of NaOH and TEOA; the colloidal solutions were dialysed, their pH values were adjusted to 6, and then ultracentrifuged at 28000 rpm for 24 h. It has been found that the use of TEOA in the synthesis allowed obtaining stable sols of zirconia nanoparticles which, after centrifugation, originated transparent and yellowish solids that were characterized using various techniques (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and simultaneous thermal analysis). Although TEOA assists in the dispersion of nanoparticles, it interfered in the synthesis mechanism, leading to the production of zirconia doped with WO{sub x} , with tungsten concentrations that varied depending on the experimental conditions employed. (author)

  1. Onset of Convection in the Presence of a Precipitation Reaction in a Porous Medium: A Comparison of Linear Stability and Numerical Approaches

    Directory of Open Access Journals (Sweden)

    Parama Ghoshal

    2017-12-01

    Full Text Available Reactive convection in a porous medium has received recent interest in the context of the geological storage of carbon dioxide in saline formations. We study theoretically and numerically the gravitational instability of a diffusive boundary layer in the presence of a first-order precipitation reaction. We compare the predictions from normal mode, linear stability analysis, and nonlinear numerical simulations, and discuss the relative deviations. The application of our findings to the storage of carbon dioxide in a siliciclastic aquifer shows that while the reactive-diffusive layer can become unstable within a timescale of 1 to 1.5 months after the injection of carbon dioxide, it can take almost 10 months for sufficiently vigorous convection to produce a considerable increase in the dissolution flux of carbon dioxide.

  2. Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based numerical study

    Science.gov (United States)

    Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.

    2018-01-01

    We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.

  3. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    Science.gov (United States)

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  4. Homogenization of complex flows in porous media and applications

    International Nuclear Information System (INIS)

    Hutridurga-Ramaiah, Harsha

    2013-01-01

    Our work is a contribution to the understanding of transport of solutes in a porous medium. It has applications in groundwater contaminant transport, CO 2 sequestration, underground storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Taylor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous medium and reaction phenomena. Microscopic phenomena at the pore scale are up-scaled to obtain effective behaviour at the observation scale. Method of two-scale convergence with drift from the theory of homogenization is employed as an up-scaling technique. In the first part of our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid interface of the porous medium. Starting with coupled convection-diffusion equations for bulk and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic scale we derive effective equations at the macroscopic scale. We consider the microscopic system with highly oscillating coefficients in a strong convection regime i.e., large Peclet regime. The presence of strong convection in the microscopic model leads to the induction of a large drift in the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and the results are compared. In the second part of our work we generalize our results on single component flow to multicomponent flow in a linear setting. In the latter case, the effective parameters are obtained using Factorization principle and two-scale convergence with drift. The behaviour of effective parameters with respect to Peclet number and Damkohler number are numerically studied. Freefem++ is used to perform numerical tests in two dimensions. (author)

  5. Effective medium theory principles and applications

    CERN Document Server

    Choy, Tuck C

    2015-01-01

    Effective medium theory dates back to the early days of the theory of electricity. Faraday in 1837 proposed one of the earliest models for a composite metal-insulator dielectric and around 1870 Maxwell and later Garnett (1904) developed models to describe a composite or mixed material medium. The subject has been developed considerably since and while the results are useful for predicting materials performance, the theory can also be used in a wide range of problems in physics and materials engineering. This book develops the topic of effective medium theory by bringing together the essentials of both the static and the dynamical theory. Electromagnetic systems are thoroughly dealt with, as well as related areas such as the CPA theory of alloys, liquids, the density functional theory etc., with applications to ultrasonics, hydrodynamics, superconductors, porous media and others, where the unifying aspects of the effective medium concept are emphasized. In this new second edition two further chapters have been...

  6. Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.Y., E-mail: c.y.zhao@warwick.ac.u [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Dai, L.N.; Tang, G.H.; Qu, Z.G.; Li, Z.Y. [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2010-10-15

    A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous media (porous metals). The accuracy of this method is validated by the benchmark solutions. The detailed flow and heat transfer at the pore level are revealed. The effects of pore density (cell size) and porosity on the natural convection are examined. Also the effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer will be enhanced by lowering the porosity and cell size. The square porous medium can have a higher heat transfer performance than spheres due to the strong flow mixing and more surface area.

  7. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  8. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  9. Migration study of americium in porous medium

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Ogawa, Hiromichi

    1999-01-01

    Migration experiments of 241 Am 3+ had been performed by a column system, to investigate migration behavior of 241 Am through a column packed porous sedimentary materials: a coastal sandy soil and a reddish soil. Most 241 Am loaded into the column packed the reddish soil sorbed on the influent edge of the column. In the case of the sandy soil, however, considerable amount of 241 Am was passed through the column. This shows that there is colloidal 241 Am species which may move without effective interaction with the sandy soil. Such a migration behavior of colloidal 241 Am in the sandy soil column could be evaluated by a sorption model based on filtration theory. Sorption mechanisms of 241 Am on the sedimentary materials were examined by a chemical extraction method, for 241 Am sorbed on the sandy soil and the reddish soil at any sections in the column. The 241 Am sorbed on the reddish soil was mainly controlled by a reversible ion exchange reaction. On the other hand, the 241 Am sorbed on the sandy soil ws controlled by irreversible reactions, such as the selective chemical sorptions onto Fe and Mn oxyhydroxide/oxide. The experimental results support that the migration of 241 Am in the reddish soil layer can be estimated by using the K d , whereas that in the sandy soil can not be explained by the K d concept. (author)

  10. Thermal Transmittance of Porous Hollow Clay Brick by Guarded Hot Box Method

    Science.gov (United States)

    Kim, Joonsoo

    2018-03-01

    The thermal property of a porous hollow clay brick was determined by measuring the thermal transmittance of the wall made of porous hollow clay bricks. Prior to the production of porous hollow clay bricks, nonporous and porous tiny clay bricks were prepared to determine the physico-mechanical properties by modifying the amount of wood flour and firing temperature. The bricks were produced by uniaxial pressing and then fired in an electric furnace. Their physico-mechanical properties were measured by water absorption, apparent porosity, bulk density, and compressive strength. The porous tiny clay bricks were produced with three types of wood flour: coarse wood flour (1-0.36 mm), medium-sized wood flour (0.36-0.15 mm), and fine wood flour (cement bricks. The two walls had a thermal transmittance of 1.42 and 2.72 W\\cdot m^{-2}\\cdot K^{-1}, respectively. The difference in thermal transmittance was due to the pores created with fine wood flour (< 0.08 mm) as a pore-forming agent.

  11. Porous polymer coatings on metal microneedles for enhanced drug delivery

    Science.gov (United States)

    Ullah, Asad; Kim, Chul Min; Kim, Gyu Man

    2018-04-01

    We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

  12. Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries

    International Nuclear Information System (INIS)

    Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun

    2015-01-01

    The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied

  13. A chord distribution description of porous glass

    International Nuclear Information System (INIS)

    Lin, M.Y.; Sinha, S.K.

    1990-01-01

    In this paper small angle neutron scattering data of Vycor is analyzed using a chord distribution model describing the microporous structure. In addition, the same model is applied in interpreting the data taken when capillary condensation takes place in the porous medium. In both cases, the results are in good agreement with other measurements, and shows a promising potential in describing such a bicontinuous system

  14. Entropy generation analysis of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The similar solution on the equations of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid through a porous medium gives (using an analytical method, a system of non-linear partial differential equations which are solved by optimal homotopy analysis method. Effects of various drastic parameters on the fluid and heat transfer characteristics have been analyzed. A very good agreement is observed between the obtained results and the numerical ones. The entropy generation has been derived and a comprehensive parametric analysis on that has been done. Each component of the entropy generation has been analyzed separately and the contribution of each one on the total value of entropy generation has been determined. It is found that the entropy generation as an important aspect of the industrial applications has been affected by various parameters which should be controlled to minimize the entropy generation.

  15. 75 FR 32555 - Consolidated Audit Trail

    Science.gov (United States)

    2010-06-08

    ... Part II Securities and Exchange Commission 17 CFR Part 242 Consolidated Audit Trail; Proposed Rule... 3235-AK51 Consolidated Audit Trail AGENCY: Securities and Exchange Commission. ACTION: Proposed rule... a consolidated order tracking system, or consolidated audit trail, with respect to the trading of...

  16. A Locally Conservative Eulerian--Lagrangian Method for a Model Two-Phase Flow Problem in a One-Dimensional Porous Medium

    KAUST Repository

    Arbogast, Todd

    2012-01-01

    Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.

  17. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  18. Modeling of the effective thermal conductivity of sintered porous pastes

    NARCIS (Netherlands)

    Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.

    2014-01-01

    The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the

  19. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    Science.gov (United States)

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for

  20. Experimental analysis of the flow near the boundary of random porous media

    Science.gov (United States)

    Wu, Zhenxing; Mirbod, Parisa

    2018-04-01

    The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.

  1. Macroscopic numerical simulation model of multi-constituent fluid flows in porous medium; Modele macroscopique de simulation numerique d'ecoulements de fluides multiconstituants en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Wilbois, B.

    2003-07-01

    In this work, a new model is built which allows to take into consideration the overall mass transfer phenomena (in particular convection) taking place inside a mixture of n{sub c} constituents in a porous medium. This model should allow to foresee the quantitative composition of fluids in oil fields and also to improve the knowledge of the flow of different species inside mixtures. The overall physical phenomena taking place at oil fields is explained in the first chapter. Chapter 2 recalls some thermodynamical notions at the equilibrium and outside equilibrium. These notions, necessary to understand the forecasting methods used by petroleum geologists, are described in chapter 3. This chapter includes also a bibliographic study about the methods of simulation of mass and heat transfers in porous media. In chapter 4, using the thermodynamical relations of irreversible processes described in chapter 2, a new type of macroscopic model allowing to describe the overall phenomena analyzed is developed. The numerical method used to solve this new system of equations is precised. Finally, chapter 5 proposes a set of cases for the validation of the uncoupled phenomena and some qualitative examples of modeling of coupled phenomena. (J.S.)

  2. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  3. Scaling theory of drying in porous media

    International Nuclear Information System (INIS)

    Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.

    1999-01-01

    Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. 59, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. copyright 1999 The American Physical Society

  4. Modelling of the filling up of a porous plate

    International Nuclear Information System (INIS)

    Sampaio, R.; Gama, R.M.S. da.

    1985-01-01

    A generalization of Darcy's law is constructed using Mixture Theory to describe the transient flow of an incompressible fluid through a rigid solid porous matrix. The model is used to study the process of filling-up of an one dimensional unsaturated porous medium that is mathematically described by a system of nonlinear hyperbolic equations that is non-homogeneous due to the drag force between the fluid and the solid matrix. The system is analysed throughly and solved numerically using the Glimm-Chorin method with a splitting to treat the non-homogeneous term. The results are discussed and shown to describe well the filling-up process. (Author) [pt

  5. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    Science.gov (United States)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  6. A variational theory for frictional flow of fluids in inhomogeneous porous systems

    Energy Technology Data Exchange (ETDEWEB)

    Sieniutycz, Stanislaw [Faculty of Chemical Engineering, Warsaw University of Technology, 00-645 Warsaw, 1 Warynskiego Street (Poland)

    2007-04-15

    For nonlinear steady paths of a fluid in an inhomogeneous isotropic porous medium a Fermat-like principle of minimum time is formulated which shows that the fluid streamlines are curved by a location dependent hydraulic conductivity. The principle describes an optimal nature of nonlinear paths in steady Darcy's flows of fluids. An expression for the total resistance of the path leads to a basic analytical formula for an optimal shape of a steady trajectory. In the physical space an optimal curved path ensures the maximum flux or shortest transition time of the fluid through the porous medium. A sort of 'law of bending' holds for the frictional fluid flux in Lagrange coordinates. This law shows that - by minimizing the total resistance - a ray spanned between two given points takes the shape assuring that its relatively large part resides in the region of lower flow resistance (a 'rarer' region of the medium). Analogies and dissimilarities with other systems (e.g. optical or thermal ones) are also discussed. (author)

  7. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Tariq [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Mehmood, Z., E-mail: rajaziafat@yahoo.com [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Abbas, Z. [Department of Mathematics, The Islamia University, Bahawalpur (Pakistan)

    2017-02-01

    This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.

  8. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field

    International Nuclear Information System (INIS)

    Javed, Tariq; Mehmood, Z.; Abbas, Z.

    2017-01-01

    This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.

  9. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  10. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  11. Space-fractional model for the spreading of matter in heterogeneous porous media

    International Nuclear Information System (INIS)

    Krepysheva, N.; Neel, M.Ch.

    2005-01-01

    In very heterogeneous porous media (like the soil, or an aquifer, for instance), experimental results showed that mass transport sometimes does not obey Fourier's law. Continuous Time Random Walks in the form of L y Flights provide a small scale model for super diffusive spreading of a tracer plume, dissolved in a fluid, itself enclosed in a porous medium. In an infinite medium, the corresponding behavior of the concentration of solute is known to obey a variant of Fourier's law, with a Riesz-Feller operator in place of the Laplacian. Here we show that with some modifications the result extends to semi infinite media. A numerical method allowing for the simulation of fractional derivatives is adapted to semi infinite media, with special attention to convective terms, associated to a possibly non zero global trough flow. (authors)

  12. Space-fractional model for the spreading of matter in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Krepysheva, N. [Institut National de Recherches Agronomiques (INRA), UMRA Climat-Sol-Environnement, 84 - Avignon (France); Neel, M.Ch. [Universite d' Avignon, Faculte des Sciences, UMRA Climat-Sol-Environnement, 84 - Avignon (France)

    2005-07-01

    In very heterogeneous porous media (like the soil, or an aquifer, for instance), experimental results showed that mass transport sometimes does not obey Fourier's law. Continuous Time Random Walks in the form of L y Flights provide a small scale model for super diffusive spreading of a tracer plume, dissolved in a fluid, itself enclosed in a porous medium. In an infinite medium, the corresponding behavior of the concentration of solute is known to obey a variant of Fourier's law, with a Riesz-Feller operator in place of the Laplacian. Here we show that with some modifications the result extends to semi infinite media. A numerical method allowing for the simulation of fractional derivatives is adapted to semi infinite media, with special attention to convective terms, associated to a possibly non zero global trough flow. (authors)

  13. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals.

    Science.gov (United States)

    Syshchyk, Olga; Skryshevsky, Valeriy A; Soldatkin, Oleksandr O; Soldatkin, Alexey P

    2015-04-15

    A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Laser-assisted ignition and combustion characteristics of consolidated aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Saceleanu, Florin; Wen, John Z., E-mail: john.wen@uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada); Idir, Mahmoud; Chaumeix, Nabiha [Institut de Combustion, Aérothermique, Réactivité et Environnement, UPR3021 du CNRS-INSIS (France)

    2016-11-15

    Aluminum (Al) nanoparticles have drawn much attention due to their high energy density and tunable ignition properties. In comparison with their micronscale counterpart, Al nanoparticles possess large specific surface area and low apparent activation energy of combustion, which reduce ignition delay significantly. In this paper, ignition and subsequently burning of consolidated Al nanoparticle pellets are performed via a continuous wave (CW) argon laser in a closed spherical chamber filled with oxygen. Pellets are fabricated using two types of nanoparticle sizes of 40–60 and 60–80 nm, respectively. A photodiode is used to measure the ignition delay, while a digital camera captures the location of the flame front. It is found that for the 40–60-nm nanoparticle pellets, ignition delay reduces with increasing the oxygen pressure or using the higher laser power. Analysis of the flame propagation rate suggests that oxygen diffusion is an important mechanism during burning of these porous nanoparticle pellets. The combustion characteristics of the Al pellets are compared to a simplified model of the diffusion-controlled oxidation mechanism. While experimental measurements of pellets of 40–60 nm Al particles agree with the computed diffusion-limiting mechanism, a shifted behavior is observed from the pellets of 60–80 nm Al particles, largely due to the inhomogeneity of their porous structures.

  15. 7 CFR 283.16 - Consolidation of issues.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Consolidation of issues. 283.16 Section 283.16... Claims of $50,000 or More § 283.16 Consolidation of issues. Similar issues involved in appeals by two or...) Disposition of consolidated issues. If the ALJ orders consolidation, the issues consolidated will be...

  16. Geophysical aspects of underground fluid dynamics and mineral transformation process

    Science.gov (United States)

    Khramchenkov, Maxim; Khramchenkov, Eduard

    2014-05-01

    The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid

  17. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  18. Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2015-05-01

    Full Text Available In this paper, we analyzed the buoyancy-driven radiative non-isothermal heat transfer in a nanofluid stagnation-point flow over a stretching/shrinking sheet embedded in a porous medium.The effects of thermal radiation and internal heat generation/absorption along with suction/injection at the boundary are also considered. Three different types of nanofluids, namely the Copper-water, the Alumina-water and the Titanium dioxide water are considered. The resulting coupled nonlinear differential equations are solved numerically by a fifth-order Runge-Kutta-Fehlberg integration scheme with a shooting technique. A good agreement is found between the present numerical results and the available results in the literature for some special cases. The effects of the physical parameters on the flow and temperature characteristics are presented through tables and graphs, and the salient features are discussed. The results obtained reveal many interesting behaviors that warrant further study on the heat transfer enhancement due to the nanofluids.

  19. Coupling of a two phase gas liquid 3D Darcy flow in fractured porous media with a 1D free gas flow

    OpenAIRE

    Brenner , Konstantin; Masson , Roland; Trenty , Laurent; Zhang , Yumeng

    2015-01-01

    A model coupling a three dimensional gas liquid compositional Darcy flow in a frac-tured porous medium, and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermody-namical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. The fractures are represented as interfaces of codimens...

  20. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  1. Effect of Variation of Temperature Field on the Process of Thermal Consolidation of Tailings Pond “Zelazny Most”

    Directory of Open Access Journals (Sweden)

    Bartlewska-Urban Monika

    2015-02-01

    Full Text Available The following study presents numerical calculations for establishing an impact of temperature changes on the process of distortion of bi–phase medium. The Biot consolidation equations with Kelvin–Voigt rheological skeleton were used for that purpose. The process was exemplified by thermal consolidation of post floatation dump “–elazny Most”. We analyzed the behavior of the landfill under the action of its own weight, forces of floating filtration and temperature gradient. Values of certain effective parameters of model were obtained during laboratory tests on material obtained from the landfill. The remaining data for mediums with similar characteristics were taken from literature. The results obtained from the stress state in the landfill allow the magnitude of plasticity potential to be specified based on known strength criteria. Change in the value sign of the plasticity potential clearly testifies to the emergence of an area of plasticity of material from landfill, however, this does not indicate the loss of stability of this hydrotechnical structure.

  2. Time-fractional particle deposition in porous media

    Science.gov (United States)

    Xu, Jianping

    2017-05-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann-Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media.

  3. Time-fractional particle deposition in porous media

    International Nuclear Information System (INIS)

    Xu, Jianping

    2017-01-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann–Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media. (paper)

  4. Newton-sor iterative method for solving the two-dimensional porous ...

    African Journals Online (AJOL)

    In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

  5. Configuration de piégeage dans un milieu poreux à saturation résiduelle en huile Configuration of Trapping in a Porous Medium with Residual Oil Saturation

    Directory of Open Access Journals (Sweden)

    Sylvestre L.

    2006-11-01

    ainsi, d'une part, situer le comportement du milieu poreux par rapport aux deux états de référence précédemment définis et d'autre part, nous avons pu estimer la fraction du volume poreux en écoulement, la composition des zones stagnantes et leur taille moyenne, en fonction de la saturation en huile. L'analyse critique de ces résultats nous permet de conclure que, si certains comportements sont vraisemblablement caractéristiques de notre mode opératoire expérimental et du milieu poreux étudié, la technique mise au point (traçage et interprétation par un modèle PDE pourrait être utilisée avec succès dans le cas de milieux poreux réels. This article analyzes the hydrodynamics and spatial distribution of liquid phases in a porous medium with residual oil saturation. Experiments were performed in a porous medium made up of glass beads piled up in a column. Water drive was used to achieve decane saturations of up to 30% pore volume. The sweep water was traced during each experiment by a dyestuff that was insoluble in oil. The distribution curves of the tracer residence time, obtained upon issuing from the medium, were analyzed by a chromatographic model of the piston-dispersion type with exchange (PDE. This model covers all the pores in which the sweeping phase is flowing as well as the stagnant sections containing trapped water and oil. In the first phase an analysis of equations led to a definition, in the form of adimensional variables, of the penetrability of the porous medium and of the time constants respectively characterizing flow in the mobile phase and diffusion in stagnant zones. An examination of the influence of these variables on the flows transferred led to a definition of the state of distribution equilibrium of the solute between the stagnant and mobile phases. Two reference situations were chosen: (i equilibrium almost reached, and (ii negligible penetration of stagnant zones. On these bases, correlations were established between the

  6. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  7. Consolidation of tailings

    International Nuclear Information System (INIS)

    Nelson, J.D.; Wardwell, R.E.; Abt, S.R.; Staub, W.P.

    1983-09-01

    The integrity of cover systems placed on tailings impoundments will be affected by the potential for differential settlement of the tailings surface. Settlement of the sand fraction will occur relatively rapidly. The slimes will take longer time for consolidation and will produce greater settlement. This report reviews the phenomenon of consolidation for saturated and unsaturated tailings. The effect of load application by cover placement and the extent to which dewatering of tailings will cause consolidation are considered. In addition, the feasibility of inducing consolidation by alternative means and the potential applicability of these methods to tailings impoundments reclamation are discussed. Differential settlement of the tailings will cause tensile strain to be developed in covers. This strain could be large enough to cause cracking within a relatively brittle compacted clay. Dewatering of tailings by drainage can cause settlement even greater than that by placement of a cover material. Dewatering of the tailings would also increase the stability of the tailings surface, thereby enhancing reclamation operations. Consequently, in view of the enhanced surface stability and the fact that a portion of the differential settlement can be accomplished prior to cover placement, dewatering of tailings impoundments during operations may have benefical effects

  8. Immiscible two-phase fluid flows in deformable porous media

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Majer, Ernest

    Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman-Thigpen-Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress-strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.

  9. Direct observation and determination of the mechanisms governing mobility of asbestos in porous media

    Science.gov (United States)

    Seiphoori, A.; Ortiz, C. P.; Jerolmack, D. J.

    2017-12-01

    Transport of asbestos through soil by groundwater is typically considered to be negligible. There are indications, however, that under some conditions of pore-water/soil chemistry asbestos may become mobile, implying that buried contaminants could migrate from a disposal site and surface elsewhere. Shape, size and surface charge may influence the physical and chemical interactions of colloids with the soil matrix, and asbestos consists of elongated particles with different size and unique surface charge properties. Although chemical factors such as pH and ionic strength of pore water may affect the transport properties, the presence of dissolved organic carbon (DOC) has been identified to remarkably enhance the mobility of colloids including asbestos. To date, there is no explanation for how the presence of DOC may facilitate the mobilization of asbestos in soil - mainly because the soil medium has been treated as a black box without the possibility of observing particles within the matrix. Here, we investigated the mobility of chrysotile asbestos particles ( 10 um long) in porous media by developing a flow cell with an optically-transparent porous medium composed of granules of a refractive-index matched material. This enabled us to observe and track the particles within the water-saturated porous medium using in situ microscopy. The aqueous suspension of asbestos fibers was passed through this artificial soil, while the physical and chemical interaction of asbestos particles with the medium and their pore-scale distribution were analyzed. We studied the effects of changing solution chemistry (e.g., ionic strength, pH, and DOC content) on transport, attachment and aggregation of chrysotile particles. Experiments revealed a novel mechanism where the DOC-associated nanoparticles attach to chrysotile fibers by an electrostatic attraction, which facilitates their mobilization through the porous medium while modulating aggregation among fibers. Although pH and ionic

  10. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  11. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media

    NARCIS (Netherlands)

    Kahrobaei, S.S.; Vincent-Bonnieu, S.Y.F.; Farajzadeh, R.

    2017-01-01

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant,

  12. NMR studies of granular media and two-phase flow in porous media

    Science.gov (United States)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  13. On the stability of a radiating fluid in a porous spherical shell

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1987-09-01

    The onset of thermal instability in a fluid filled porous spherical shell is investigated when the temperatures of the walls are large enough for thermal radiation to be significant. Assuming that the gravitational field is radially symmetric and the porous medium consists of fluid which is optically thin, non-grey and near equilibrium, the problem is reduced to the determination of the eigenvalues for a set of linear homogeneous equations with variable coefficients. The effect of porosity and radiation on the stability parameter is discussed quantitatively. (author). 6 refs, 1 tab

  14. EDF - 2005 Consolidated Annual Results - Analysts' Presentation. Consolidated financial statements at December 31, 2005

    International Nuclear Information System (INIS)

    2006-01-01

    As the world's biggest electricity generator, the EDF Group covers every sector of expertise, from generation to trading and transmission grids. EDF builds on the expertise of its people, its R and D and engineering skills, its experience as a leading industry operator and the attentive support of its customers to deliver competitive solutions that successfully reconcile economic growth with climate protection. This document presents the 2005 annual results and Consolidated financial statements of the Group at 31 December 2005: Consolidated income statements, consolidated balance sheets, consolidated cash flow statements, variation in consolidated equity, notes (group accounting policies, impact of first-time application of IFRs, transition to standards IAS 32 and 39 concerning financial instruments, summary of accounting and valuation methods, public distribution concessions in France, significant events and transactions of 2005, impact of the law of august 9, 2004 on comparability, changes in the scope of consolidation, segment reporting, sales, fuel and energy purchases, other external expenses, contractual obligations and commitments entered into in the course of business, personnel expenses, other operating income and expenses, other income and expenses, financial result, income taxes, basic earnings per share and diluted earnings per share, goodwill, other intangible assets, property, plant and equipment, investments in companies accounted for under the equity method, financial assets, inventories, including work-in-process, trade receivables, other receivables, cash and cash equivalents, available-for-sale assets and liabilities, equity, provisions, special concession liabilities, current and non-current financial liabilities, derivatives, other liabilities, related parties, greenhouse gas emission quotas, environment, subsequent events, scope of consolidation

  15. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    International Nuclear Information System (INIS)

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-01-01

    Slaked lime (Ca(OH) 2 ) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH) 2 ) into vaterite (CaCO 3 ), monohydrocalcite (CaCO 3 . H 2 O) and calcite (CaCO 3 ), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  16. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arce, P., E-mail: plopezar@geo.ucm.es [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Gomez-Villalba, L.S. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Pinho, L. [Center of Construction Studies, Engineering Faculty, Oporto University, Oporto 4200-465 (Portugal); Fernandez-Valle, M.E. [Research Assistance Center, Nuclear Magnetic Resonance (Pluridisciplinar Institute), Complutense University of Madrid (UCM), Madrid 28040 (Spain); Alvarez de Buergo, M.; Fort, R. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain)

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  17. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barreno, I.; Tutar, M.; Esnaola, J.A.; Barrutia, H.

    2015-01-01

    Highlights: • A numerical procedure to derive porous media’s coefficients is proposed. • The local thermal non-equilibrium porous media model is more suitable for regenerators. • The regenerator temperature profiles can be better fitted to a logarithmic curve. • The wound woven wire matrix provides lower performance compared to stacked. • The numerical characterization methodology is useful for the multi-D Stirling engine models. - Abstract: Different numerical methods can be applied to the analysis of the flow through the Stirling engine regenerator. One growing approach is to model the regenerator as porous medium to simulate and design the full Stirling engine in three-dimensional (3-D) manner. In general, the friction resistance coefficients and heat transfer coefficient are experimentally obtained to describe the flow and thermal non-equilibrium through a porous medium. A finite volume method (FVM) based non-thermal equilibrium porous media modelling approach characterizing the fluid flow and heat transfer in a representative small detailed flow domain of the woven wire matrix is proposed here to obtain the porous media coefficients without further requirement of experimental studies. The results are considered to be equivalent to those obtained from the detailed woven wire matrix for the pressure drop and heat transfer. Once the equivalence between the models is verified, this approach is extended to model oscillating regeneration cycles through a full size regenerator porous media for two different woven wire matrix configurations of stacked and wound types. The results suggest that the numerical modelling approach proposed here can be applied with confidence to model the regenerator as a porous media in the multi-dimensional (multi-D) simulations of Stirling engines

  18. Metastable carbon in two chondritic porous interplanetary dust particles

    International Nuclear Information System (INIS)

    Rietmeijer, F.J.M.; Mackinnon, I.D.R.

    1986-01-01

    An understanding of carbonaceous matter in primitive extraterrestrial materials is an essential component of studies on dust evolution in the interstellar medium and the early history of the Solar System. Analytical Electron Microscopy (AEM) on carbonaceous material in two Chondritic Porous (CP) aggregrates is presented. The study suggests that a record of hydrocarbon carbonization may also be preserved in these materials

  19. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu; Sun, Shuyu

    2012-01-01

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall

  20. Anomalous dynamics of capillary rise in porous media

    KAUST Repository

    Shikhmurzaev, Yulii D.

    2012-07-09

    The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade ago is described. The developed theory is based on considering the principal modes of motion of the menisci that collectively form the wetting front on the Darcy scale. These modes, which include (i) dynamic wetting mode, (ii) threshold mode, and (iii) interface depinning process, are incorporated into the boundary conditions for the bulk equations formulated in the regular framework of continuum mechanics of porous media, thus allowing one to consider a general case of three-dimensional flows. The developed theory makes it possible to describe all regimes observed in the experiment, with the time spanning more than four orders of magnitude, and highlights the dominant physical mechanisms at different stages of the process. © 2012 American Physical Society.

  1. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  2. Capacitance effects in porous media

    International Nuclear Information System (INIS)

    Jasti, J.K.; Vaidya, R.N.; Fogler, H.S.

    1987-01-01

    The velocity dependence of the parameters in the Coats-Smith model for tracer dispersion and tailing in porous media was investigated in this study. Numerical simulations show that eddies with recirculation flow are formed in the pockets due to flow separation. The tracer transport between the eddies in the dead zones and the main channel was found to be diffusion limited. The simulations reveal that in the Stokes' flow regime the mass transfer coefficient between the two regions is independent of interstitial velocity. Core flood experiments were performed using radioactive tracers to verify the hypothesis that the capcitance effects are not due to a change in flowing fraction. The experimental results confirm that racer tailing is a function of the ratio of the molecular diffusivity to the flow rate. In light of these findings, the authors investigated the validity of the Coats-Smith model to predict dispersion and tailing in porous medium. Their studies indicate that the Coats-Smith model may be used, however, certain restrictions apply to the procedure for estimation of parameters and are described in this paper

  3. Distribution center consolidation games

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.

    2005-01-01

    We study a location-inventory model to analyze the impact of consolidation of distribution centers on facility and inventory costs. We introduce a cooperative game and show that when demand processes are i.i.d. the core is non-empty, i.e., consolidation allows for a stable division of the minimal

  4. Translation and rotation of a porous spheroid in a spheroidal container

    International Nuclear Information System (INIS)

    Saad, E.I.

    2010-01-01

    The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous spheroid in a concentric spheroidal container are studied analytically. The same small departure from a sphere is considered for each spheroidal surface. In the limit of small Reynolds number, the Brinkman equation for the flow inside the porous region and the Stokes equation for the outside region in their stream functions formulations and velocity components, which are proportional to the translational and angular velocities, respectively, are used. Explicit expressions are obtained for both inside and outside flow fields to the first order in a small parameter characterizing the deformation of the spheroidal surface from the spherical shape. The hydrodynamic drag force and couple exerted on the porous spheroid are obtained for the special cases of prolate and oblate spheroids in closed forms. The dependence of the normalized wall-corrected translational and rotational mobilities on permeability for a porous spheroid in an unbounded medium and for a solid spheroid in a cell on the particle volume fraction is discussed numerically and graphically for various values of the deformation parameter. In the limiting cases, the analytical solutions describing the drag force and torque or mobilities for a porous spheroid in the spheroidal vessel reduce to those for a solid sphere and for a porous sphere in a spherical cell. (author)

  5. 77 FR 45721 - Consolidated Audit Trail

    Science.gov (United States)

    2012-08-01

    ... maintain a consolidated order tracking system, or consolidated audit trail, with respect to the trading of... With a Consolidated Audit Trail 3. Large Trader Reporting System Rule B. Summary of Proposed Rule 613 C... Authority (``FINRA'') and some of the exchanges currently maintain their own separate audit trail systems...

  6. Foam flow in a model porous medium: I. The effect of foam coarsening.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  7. 26 CFR 1.1502-3 - Consolidated tax credits.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Consolidated tax credits. 1.1502-3 Section 1... (CONTINUED) INCOME TAXES Consolidated Tax Liability § 1.1502-3 Consolidated tax credits. (a) Determination of...) Consolidated limitation based on amount of tax. (i) Notwithstanding the amount of the consolidated credit...

  8. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.

    Science.gov (United States)

    Sinha, Santanu; Bender, Andrew T; Danczyk, Matthew; Keepseagle, Kayla; Prather, Cody A; Bray, Joshua M; Thrane, Linn W; Seymour, Joseph D; Codd, Sarah L; Hansen, Alex

    2017-01-01

    We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate ( Q ) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold ([Formula: see text]), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop ([Formula: see text]). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.

  9. Consolidity: Mystery of inner property of systems uncovered

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-10-01

    Full Text Available This paper uncovers the mystery of consolidity, an inner property of systems that was amazingly hidden. Consolidity also reveals the secrecy of why strong stable and highly controllable systems are not invulnerable of falling and collapsing. Consolidity is measured by its Consolidity Index, defined as the ratio of overall changes of output parameters over combined changes of input and system parameters, all operating in fully fuzzy environment. Under this notion, systems are classified into consolidated, quasi-consolidated, neutrally consolidated, unconsolidated, quasi-unconsolidated and mixed types. The strategy for the implementation of consolidity is elaborated for both natural and man-made existing systems as well as the new developed ones. An important critique arises that the by-product consolidity of natural or built-as-usual system could lead to trapping such systems into a completely undesired unconsolidity. This suggests that the ample number of conventional techniques that do not take system consolidity into account should gradually be changed, and adjusted with improved consolidity-based techniques. Four Golden Rules are highlighted for handling system consolidity, and applied to several illustrative case studies. These case studies cover the consolidity analysis of the Drug Concentration problem, Predator-Prey Population problem, Spread of Infectious Disease problem, AIDS Epidemic problem and Arm Race model. It is demonstrated that consolidity changes are contrary (opposite in sign to changes of both stability and controllability. This is a very significant result showing that our present practice of stressing on building strong stable and highly controllable systems could have already jeopardized the consolidity behavior of an ample family of existing real life systems. It is strongly recommended that the four Golden Rules of consolidity should be enforced as future strict regulations of systems modeling, analysis, design and

  10. Nanoparticle-enabled delivery of surfactants in porous media.

    Science.gov (United States)

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  12. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  13. Dry Rod Consolidation Technology Project results

    International Nuclear Information System (INIS)

    Mullen, C.K.; Feldman, E.M; Vinjamuri, K.; Griebenow, B.L.; Lynch, R.J.; Arave, A.E.; Hill, R.C.

    1988-01-01

    The Dry Rod Consolidation Technology (DRCT) Project conducted at the Idaho National Engineering Laboratory (INEL), in 1987 demonstrated the technical feasibility of a dry horizontal fuel rod consolidation process. Fuel rods from Westinghouse 15 /times/ 15 pressurized water reactor (PWR) spent fuel assemblies were consolidated into canisters to achieve a 2:1 volume reduction ratio. The consolidation equipment was operated at an existing hot cell complex at the INEL. The equipment was specifically designed to interface with the existing facility fuel handling and operational capabilities and was instrumented to provide data collection for process technology research. During the operational phase, data were collected from observation of the consolidation process, fuel assembly handling, and fuel rod behavior and characteristics. Equipment performance was recorded and data measurements were compiled on crud and contamination generated and spread. Fuel assembly skeletons [non-fuel bearing components (NFBC)] were gamma scanned and analyzed for isotopic content and profile. The above data collection was enhanced by extensive photograph and video documentation. The loaded consolidation fuel canisters were utilized for a test of the Transnuclear, Inc. TN-24P dry storage cask with consolidated fuel. The NFBC material was stored for a future volume reduction demonstration project. 14 figs., 4 tabs

  14. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  15. Pathway Distiller - multisource biological pathway consolidation.

    Science.gov (United States)

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow

  16. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  17. Is autism partly a consolidation disorder?

    Science.gov (United States)

    Femia, Lisa A; Hasselmo, Michael E

    2002-12-01

    Computational modeling has been useful for understanding processes of encoding and consolidation in cortical structures. In particular, this work suggests a role of neuromodulators in setting dynamics for consolidation processes during different stages of waking and sleep. Because autistic individuals show symptoms of a cognitive nature coupled with a high prevalence of comorbid conditions such as epileptiform discharge during sleep and sleep disorders, it is possible that autism could involve a breakdown in consolidation processes, which are essential to build effective cognitive representations of the environment on the basis of individual experiences. In this article, theories of consolidation during different stages of waking and sleep and the role of different neuromodulators in these consolidation processes are reviewed in conjunction with different features of autism, which may be understood in the context of these theories.

  18. Consolidation and Disclosure of SPE

    OpenAIRE

    中野, 貴之

    2011-01-01

    The purpose of this study is to discuss what kinds of information are demanded by the users of financial statements and what kinds of problems plague the companies using SPE (special purpose equity), while considering the actual situations of the consolidation and disclosure of SPE in Japan. At present, there is the trend of consolidating a broad range of SPE in Japan, etc., but some users of financial statements point out that it became difficult to understand consolidated financial stat...

  19. Simulation of flows and transport of pollutants in porous medium: application to the modelling of the safety of radioactive waste disposals

    International Nuclear Information System (INIS)

    Hoteit, H.

    2002-09-01

    Environmental problems has become an essential concern for the evaluation of the impact of human activities. The ultimate aim of this work is to develop efficient and reliable numerical tools for underground water flow management and distribution prediction of pollutants in porous media. The studies seek two fundamental aspects for the resolution of flow and transport equations. In the first part, we studied the behavior of the mixed finite element methods under the influence of the spatial discretization of the domain, the heterogeneity of the medium and stiff boundary conditions. The second part is dedicated to the resolution of the advection equation by means of the discontinuous Galerkin method. In order to stabilize this method, we developed new slope limiters for unstructured grids. The last part of this work consists of using our numerical tools to simulate a realistic radioactive waste disposal. The leak and the migration of several radioactive materials are studied throughout their trajectory, starting from the containers, going through by the artificial barriers and the geological environment until reaching the biosphere. (author)

  20. FEATURES OF CONSOLIDATED FINANCIAL STATEMENTS: FOREIGN EXPERIENCE

    Directory of Open Access Journals (Sweden)

    S. V. KUCHER

    2016-12-01

    Full Text Available The article researches the features of preparation and submission of the consolidated financial statements of the world countries of different systems of accounting standardization in order to identify the areas of accounting improvement for the process of consolidation of financial reporting indicators. The main problems of consolidated financial statements preparation by business entities in Ukraine are determined. The author determines the theoretical and practical problems of consolidation of financial statements of organizational and methodical character. The comparative analysis of the features of standardization process of financial statements consolidation in the world countries is carried out. The main differences in the requirements for the formation of consolidated financial statements indicators of such countries as the French Republic, the Federal Republic of Germany, the Republic of Belarus and the People’s Republic of China are outlined. The main directions of scientific researches on the improvement of accounting and analytical support for the preparation of consolidated financial statements are formed.

  1. Common consolidated corporate tax base: grouping and consolidation

    Directory of Open Access Journals (Sweden)

    Danuše Nerudová

    2012-01-01

    Full Text Available After the ten years of work and discussion of the proposal the European Commission has published the proposal of CCCTB directive on 16th March, 2011. This proposal can be considered as unique, for the European Commission is suggesting totally new system of corporate taxation. The aim of the paper is to research the rules for consolidation and grouping suggested in the proposal of CCCTB directive, to identify the possible conflict situations and to suggest the possible solution. The focuses on the provisions regarding the conditions for consolidation and grouping, comprised in chapter IX, Art. 54–60. In that area has been identified, that even though the provisions seem to be clear, their practical application can in some situations lead to double interpretation, mainly with respect to the fact that individual member states are responsible for the implementation of the directive and also national tax administrators and national courts are going to interpret the provisions of the directive. Therefore even though the fact that suggested system is unique and addresses a lot of problems which are facing companies running business on the internal market, the provisions regarding the consolidation rules and rules for group formatting may still lead not to unified interpretation. In that respect, some of the rules should be more specific in order to ensure unified interpretation.

  2. Solidification of porous medium saturated with aqueous solution in a rectangular cell. ; Discussion on influence of initial concentration of solution and mean diameter of beads. Kukei sonai no suiyoeki de mitasareta takoshitsutai no gyoko. ; Shoki nodo to beads no heikin chokkei no eikyo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K [Miyazaki University, Miyazaki (Japan). Faculty of engineering; Okada, M [Aoyama Gakuin University, Tokyo (Japan). School of Science and Engineering; Murakami, M [Toshiba Corp., Tokyo (Japan); Yabushita, Y [Sony Corp., Tokyo (Japan)

    1993-11-25

    Studies have been made for the purpose of analyzing solidification phenomenon of ground in relation to freezing construction method used in subway, water supply, and sewage constructions. Experimental studies have been carried out on solidification process of porous medium saturated with aqueous solution to discover influence of initial concentration of the solution and diameter of beads that constitute a porous medium. The experiment was performed by solidifying the porous medium sequentially from a side wall with lower temperature in a rectangular experimental tank with a height and a width of 100 mm filled with NaCl aqueous solution and beads. As a result, it was discovered that, if the initial concentration is low, the temperature difference is little between the upper part and the lower part of the experimental tank, and natural convection in the liquid-phase region is suppressed because of rising solidification temperature; the natural convection is suppressed in the liquid-phase region; and the boundary face between the mushy region and the liquid-phase region moves quickly. Further, the concentration rise in the liquid-phase region has slowed down despite that the solidification region is large enough. The smaller the mean diameter of beads, the faster the growth rate on the boundary face, hence the natural convection in the tank has been suppressed, and the growth rate on the boundary face has increased. In addition, the concentration stratification in the liquid-phase region does not expand, but is formed only on the bottom. 6 refs., 12 figs.

  3. Simulation of density-driven flow in heterogeneous and fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, A. [Politecnico di Torino (Italy). DISMA; Logashenko, D. [Steinbeis Research Center, Oelbronn (Germany); Stichel, S.; Wittum, G. [Frankfurt Univ., Frankfurt am Main (Germany). G-CSC

    2015-07-01

    The study of fractured porous media is an important and challenging problem in hydrogeology. One of the difficulties is that mathematical models have to account for heterogeneity introduced by fractures in hydrogeological media. Heterogeneity may strongly influence the physical processes taking place in these media. Moreover, the thickness of the fractures, which is usually negligible in comparison with the size of the whole domain, and the complicated geometry of fracture networks reduce essentially the efficiency of numerical methods. In order to overcome these difficulties, fractures are sometimes considered as objects of reduced dimensionality (surfaces in three dimensions), and the field equations are averaged along the fracture width. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d-1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using a finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other. We derive a criterion for the validity of the simplified representation. The criterion characterizes the transition of a mainly parallel flow to a rotational flow, which cannot be reasonably approximated using a d-1 dimensional representation. We further present a numerical algorithm using adaptive dimensional representation.

  4. Computational models of the hydrodynamics of fractured-porous media

    International Nuclear Information System (INIS)

    Grandi, G.M.

    1989-01-01

    The prediction of the flow pattern in fractured-porous media has great importance in the assessment of the local thermohydrological effects of the siting of a nuclear waste repository, among many other technological applications. Computational models must be used due to the complexity of the different phenomena involved which restricts the use of analytical techniques. A new numerical method, based on the boundary-fitted finite-difference technique, is presented in this thesis. The boundaries are external (the boundary of the physical domain), and internal (which correspond to the fracture network). The inclusion of the discrete fracture representation in the volume that represents the porous medium is the difference between the usual approach and the present one. The numerical model has been used in the prediction of the flow pattern in several internationally recognized verification cases and to hypothetical problems of our interest. The results obtained proved that the numerical approach considered gives accurate and reliable predictions of the hydrodynamics of fractured-porous media, allowing its use for the above mentioned studies. (Author) [es

  5. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.; Sun, S.; Chen, Z.

    2014-01-01

    in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition

  6. Consolidation of long-term memory: evidence and alternatives.

    Science.gov (United States)

    Meeter, Martijn; Murre, Jaap M J

    2004-11-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found.

  7. Application of infrared thermography for temperature distributions in fluid-saturated porous media

    DEFF Research Database (Denmark)

    Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.

    2016-01-01

    is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used......Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media....... This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration...

  8. Stochastic modeling of mass transport in porous media

    International Nuclear Information System (INIS)

    Lim, Seung Cheol; Lee, Kun Jai

    1990-01-01

    The stochastic moments analysis technique is developed to investigate radionuclide migration in geologic porous media. The mechanisms for radionuclide transport are assumed to be advection in the micropore, radioactive decay of the species, and sorption on the pore wall. Two covariance functions of groundwater velocity, retardation factor, and concentration are derived to incorporate the geologic parameter uncertainty in porous media of small medium dispersivity. The parametric studies show that the correlation length of groundwater velocity has significant influence on the migration behavior of radionuclide. Macro dispersivity is dominantly affected by the fluctuation of groundwater velocity, while the fluctuation of retardation factor has a considerable effect on the retarded stochastic velocity. The upper estimated concentration evaluated from this stochastic moments analysis can be used as a practical conservative value for the performance assessment of nuclear waste repository

  9. The Impact of Approved Accounting Standard AASB 1024 “Consolidated Accounts” on the Information Included in Consolidated Financial Statements

    OpenAIRE

    Pramuka, Bambang Agus

    1995-01-01

    The intent of consolidated financial statements is to provide meaningful, relevant, useful, and reliable information about the operations of a group of companies. In compliance with AASB 1024 'Consolidated Accounts', and AAS 24 Consolidated Financial Reports', a parent entity now has to include in its consolidated financial statements all controlled entities, regardless of their legal form or the ownership interest held. The new Standard also pr...

  10. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie; Sun, Shuyu; Wang, Xiaoping

    2014-01-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  11. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  12. Schemas and memory consolidation.

    Science.gov (United States)

    Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M

    2007-04-06

    Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.

  13. 'Butterfly effect' in porous Bénard convection heated from below

    Energy Technology Data Exchange (ETDEWEB)

    Siri, Z.; Liew, K. Y. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ibrahim, R. I. [Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan Darul Khusus (Malaysia)

    2014-07-10

    Transition from steady to chaos for the onset of Bénard convection in porous medium was analyzed. The governing equation is reduced to ordinary differential equation and solved using built in MATLAB ODE45. The transition from steady to chaos take over from a limit cycle followed by homoclinic explosion.

  14. Fuel consolidation and compaction and storage of NFBC

    International Nuclear Information System (INIS)

    Fuierer, T.

    1992-01-01

    Rochester Gas and Electric Corporation (RG ampersand E) has been involved in two separate fuel consolidation demonstration programs. One of those programs resulted in identifying some problems that may be resolved in consolidation hardware compaction and storage in order for consolidation to be attractive. In conjunction with the Electric Power Research Institute (EPRI), a study was recently performed on hardware compaction and storage. Consolidation is probably not a commercial alternative at this point in time because there are still several problems that must be resolved. There are some potential advantages of fuel consolidation. Consolidation has attractive economics and can minimize the institutional impacts of expanding spent fuel storage by internalizing spent fuel storage operations. The licensing effort is fairly simple. Consolidation may be less likely to have public intervention since the storage expansion will occur inside the plant. Consolidation can be subcontracted and the equipment is temporary. It can be used in conjunction with other storage expansion technologies such as dry storage. Fewer dry storage casks would be needed to store consolidated fuel than would be necessary for intact spent fuel

  15. Influence of yield stress on free convective boundary-layer flow of a non-Newtonian nanofluid past a vertical plate in a porous medium

    International Nuclear Information System (INIS)

    Hady, F. M.; Ibrahim, F. S.; Abdel-Gaied, S. M.; Eid, M. R.

    2011-01-01

    The effect of yield stress on the free convective heat transfer of dilute liquid suspensions of nanofluids flowing on a vertical plate saturated in porous medium under laminar conditions is investigated considering the nanofluid obeys the mathematical model of power-law. The model used for non-Newtonian nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary- layer equations are cast into dimensionless system which is solved numerically using a deferred correction technique and Newton iteration. This solution depends on yield stress parameter Ω, a power-law index n, Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. Analyses of the results found that the reduced Nusselt and Sherwood numbers are decreasing functions of the higher yield stress parameter for each dimensionless numbers, n and Le, except the reduced Sherwood number is an increasing function of higher Nb for different values of yield stress parameter

  16. The Effects of Variable Viscosity, Viscous Dissipation and Chemical Reaction on Heat and Mass Transfer Flow of MHD Micropolar Fluid along a Permeable Stretching Sheet in a Non-Darcian Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Salem

    2013-01-01

    Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.

  17. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    Science.gov (United States)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  18. A single continuum approximation of the solute transport in fractured porous media

    International Nuclear Information System (INIS)

    Jeong, J.T.; Lee, K.J.

    1992-01-01

    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)

  19. Modeling of turbulent flows in porous media and at the interface with a free fluid medium

    International Nuclear Information System (INIS)

    Chandesris, M.

    2006-12-01

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  20. Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Department of Mathematics, Faculty of Sciences, South Valley University, Qena (Egypt); Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City—Hilla (Iraq); Mohammed, H.A. [Department of Thermofluids, Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru (Malaysia); Adegun, I.K. [Department of Mechanical Engineering, University of Ilorin, Ilorin (Nigeria); Zhang, Xiaohui [School of Physics Science and Technology, School of Energy—Soochow University, Suzhou 215006, Jiangsu (China); Kolsi, Lioua [Unite de Metrologie en Mecanique des Fluides et Thermique, Ecole Nationale d’Ingenieurs, Monastir (Tunisia); Hasanpour, Arman [Department of Mechanical Engineering, Babol University of Technology, PO Box 484, Babol (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-01-15

    Highlights: • Ha decelerates the flow field. • Ha enhances conduction. • Magnetic field orientation is important. • Radiation parameter important. • Nu decreases as Ha increases. -- Abstract: Numerical two-dimensional analysis using finite difference approach with “line method” is performed on the laminar magneto-hydrodynamic natural convection in a square enclosure filled with a porous medium to investigate the effects of viscous dissipation and radiation. The enclosure heated from left vertical sidewall and cooled from an opposing right vertical sidewall. The top and bottom walls of the enclosure are considered adiabatic. The flow in the square enclosure is subjected to a uniform magnetic field at various orientation angles (φ = 0°, 30°, 45°, 60° and 90°). Numerical computations occur at wide ranges of Rayleigh number, viscous dissipation parameter, magnetic field orientation angles, Hartmann number and radiation parameter. Numerical results are presented with the aid of tables and graphical illustrations. The results of the present work explain that the local and average Nusselt numbers at the hot and cold sidewalls increase with increasing the radiation parameter. From the other side, the role of viscous dissipation parameter is to reduce the local and average Nusselt numbers at the hot left wall, while it improves them at the cold right wall. The results are compared with another published results and it found to be in a good agreement.

  1. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  2. Consolidation Processes: Raiders & Targets in Polish Financial Institutions

    OpenAIRE

    Poteraj, Jarosław

    2004-01-01

    The work consists of five chapters, an annex and an appendix. In the first chapter the author describes the point of consolidation processes, presents: the meaning of consolidation processes, active and institutional aspects of merger execution, gives a classification of the consolidation processes and considers conditions of execution of consolidations processes in the Polish law, The next chapter concerns reasons of consolidation processes. The author describes there in turn: motives of the...

  3. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  4. Simulation of the Flow Through Porous Layers Composed of Converging-Diverging Capillary Fissures or Tubes

    Science.gov (United States)

    Walicka, A.

    2018-02-01

    In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.

  5. Stimulated light emission in a dielectrically disordered composite porous matrix

    Science.gov (United States)

    Gross, E.; Künzner, N.; Diener, J.; Fujii, Minoru; Timoshenko, V. Yu.; Kovalev, D.

    2005-06-01

    We report on a medium exhibiting extremely efficient light scattering properties: a liquid network formed in a porous matrix. Liquid fragments confined in the solid matrix result in a random fluctuation of the dielectric function and act as scattering objects for photons. The optical scattering efficiency is defined by the filling factor of the liquid in the pores and its dielectric constant. The spectral dependence of the scattering length of photons indicates that the phenomenon is governed by a Mie-type scattering mechanism. The degree of the dielectric disorder of the medium, i.e. the level of opacity is tunable by the ambient vapor pressure of the dielectric substance. In the strongest scattering regime the scattering length of photons is found to be in the micrometer range. By incorporation of dye molecules in the voids of the porous layer a system exhibiting optical gain is realized. In the multiple scattering regime the optical path of diffusively propagating photons is enhanced and light amplification through stimulated emission occurs: a strong intensity enhancement of the dye emission accompanied by significant spectral narrowing is observed above the excitation threshold for a layer being in the opalescence state.

  6. Importance and performance evaluation tools for small and medium companies: critical analysis of national versus international literature

    Directory of Open Access Journals (Sweden)

    Sandro César Bortoluzzi

    2015-12-01

    Full Text Available The research aims to map the importance and performance evaluation tools for small and medium companies. This descriptive and qualitative study analyzed 33 national articles and 21 international ones. Regarding the importance of performance evaluation for small and medium companies, the literature highlights: (i it increases the success of the network; (ii it is useful for management; (iii it strengthens competitiveness; (iv it consolidates cooperation; and, (v it increases trust among partners. Comparing the national versus international literature on the importance of performance evaluation for small and medium companies, it can be noticed similar and complementary aspects, that is, there is not disagreement between the authors. The authors use tools consolidated in the literature, such as Balanced Scorecard; Benchmarking; Performance Prism and tools proposed specifically to evaluate small and medium networks. The main dimensions evaluated are: (i exchange of information; (ii value management in networks; (Iii level of network maturity; (iv benefits of collaboration; (v social capital; (vi collective efficiency; (vii network life cycle; (viii efficiency and inefficiency of the networks; and, (ix existence and intensity of the relationship between partners. The critical analysis regarding the performance evaluation concept adopted in the present study shows that the tools proposed or implemented to evaluate small and medium business networks have gaps in the process to identify criteria, measure ordinal and cardinally, integrate and generate actions of improvement.

  7. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  8. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  9. Benchmarking multi-dimensional large strain consolidation analyses

    International Nuclear Information System (INIS)

    Priestley, D.; Fredlund, M.D.; Van Zyl, D.

    2010-01-01

    Analyzing the consolidation of tailings slurries and dredged fills requires a more extensive formulation than is used for common (small strain) consolidation problems. Large strain consolidation theories have traditionally been limited to 1-D formulations. SoilVision Systems has developed the capacity to analyze large strain consolidation problems in 2 and 3-D. The benchmarking of such formulations is not a trivial task. This paper presents several examples of modeling large strain consolidation in the beta versions of the new software. These examples were taken from the literature and were used to benchmark the large strain formulation used by the new software. The benchmarks reported here are: a comparison to the consolidation software application CONDES0, Townsend's Scenario B and a multi-dimensional analysis of long-term column tests performed on oil sands tailings. All three of these benchmarks were attained using the SVOffice suite. (author)

  10. Solute transport in aggregated and layered porous media

    International Nuclear Information System (INIS)

    Koch, S.

    1993-01-01

    This work is a contribution to research in soil physics dealing with solute transport in porous media. The influence of structural inhomogeneities on solute transport is investigated. Detailed experiments at the laboratory scale are used to enlighten distinct processes which cannot be studied separately at field scale. Two main aspects are followed up: (i) to show the influence of aggregation of a porous medium on breakthrough time and spreading of an inert tracer and consequences on the estimation of parameter values of models describing solute transport in aggregated systems, (ii) to investigate the influences on the dispersion process when stratification is perpendicular to the direction of flow. Several concepts of modelling solute transport in soil are discussed. Models based on the convection-dispersion equation (CDE) are emphasized because they are used here to model solute transport experiments conducted with aggregated porous media. Stochastic concepts are introduced to show the limitations of the deterministic CDE approaches. Experiments are done in columns containing two kinds of solid phases and were saturated with water. The solid phases are porous and solid glass beads exhibiting a distinctly unimodal or bimodal pore size distribution. Experimental breakthrough curves (BTCs) are modelled with the CDE, a bicontinuum model with a phenomenological mass transfer rate and a bicontinuum spherical diffusion model. Experiments are also done in columns that are unsaturated containing porous materials that are layered. Flow is made at a steady rate. It is shown that layer boundaries have a severe influence on lateral mixing. They may force streamlines to converge or cause a lateral redistribution of solutes. (author) figs., tabs., 122 refs

  11. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  12. Color image analysis of contaminants and bacteria transport in porous media

    Science.gov (United States)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  13. Spreading of blood drops over dry porous substrate: complete wetting case.

    Science.gov (United States)

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition

    International Nuclear Information System (INIS)

    Jothiramalingam, R.; Wang, M.K.

    2007-01-01

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R 2 and standard error. The goodness to the linear fit was observed for Elovich model with high R 2 (≥0.9477) value

  15. Influence of radiation on double conjugate diffusion in a porous cavity

    International Nuclear Information System (INIS)

    Azeem,; Idris, Mohd Yamani Idna; Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.

    2016-01-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T_w and concentration C_w whereas the right surface is maintained at T_c and C_c such that T_w>T_c and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  16. Homogenization of a storage and/or disposal site in an underground damage or fractured medium

    International Nuclear Information System (INIS)

    Khvoenkova, N.

    2007-07-01

    The aim of this work was to model the flow and the transport of a radionuclide in a fractured rock. In order to be able to simulate numerically these phenomena in an industrial context, it has been chosen to apply the homogenization method. The theoretical study has consisted in 1)determining a microscopic model in the fractured medium 2)homogenizing the microscopic model. In this study, two media have been studied: a granitic medium and a calcareous medium. With the obtained experimental data, six possible microscopic models have been deduced for each type of medium and in terms of the choice of the fracturing (thin or thick) and of the relation between the porosities and the delay coefficients. With the homogenization, three types of exchange of pollutant between the fractures and the porous blocks have been revealed: 1)the instantaneous exchange for which the presence of the porous blocks has no influence on the global behaviour of the system 2)the instantaneous exchange for which the porous blocks absorb a non-negligible quantity of pollutant. This influence is only determined by the fractures system 3)the non-instantaneous exchange. These homogenized models have been numerically studied (resolution with the Cast3M code). The simulation of the homogenized models has given results similar to those of the direct models. Moreover, the study of the homogenized diffusion tensor has shown that the homogenized model takes into account the dispersion produced by the fractures system. By all these results, it can be concluded that the risk estimation of the contamination of the fractured rock is possible for long times by the use of homogenized models. (O.M.)

  17. Status of rod consolidation, 1988

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1989-01-01

    It is estimated that the spent fuel storage pools at some domestic light-water reactors will run out of space before 2003, the year that the US Department of Energy currently predicts it will have a repository available. Of the methods being studied to alleviate the problem, rod consolidation is one of the leading candidates for achieving more efficient use of existing space in spent fuel storage pools. Rod consolidation involves mechanically removing all the fuel rods from the fuel assembly hardware (i.e., the structural components) and placing the fuel rods in a close-packed array in a canister without space grids. A typical goal of rod consolidation systems is to insert the fuel rods from two fuel assemblies into a canister that has the same exterior dimensions as one standard fuel assembly (i.e., to achieve a consolidation or compaction ratio of 2:1) and to compact the nonfuel-bearing structural components from those two fuel assemblies by a factor of 10 to 20. This report provides an overview of the current status of rod consolidation in the United States and a small amount of information on related activities in other countries. 85 refs., 36 figs., 5 tabs

  18. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  19. 24 CFR 401.401 - Consolidated Restructuring Plans.

    Science.gov (United States)

    2010-04-01

    ... PROGRAM (MARK-TO-MARKET) Restructuring Plan § 401.401 Consolidated Restructuring Plans. A PAE may request HUD to approve a Consolidated Restructuring Plan that presents an overall strategy for more than one... resources, HUD will not approve any Consolidated Restructuring Plans that have a detrimental effect on...

  20. Simultaneous heat and moisture transfer in porous elements: transfer function method

    International Nuclear Information System (INIS)

    Souza, H.A. de.

    1985-01-01

    The presence of moisture in a porous element may strongly affect the transfer of heat through this element due to the processes which occur associated with the phase changes at the boundary surfaces and internally in the wall body. In addition, the structural properties of the element may also be meaningfully affected. The formulation of mathematical models for the simultaneous heat and mass transfer in porous elements results in a pair of nonlinear coupled equations for the temperature and moisture content distributions, in the material. It is supposed, in this work, that the actual variation of the properties of the porous medium is small in the range of variables which describe the specific problem to be analyzed. This enables us to work with linearized equations, making possible the use of linear solution methods. In this context, the present work deals with a linear procedure for the solution of simultaneous heat and moisture transfer problems in porous elements, sujected to arbitrary boundary conditions. This results in a linear relation between the heat and mass flux densities through the boundary surfaces of the elements and their associated potentials. It is shown that the model is consistent in asymptotical limiting cases; the model is then used for analyzing the drying process of a porous element, subjected to ambient actual conditions. (Author) [pt

  1. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    Science.gov (United States)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  2. Modelling the electrical properties of tissue as a porous medium

    International Nuclear Information System (INIS)

    Smye, S W; Evans, C J; Robinson, M P; Sleeman, B D

    2007-01-01

    Models of the electrical properties of biological tissue have been the subject of many studies. These models have sought to explain aspects of the dielectric dispersion of tissue. This paper develops a mathematical model of the complex permittivity of tissue as a function of frequency f, in the range 10 4 7 Hz, which is derived from a formulation used to describe the complex permittivity of porous media. The model introduces two parameters, porosity and percolation probability, to the description of the electrical properties of any tissue which comprises a random arrangement of cells. The complex permittivity for a plausible porosity and percolation probability distribution is calculated and compared with the published measured electrical properties of liver tissue. Broad agreement with the experimental data is noted. It is suggested that future detailed experimental measurements should be undertaken to validate the model. The model may be a more convenient method of parameterizing the electrical properties of biological tissue and subsequent measurement of these parameters in a range of tissues may yield information of biological and clinical significance

  3. 7 CFR 1710.108 - Mergers and consolidations.

    Science.gov (United States)

    2010-01-01

    ... operating efficiency and financial soundness. (b) After a merger or consolidation, RUS will give priority... 7 Agriculture 11 2010-01-01 2010-01-01 false Mergers and consolidations. 1710.108 Section 1710.108... and Basic Policies § 1710.108 Mergers and consolidations. (a) RUS encourages its borrowers to consider...

  4. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

    Science.gov (United States)

    Saad, E. I.; Faltas, M. S.

    2018-04-01

    An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

  5. Control of Bank Consolidated Financial Statements Quality

    Directory of Open Access Journals (Sweden)

    Margarita S. Ambarchyan

    2013-01-01

    Full Text Available The author presents the multiple linear regression model of bank consolidated financial statements quality. The article considers six characteristics that can be used to estimate the level of bank consolidated financial statements quality. The multiple linear regression model was developed, using the results of point-based system of consolidated financial statements of thirty European bank and financial groups on the basis of the developed characteristics. The author offers to use the characteristic significance factor in the process of consolidated financial statements appraisal by points. The constructed regression model is checked on accuracy and statistical significance. The model can be used by internal auditors and financial analytics as an instrument for bank and non-bank consolidated financial statements quality control

  6. Swarming behavior of gradient-responsive Brownian particles in a porous medium

    Science.gov (United States)

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  7. The Financial Effects of Consolidation.

    Science.gov (United States)

    Streifel, James S.; And Others

    1991-01-01

    Examination of 19 school district consolidations in 10 states, 1980-84, revealed that, of 6 expenditure categories, only administration showed significant savings 3 years after consolidation, when compared to changes in state average costs during that period. Changes in other expenditure categories varied widely among districts. Contains 22…

  8. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    Science.gov (United States)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  9. Interpretation of Consolidation Test on Søvind Marl

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2012-01-01

    The article deals with the interpretation of consolidation test in order to determine the preconsolidation stress; this is done by reviewing different methods. A main point in the article is the interaction between the consolidation and the secondary consolidation strains, and the methods used...... to separate the two strain types. This is in Denmark traditionally done by a √(t)-log(t) description, where the secondary consolidation first starts when the consolidation process is over. This assumption gives an uncertain description of the strain process, since the two processes in reality run...

  10. Effect of Thermophysical Properties on Coupled Heat and Mass Transfer in Porous Material during Forced Convective Drying

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2014-06-01

    Full Text Available The convective drying kinetics of porous medium was investigated numerically. A mathematical model for forced convective drying was established to estimate the evolution of moisture content and temperature inside multilayered porous medium. The set of coupled partial differential equations with the specified boundary and initial conditions were solved numerically using a MATLAB code. An experimental setup of convective drying had been constructed and validated the theoretical model. The temperature and moisture content of the potato samples were dynamically measured and recorded during the drying process. Results indicate that thermal diffusion coefficient has significant positive impact on temperature distribution and mass diffusion coefficient might directly affect the moisture content distribution. Soret effect has a significant impact on heat flux and temperature distribution in the presence of large temperature gradient.

  11. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  12. Potential petrophysical and chemical property alterations in a compressed air energy storage porous rock reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Stottlemyre, J.A.; Erikson, R.L.; Smith, R.P.

    1979-10-01

    Successful commercialization of Compressed Air Energy Storage (CAES) systems depends on long-term stability of the underground reservoirs subjected to somewhat unique operating conditions. Specifically, these conditions include elevated and time varying temperatures, effective stresses, and air humidities. To minimize the requirements for premium fuels, it may be desirable to retain the thermal energy of compression. Porous media, e.g., sandstone, may hold promise as elevated temperature reservoirs. In this study, a reservoir composed of clean quartz sandstone and injection air temperatures of 300 to 575/sup 0/K are assumed. Numerical modeling is used to estimate temperature, stress, and humidity conditions within this reference porous media reservoir. A discussion on relative importance to CAES of several potential porous media damage mechanisms is presented. In this context, damage is defined as a reduction in intrinsic permeability (measure of air transport capability), a decrease in effective porosity (measure of storage capability), or an increase in elastic and/or inelastic deformation of the porous material. The potential damage mechanisms presented include: (1) disaggregation, (2) particulate plugging, (3) boundary layer viscosity anomalies, (4) inelastic microstructural consolidation, (5) clay swelling and dispersion, (6) hydrothermal mineral alteration, (7) oxidation reactions, and (8) well casing corrosion. These mechanisms are placed in perspective with respect to anticipated CAES conditions and mechanisms suggested are: (1) of academic interest only, (2) readily identified and controlled via engineering, or (3) potential problem areas requiring additional investigation.

  13. Guide to Direct Consolidation Loans.

    Science.gov (United States)

    Department of Education, Washington, DC.

    Intended for financial aid counselors, this document provides guidelines to the Federal Direct Consolidation Loan Program for borrowers who are in school, as well as those in repayment, or in default. An introductory section explains the basics of the consolidated loan program, loan categories, and interest rates. Next, standards for borrower…

  14. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  15. District Consolidation: Rivals Coming Together

    Science.gov (United States)

    Mart, Dan

    2011-01-01

    District consolidation is a highly emotional process. One key to success is sticking to the facts. In Iowa, school districts facing financial difficulties or enrollment concerns do not have to move directly to consolidation. In many cases, districts begin by developing sharing agreements. These sharing agreements may start with simple sharing of…

  16. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  17. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  18. Semi-Analysis for the Pseudo-Colloid Migration of Multi-member Decay Chains in the Fractured Porous Medium with the Flux Boundary

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Hwang, Yong Soo; Kang, Chul Hyung

    2010-01-01

    Far-field modeling of radionuclide transport is an important component of general safety assessment studies carried out within the framework of storage of high-level radioactive waste in underground repositories. After a canister failure, radionuclides are leached from the backfilling and penetrate the surrounding bedrock, the final barrier between pollutant and Man's environment. Migration by pure diffusion through a hard tock or clay barrier is a rather slow process. In Fractured porous media, all of the groundwater flow occur within the fractures because fractures have permeabilities of several orders of magnitude larger than those of the rock matrix, if the geological layers are fully saturated with water. So radionuclides dissolved in groundwater will be transported along a fracture with molecular diffusion from the fracture to the rock matrix. Molecular diffusion from the fractures into the porous matrix constitutes an attenuation mechanism that can be highly order to prepare for extreme cases, it is assumed that the pollutants arrive rapidly in a fractured zone where transport takes place at much higher velocities. The specific problem of radionuclide transport through a fractured medium has been tackled by many scientists.According to the electromagnetic interaction between the solute and the colloid, solutes are absorbed by the colloid, and then we are called the pseudo-colloid. The natural colloid can exist inside a fracture with a density of 105 particles per one liter of a liquid. When the radionuclide migrates through a fractured rock, solutes sorb on natural colloids as well as the stationary fracture wall solid surface. Due to natural colloids, whose particle size is larger than that of solutes, colloids can migrate faster than solutes. Therefore, these pseudo-colloids, which are the sorbed solute molecules on the natural colloids, can also migrate faster than the solute. Both the solute and the pseudocolloid are sorbed onto and desorbed from

  19. Fundamental water experiment on subassembly with porous blockage in 4 sub-channel geometry. Influence of flow on temperature distribution in the porous blockage

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kobayashi, Jun; Isozaki, Tadasi; Nishimura, Motohiko; Kamide, Hideki

    1998-03-01

    In the liquid metal cooled Fast Breeder Reactor, Local Fault incident is recognized as a key issue of the local subassembly accident. In terms of the reactor safety assessment, it is important to predict the velocity and temperature distributions not only in the fuel subassembly but also in the blockage accurately to evaluate the location of the hottest point and the maximum temperature. In this study, the experiment was performed with the 4 sub-channel geometry water test facility. Dimension is five times larger than that of a real FBR. The porous blockage is located at the center sub-channel in the test section and surrounded with three unplugged sub-channels. The blockages used in this study were, the solid metal, the porous medium consisted of metal spheres, the porous blockage with end plates covering the side or top faces of the blockage to prevent the horizontal and axial flows into the blockage. The experimental parameters were the heater output provided by the electrical heater in the simulated fuel pins and the flow rate. Temperature of the fluid was measured inside/outside the blockage and velocity profiles outside the blockage were measured. (J.P.N.)

  20. Light amplification in a liquid network confined in a porous matrix

    Science.gov (United States)

    Gross, Egon; Kovalev, Dmitri; Kuenzner, Nicolai; Diener, Joachim; Koch, Frederick; Timoshenko, Victor Y.; Fujii, Minoru

    2003-11-01

    We report on a medium exhibiting extremely efficient light scattering properties: a liquid network formed in a porous matrix. Liquid fragments confined in the solid matrix result in a random fluctuation of the dielectric function and act as scattering objects for photons. The optical scattering efficiency is defined by the filling factor of the liquid in the pores and its dielectric constant. The spectral dependence of the scattering length of photons indicates that the phenomenon is governed by a Mie-type scattering mechanism. The degree of the dielectric disorder of the medium, i.e. the level of opacity is tunable by the ambient vapor pressure of the dielectric substance. In the strongest scattering regime the scattering length of photons is found to be in the micrometer range. By incorporation of dye molecules in the voids of the porous layer a system exhibiting optical gain is realized. In the multiple scattering regime the optical path of diffusively propagating photons is enhanced and light amplification through stimulated emission occurs: a strong intensity enhancement of the dye emission accompanied by significant spectral narrowing is observed above the excitation threshold for a layer being in the opalescence state.

  1. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

    KAUST Repository

    Chueh, C.C.

    2010-10-01

    An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.

  2. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Directory of Open Access Journals (Sweden)

    Goyal M.

    2017-12-01

    Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  3. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  4. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.; El-Amin, Mohamed

    2011-01-01

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  5. Influence of radiation on double conjugate diffusion in a porous cavity

    Energy Technology Data Exchange (ETDEWEB)

    Azeem,; Idris, Mohd Yamani Idna [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Badruddin, Irfan Anjum, E-mail: irfan-magami@Rediffmail.com; Nik-Ghazali, N. [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2016-05-06

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T{sub w} and concentration C{sub w} whereas the right surface is maintained at T{sub c} and C{sub c} such that T{sub w}>T{sub c} and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  6. Numerical analysis of gas transfer by natural convection in a fluid saturated porous medium

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2005-01-01

    The concentration distribution of a radioactive gas in a square porous cavity is investigated in this study. The decay of the radioactive gas is taken into account in the concentration equation. The governing equations are solved using alternating direction implicit method (ADI) and Finite volume method. Numerical results for velocity and concentration profiles are presented for an extensive range of parameter like Grashof number (Gr c ), Schmidt number (Sc) and the non-dimensional constant of radioactive decay. (authors)

  7. Numerical analysis of gas transfer by natural convection in a fluid saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, S. [Cekmece Nuclear Research and Training Center (Turkey); Filiz Baytas, A. [Istanbul Technical Univ. (Turkey). Inst. for Energy

    2005-07-01

    The concentration distribution of a radioactive gas in a square porous cavity is investigated in this study. The decay of the radioactive gas is taken into account in the concentration equation. The governing equations are solved using alternating direction implicit method (ADI) and Finite volume method. Numerical results for velocity and concentration profiles are presented for an extensive range of parameter like Grashof number (Gr{sub c}), Schmidt number (Sc) and the non-dimensional constant of radioactive decay. (authors)

  8. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

    Directory of Open Access Journals (Sweden)

    Nor Athirah Mohd Zin

    Full Text Available In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs are dispersed in the Kerosene Oil (KO which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique

  9. Familiarity speeds up visual short-term memory consolidation.

    Science.gov (United States)

    Xie, Weizhen; Zhang, Weiwei

    2017-06-01

    Existing long-term memory (LTM) can boost the number of retained representations over a short delay in visual short-term memory (VSTM). However, it is unclear whether and how prior LTM affects the initial process of transforming fragile sensory inputs into durable VSTM representations (i.e., VSTM consolidation). The consolidation speed hypothesis predicts faster consolidation for familiar relative to unfamiliar stimuli. Alternatively, the perceptual boost hypothesis predicts that the advantage in perceptual processing of familiar stimuli should add a constant boost for familiar stimuli during VSTM consolidation. To test these competing hypotheses, the present study examined how the large variance in participants' prior multimedia experience with Pokémon affected VSTM for Pokémon. In Experiment 1, the amount of time allowed for VSTM consolidation was manipulated by presenting consolidation masks at different intervals after the onset of to-be-remembered Pokémon characters. First-generation Pokémon characters that participants were more familiar with were consolidated faster into VSTM as compared with recent-generation Pokémon characters that participants were less familiar with. These effects were absent in participants who were unfamiliar with both generations of Pokémon. Although familiarity also increased the number of retained Pokémon characters when consolidation was uninterrupted but still incomplete due to insufficient encoding time in Experiment 1, this capacity effect was absent in Experiment 2 when consolidation was allowed to complete with sufficient encoding time. Together, these results support the consolidation speed hypothesis over the perceptual boost hypothesis and highlight the importance of assessing experimental effects on both processing and representation aspects of VSTM. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao

    2010-01-01

    The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)

  11. Teaching Consolidations Accounting: An Approach to Easing the Challenge

    Science.gov (United States)

    Murphy, Elizabeth A.; McCarthy, Mark A.

    2010-01-01

    Teaching and learning accounting for consolidations is a challenging endeavor. Students not only need to understand the conceptual underpinnings of the accounting requirements for consolidations, but also must master the complex accounting needed to prepare consolidated financial statements. To add to the challenge, the consolidation process is…

  12. Geochemical thermodynamic and kinetic modeling that take into account the mass transfer phenomena in saturated porous medium

    International Nuclear Information System (INIS)

    Gerard, Frederic

    1996-01-01

    The mass transport mechanisms (advection. mechanical dispersion and molecular diffusion) have been introduced into the thermodynamic and kinetic geochemical code KINDIS. This innovative approach to couple chemical and transport mass transfers has allowed us to develop a reactive transport or hydrochemical code named KIRMAT, which naturally preserve the comprehensive geochemical functions of KINDIS. Mass transport phenomena through the total connected porosity of a water-saturated porous medium are solved over one spatial dimension (ID). The finite difference method is used. An explicit or forward time scheme is computed. The advective finite difference expression may be either centered or upstream weighted. Thus, ail of the hydrodynamic conditions may be modeled (from the pure advection to pure diffusion). The mass transport and geochemical flux are solved simultaneously (one-step algorithm). Moreover. the code KIRMAT is designed to quantify reactive mass transport through a double or dual porosity medium, in which the flow porosity (filled by free water) and the diffusion porosity (containing stagnant water) are viewed as two distinct sub mediums or Systems. Under some given conditions, the need to solve one or the other mass transport equation is a function of the water-rock System size. The accuracy of the kinetic constraint has been improved in KIRMAT. Two new kinetic rate laws have been introduced for the dissolution of the most abundant silicates (alkali feldspars, silica. etc.). These rate laws integrate the quantitatively important inhibitor and catalytic effects involved with some dissolved chemical elements that are ubiquitous in natural aqueous solutions. The basic step. the numerical verification of the code, has been tackled with two complementary approaches. The numerical results from KIRMAT have been compared to those calculated from an exact solution and a new method has been developed and used. We have compared the numerical results of KIRMAT in

  13. Geometric and topological characterization of porous media: insights from eigenvector centrality

    Science.gov (United States)

    Jimenez-Martinez, J.; Negre, C.

    2017-12-01

    Solving flow and transport through complex geometries such as porous media involves an extreme computational cost. Simplifications such as pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models have the ability to preserve the connectivity of the medium. However, they have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Network theory approaches, where the complex network is conceptualized like a graph, can help to simplify and better understand fluid dynamics and transport in porous media. To address this issue, we propose a method based on eigenvector centrality. It has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction which allows considering the flow and transport anisotropy in porous media. The model predictions are compared with millifluidic transport experiments, showing that this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. Entropy computed from the eigenvector centrality probability distribution is proposed as an indicator of the "mixing capacity" of the system.

  14. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  15. [Impacts of farmland consolidation on farmland landscape].

    Science.gov (United States)

    Deng, Jinsong; Wang, Ke; Li, Jun; Xu, Junfeng; Shen, Zhangquan; Gao, Yurong

    2006-01-01

    Farmland consolidation is the act of regulating, improving, and comprehensively renovating the structure, quality, and layout of field, water, road, forestry, and village in the countryside in a certain area by means of administration, economy, law, and engineering techniques according to the goal and usage defined by land use planning, so as to improve farmland use rate and its output rate, to increase farmland area, and to achieve better productive, living, and ecological environment. Recently, farmland consolidation has been carried out all over the country, especially in its economy-developed regions. But, unscientific planning and unsuitable farmland consolidation engineering have negative effects on field ecological system. In this paper, based on the technology of GIS and RS, the basic theories and methods of landscape ecology and a compositive grading method were applied to analysis the dynamics of farmland landscape fragmentation in Tongxiang county. The results showed that the farmland landscape fragmentation in this county was strongly affected by consolidation. More attention should be paid to the protection of farmland landscape during consolidation, and to avoid or decrease the negative effects resulted from unscientific planning and unsuitable farmland consolidation engineering.

  16. SOME APECTS REGARDING THE CONSOLIDATED FINANCIAL STATEMENTS

    Directory of Open Access Journals (Sweden)

    Szora Tamas Atila

    2012-12-01

    Full Text Available The study is divided into four parts: in the introduction are presented the theoretical aspects of the consolidated financial statements and the consolidation methods. During the second part are shown the structure rates calculated prior and after the consolidation, and in the third are calculated the financial rates of return and the effective tax rates of fixed assets. The conclusion of this study presents that although the consolidated entity is not a tax, it presents the group effort without the internal flows between entities within the group. In terms of the world scientific research typology used by the authors, it refers to descriptive research, explanatory research and applied research. In terms of the novelties, brought by this study, it is specifically determined, based on the actual database, the evolution of structure indicators, indicators of balance, the financial profitability indicators of corporate companies prior to and after consolidation.

  17. Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed

    Science.gov (United States)

    Karmakar, Timir; Raja Sekhar, G. P.

    2018-04-01

    We consider a theoretical model of the squeeze film in the presence of a porous bed. The gap between the porous bed and the bearing is assumed to be filled with a Newtonian fluid. We use the Navier-Stokes equation in the fluid region and the Darcy equation in the fluid filled porous region. Lubrication approximation is used to derive the corresponding evolution equation for the film thickness. We use G. S. Beavers and D. D. Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid. Mech. 30, 197-207 (1967)] and M. Le Bars and M. G. Worster ["Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification," J. Fluid. Mech. 550, 149-173 (2006)] condition at the liquid porous interface and present a detailed analysis on the corresponding impact. We assume that the porous bed is anisotropic in nature with permeabilities K2 and K1 along the principal axes. Accordingly, the anisotropic angle ϕ is taken as the angle between the horizontal direction and principal axis with permeability K2. We show that the anisotropic permeability ratio and the anisotropic angle make a significant influence on the contact time, flux, velocity, etc. Contact time to meet the porous bed when a bearing approaches under a constant prescribed load is estimated. We present some important findings (relevant to the knee joint) based on the anisotropic properties of the human cartilage. For a prescribed constant load, we have estimated the time duration, during which a healthy human knee remains fluid lubricated.

  18. Introduction to porous media micro-mechanics; Introduction a la micromecanique des milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    Dormieux, L.; Bourgeois, E.

    2002-07-01

    The study of porous materials can be considered at two different scales: the microscopic scale characterized by the size of the pores and by the domains occupied by the solid and the fluids, and the macroscopic scale which is controlled by the size of the structures under study (backfilling, foundations, dams, oil reservoirs or sedimentary basins). An alternative way, explored since about 30 years, consists in searching the formulation of macroscopic laws in the framework of a scale change approach. This is the point of view considered in this book which proposes a micro-mechanical approach of the modeling of porous environments based on various techniques of homogenization of the heterogenous materials with a random or periodical microstructure: 1 - macroscopic description of porous environments (space scales, skeleton deformation and kinematics, kinematics of fluid components, conservation laws, internal stresses); 2 - scale change techniques (representative elementary volume, averaging operation, application to conservation laws); 3 - Darcy transport (phenomenological approach of the Darcy law, Darcy law interpretation at the microscopic scale, fluid and solid phases interaction, flows inside a rigid porous environment, application); 4 - diffusive transport of a fluid component (solute transport equation, modeling of the macroscopic diffusive flux by scale change, application to pollutant diffusion); 5 - linear poro-elastic behaviour (first approach: empty sphere model, generalisation, estimation of poro-elastic characteristics); 6 - evolution problems in poro-elasticity (problem formulation, resolution, study of poro-elastic consolidation, tide response of an underwater massif, modeling of the formation of a syncline, study of the folding back of a sheet, numerical resolution of coupled problems, realization of a Scilab script); 7 - conclusion. (J.S.)

  19. The Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media

    DEFF Research Database (Denmark)

    Ghsemi, E; Soleimani, S; Barari, Amin

    2012-01-01

    The steady two-dimensional laminar forced magneto-hydrodynamic (MHD) Hiemenz flow against a flat plate with variable wall temperature in a porous medium is analyzed. The transformed nonlinear boundary-layer equations are solved analytically by homotopy analysis method (HAM). Results for the veloc...

  20. Three-phase flow analysis of dense nonaqueous phase liquid infiltration in horizontally layered porous media

    NARCIS (Netherlands)

    Wipfler, E.L.; Dijke, van M.I.J.; Zee, van der S.E.A.T.M.

    2004-01-01

    We considered dense nonaqueous phase liquid (DNAPL) infiltration into a water-unsaturated porous medium that consists of two horizontal layers, of which the top layer has a lower intrinsic permeability than the bottom layer. DNAPL is the intermediate-wetting fluid with respect to the wetting water

  1. Consolidation of long-term memory: Evidence and alternatives.

    OpenAIRE

    Meeter, M.; Murre, J.M.J.

    2004-01-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be impleme...

  2. Consolidation of the formation sand by chemical methods

    Directory of Open Access Journals (Sweden)

    Mariana Mihočová

    2006-10-01

    Full Text Available The sand control by consolidation involves the process of injecting chemicals into the naturally unconsolidated formation to provide an in situ grain-to-grain cementation. The sand consolidation chemicals are available for some 30 years. Several types of consolidating material were tried. Presently available systems utilize solidified plastics to provide the cementation. These systems include phenol resin, phenol-formaldehyde, epoxy, furan and phenolic-furfuryl.The sand consolidation with the steam injection is a novel technique. This process provides a highly alkaline liquid phase and temperatures to 300 °C to geochemically create cements by interacting with the dirty sand.While the formation consolidation has widely applied, our experience has proved a high level of success.

  3. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.

    Science.gov (United States)

    Peng, Xiaolong; Liu, Yong; Liang, Baosheng; Du, Zhimin

    2017-01-01

    Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CVCM). Our study has inspected this conclusion. First, it is revealed that the principle of mass conservation has no direct relation to the velocity conservation, and the former is not the true foundation of the later, because the former only reflects the kinetic characteristic of the fluid particles at one position(the interface), but not the different two parts of fluid on the different side of the interface which required by the interface conditions. Then the reasonableness of CVCM is queried from the following three aspects:(1)Using Mukat's two phase seepage equation and the mathematical method of apagoge, we have disproved the continuity of each fluid velocity;(2)Since the analytical solution of the equation of Buckley-Leveret equations is acquirable, its velocity jumps at the flood front presents an appropriate example to disprove the CVCM;(3) The numerical simulation model gives impractical result that flood front would stop moving if CVCM were used to calculate the velocities at the interface between two gridcells. Subsequently, a new one, termed as Jump Velocity Condition Model (JVCM), is deduced from Muskat's two phase seepage equations and Darcy's law without taking account of the capillary force and compressibility of rocks and fluids. Finally, several cases are presented. And the comparisons of the velocity, pressure difference and the front position, which are given by JVCM, CVCM and SPU, have shown that the result of JVCM is the closest to the exact solution.

  4. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.

    Directory of Open Access Journals (Sweden)

    Xiaolong Peng

    Full Text Available Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CVCM. Our study has inspected this conclusion. First, it is revealed that the principle of mass conservation has no direct relation to the velocity conservation, and the former is not the true foundation of the later, because the former only reflects the kinetic characteristic of the fluid particles at one position(the interface, but not the different two parts of fluid on the different side of the interface which required by the interface conditions. Then the reasonableness of CVCM is queried from the following three aspects:(1Using Mukat's two phase seepage equation and the mathematical method of apagoge, we have disproved the continuity of each fluid velocity;(2Since the analytical solution of the equation of Buckley-Leveret equations is acquirable, its velocity jumps at the flood front presents an appropriate example to disprove the CVCM;(3 The numerical simulation model gives impractical result that flood front would stop moving if CVCM were used to calculate the velocities at the interface between two gridcells. Subsequently, a new one, termed as Jump Velocity Condition Model (JVCM, is deduced from Muskat's two phase seepage equations and Darcy's law without taking account of the capillary force and compressibility of rocks and fluids. Finally, several cases are presented. And the comparisons of the velocity, pressure difference and the front position, which are given by JVCM, CVCM and SPU, have shown that the result of JVCM is the closest to the exact solution.

  5. Porous gravity currents: Axisymmetric propagation in horizontally graded medium and a review of similarity solutions

    Science.gov (United States)

    Lauriola, I.; Felisa, G.; Petrolo, D.; Di Federico, V.; Longo, S.

    2018-05-01

    We present an investigation on the combined effect of fluid rheology and permeability variations on the propagation of porous gravity currents in axisymmetric geometry. The fluid is taken to be of power-law type with behaviour index n and the permeability to depend from the distance from the source as a power-law function of exponent β. The model represents the injection of a current of non-Newtonian fluid along a vertical bore hole in porous media with space-dependent properties. The injection is either instantaneous (α = 0) or continuous (α > 0). A self-similar solution describing the rate of propagation and the profile of the current is derived under the assumption of small aspect ratio between the current average thickness and length. The limitations on model parameters imposed by the model assumptions are discussed in depth, considering currents of increasing/decreasing velocity, thickness, and aspect ratio, and the sensitivity of the radius, thickness, and aspect ratio to model parameters. Several critical values of α and β discriminating between opposite tendencies are thus determined. Experimental validation is performed using shear-thinning suspensions and Newtonian mixtures in different regimes. A box filled with ballotini of different diameter is used to reproduce the current, with observations from the side and bottom. Most experimental results for the radius and profile of the current agree well with the self-similar solution except at the beginning of the process, due to the limitations of the 2-D assumption and to boundary effects near the injection zone. The results for this specific case corroborate a general model for currents with constant or time-varying volume of power-law fluids propagating in porous domains of plane or radial geometry, with uniform or varying permeability, and the possible effect of channelization. All results obtained in the present and previous papers for the key parameters governing the dynamics of power-law gravity

  6. A dual-porosity model for two-phase flow in deforming porous media

    Science.gov (United States)

    Shu, Zhengying

    Only recently has one realized the importance of the coupling of fluid flow with rock matrix deformations for accurately modeling many problems in petroleum, civil, environmental, geological and mining engineering. In the oil industry, problems such as reservoir compaction, ground subsidence, borehole stability and sanding need to be simulated using a coupled approach to make more precise predictions than when each process is considered to be independent of the other. Due to complications associated with multiple physical processes and mathematical representation of a multiphase now system in deformable fractured reservoirs, very few references, if any, are available in the literature. In this dissertation, an approach, which is based on the dual-porosity concept and takes into account rock deformations, is presented to derive rigorously a set of coupled differential equations governing the behavior of fractured porous media and two-phase fluid flow. The finite difference numerical method, as an alternative method for finite element, is applied to discretize the governing equations both in time and space domains. Throughout the derived set of equations, the fluid pressures and saturations as well as the solid displacements are considered as the primary unknowns. The model is tested against the case of single-phase flow in a 1-D consolidation problem for which analytical solutions are available. An example of coupled two-phase fluid flow and rock deformations for a scenario of a one-dimensional, fractured porous medium is also discussed. The numerical model and simulator, RFIA (Rock Fluid InterAction), developed in this dissertation can be a powerful tool to solve difficult problems not only in petroleum engineering such as ground subsidence, borehole stability and sand control, but also in civil engineering such as groundwater flow through fractured bedrock and in environmental engineering such as waste deposit concerns in fractured and unconsolidated formations

  7. Distributed learning enhances relational memory consolidation.

    Science.gov (United States)

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  8. Dysfunctional overnight memory consolidation in ecstasy users.

    Science.gov (United States)

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users. © The Author(s) 2014.

  9. 77 FR 17091 - Trust Land Consolidation Draft Plan

    Science.gov (United States)

    2012-03-23

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Trust Land Consolidation Draft Plan AGENCY... reopening the period for commenting on the Cobell Land Consolidation Program Draft Plan (also known as the Trust Land Consolidation Draft Plan), which is the draft plan for accomplishing these goals. DATES...

  10. Mechanical behavior of mullite green disks prepared by thermal consolidation with different starches

    International Nuclear Information System (INIS)

    Talou, M.H.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Mechanical behavior of porous green disks obtained by thermal consolidation of mullite suspensions with cassava and potato starches was studied by diametral compression testing. Disks (thickness/diameter ≤ 0.25) were prepared by thermal treatment (70-80 °C, 2h) of mullite (75 vol%)/starch (25 vol%) of suspensions (40 vol%) pre-gelled at 55-60 °C, and dried (40 °C, 24 h). Samples were characterized by porosity measurements (50-55%) and microstructural analysis (SEM). Several mechanical parameters were determined: mechanical strength, Young's modulus, strain to fracture and yield stress. Typical crack patterns were analyzed and the fractographic analysis was performed by SEM. Mechanical results were related to the developed microstructures, the behavior of the starches in aqueous suspension, and the properties of the formed gels. For comparative purposes, mullite green disks obtained by burning out the starch (650 °C, 2h) were also mechanically evaluated. (author)

  11. Natural convection heat and mass transfer in MHD fluid flow past a moving vertical plate with variable surface temperature and concentration in a porous medium

    Directory of Open Access Journals (Sweden)

    K. Javaherdeh

    2015-09-01

    Full Text Available A numerical investigation of two-dimensional steady laminar free convection flow with heat and mass transfer past a moving vertical plate in a porous medium subjected to a transverse magnetic field is carried out. The temperature and concentration level at the plate surface are assumed to follow a power-law type of distribution. The governing non-linear set of equations is solved numerically employing a fully implicit finite difference method. Results are presented to illustrate the influence of different parameters such as Grashof number (Gr, porosity parameter (Kp, magnetic field parameter (Mn and exponents in the power law variation of the surface temperature and concentration, m and n. The dimensionless velocity, temperature and concentration profiles are analyzed and numerical data for the local Nusselt number and Sherwood number are presented. The study accentuates the significance of the relevant parameters.

  12. Physical Matrix Characterisation: Studies of Crystalline Rocks and Consolidated Clays by PMMA Method and Electron Microscopy as Support of Diffusion Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Siitari-Kauppi, M.; Leskinen, A.; Kelokaski, A.; Togneri, L.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.

    2007-07-01

    Crystalline rock and consolidated clay are both considered adequate host rocks for a high-level radioactive waste deep geological repository (HLWR). Over the extended periods of HLWR operation, long-lived radionuclides (RN) may be released from the fuel and migrate to the geo/biosphere. To predict the fate of contaminants and to assess the safety of the host rock, it is very important to determine transport parameters, as diffusion coefficients, and to relate them to the physical properties of the barriers, as connected porosity. In heterogeneous materials, it is also a major task to describe the transport at the mineral scale evaluating diffusion coefficients and mineral-specific porosities on single minerals. The main objective of this study was to determine within granite and consolidated clay, the connective porosity and mineral-specific porosities by poly-methylmethacrylate (PMMA) autoradiography method. Scanning electron microscopy and energy-dispersive X-ray analyses (FESEM/EDS) were performed in order to study the pore apertures of porous regions in greater detail and to identify the corresponding minerals. By the novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS) apparent diffusion coefficients were determined at mineral scale. Finally, the porosity results were used to evaluate the effective diffusion coefficients and retention parameters of single minerals in different granite samples and consolidated clays. (Author) 42 refs.

  13. Changing the countryside by land consolidation

    NARCIS (Netherlands)

    Benthem, Roelof Jan

    Land consolidation is a system of technical and legal measures for the improvement of farming conditions and land productivity. In western and central Europe, the execution of these land consolidation schemes causes great changes in the appearance of the countryside: existing landscape elements such

  14. Process for soil consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, F W; Brandstrom, R I

    1967-01-09

    In this process for the formation of a consolidated aggregate, a mass of solid particles is combined with an aqueous alkaline consolidating compound which forms a gel. This gel consists principally of a mixture of the following: a vegetable polyphenolic material; one of the group of catechins; condensed tannins and extract of the bark of coniferous trees; with 1-10% by weight of formaldehyde; and a catalyst of the group of water-soluble salts of chromium, iron, and aluminum. This catalyst serves to catalyze the reaction of formation of the gel.

  15. Experimental investigation of the diffusion coefficients in porous media by application of X-ray computer tomography

    DEFF Research Database (Denmark)

    Zhelezny, Petr; Shapiro, Alexander

    2006-01-01

    The present work describes a new experimental method that makes it possible to investigate diffusion coefficients in a porous medium. The method is based on application of X-ray computed tomography (CT). The general applicability of this method for the determination of diffusion coefficients...

  16. [The consolidation of memory, one century on].

    Science.gov (United States)

    Prado-Alcala, R A; Quirarte, G L

    The theory of memory consolidation, based on the work published by Georg Elias Muller and Alfons Pilzecker over a century ago, continues to guide research into the neurobiology of memory, either directly or indirectly. In their classic monographic work, they concluded that fixing memory requires the passage of time (consolidation) and that memory is vulnerable during this period of consolidation, as symptoms of amnesia appear when brain functioning is interfered with before the consolidation process is completed. Most of the experimental data concerning this phenomenon strongly support the theory. In this article we present a review of experiments that have made it possible to put forward a model that explains the amnesia produced in conventional learning conditions, as well as another model related to the protection of memory when the same instances of learning are submitted to a situation involving intensive training. Findings from relatively recent studies have shown that treatments that typically produce amnesia when they are administered immediately after a learning experience (during the period in which the memory would be consolidating itself) no longer have any effect when the instances of learning involve a relatively large number of trials or training sessions, or relatively high intensity aversive events. These results are not congruent with the prevailing theories about consolidation.

  17. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  18. Diffusive–Dispersive and Reactive Fronts in Porous Media

    DEFF Research Database (Denmark)

    Haberer, Christina M.; Muniruzzaman, Muhammad; Grathwohl, Peter

    2015-01-01

    , across the unsaturated–saturated interface, under both conservative and reactive transport conditions. As reactive system we considered the abiotic oxidation of Fe2+ in the presence of O2. We studied the reaction kinetics in batch experiments and its coupling with diffusive and dispersive transport...... processes by means of one-dimensional columns and two-dimensional flow-through experiments, respectively. A noninvasive optode technique was used to track O2 transport into the initially anoxic porous medium at highly resolved spatial and temporal scales. The results show significant differences...

  19. 29 CFR 4011.6 - Mergers, consolidations, and spinoffs.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Mergers, consolidations, and spinoffs. 4011.6 Section 4011... REPORTING AND DISCLOSURE REQUIREMENTS DISCLOSURE TO PARTICIPANTS § 4011.6 Mergers, consolidations, and spinoffs. In the case of a plan involved in a merger, consolidation, or spinoff transaction that becomes...

  20. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the